Skip to main content

North-Bound Distribution of Link-State and TE Information using BGP
draft-ietf-idr-ls-distribution-02

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 7752.
Authors Hannes Gredler , Jan Medved , Stefano Previdi , Adrian Farrel , Saikat Ray
Last updated 2013-02-25
Replaces draft-gredler-idr-ls-distribution
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state WG Document
Document shepherd (None)
IESG IESG state Became RFC 7752 (Proposed Standard)
Consensus boilerplate Unknown
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-ietf-idr-ls-distribution-02
Inter-Domain Routing                                          H. Gredler
Internet-Draft                                    Juniper Networks, Inc.
Intended status: Standards Track                               J. Medved
Expires: August 28, 2013                                      S. Previdi
                                                     Cisco Systems, Inc.
                                                               A. Farrel
                                                  Juniper Networks, Inc.
                                                                  S. Ray
                                                     Cisco Systems, Inc.
                                                       February 24, 2013

  North-Bound Distribution of Link-State and TE Information using BGP
                   draft-ietf-idr-ls-distribution-02

Abstract

   In a number of environments, a component external to a network is
   called upon to perform computations based on the network topology and
   current state of the connections within the network, including
   traffic engineering information.  This is information typically
   distributed by IGP routing protocols within the network

   This document describes a mechanism by which links state and traffic
   engineering information can be collected from networks and shared
   with external components using the BGP routing protocol.  This is
   achieved using a new BGP Network Layer Reachability Information
   (NLRI) encoding format.  The mechanism is applicable to physical and
   virtual links.  The mechanism described is subject to policy control.

   Applications of this technique include Application Layer Traffic
   Optimization (ALTO) servers, and Path Computation Elements (PCEs).

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

Gredler, et al.          Expires August 28, 2013                [Page 1]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 28, 2013.

Copyright Notice

   Copyright (c) 2013 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Gredler, et al.          Expires August 28, 2013                [Page 2]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4
   2.  Motivation and Applicability . . . . . . . . . . . . . . . . .  5
     2.1.  MPLS-TE with PCE . . . . . . . . . . . . . . . . . . . . .  5
     2.2.  ALTO Server Network API  . . . . . . . . . . . . . . . . .  7
   3.  Carrying Link State Information in BGP . . . . . . . . . . . .  8
     3.1.  TLV Format . . . . . . . . . . . . . . . . . . . . . . . .  8
     3.2.  The Link State NLRI  . . . . . . . . . . . . . . . . . . .  9
       3.2.1.  Identifier TLV . . . . . . . . . . . . . . . . . . . . 12
       3.2.2.  Node Descriptors . . . . . . . . . . . . . . . . . . . 14
       3.2.3.  Link Descriptors . . . . . . . . . . . . . . . . . . . 22
       3.2.4.  Prefix Descriptors . . . . . . . . . . . . . . . . . . 23
     3.3.  The LINK_STATE Attribute . . . . . . . . . . . . . . . . . 23
       3.3.1.  Link Attribute TLVs  . . . . . . . . . . . . . . . . . 24
       3.3.2.  Node Attribute TLVs  . . . . . . . . . . . . . . . . . 27
       3.3.3.  Prefix Attributes TLVs . . . . . . . . . . . . . . . . 29
     3.4.  BGP Next Hop Information . . . . . . . . . . . . . . . . . 33
     3.5.  Inter-AS Links . . . . . . . . . . . . . . . . . . . . . . 33
   4.  Link to Path Aggregation . . . . . . . . . . . . . . . . . . . 33
     4.1.  Example: No Link Aggregation . . . . . . . . . . . . . . . 34
     4.2.  Example: ASBR to ASBR Path Aggregation . . . . . . . . . . 34
     4.3.  Example: Multi-AS Path Aggregation . . . . . . . . . . . . 35
   5.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 35
   6.  Manageability Considerations . . . . . . . . . . . . . . . . . 35
     6.1.  Operational Considerations . . . . . . . . . . . . . . . . 35
       6.1.1.  Operations . . . . . . . . . . . . . . . . . . . . . . 36
       6.1.2.  Installation and Initial Setup . . . . . . . . . . . . 36
       6.1.3.  Migration Path . . . . . . . . . . . . . . . . . . . . 36
       6.1.4.  Requirements on Other Protocols and Functional
               Components . . . . . . . . . . . . . . . . . . . . . . 36
       6.1.5.  Impact on Network Operation  . . . . . . . . . . . . . 36
       6.1.6.  Verifying Correct Operation  . . . . . . . . . . . . . 37
     6.2.  Management Considerations  . . . . . . . . . . . . . . . . 37
       6.2.1.  Management Information . . . . . . . . . . . . . . . . 37
       6.2.2.  Fault Management . . . . . . . . . . . . . . . . . . . 37
       6.2.3.  Configuration Management . . . . . . . . . . . . . . . 37
       6.2.4.  Accounting Management  . . . . . . . . . . . . . . . . 37
       6.2.5.  Performance Management . . . . . . . . . . . . . . . . 37
       6.2.6.  Security Management  . . . . . . . . . . . . . . . . . 38
   7.  TLV/SubTLV Code Points Summary . . . . . . . . . . . . . . . . 38
   8.  Security Considerations  . . . . . . . . . . . . . . . . . . . 40
   9.  Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 40
   10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 40
   11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 40
     11.1. Normative References . . . . . . . . . . . . . . . . . . . 40
     11.2. Informative References . . . . . . . . . . . . . . . . . . 42
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 43

Gredler, et al.          Expires August 28, 2013                [Page 3]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

1.  Introduction

   The contents of a Link State Database (LSDB) or a Traffic Engineering
   Database (TED) has the scope of an IGP area.  Some applications, such
   as end-to-end Traffic Engineering (TE), would benefit from visibility
   outside one area or Autonomous System (AS) in order to make better
   decisions.

   The IETF has defined the Path Computation Element (PCE) [RFC4655] as
   a mechanism for achieving the computation of end-to-end TE paths that
   cross the visibility of more than one TED or which require CPU-
   intensive or coordinated computations.  The IETF has also defined the
   ALTO Server [RFC5693] as an entity that generates an abstracted
   network topology and provides it to network-aware applications.

   Both a PCE and an ALTO Server need to gather information about the
   topologies and capabilities of the network in order to be able to
   fulfill their function

   This document describes a mechanism by which Link State and TE
   information can be collected from networks and shared with external
   components using the BGP routing protocol [RFC4271].  This is
   achieved using a new BGP Network Layer Reachability Information
   (NLRI) encoding format.  The mechanism is applicable to physical and
   virtual links.  The mechanism described is subject to policy control.

   A router maintains one or more databases for storing link-state
   information about nodes and links in any given area.  Link attributes
   stored in these databases include: local/remote IP addresses, local/
   remote interface identifiers, link metric and TE metric, link
   bandwidth, reservable bandwidth, per CoS class reservation state,
   preemption and Shared Risk Link Groups (SRLG).  The router's BGP
   process can retrieve topology from these LSDBs and distribute it to a
   consumer, either directly or via a peer BGP Speaker (typically a
   dedicated Route Reflector), using the encoding specified in this
   document.

   The collection of Link State and TE link state information and its
   distribution to consumers is shown in the following figure.

Gredler, et al.          Expires August 28, 2013                [Page 4]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

                           +-----------+
                           | Consumer  |
                           +-----------+
                                 ^
                                 |
                           +-----------+
                           |    BGP    |               +-----------+
                           |  Speaker  |               | Consumer  |
                           +-----------+               +-----------+
                             ^   ^   ^                       ^
                             |   |   |                       |
             +---------------+   |   +-------------------+   |
             |                   |                       |   |
       +-----------+       +-----------+             +-----------+
       |    BGP    |       |    BGP    |             |    BGP    |
       |  Speaker  |       |  Speaker  |    . . .    |  Speaker  |
       +-----------+       +-----------+             +-----------+
             ^                   ^                         ^
             |                   |                         |
            IGP                 IGP                       IGP

                  Figure 1: TE Link State info collection

   A BGP Speaker may apply configurable policy to the information that
   it distributes.  Thus, it may distribute the real physical topology
   from the LSDB or the TED.  Alternatively, it may create an abstracted
   topology, where virtual, aggregated nodes are connected by virtual
   paths.  Aggregated nodes can be created, for example, out of multiple
   routers in a POP.  Abstracted topology can also be a mix of physical
   and virtual nodes and physical and virtual links.  Furthermore, the
   BGP Speaker can apply policy to determine when information is updated
   to the consumer so that there is reduction of information flow form
   the network to the consumers.  Mechanisms through which topologies
   can be aggregated or virtualized are outside the scope of this
   document

2.  Motivation and Applicability

   This section describes uses cases from which the requirements can be
   derived.

2.1.  MPLS-TE with PCE

   As described in [RFC4655] a PCE can be used to compute MPLS-TE paths
   within a "domain" (such as an IGP area) or across multiple domains
   (such as a multi-area AS, or multiple ASes).

Gredler, et al.          Expires August 28, 2013                [Page 5]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   o  Within a single area, the PCE offers enhanced computational power
      that may not be available on individual routers, sophisticated
      policy control and algorithms, and coordination of computation
      across the whole area.

   o  If a router wants to compute a MPLS-TE path across IGP areas its
      own TED lacks visibility of the complete topology.  That means
      that the router cannot determine the end-to-end path, and cannot
      even select the right exit router (Area Border Router - ABR) for
      an optimal path.  This is an issue for large-scale networks that
      need to segment their core networks into distinct areas, but which
      still want to take advantage of MPLS-TE.

   Previous solutions used per-domain path computation [RFC5152].  The
   source router could only compute the path for the first area because
   the router only has full topological visibility for the first area
   along the path, but not for subsequent areas.  Per-domain path
   computation uses a technique called "loose-hop-expansion" [RFC3209],
   and selects the exit ABR and other ABRs or AS Border Routers (ASBRs)
   using the IGP computed shortest path topology for the remainder of
   the path.  This may lead to sub-optimal paths, makes alternate/
   back-up path computation hard, and might result in no TE path being
   found when one really does exist.

   The PCE presents a computation server that may have visibility into
   more than one IGP area or AS, or may cooperate with other PCEs to
   perform distributed path computation.  The PCE obviously needs access
   to the TED for the area(s) it serves, but [RFC4655] does not describe
   how this is achieved.  Many implementations make the PCE a passive
   participant in the IGP so that it can learn the latest state of the
   network, but this may be sub-optimal when the network is subject to a
   high degree of churn, or when the PCE is responsible for multiple
   areas.

   The following figure shows how a PCE can get its TED information
   using the mechanism described in this document.

Gredler, et al.          Expires August 28, 2013                [Page 6]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

                +----------+                           +---------+
                |  -----   |                           |   BGP   |
                | | TED |<-+-------------------------->| Speaker |
                |  -----   |   TED synchronization     |         |
                |    |     |        mechanism:         +---------+
                |    |     | BGP with Link-State NLRI
                |    v     |
                |  -----   |
                | | PCE |  |
                |  -----   |
                +----------+
                     ^
                     | Request/
                     | Response
                     v
       Service  +----------+   Signaling  +----------+
       Request  | Head-End |   Protocol   | Adjacent |
       -------->|  Node    |<------------>|   Node   |
                +----------+              +----------+

     Figure 2: External PCE node using a TED synchronization mechanism

   The mechanism in this document allows the necessary TED information
   to be collected from the IGP within the network, filtered according
   to configurable policy, and distributed to the PCE as necessary.

2.2.  ALTO Server Network API

   An ALTO Server [RFC5693] is an entity that generates an abstracted
   network topology and provides it to network-aware applications over a
   web service based API.  Example applications are p2p clients or
   trackers, or CDNs.  The abstracted network topology comes in the form
   of two maps: a Network Map that specifies allocation of prefixes to
   Partition Identifiers (PIDs), and a Cost Map that specifies the cost
   between PIDs listed in the Network Map. For more details, see
   [I-D.ietf-alto-protocol].

   ALTO abstract network topologies can be auto-generated from the
   physical topology of the underlying network.  The generation would
   typically be based on policies and rules set by the operator.  Both
   prefix and TE data are required: prefix data is required to generate
   ALTO Network Maps, TE (topology) data is required to generate ALTO
   Cost Maps.  Prefix data is carried and originated in BGP, TE data is
   originated and carried in an IGP.  The mechanism defined in this
   document provides a single interface through which an ALTO Server can
   retrieve all the necessary prefix and network topology data from the
   underlying network.  Note an ALTO Server can use other mechanisms to
   get network data, for example, peering with multiple IGP and BGP

Gredler, et al.          Expires August 28, 2013                [Page 7]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   Speakers.

   The following figure shows how an ALTO Server can get network
   topology information from the underlying network using the mechanism
   described in this document.

     +--------+
     | Client |<--+
     +--------+   |
                  |    ALTO    +--------+     BGP with    +---------+
     +--------+   |  Protocol  |  ALTO  | Link-State NLRI |   BGP   |
     | Client |<--+------------| Server |<----------------| Speaker |
     +--------+   |            |        |                 |         |
                  |            +--------+                 +---------+
     +--------+   |
     | Client |<--+
     +--------+

         Figure 3: ALTO Server using network topology information

3.  Carrying Link State Information in BGP

   This specification contains two parts: definition of a new BGP NLRI
   that describes links, nodes and prefixes comprising IGP link state
   information, and definition of a new BGP path attribute that carries
   link, node and prefix properties and attributes, such as the link and
   prefix metric or node properties.

3.1.  TLV Format

   Information in the new link state NLRIs and attributes is encoded in
   Type/Length/Value triplets.  The TLV format is shown in Figure 4.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                         Value (variable)                      |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                           Figure 4: TLV format

   The Length field defines the length of the value portion in octets
   (thus a TLV with no value portion would have a length of zero).  The

Gredler, et al.          Expires August 28, 2013                [Page 8]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   TLV is not padded to four-octet alignment.  Unrecognized types are
   ignored.

3.2.  The Link State NLRI

   The MP_REACH and MP_UNREACH attributes are BGP's containers for
   carrying opaque information.  Each Link State NLRI describes either a
   node, a link or a prefix.

   All link, node and prefix information SHALL be encoded using a TBD
   AFI / TBD SAFI header into those attributes.

   In order for two BGP speakers to exchange Link-State NLRI, they MUST
   use BGP Capabilities Advertisement to ensure that they both are
   capable of properly processing such NLRI.  This is done as specified
   in [RFC4760], by using capability code 1 (multi-protocol BGP), with
   an AFI/SAFI TBD.

   The format of the Link State NLRI is shown in the following figure.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |            NLRI Type          |     Total NLRI Length         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                   Link-State NLRI (variable)                  |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 5: Link State SAFI (TBD) NLRI Format

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |            NLRI Type          |     Total NLRI Length         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                       Route Distinguisher                     +
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                   Link-State NLRI (variable)                  |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 6: Link State SAFI 128 NLRI Format

Gredler, et al.          Expires August 28, 2013                [Page 9]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   The 'Total NLRI Length' field contains the cumulative length of rest
   of the NLRI not including the NLRI Type field or itself.  For VPN
   applications it also includes the length of the Route Distinguisher.

   The 'NLRI Type' field can contain one of the following values:

      Type = 1: Link NLRI, contains link descriptors and link attributes

      Type = 2: Node NLRI, contains node attributes

      Type = 3: IPv4 Topology Prefix NLRI

      Type = 4: IPv6 Topology Prefix NLRI

   The Link NLRI (NLRI Type = 1) is shown in the following figure.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Protocol-ID  |    Reserved   |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
     |                         Identifier (variable)                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                Local Node Descriptors (variable)              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                Remote Node Descriptors (variable)             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                   Link Descriptors (variable)                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 7: The Link NLRI format

   The Node NLRI (NLRI Type = 2) is shown in the following figure.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Protocol-ID  |    Reserved   |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
     |                       Identifier (variable)                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                Local Node Descriptors (variable)              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 8: The Node NLRI format

   The IPv4 and IPv6 Prefix NLRIs (NLRI Type = 3 and Type = 4) use the
   same format as shown in the following figure.

Gredler, et al.          Expires August 28, 2013               [Page 10]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Protocol-ID  |    Reserved   |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
     |                    Identifier (variable)                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    Local Node Descriptor (variable)           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Reachability information (variable; one or more prefixes)    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 9: The IPv4/IPv6 Topology Prefix NLRI format

   The 'Protocol-ID' field can contain one of the following values:

      Protocol-ID = 0: Unknown, The source of NLRI information could not
      be determined

      Protocol-ID = 1: IS-IS Level 1, The NLRI information has been
      sourced by IS-IS Level 1

      Protocol-ID = 2: IS-IS Level 2, The NLRI information has been
      sourced by IS-IS Level 2

      Protocol-ID = 3: OSPF, The NLRI information has been sourced by
      OSPF

      Protocol-ID = 4: Direct, The NLRI information has been sourced
      from local interface state

      Protocol-ID = 5: Static, The NLRI information has been sourced by
      static configuration

   Both OSPF and IS-IS may run multiple routing protocol instances over
   the same link.  See [RFC6822] and [RFC6549].

   Identifier TLV is a mandatory TLV containing identifiers of the NLRI
   and used to associate the NLRI to an instance, a domain, an area or a
   prefix.

   Each Node Descriptor and Link Descriptor consists of one or more TLVs
   described in the following sections.  The sender of an UPDATE message
   MUST order the TLVs within a Node Descriptor or a Link Descriptor in
   ascending order of TLV type.

Gredler, et al.          Expires August 28, 2013               [Page 11]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

3.2.1.  Identifier TLV

   Identifier TLV (Type 256) is a mandatory TLV that appear in Node,
   Link and Prefix NLRIs.  Identifier TLV carries all identifiers
   associated with the NLRI in a SubTLV format.  Possible Sub TLVs are
   Instance Identifier, Domain Identifier, Area Identifier, OSPF Route
   Type and Multi-Topology ID.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 Identifier Sub-TLVs (variable)                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Where:

       Type: 256
       Length: variable
       Identifier Sub-TLVs: Identifiers

                     Figure 10: Identifier TLV Format

   An Identifier may be used to distinguish a Node, a Link or a Prefix
   with different types of identifiers.  Therefore different SubTLVs are
   defined here below in order to address the different requirements.

3.2.1.1.  Instance Identifier SubTLV

   Instance Identifier is a mandatory SubTLV that MUST be present in all
   NLRIs.  It is used to identify the topology instance the content of
   the NLRI and attributes refers to.
      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 Instance Identifier (variable)                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Where:

       Type: 1
       Length: variable

               Figure 11: Instance Identifier Sub-TLV Format

Gredler, et al.          Expires August 28, 2013               [Page 12]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

3.2.1.2.  Domain Identifier SubTLV

   Domain Identifier is an optional SubTLV that MAY be present in all
   NLRIs.  It is used to identify the domain (or sub-domain) to which
   the NLRI belongs.
      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 Domain Identifier (variable)                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Where:

       Type: 2
       Length: variable

                Figure 12: Domain Identifier Sub-TLV Format

3.2.1.3.  Area Identifier SubTLV

   Area Identifier is an optional SubTLV that MAY be present in all
   NLRIs.  It is used to identify the area to which the NLRI belongs.
   Example: an OSPF ABR router advertises itself multiple time (one for
   each area it participates into).  Area Identifier allows the
   different NLRIs of the same router to be discriminated.
      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 Area Identifier (variable)                    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Where:

       Type: 3
       Length:variable

                 Figure 13: Area Identifier Sub-TLV Format

3.2.1.4.  OSPF Route Type SubTLV

   Route Type is an optional SubTLV that MAY be present in the Prefix
   NLRIs.  It is used to identify the OSPF route-type of the prefix.  It
   is used when an OSPF prefix is advertised in the OSPF domain with
   multiple different route-types.  The Route Type Identifier allows to

Gredler, et al.          Expires August 28, 2013               [Page 13]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   discriminate these advertisements.
      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Route Type   |
     +-+-+-+-+-+-+-+-+

   Where:

       Type: 4
       Length: 1

                 Figure 14: OSPF Route Type Sub-TLV Format

   OSPF Route Type can be either: Intra-Area (0x1), Inter-Area (0x2),
   External 1 (0x3), External 2 (0x4), NSSA (0x5) and is encoded in a 3
   bits number.  For prefixes learned from IS-IS, this field MUST to be
   set to 0x0 on transmission.

3.2.1.5.  Multi Topology ID SubTLV

   The Multi Topology ID SubTLV (type: 5) carries the Multi Topology ID
   for the link, node or prefix.  The semantics of the Multi Topology ID
   are defined in RFC5120, Section 7.2 [RFC5120], and the OSPF Multi
   Topology ID), defined in RFC4915, Section 3.7 [RFC4915].  If the
   value in the Multi Topology ID TLV is derived from OSPF, then the
   upper 9 bits of the Multi Topology ID are set to 0.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |R R R R|   Multi Topology ID   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 15: Multi Topology ID SubTLV format

   The Multi Topology Identifier SubTLV is present in any NLRI Type.

3.2.2.  Node Descriptors

   Each link gets anchored by at least a pair of router-IDs.  Since
   there are many Router-IDs formats (32 Bit IPv4 router-ID, 56 Bit ISO
   Node-ID and 128 Bit IPv6 router-ID) a link may be anchored by more
   than one Router-ID pair.  The set of Local and Remote Node

Gredler, et al.          Expires August 28, 2013               [Page 14]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   Descriptors describe which Protocols Router-IDs will be following to
   "anchor" the link described by the "Link attribute TLVs".  There must
   be at least one "like" router-ID pair of a Local Node Descriptors and
   a Remote Node Descriptors per-protocol.  If a peer sends an illegal
   combination in this respect, then this is handled as an NLRI error,
   described in [RFC4760].

   It is desirable that the Router-ID assignments inside the Node anchor
   are globally unique.  However there may be router-ID spaces (e.g.
   ISO) where not even a global registry exists, or worse, Router-IDs
   have been allocated following private-IP RFC 1918 [RFC1918]
   allocation.  We use AS Number (or Confederation ID) and BGP
   Identifier in order to disambiguate the Router-IDs, as described in
   Section 3.2.2.4.

3.2.2.1.  Local Node Descriptors

   The Local Node Descriptors TLV (Type 257) contains Node Descriptors
   for the node anchoring the local end of the link.  The length of this
   TLV is variable.  The value contains one or more Node Descriptor Sub-
   TLVs defined in Section 3.2.2.3.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |               Node Descriptor Sub-TLVs (variable)             |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 16: Local Node Descriptors TLV format

3.2.2.2.  Remote Node Descriptors

   The Remote Node Descriptors TLV (Type 258) contains Node Descriptors
   for the node anchoring the remote end of the link.  The length of
   this TLV is variable.  The value contains one or more Node Descriptor
   Sub-TLVs defined in Section 3.2.2.3.

Gredler, et al.          Expires August 28, 2013               [Page 15]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |               Node Descriptor Sub-TLVs (variable)             |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 17: Remote Node Descriptors TLV format

3.2.2.3.  Node Descriptor Sub-TLVs

   The Node Descriptor Sub-TLV type codepoints and lengths are listed in
   the following table:

               +------------+-------------------+----------+
               | TLV/SubTLV | Description       |   Length |
               +------------+-------------------+----------+
               |     259    | Autonomous System |        4 |
               |     260    | BGP Identifier    |        4 |
               |     261    | ISO Node-ID       |        7 |
               |     262    | IPv4 Router-ID    | variable |
               |     263    | IPv6 Router-ID    |       16 |
               +------------+-------------------+----------+

                     Table 1: Node Descriptor Sub-TLVs

   The TLV values in Node Descriptor Sub-TLVs are defined as follows:

   Autonomous System:  opaque value (32 Bit AS Number)

   BGP-Identifier:  opaque value (32 Bit AS ID); uniquely identifying
      the BGP-LS speaker within an AS.

   IPv4 Router ID:  opaque value (can be an IPv4 address or an 32 Bit
      router ID).  When encoding an OSPF Designated Router ID, the
      length is 8 (first 4 bytes is the Router-ID originating the Type-2
      LSA and next 4 bytes are taken from the Type-2 LSA ID).  In other
      cases, the length is 4.

   IPv6 Router ID:  opaque value (can be an IPv6 address or 128 Bit
      router ID).

Gredler, et al.          Expires August 28, 2013               [Page 16]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   ISO Node ID:  ISO node-ID (6 octets ISO system-ID) followed by a PSN
      octet in case LAN "Pseudonode" information gets advertised.  The
      PSN octet must be zero for non-LAN "Pseudonodes".

      There can be at most one instance of each TLV type present in any
      Node Descriptor.  The TLV ordering within a Node descriptor MUST
      be kept in order of increasing numeric value of type.  TLVs 259
      and 260 specify administrative context in which TLVs 261-263 are
      to be evaluated.  The first TLV from range 261-263 is to be
      interpreted as the primary node identifier by which the node can
      be referenced within its administrative contexts.  Any further
      TLVs are to be treated as secondary identifiers, which may be used
      for cross-reference, but are to be treated as if they are object
      attributes.

3.2.2.4.  Globally Unique BGP-LS Identifiers

   One problem that needs to be addressed is the ability to identify an
   IGP node globally (by "global", we mean within the BGP-LS database
   collected by all BGP-LS speakers that talk to each other).  This can
   be expressed through the following two requirements:

   (A) The same node must not be represented by two keys (otherwise one
   node will look like two nodes).

   (B) Two different nodes must not be represented by the same key
   (otherwise, two nodes will look like one node).

   We define an "IGP domain" to be the set of nodes (and links), within
   which, each node has a unique IGP representation by using the
   combination of area-id, IGP router-id, Level, instance ID, etc.  The
   problem is that BGP brings nodes from multiple independent "IGP
   domains" and we need to distinguish between them.  Moreover, we can't
   assume there is always one and only one IGP domain per Autonomous
   System (or Autonomous System confederation member).  Following cases
   illustrate scenario's where IGP domain and ASs boundaries do not
   match.

   (i) Stub ASs or non-contiguous AS: One can have an AS that has
   disjoint parts, each running an independent IGP domain.

Gredler, et al.          Expires August 28, 2013               [Page 17]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   IGP domain 1      IGP domain 2
      AS 1              AS 1
     +---+             +---+
     |   |             |   |
     +---+             +---+
          \           /
           +---------+
           |         |
           +---------+
            Transit AS

                 Figure 18: Stub-ASs or non-contiguous AS

   Using ASN to globally identify IGP node may break requirement (B).

   (ii) It is possible to run the same IGP domain across multiple AS.

        +----------------------+
        | +------+   +------+  |
        | | AS 1 |   | AS 2 |  |
        | +------+   +------+  |
        +----------------------+
             IGP domain

                           Figure 19: IGP Domain

   Using ASN to globally identify IGP node will break requirement (A).

   (iii) It is possible to run IGP across member-ASs in a confederation.

      +-------------------------------+
      | +--------------------------+  |
      | | +--------+   +--------+  |  |
      | | | member |   | member |  |  |
      | | | AS 1   |   | AS 2   |  |  |
      | | +--------+   +--------+  |  |
      | +--------------------------+  |
      |       IGP domain              |
      +-------------------------------+
         Confederation (confed-id 1)

                         Figure 20: Confederation

   Using a Confederation/MemberAS identifier to globally identify IGP
   node will break requirement (A).

   (iv) It is possible to run more than one IGP domain within an AS by
   setting up "transit BGP speakers".

Gredler, et al.          Expires August 28, 2013               [Page 18]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

      +---------------------------------+
      | +----------+       +----------+ |
      | | IGP      | +---+ | IGP      | |
      | | domain 1 +-+   +-+ domain 2 | |
      | +----------+ +---+ +----------+ |
      |                ^                |
      |                |                |
      |         Transit BGP node        |
      +---------------------------------+
                     AS 1

                        Figure 21: Transit BGP Node

   Using ASN to globally identify IGP node may break requirement (A).

   In summary, there is no strict relation between BGP AS division and
   IGP domains.  Therefore, the following mechanism is proposed to
   address the requirements.  We assume that a BGP-LS speaker is
   collocated with one and only one IGP node.  The BGP-LS speaker
   originates BGP-LS NLRIs that correspond to the objects in the LSDB of
   that IGP node.

   We embed a "string" (identifier) in the node descriptor to globally
   identify the node.  The question is how we construct such a string,
   and what should be the scope of such a string so that the
   construction of the string can be simple.  Let the set of IGP nodes
   within which LSA/LSP flooding is limited to be the "flooding set".
   Consider a given "flooding set".  We have the following three
   possibilities:

   Case a) There is no BGP LS speaker running on any node in the
   flooding set.

   Case b) There is one BGP LS speaker running on one node in the
   flooding set.

   Case c) There is more than one BGP LS speakers running on the nodes
   in the flooding set.

   For Case a), the nodes in that flooding set do not appear in BGP LS
   database.  So we can ignore that case for this discussion.  To
   satisfy requirement (B), the string we use in different IGP domains
   must be different.  One possible approach is as follows:

   Approach 1) The user configures a unique "string" on all BGP LS
   speakers within one IGP domain.

   Now we make an observation that simplifies the task: it is sufficient

Gredler, et al.          Expires August 28, 2013               [Page 19]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   to have a unique "string" per flooding set.

   When we have a unique string per flooding set, then two nodes in
   different IGP domains, which by definition belong to different
   flooding sets, would have different "strings".  So requirement B) is
   satisfied.  On the other hand, a given node appears only in the LSDB
   of the nodes in the same flooding set.  So a given node will always
   have only one "string" and we satisfy requirement A).  Given this, we
   have:

   Approach 2) Each BGP LS speaker uses the <Autonomous System Number,
   BGP Identifier> as the string.

   The combination of <Autonomous System, BGP Identifier> is globally
   unique, as per [RFC6286].

   For Case b), which is the simplest BGP-LS deployment scenario, this
   approach requires no additional configuration from the user.

   For Case c), however, if each BGP-LS speaker in the given flooding
   set attaches its own <Autonomous System, BGP Identifier>, then we
   will violate requirement A).  So that case, the user needs to choose
   one of the BGP-LS speakers in the flooding set as the "chosen
   speaker" and configure the rest of the BGP-LS speakers in that
   flooding set to use the <Autonomous System, BGP Identifier>
   combination of the "chosen speaker".

   When an IGP node belongs to two or more flooding sets, it views
   itself as a collocation of one node per flooding set and accordingly
   encodes the NLRIs.  Consider the following example:

   Level-1     level-1-2       level-1
      N1          N0            N2
     +---+ link1 +---+ link 2  +---+
     |   +-------+   +---------+   |
     +---+       +---+         +---+
   |<- Level 1 ->|   |<- level 2 ->|
        L11                L12
       "str1"             "str2"

               Figure 22: IGP Node in multiple flooding sets

   The node N0 is a level 1-2 node.  Link1 belongs to level 1 area L11,
   which has string "str1".  Link2 belongs to level 1 area L12 which has
   string "str2".  N0 has both link1 and link2 in its LSDB.  If BGP LS
   speaker is running on N0, then N0 views itself as a collocation of
   two nodes: N0(L11) and N0(L12) and originate <str1, N1, N0> and
   <str2, N0, N2>.

Gredler, et al.          Expires August 28, 2013               [Page 20]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   To sum up, the mechanism works as follows:

      1.  We use <Autonomous System, BGP Identifier> as the
      disambiguating string.

      2.  By default, a BGP-LS speaker uses its own ASN, BGP identifier
      (router-id) for these fields for the NLRIs it originates.

      3.  Operator has the ability to configure other <ASN, BGP ID> per
      flooding set the IGP node underneath belongs to.  In that case,
      the node descriptor(s) for a given NLRI uses the string
      corresponding to the flooding set where the node belongs.

   The operator needs to provide the configuration if there are multiple
   BGP-LS speakers running in the same flooding set.

3.2.2.5.  Router-ID Anchoring Example: ISO Pseudonode

   IS-IS Pseudonodes are a good example for the variable Router-ID
   anchoring.  Consider Figure 23.  This represents a Broadcast LAN
   between a pair of routers.  The "real" (=non pseudonode) routers have
   both an IPv4 Router-ID and IS-IS Node-ID.  The pseudonode does not
   have an IPv4 Router-ID.  Two unidirectional links (Node1, Pseudonode
   1) and (Pseudonode 1, Node 2) are being generated.

   The NRLI for (Node1, Pseudonode1) encodes local IPv4 router-ID, local
   ISO node-ID and remote ISO node-id)

   The NLRI for (Pseudonode1, Node2) encodes a local ISO node-ID and
   remote ISO node-id.

     +-----------------+    +-----------------+    +-----------------+
     |      Node1      |    |   Pseudonode 1  |    |      Node2      |
     |1920.0000.2001.00|--->|1920.0000.2001.02|--->|1920.0000.2002.00|
     |     192.0.2.1   |    |                 |    |     192.0.2.2   |
     +-----------------+    +-----------------+    +-----------------+

                       Figure 23: IS-IS Pseudonodes

3.2.2.6.  Router-ID Anchoring Example: OSPFv2 to IS-IS Migration

   Migrating gracefully from one IGP to another requires congruent
   operation of both routing protocols during the migration period.  The
   target protocol (IS-IS) supports more router-ID spaces than the
   source (OSPFv2) protocol.  When advertising a point-to-point link
   between an OSPFv2-only router and an OSPFv2 and IS-IS enabled router
   the following link information may be generated.  Note that the IS-IS
   router also supports the IPv6 traffic engineering extensions RFC 6119

Gredler, et al.          Expires August 28, 2013               [Page 21]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   [RFC6119] for IS-IS.

   The NRLI encodes local IPv4 router-id, remote IPv4 router-id, remote
   ISO node-id and remote IPv6 node-id.

3.2.3.  Link Descriptors

   The 'Link Descriptor' field is a set of Type/Length/Value (TLV)
   triplets.  The format of each TLV is shown in Section 3.1.  The 'Link
   descriptor' TLVs uniquely identify a link between a pair of anchor
   Routers.  A link described by the Link descriptor TLVs actually is a
   "half-link", a unidirectional representation of a logical link.  In
   order to fully describe a single logical link two originating routers
   need to advertise a half-link each, i.e. two link NLRIs will be
   advertised.

   The format and semantics of the 'value' fields in most 'Link
   Descriptor' TLVs correspond to the format and semantics of value
   fields in IS-IS Extended IS Reachability sub-TLVs, defined in
   [RFC5305], [RFC5307] and [RFC6119].  Although the encodings for 'Link
   Descriptor' TLVs were originally defined for IS-IS, the TLVs can
   carry data sourced either by IS-IS or OSPF.

   The following link descriptor TLVs are valid in the Link NLRI:

   +------------+--------------------+---------------+-----------------+
   | TLV/SubTLV | Description        |     IS-IS     | Value defined   |
   |            |                    |  TLV/Sub-TLV  | in:             |
   +------------+--------------------+---------------+-----------------+
   |     264    | Link Local/Remote  |      22/4     | [RFC5307]/1.1   |
   |            | Identifiers        |               |                 |
   |     265    | IPv4 interface     |      22/6     | [RFC5305]/3.2   |
   |            | address            |               |                 |
   |     266    | IPv4 neighbor      |      22/8     | [RFC5305]/3.3   |
   |            | address            |               |                 |
   |     267    | IPv6 interface     |     22/12     | [RFC6119]/4.2   |
   |            | address            |               |                 |
   |     268    | IPv6 neighbor      |     22/13     | [RFC6119]/4.3   |
   |            | address            |               |                 |
   |    256/5   | Multi Topology ID  |      ---      | Section 3.2.1.5 |
   +------------+--------------------+---------------+-----------------+

                       Table 2: Link Descriptor TLVs

Gredler, et al.          Expires August 28, 2013               [Page 22]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

3.2.4.  Prefix Descriptors

   The 'Prefix descriptor' TLVs uniquely identify a Prefix (IPv4 or
   IPv6) originated by a Node.

   The following Prefix descriptor TLVs are valid in the IPv4/IPv6
   Prefix NLRI:

   +------------+-----------------+-----------------+------------------+
   | TLV/SubTLV | Description     |      IS-IS      | Value defined    |
   |            |                 |   TLV/Sub-TLV   | in:              |
   +------------+-----------------+-----------------+------------------+
   |    256/5   | Multi Topology  |       ---       | Section 3.2.1.5  |
   |            | ID              |                 |                  |
   +------------+-----------------+-----------------+------------------+

                      Table 3: Prefix Descriptor TLVs

3.2.4.1.  The Prefix NLRI

   The Prefix NLRI is a variable length field that contains one or more
   IP address prefixes (IPv4 or IPv6) originally advertised in the IGP
   topology.  The NLRI Type determines the address-family.  Reachability
   information is encoded as one or more 2-tuples of the form <length,
   prefix>, whose fields are described below:

                     +---------------------------+
                     |   Length (1 octet)        |
                     +---------------------------+
                     |   Prefix (variable)       |
                     +---------------------------+

                       Figure 24: Prefix NLRI format

   The 'Length' field contains the length of the prefix in bits.  Only
   the most significant octets of the prefix are encoded.  I.e. 1 octet
   for prefix length 1 up to 8, 2 octets for prefix length 9 to 16, 3
   octets for prefix length 17 up to 24 and 4 octets for prefix length
   25 up to 32, etc.

3.3.  The LINK_STATE Attribute

   This is an optional, non-transitive BGP attribute that is used to
   carry link, node and prefix parameters and attributes.  It is defined
   as a set of Type/Length/Value (TLV) triplets, described in the
   following section.  This attribute SHOULD only be included with Link
   State NLRIs.  This attribute MUST be ignored for all other NLRIs.

Gredler, et al.          Expires August 28, 2013               [Page 23]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

3.3.1.  Link Attribute TLVs

   Each 'Link Attribute' is a Type/Length/Value (TLV) triplet formatted
   as defined in Section 3.1.  The format and semantics of the 'value'
   fields in some 'Link Attribute' TLVs correspond to the format and
   semantics of value fields in IS-IS Extended IS Reachability sub-TLVs,
   defined in [RFC5305] and [RFC5307].  Other 'Link Attribute' TLVs are
   defined in this document.  Although the encodings for 'Link
   Attribute' TLVs were originally defined for IS-IS, the TLVs can carry
   data sourced either by IS-IS or OSPF.

   The following 'Link Attribute' TLVs are are valid in the LINK_STATE
   attribute:

   +------------+---------------------+--------------+-----------------+
   | TLV/SubTLV | Description         |     IS-IS    | Defined in:     |
   |            |                     |  TLV/Sub-TLV |                 |
   +------------+---------------------+--------------+-----------------+
   |    256/3   | Area Identifier     |      ---     | Section 3.2.1.3 |
   |     269    | Administrative      |     22/3     | [RFC5305]/3.1   |
   |            | group (color)       |              |                 |
   |     270    | Maximum link        |     22/9     | [RFC5305]/3.3   |
   |            | bandwidth           |              |                 |
   |     271    | Max. reservable     |     22/10    | [RFC5305]/3.5   |
   |            | link bandwidth      |              |                 |
   |     272    | Unreserved          |     22/11    | [RFC5305]/3.6   |
   |            | bandwidth           |              |                 |
   |     273    | TE Default Metric   |     22/18    | [RFC5305]/3.7   |
   |     274    | Link Protection     |     22/20    | [RFC5307]/1.2   |
   |            | Type                |              |                 |
   |     275    | MPLS Protocol Mask  |      ---     | Section 3.3.1.1 |
   |     276    | Metric              |      ---     | Section 3.3.1.2 |
   |     277    | Shared Risk Link    |      ---     | Section 3.3.1.3 |
   |            | Group               |              |                 |
   |     278    | OSPF specific link  |      ---     | Section 3.3.1.4 |
   |            | attribute           |              |                 |
   |     279    | IS-IS Specific Link |      ---     | Section 3.3.1.5 |
   |            | Attribute           |              |                 |
   +------------+---------------------+--------------+-----------------+

                       Table 4: Link Attribute TLVs

3.3.1.1.  MPLS Protocol Mask TLV

   The MPLS Protocol TLV (Type 275) carries a bit mask describing which
   MPLS signaling protocols are enabled.  The length of this TLV is 1.
   The value is a bit array of 8 flags, where each bit represents an
   MPLS Protocol capability.

Gredler, et al.          Expires August 28, 2013               [Page 24]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |L R            |
     +-+-+-+-+-+-+-+-+

                       Figure 25: MPLS Protocol TLV

   The following bits are defined:

     +-----+---------------------------------------------+-----------+
     | Bit | Description                                 | Reference |
     +-----+---------------------------------------------+-----------+
     |  0  | Label Distribution Protocol (LDP)           | [RFC5036] |
     |  1  | Extension to RSVP for LSP Tunnels (RSVP-TE) | [RFC3209] |
     | 2-7 | Reserved for future use                     |           |
     +-----+---------------------------------------------+-----------+

                   Table 5: MPLS Protocol Mask TLV Codes

3.3.1.2.  Metric TLV

   The IGP Metric TLV (Type 276) carries the metric for this link.  The
   length of this TLV is 3.  If the length of the metric from which the
   IGP Metric value is derived is less than 3 (e.g. for OSPF link
   metrics or non-wide IS-IS metric), then the upper bits of the TLV are
   set to 0.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                  IGP Link Metric              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 26: Metric TLV format

3.3.1.3.  Shared Risk Link Group TLV

   The Shared Risk Link Group (SRLG) TLV (Type 277) carries the Shared
   Risk Link Group information (see Section 2.3, "Shared Risk Link Group
   Information", of [RFC4202]).  It contains a data structure consisting
   of a (variable) list of SRLG values, where each element in the list
   has 4 octets, as shown in Figure 27.  The length of this TLV is 4 *
   (number of SRLG values).

Gredler, et al.          Expires August 28, 2013               [Page 25]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                  Shared Risk Link Group Value                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          ............                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                  Shared Risk Link Group Value                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 27: Shared Risk Link Group TLV format

   Note that there is no SRLG TLV in OSPF-TE.  In IS-IS the SRLG
   information is carried in two different TLVs: the IPv4 (SRLG) TLV
   (Type 138) defined in [RFC5307], and the IPv6 SRLG TLV (Type 139)
   defined in [RFC6119].  Since the Link State NLRI uses variable
   Router-ID anchoring, both IPv4 and IPv6 SRLG information can be
   carried in a single TLV.

3.3.1.4.  OSPF Specific Link Attribute TLV

   The OSPF specific link attribute TLV (Type 278) is an envelope that
   transparently carries optional link properties TLVs advertised by an
   OSPF router.  The value field contains one or more optional OSPF link
   attribute TLVs.  An originating router shall use this TLV for
   encoding information specific to the OSPF protocol or new OSPF
   extensions for which there is no protocol neutral representation in
   the BGP link-state NLRI.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |            OSPF specific link attributes (variable)           |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 28: OSPF specific link attribute format

3.3.1.5.  IS-IS specific link attribute TLV

   The IS-IS specific link attribute TLV (Type 279) is an envelope that
   transparently carries optional link properties TLVs advertised by an
   IS-IS router.  The value field contains one or more optional IS-IS

Gredler, et al.          Expires August 28, 2013               [Page 26]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   link attribute TLVs.  An originating router shall use this TLV for
   encoding information specific to the IS-IS protocol or new IS-IS
   extensions for which there is no protocol neutral representation in
   the BGP link-state NLRI.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |           IS-IS specific link attributes (variable)           |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 29: IS-IS specific link attribute format

3.3.1.6.  IS-IS Area Address attribute TLV

   The area address is carried in the Area Identifier SubTLV of the
   Identifier TLV and consists of the Area Address which is assigned to
   the link.  If more than one Area Addresses are present, only the
   lower address is encoded.  Note that the Area Identifier SubTLV may
   appear in all NLRI types (Link, Node and Prefix) and is defined in
   Section 3.2.1.3.

3.3.2.  Node Attribute TLVs

   The following node attribute TLVs are defined:

     +------------+--------------------------------------+----------+
     | TLV/SubTLV | Description                          |   Length |
     +------------+--------------------------------------+----------+
     |    256/5   | Multi Topology                       |        2 |
     |     280    | Node Flag Bits                       |        1 |
     |     281    | OSPF Specific Node Properties        | variable |
     |     282    | IS-IS Specific Node Properties       | variable |
     |     256    | IS-IS Area Address/Domain Identifier | variable |
     +------------+--------------------------------------+----------+

                       Table 6: Node Attribute TLVs

3.3.2.1.  Node Multi Topology ID

   The Node Multi Topology ID is carried in the Multi Topolofy ID SubTLV
   (type 5) of Identifier ID TLV TLV (Type 256) and carries the Multi
   Topology ID and topology specific flags for this node.  The format
   and semantics of the 'value' field in the Multi Topology TLV is

Gredler, et al.          Expires August 28, 2013               [Page 27]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   defined in Section 3.2.1.5.  If the value in the Multi Topology TLV
   is derived from OSPF, then the upper 9 bits of the Multi Topology ID
   and the 'O' and 'A' bits are set to 0.

3.3.2.2.  Node Flag Bits TLV

   The Node Flag Bits TLV (Type 280) carries a bit mask describing node
   attributes.  The value is a variable length bit array of flags, where
   each bit represents a node capability.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Flags  (variable)                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 30: Node Flag Bits TLV format

   The bits are defined as follows:

                    +-----+--------------+-----------+
                    | Bit | Description  | Reference |
                    +-----+--------------+-----------+
                    |  0  | Overload Bit | [RFC1195] |
                    |  1  | Attached Bit | [RFC1195] |
                    |  2  | External Bit | [RFC2328] |
                    |  3  | ABR Bit      | [RFC2328] |
                    +-----+--------------+-----------+

                    Table 7: Node Flag Bits Definitions

3.3.2.3.  OSPF Specific Node Properties TLV

   The OSPF Specific Node Properties TLV (Type 281) is an envelope that
   transparently carries optional node properties TLVs advertised by an
   OSPF router.  The value field contains one or more optional OSPF node
   property TLVs, such as the OSPF Router Informational Capabilities TLV
   defined in [RFC4970], or the OSPF TE Node Capability Descriptor TLV
   described in [RFC5073].  An originating router shall use this TLV for
   encoding information specific to the OSPF protocol or new OSPF
   extensions for which there is no protocol neutral representation in
   the BGP link-state NLRI.

Gredler, et al.          Expires August 28, 2013               [Page 28]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |            OSPF specific node properties (variable)           |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 31: OSPF specific Node property format

3.3.2.4.  IS-IS Specific Node Properties TLV

   The IS-IS Router Specific Node Properties TLV (Type 282) is an
   envelope that transparently carries optional node specific TLVs
   advertised by an IS-IS router.  The value field contains one or more
   optional IS-IS node property TLVs, such as the IS-IS TE Node
   Capability Descriptor TLV described in [RFC5073].  An originating
   router shall use this TLV for encoding information specific to the
   IS-IS protocol or new IS-IS extensions for which there is no protocol
   neutral representation in the BGP link-state NLRI.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |           IS-IS specific node properties (variable)           |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 32: IS-IS specific Node property format

3.3.2.5.  ISIS Area Address TLV

   The area address is carried in the Area Identifier SubTLV of the
   Identifier TLV and consists of the Area Address which is assigned to
   the node.  If more than one Area Addresses are present, only the
   lower address is encoded.  Note that the Area Identifier SubTLV may
   appear in all NLRI types (Link, Node and Prefix) and is defined in
   Section 3.2.1.3.

3.3.3.  Prefix Attributes TLVs

   Prefixes are learned from the IGP topology (ISIS or OSPF) with a set
   of IGP attributes (such as metric, route tags, etc.) that MUST be

Gredler, et al.          Expires August 28, 2013               [Page 29]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   reflected into the LINK_STATE attribute.  This section describes the
   different attributes related to the IPv4/IPv6 prefixes.  Prefix
   Attributes TLVs SHOULD be used when advertising NLRI types 3 and 4
   only.  The following attributes TLVs are defined:

     +-------------------------+-------------+-----------+-----------+
     |        TLV/SubTLV       | Description |    Length | Reference |
     +-------------------------+-------------+-----------+-----------+
     |           283           | IGP Flags   |         4 | 284       |
     |        Route Tag        | 4*n         | [RFC5130] | 285       |
     |       Extended Tag      | 8*n         | [RFC5130] | 286       |
     |      Prefix Metric      | 4           | [RFC5305] | 287       |
     | OSPF Forwarding Address | 4           | [RFC2328] |           |
     +-------------------------+-------------+-----------+-----------+

                      Table 8: Prefix Attribute TLVs

3.3.3.1.  IGP Flags TLV

   IGP Flags TLV contains ISIS and OSPF flags and bits originally
   assigned to the prefix.  The IGP Flags TLV is encoded as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                            IGP Flags (variable)               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 33: IGP Flag TLV format

   where:

   Type is 283

   Length is variable

   The following bits are defined according to the table here below:

                  +------+------------------+-----------+
                  |  Bit | Description      | Reference |
                  +------+------------------+-----------+
                  |   0  | ISIS Up/Down Bit | [RFC5305] |
                  |  1-3 | OSPF Route Type  | [RFC2328] |
                  | 4-15 | RESERVED         |           |
                  +------+------------------+-----------+

Gredler, et al.          Expires August 28, 2013               [Page 30]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

                    Table 9: IGP Flag Bits Definitions

   OSPF Route Type can be either: Intra-Area (0x1), Inter-Area (0x2),
   External 1 (0x3), External 2 (0x4), NSSA (0x5) and is encoded in a 3
   bits number.  For prefixes learned from IS-IS, this field MUST to be
   set to 0x0 on transmission.

3.3.3.2.  Route Tag

   Route Tag TLV carries the original IGP TAG (ISIS or OSPF) of the
   prefix and is encoded as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Route Tags (one or more)            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 34: IGP Route TAG TLV format

   where:

   Type is 284

   Length is a multiple of 4

   One or more Route Tags as learned in the IGP topology.

3.3.3.3.  Extended Route Tag

   Extended Route Tag TLV carries the ISIS Extended Route TAG of the
   prefix and is encoded as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Extended Route Tag (one or more)         |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 35: Extended IGP Route TAG TLV format

   where:

Gredler, et al.          Expires August 28, 2013               [Page 31]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   Type is 285

   Length is a multiple of 8

   Extended Route Tag contains one or more Extended Route Tags as
   learned in the IGP topology.

3.3.3.4.  Prefix Metric TLV

   Prefix Metric TLV carries the metric of the prefix as known in the
   IGP topology.  The attribute is mandatory and can only appear once.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                            Metric                             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 36: Prefix Metric TLV Format

   where:

   Type is 286

   Length is 4

3.3.3.5.  OSPF Forwarding Address TLV

   OSPF Forwarding Address TLV carries the OSPF forwarding address as
   known in the original OSPF advertisement.  Forwarding address can be
   either IPv4 or IPv6.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 Forwarding Address (variable)                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 37: OSPF Forwarding Address TLV Format

   where:

   Type is 287

Gredler, et al.          Expires August 28, 2013               [Page 32]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   Length is 4 for an IPv4 forwarding address an 16 for an IPv6
   forwarding address

3.4.  BGP Next Hop Information

   BGP link-state information for both IPv4 and IPv6 networks can be
   carried over either an IPv4 BGP session, or an IPv6 BGP session.  If
   IPv4 BGP session is used, then the next hop in the MP_REACH_NLRI
   SHOULD be an IPv4 address.  Similarly, if IPv6 BGP session is used,
   then the next hop in the MP_REACH_NLRI SHOULD be an IPv6 address.
   Usually the next hop will be set to the local end-point address of
   the BGP session.  The next hop address MUST be encoded as described
   in [RFC4760].  The length field of the next hop address will specify
   the next hop address-family.  If the next hop length is 4, then the
   next hop is an IPv4 address; if the next hop length is 16, then it is
   a global IPv6 address and if the next hop length is 32, then there is
   one global IPv6 address followed by a link-local IPv6 address.  The
   link-local IPv6 address should be used as described in [RFC2545].

   The BGP Next Hop attribute is used by each BGP-LS spaker to validate
   the NLRI it receives.  However, this specification doesn't mandate
   any rule regarding the re-write of the BGP Next Hop attribute.

3.5.  Inter-AS Links

   The main source of TE information is the IGP, which is not active on
   inter-AS links.  In order to inject a non-IGP enabled link into the
   BGP link-state RIB an implementation must support configuration of
   static links.

4.  Link to Path Aggregation

   Distribution of all links available in the global Internet is
   certainly possible, however not desirable from a scaling and privacy
   point of view.  Therefore an implementation may support link to path
   aggregation.  Rather than advertising all specific links of a domain,
   an ASBR may advertise an "aggregate link" between a non-adjacent pair
   of nodes.  The "aggregate link" represents the aggregated set of link
   properties between a pair of non-adjacent nodes.  The actual methods
   to compute the path properties (of bandwidth, metric) are outside the
   scope of this document.  The decision whether to advertise all
   specific links or aggregated links is an operator's policy choice.
   To highlight the varying levels of exposure, the following deployment
   examples shall be discussed.

Gredler, et al.          Expires August 28, 2013               [Page 33]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

4.1.  Example: No Link Aggregation

   Consider Figure 38.  Both AS1 and AS2 operators want to protect their
   inter-AS {R1,R3}, {R2, R4} links using RSVP-FRR LSPs.  If R1 wants to
   compute its link-protection LSP to R3 it needs to "see" an alternate
   path to R3.  Therefore the AS2 operator exposes its topology.  All
   BGP TE enabled routers in AS1 "see" the full topology of AS and
   therefore can compute a backup path.  Note that the decision if the
   direct link between {R3, R4} or the {R4, R5, R3) path is used is made
   by the computing router.

          AS1   :   AS2
                :
           R1-------R3
            |   :   | \
            |   :   |  R5
            |   :   | /
           R2-------R4
                :
                :

                      Figure 38: no-link-aggregation

4.2.  Example: ASBR to ASBR Path Aggregation

   The brief difference between the "no-link aggregation" example and
   this example is that no specific link gets exposed.  Consider
   Figure 39.  The only link which gets advertised by AS2 is an
   "aggregate" link between R3 and R4.  This is enough to tell AS1 that
   there is a backup path.  However the actual links being used are
   hidden from the topology.

          AS1   :   AS2
                :
           R1-------R3
            |   :   |
            |   :   |
            |   :   |
           R2-------R4
                :
                :

                     Figure 39: asbr-link-aggregation

Gredler, et al.          Expires August 28, 2013               [Page 34]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

4.3.  Example: Multi-AS Path Aggregation

   Service providers in control of multiple ASes may even decide to not
   expose their internal inter-AS links.  Consider Figure 40.  AS3 is
   modeled as a single node which connects to the border routers of the
   aggregated domain.

          AS1   :   AS2   :   AS3
                :         :
           R1-------R3-----
            |   :         : \
            |   :         :   vR0
            |   :         : /
           R2-------R4-----
                :         :
                :         :

                      Figure 40: multi-as-aggregation

5.  IANA Considerations

   This document requests a code point from the registry of Address
   Family Numbers.

   This document requests a code point from the BGP Path Attributes
   registry.

   This document requests creation of a new registry for node anchor,
   link descriptor and link attribute TLVs.  Values 0-255 are reserved.
   Values 256-65535 will be used for Codepoints.  The registry will be
   initialized as shown in Table 2 and Table 4.  Allocations within the
   registry will require documentation of the proposed use of the
   allocated value and approval by the Designated Expert assigned by the
   IESG (see [RFC5226]).

   Note to RFC Editor: this section may be removed on publication as an
   RFC.

6.  Manageability Considerations

   This section is structured as recommended in [RFC5706].

6.1.  Operational Considerations

Gredler, et al.          Expires August 28, 2013               [Page 35]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

6.1.1.  Operations

   Existing BGP operation procedures apply.  No new operation procedures
   are defined in this document.  It shall be noted that the NLRI
   information present in this document purely carries application level
   data that have no immediate corresponding forwarding state impact.
   As such, any churn in reachability information has different impact
   than regular BGP update which needs to change forwarding state for an
   entire router.  Furthermore it is anticipated that distribution of
   this NLRI will be handled by dedicated route-reflectors providing a
   level of isolation and fault-containment between different NLRI
   types.

6.1.2.  Installation and Initial Setup

   Configuration parameters defined in Section 6.2.3 SHOULD be
   initialized to the following default values:

   o  The Link-State NLRI capability is turned off for all neighbors.

   o  The maximum rate at which Link State NLRIs will be advertised/
      withdrawn from neighbors is set to 200 updates per second.

6.1.3.  Migration Path

   The proposed extension is only activated between BGP peers after
   capability negotiation.  Moreover, the extensions can be turned on/
   off an individual peer basis (see Section 6.2.3), so the extension
   can be gradually rolled out in the network.

6.1.4.  Requirements on Other Protocols and Functional Components

   The protocol extension defined in this document does not put new
   requirements on other protocols or functional components.

6.1.5.  Impact on Network Operation

   Frequency of Link-State NLRI updates could interfere with regular BGP
   prefix distribution.  A network operator MAY use a dedicated Route-
   Reflector infrastructure to distribute Link-State NLRIs.

   Distribution of Link-State NLRIs SHOULD be limited to a single admin
   domain, which can consist of multiple areas within an AS or multiple
   ASes.

Gredler, et al.          Expires August 28, 2013               [Page 36]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

6.1.6.  Verifying Correct Operation

   Existing BGP procedures apply.  In addition, an implementation SHOULD
   allow an operator to:

   o  List neighbors with whom the Speaker is exchanging Link-State
      NLRIs

6.2.  Management Considerations

6.2.1.  Management Information

6.2.2.  Fault Management

   TBD.

6.2.3.  Configuration Management

   An implementation SHOULD allow the operator to specify neighbors to
   which Link-State NLRIs will be advertised and from which Link-State
   NLRIs will be accepted.

   An implementation SHOULD allow the operator to specify the maximum
   rate at which Link State NLRIs will be advertised/withdrawn from
   neighbors

   An implementation SHOULD allow the operator to specify the maximum
   number of Link State NLRIs stored in router's RIB.

   An implementation SHOULD allow the operator to create abstracted
   topologies that are advertised to neighbors; Create different
   abstractions for different neighbors.

   An implementation SHOULD allow the operator to configure a pair of
   ASN and BGP identifier per flooding set the node participates in.

6.2.4.  Accounting Management

   Not Applicable.

6.2.5.  Performance Management

   An implementation SHOULD provide the following statistics:

   o  Total number of Link-State NLRI updates sent/received

   o  Number of Link-State NLRI updates sent/received, per neighbor

Gredler, et al.          Expires August 28, 2013               [Page 37]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   o  Number of errored received Link-State NLRI updates, per neighbor

   o  Total number of locally originated Link-State NLRIs

6.2.6.  Security Management

   An operator SHOULD define ACLs to limit inbound updates as follows:

   o  Drop all updates from Consumer peers

7.  TLV/SubTLV Code Points Summary

   This section contains the global table of all TLVs/SubTLVs defined in
   this document.

Gredler, et al.          Expires August 28, 2013               [Page 38]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   +------------+--------------------+---------------+-----------------+
   | TLV/SubTLV | Description        |     IS-IS     | Value defined   |
   |            |                    |  TLV/Sub-TLV  | in:             |
   +------------+--------------------+---------------+-----------------+
   |     256    | Identifier         |       --      | Section 3.2.1   |
   |     257    | Local Node         |       --      | Section 3.2.2.1 |
   |            | Descriptors        |               |                 |
   |     258    | Remote Node        |       --      | Section 3.2.2.2 |
   |            | Descriptors        |               |                 |
   |     259    | Autonomous System  |       --      | Section 3.2.2.3 |
   |     260    | BGP Identifier     |       --      | Section 3.2.2.3 |
   |     261    | ISO Node-ID        |       --      | Section 3.2.2.3 |
   |     262    | IPv4 Router-ID     |       --      | Section 3.2.2.3 |
   |     263    | IPv6 Router-ID     |       --      | Section 3.2.2.3 |
   |     264    | Link Local/Remote  |      22/4     | [RFC5307]/1.1   |
   |            | Identifiers        |               |                 |
   |     265    | IPv4 interface     |      22/6     | [RFC5305]/3.2   |
   |            | address            |               |                 |
   |     266    | IPv4 neighbor      |      22/8     | [RFC5305]/3.3   |
   |            | address            |               |                 |
   |     267    | IPv6 interface     |     22/12     | [RFC6119]/4.2   |
   |            | address            |               |                 |
   |     268    | IPv6 neighbor      |     22/13     | [RFC6119]/4.3   |
   |            | address            |               |                 |
   |    256/5   | Multi Topology ID  |       --      | Section 3.2.1.5 |
   |     269    | Administrative     |      22/3     | [RFC5305]/3.1   |
   |            | group (color)      |               |                 |
   |     270    | Maximum link       |      22/9     | [RFC5305]/3.3   |
   |            | bandwidth          |               |                 |
   |     271    | Max. reservable    |     22/10     | [RFC5305]/3.5   |
   |            | link bandwidth     |               |                 |
   |     272    | Unreserved         |     22/11     | [RFC5305]/3.6   |
   |            | bandwidth          |               |                 |
   |     273    | TE Default Metric  |     22/18     | [RFC5305]/3.7   |
   |     274    | Link Protection    |     22/20     | [RFC5307]/1.2   |
   |            | Type               |               |                 |
   |     275    | MPLS Protocol Mask |       --      | Section 3.3.1.1 |
   |     276    | Metric             |       --      | Section 3.3.1.2 |
   |     277    | Shared Risk Link   |       --      | Section 3.3.1.3 |
   |            | Group              |               |                 |
   |     278    | OSPF specific link |       --      | Section 3.3.1.4 |
   |            | attribute          |               |                 |
   |     279    | IS-IS Specific     |       --      | Section 3.3.1.5 |
   |            | Link Attribute     |               |                 |
   |     280    | Node Flag Bits     |       --      | Section 3.3.2.2 |
   |     281    | OSPF Specific Node |       --      | Section 3.3.2.3 |
   |            | Properties         |               |                 |

Gredler, et al.          Expires August 28, 2013               [Page 39]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   |     282    | IS-IS Specific     |       --      | Section 3.3.2.4 |
   |            | Node Properties    |               |                 |
   |     283    | IGP Flags          |       --      | Section 3.3.3.1 |
   |     284    | Route Tag          |       --      | [RFC5130]       |
   |     285    | Extended Tag       |       --      | [RFC5130]       |
   |     286    | Prefix Metric      |       --      | [RFC5305]       |
   |     287    | OSPF Forwarding    |       --      | [RFC2328]       |
   |            | Address            |               |                 |
   +------------+--------------------+---------------+-----------------+

             Table 10: Summary Table of TLV/SubTLV Codepoints

8.  Security Considerations

   Procedures and protocol extensions defined in this document do not
   affect the BGP security model.

   A BGP Speaker SHOULD NOT accept updates from a Consumer peer.

   An operator SHOULD employ a mechanism to protect a BGP Speaker
   against DDOS attacks from Consumers.

9.  Contributors

   We would like to thank Robert Varga for the significant contribution
   he gave to this document.

10.  Acknowledgements

   We would like to thank Nischal Sheth, Alia Atlas, David Ward, Derek
   Yeung, Murtuza Lightwala, John Scudder, Kaliraj Vairavakkalai, Les
   Ginsberg, Liem Nguyen, Manish Bhardwaj, Mike Shand, Peter Psenak, Rex
   Fernando, Richard Woundy, Steven Luong, Tamas Mondal, Waqas Alam,
   Vipin Kumar, Naiming Shen and Yakov Rekhter for their comments.

11.  References

11.1.  Normative References

   [RFC1195]  Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
              dual environments", RFC 1195, December 1990.

   [RFC1918]  Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
              E. Lear, "Address Allocation for Private Internets",

Gredler, et al.          Expires August 28, 2013               [Page 40]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

              BCP 5, RFC 1918, February 1996.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2328]  Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

   [RFC2545]  Marques, P. and F. Dupont, "Use of BGP-4 Multiprotocol
              Extensions for IPv6 Inter-Domain Routing", RFC 2545,
              March 1999.

   [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
              and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
              Tunnels", RFC 3209, December 2001.

   [RFC4202]  Kompella, K. and Y. Rekhter, "Routing Extensions in
              Support of Generalized Multi-Protocol Label Switching
              (GMPLS)", RFC 4202, October 2005.

   [RFC4271]  Rekhter, Y., Li, T., and S. Hares, "A Border Gateway
              Protocol 4 (BGP-4)", RFC 4271, January 2006.

   [RFC4760]  Bates, T., Chandra, R., Katz, D., and Y. Rekhter,
              "Multiprotocol Extensions for BGP-4", RFC 4760,
              January 2007.

   [RFC4915]  Psenak, P., Mirtorabi, S., Roy, A., Nguyen, L., and P.
              Pillay-Esnault, "Multi-Topology (MT) Routing in OSPF",
              RFC 4915, June 2007.

   [RFC5036]  Andersson, L., Minei, I., and B. Thomas, "LDP
              Specification", RFC 5036, October 2007.

   [RFC5120]  Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi
              Topology (MT) Routing in Intermediate System to
              Intermediate Systems (IS-ISs)", RFC 5120, February 2008.

   [RFC5130]  Previdi, S., Shand, M., and C. Martin, "A Policy Control
              Mechanism in IS-IS Using Administrative Tags", RFC 5130,
              February 2008.

   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 5226,
              May 2008.

   [RFC5305]  Li, T. and H. Smit, "IS-IS Extensions for Traffic
              Engineering", RFC 5305, October 2008.

Gredler, et al.          Expires August 28, 2013               [Page 41]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

   [RFC5307]  Kompella, K. and Y. Rekhter, "IS-IS Extensions in Support
              of Generalized Multi-Protocol Label Switching (GMPLS)",
              RFC 5307, October 2008.

   [RFC6119]  Harrison, J., Berger, J., and M. Bartlett, "IPv6 Traffic
              Engineering in IS-IS", RFC 6119, February 2011.

   [RFC6822]  Previdi, S., Ginsberg, L., Shand, M., Roy, A., and D.
              Ward, "IS-IS Multi-Instance", RFC 6822, December 2012.

11.2.  Informative References

   [I-D.ietf-alto-protocol]
              Alimi, R., Penno, R., and Y. Yang, "ALTO Protocol",
              draft-ietf-alto-protocol-13 (work in progress),
              September 2012.

   [RFC4655]  Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
              Element (PCE)-Based Architecture", RFC 4655, August 2006.

   [RFC4970]  Lindem, A., Shen, N., Vasseur, JP., Aggarwal, R., and S.
              Shaffer, "Extensions to OSPF for Advertising Optional
              Router Capabilities", RFC 4970, July 2007.

   [RFC5073]  Vasseur, J. and J. Le Roux, "IGP Routing Protocol
              Extensions for Discovery of Traffic Engineering Node
              Capabilities", RFC 5073, December 2007.

   [RFC5152]  Vasseur, JP., Ayyangar, A., and R. Zhang, "A Per-Domain
              Path Computation Method for Establishing Inter-Domain
              Traffic Engineering (TE) Label Switched Paths (LSPs)",
              RFC 5152, February 2008.

   [RFC5693]  Seedorf, J. and E. Burger, "Application-Layer Traffic
              Optimization (ALTO) Problem Statement", RFC 5693,
              October 2009.

   [RFC5706]  Harrington, D., "Guidelines for Considering Operations and
              Management of New Protocols and Protocol Extensions",
              RFC 5706, November 2009.

   [RFC6286]  Chen, E. and J. Yuan, "Autonomous-System-Wide Unique BGP
              Identifier for BGP-4", RFC 6286, June 2011.

   [RFC6549]  Lindem, A., Roy, A., and S. Mirtorabi, "OSPFv2 Multi-
              Instance Extensions", RFC 6549, March 2012.

Gredler, et al.          Expires August 28, 2013               [Page 42]
Internet-Draft   Link-State Info Distribution using BGP    February 2013

Authors' Addresses

   Hannes Gredler
   Juniper Networks, Inc.
   1194 N. Mathilda Ave.
   Sunnyvale, CA  94089
   US

   Email: hannes@juniper.net

   Jan Medved
   Cisco Systems, Inc.
   170, West Tasman Drive
   San Jose, CA  95134
   US

   Email: jmedved@cisco.com

   Stefano Previdi
   Cisco Systems, Inc.
   Via Del Serafico, 200
   Rome  00142
   Italy

   Email: sprevidi@cisco.com

   Adrian Farrel
   Juniper Networks, Inc.
   1194 N. Mathilda Ave.
   Sunnyvale, CA  94089
   US

   Email: afarrel@juniper.net

   Saikat Ray
   Cisco Systems, Inc.
   170, West Tasman Drive
   San Jose, CA  95134
   US

   Email: sairay@cisco.com

Gredler, et al.          Expires August 28, 2013               [Page 43]