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Abstract

   This is an overview of a network model for OpenStack, designed to
   dramatically simplify scalable network deployment and operations.

Requirements Language

   The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
   'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
   document are to be interpreted as described in [RFC2119].

Design Principle

   Perfection is achieved, not when there is nothing more to add, but
   when there is nothing left to take away.

      Antoine de Saint-Exupery

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 12, 2015.
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   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   OpenStack, and its issues.

1.1.  What is OpenStack?

   OpenStack is a cloud computing orchestration solution developed using
   an open source community process.  It consists of a collection of
   'projects', each implementing the creation, control, and
   administration of tenant resources.  There are separate OpenStack
   projects for managing compute, storage and network resources.

   Neutron is the project that manages OpenStack networking.  It exposes
   a northbound API to the other OpenStack projects for programmatic
   control over tenant network connectivity.  The southbound interface
   is implemented as one or more device driver plugins that are built to
   interact with specific devices in the network.  This approach
   provides the flexibility to deploy OpenStack networking using a range
   of alternative techniques.

https://datatracker.ietf.org/doc/html/rfc4291
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   An OpenStack tenant, in the Kilo and earlier releases, is required to
   create what OpenStack identifies as a 'Neutron Network' connecting
   their virtual machines.  This Network is instantiated via the plugins
   as either a layer 2 network, a layer 3 network, or as an overlay
   network.  The actual implementation is unknown to the tenant.  The
   technology used to provide these networks is selected by the
   OpenStack operator based upon the requirements of the cloud
   deployment.

   The tenant also is required, in the Kilo and earlier releases, to
   specify an 'IP Subnet' for each Network.  This specification is made
   by providing a CIDR prefix for IPv4 address allocation via DHCP or
   for IPv6 address allocation via DHCP or SLAAC.  This address range
   may be from within the address range of the datacenter (non-
   overlapping), or overlapping [RFC1918] addresses.  Tenants may create
   multiple Networks, each with its own Subnet.

   An OpenStack Subnet is a logical layer 2 network and requires layer 3
   routing for packets to exit the Subnet.  This is achieved by
   attaching the Subnet to a Neutron Router.  The Neutron router
   implements Network Address Translation for external traffic from
   tenant networks as well for providing connectivity to tenant networks
   from the outside.  Using Linux utilities, OpenStack can support
   overlapping RFC 1918 addresses between tenants.

   OpenStack Subnets are typically implemented as VLANs in a datacenter.
   When tenant scalability requirement grow large, an overlay approach
   is typically used.  Because of the difficulties in scaling and
   administering large layer 2 and/or overlay networks, some OpenStack
   integrations chose not to provide isolated Subnets and simply offer
   tenants a layer 3 based network alternative.

   OpenStack uses Layer 3 and Layer 2 Linux utilities on hosts to
   provide protection against IP/MAC spoofing and ARP poisoning.

1.2.  OpenStack Scaling Issues

   One of the fundamental requirements of OpenStack Networking (Neutron)
   is to provide scalable, isolated tenant networks.  Today this is
   achieved via L2 segmentation using either a) standard 802.1Q VLANs or
   b) an overlay approach based on one of several L2 over L3
   encapsulation techniques available today such as 802.1ad, VXLAN, STT
   or NVGRE.

   However, these approaches still struggle to provide scalable,
   transparent, manageable, high performance, isolated tenant networks.
   VLAN's don't scale beyond 4096 (2^12) networks and have complex
   trunking requirements when tenants span host and racks.  IEEE 802.1ad

https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1918
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   (QinQ) partially solves that, but adds another limit - at most 2^12
   tenants, each of which may have 2^12 VLANs.  IP Encapsulation
   introduces additional complexity on host computers running
   hypervisors as well as impact performance of tenant applications
   running on virtual machines.  Overlay based isolation techniques may
   also impair traditional network monitoring and performance management
   tools.  Moreover, when these isolated (L2) networks require external
   access to other networks or the public Internet, they require even
   more complex solutions to accommodate overlapping IP prefixes and
   network address translation (NAT).

   As more capabilities are built on to these layer 2 based 'virtual'
   networks, complexity continues to grow.

   This draft presents a new Layer 3 based approach to OpenStack
   networking using IPv6 that can be deployed natively on IPv6 networks.
   It will be shown that this approach can provide tenant isolation
   without the limitations of existing alternatives, as well as deliver
   high performance networks transparently using a simplified tenant
   network connectivity model, without the overhead of encapsulation or
   managing overlapping IP addresses and address translations.  We note
   that some large content providers, notably Google and Facebook
   [FaceBook-IPv6], are going in exactly this direction.

2.  Requirements

   In this section, we attempt to list critical requirements.

2.1.  Design approach

   As a design approach, we presume an IPv6-only data center in a world
   that might have IPv4 or IPv6 clients outside of it.  This design
   explicitly does not depend on VLANs, QinQ, VXLAN, MPLS, Segment
   Routing, LISP, IP/IP or GRE tunnels, or any other supporting
   encapsulation.  Data center operators remain free to use any of those
   tools, but they are not required.  If we can do everything required
   for OpenStack networking with IPv6 alone, these other networking
   technologies may be used as optimizations.  If we are unable to
   satisfy the OpenStack requirements that also is something we wish to
   know and understand.

   OpenStack is designed to be used by many cloud users or 'tenants'.
   Scalable, secure and isolated tenant networks are a requirement for
   building a multi-tenant cloud datacenter.  The OpenStack
   administrator/operator can design and configure a cloud environment
   to provide network isolation using the approach described in this
   document, alone, or in combination with any of the above network
   technologies . However, all the details of the underlying technology
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   and implementation details are completely transparent to the tenant
   itself.

2.2.  Multiple Data Centers

   A common requirement in network and data center operations is
   reliability, serviceability, and maintainability of their operations
   in the presence of an outage.  At minimum, this implies multihoming
   in the sense of having multiple upstream ISPs; in many cases, it also
   implies multiple and at times duplicate data centers, and tenants
   stretched or able to be readily moved or recreated across multiple
   data centers.

2.3.  Large Data Centers

   Microsoft Azure [Microsoft-Azure] has purchased a 100 acre piece of
   land for the construction of a single data center.  In terms of
   physical space, that is enough for a data center with about half a
   million 19' RETMA racks.

   With even modest virtual machine density, infrastructure at this
   scale easily exhausts the 16M available RFC 1918 private addresses
   (i.e. 10.0.0.0/8) and explains the recent efforts by webscale cloud
   providers to deploy IPv6 throughout their new datacenters.

2.4.  Multi-tenancy

   While it is possible that a single tenant would require a 100 acre
   data center, it would be unusual.  In most such data centers, one
   would expect a large number of tenants.

2.5.  Isolation

   Isolation is required between tenants, and at times between tenants
   hierarchically related to larger tenants.

2.5.1.  Inter-tenant isolation

   A 'tenant' is defined as a set of resources under common
   administrative control.  It may be appropriate for tenants to
   communicate with each other within the context of an application or
   relationships among their owners or operators.  However, unless
   specified otherwise, tenants are intended to operate as if they were
   on their own company's premises and be isolated from one another.

https://datatracker.ietf.org/doc/html/rfc1918
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2.5.2.  Intra-tenant isolation

   There are often security compartments within a corporate network,
   just as there are security barriers between companies.  As a result,
   there is a recursive isolation requirement: it must be possible to
   isolate an identified part of a tenant (which we also think of as a
   tenant) from another part of the same tenant.

2.6.  Operational Simplicity

   To the extent possible (and, for operators, the concept will bring a
   smile), operation of a multi-location multi-tenant data center, and
   the design of an application that runs in one, should be simple and
   uncoupled.

   As discussed in [RFC3439], this requires that the operational model
   required to support a tenant with only two physical machines, or
   virtual machines in the same physical chassis, should be the same as
   that required to support a tenant running a million machines in a
   federated multiple data center application.  Additionally, this same
   operational model should scale from running a single tenant up to
   many thousands of tenants.

2.7.  Address space

   As described in Section 1.1, currently, an OpenStack tenant is
   required to specify a Subnet's CIDR prefix for IP address allocation.
   With this proposal, this is no longer required.

2.8.  Data Center Federation

   It must be possible to extend the architecture across multiple data
   centers.  These data centers may be operated by distinct entities,
   with security policies that apply to their interconnection.

2.9.  Path MTU Issues

   An issue in virtualized data center architectures is Path MTU
   Discovery [RFC1981] implementation.  Implementing Path MTU requires
   the ICMPv6 [RFC4443] Packet Too Big message to get from the
   originating router or middleware to the indicated host, which is in
   this case virtual and potentially hidden within a tunnel.  This is a
   special case of the issues raised in [RFC2923].

https://datatracker.ietf.org/doc/html/rfc3439
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc2923
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3.  Models

3.1.  Configuration Model

   In the OpenStack model, the cloud computing user, or tenant, is
   building something Edward Yourdon might call a 'structured design'
   for the application they are building.  In the 1960's, when Yourdon
   started specifying process and data flow diagrams, these were job
   steps in a deck of Job Control Language cards; in OpenStack, they are
   multiple, individual machines, virtual or physical, running parts of
   a structured application.

   In these, one might find a load balancer that receives and
   distributes requests to request processors, a set of stored data
   processing applications, and the storage they depend on.  What is
   important to the OpenStack tenant is that 'this' and 'that'
   communicate, potentially using or not using multicast communications,
   and don't communicate with 'the other'.  Typically unnecessary is any
   and all information regarding how this communication actually needs
   to occur (i.e. placement of routers, switches, and IP subnets,
   prefixes, etc.).

   An IPv6 based networking model simplifies the configuration of tenant
   connectivity requirements.  Global reachability eliminates the need
   for network address translation devices as well as tenant-specified
   Subnet prefixes (Section 2.7), although tenant-specified ULA prefixes
   or prefixes from the owner of the tenant's address space are usable
   with it.  With the exception of network security functions, no
   network devices need to be specified or configured to provide
   connectivity.

3.2.  Data Center Model

   The premises of the routing and addressing models are that

   o  The address tells the routing system what topological location to
      deliver a packet to, and within that, what interface to deliver it
      to, and

   o  The routing system should deliver traffic to a resource if and
      only if the sender is authorized to communicate with that
      resource.

   o  Contrary to the OpenStack Neutron Networking Model, tunnels are
      not necessary to provide tenant network isolation; we include
      resources in a tenant network by a Role-based Access Control
      model, but address the tenant resources within the data center in
      a manner that scales for the data center.
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   We expect to find the data center to be composed of some minimal unit
   of connectivity and maintenance, such as a rack or row, and equipped
   with one or more Top-of-Rack or End-of-Row switch(es); each
   configured with at least one subnet prefix, perhaps one per such
   switch.  For the purposes of this note, these will be called Racks
   and Top-of-Rack switches, and when applied to other architectures the
   appropriate translation needs to be imposed.

   Figure 1 describes a relatively typical rack design.  It is a simple
   fat-tree architecture, with every device in a pair, so that any
   failure has an immediate hot backup.  There are other common designs,
   such as those that consider each rack to be in a 'row' and in a
   'column', with one or more distribution switches in each.

                    Distribution   Switches connecting
                    / Layer /      racks in a pod, and
                   /       /       connecting pods
                  /       /
               +-+-+   +-+-+       Mutual backup TOR
             +-+TOR+---+TOR+-+     switches
             | +---+   +---+ |
             | +-----------+ |
             +-+    host   +-+     Each host has two
             | +-----------+ |     Ethernet interfaces
             +-+    host   +-+     with separate subnets
             | +-----------+ |
             | .           . |
             | .           . |
             | .           . |     Design premise: complete
             | +-----------+ |     redundancy, with every
             +-+    host   +-+     switch and every cable
             | +-----------+ |     backed up by a doppelganger
             +-+    host   +-+
               +-----------+

                       Figure 1: Typical Rack Design

3.2.1.  Tenant Address Model

   Tenant resources need to be told, by configuration or naming, the
   addresses of resources they communicate with.  This is true
   regardless of their location or relationship to a given tenant.  In
   environments with well-known addresses, this becomes complex and
   unscalable.  This was learned very early with Internet hostnames; a
   single 'hostfile' was maintained by a central entity and updated
   daily, which quickly became unwieldy.  The result was the development
   of the Domain Name System; the level of indirection between names and
   addresses improved scalability.  It also facilitated ongoing
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   maintenance.  If a service needed multiple servers, or a server
   needed to change its address, that was trivially solved by changing
   the DNS Resource Record; every resource that needed the new address
   would obtain it the next time it queried the DNS.  It has also
   facilitated the IPv4/IPv6 transition; a resource that has an IPv6
   address is given a AAAA record in addition to, or to replace, its
   IPv4 A record.

   Similarly, today's reliance on NAPT technology frequently limits the
   capabilities of an application.  It works reasonably well for a
   client accessing a client/server application when the protocol does
   not carry addressing information.  If there is an expectation that
   one resource's private address will be meaningful to a peer, such as
   when an SIP client presents its address in SDP or an HTTP server
   presents an address in a redirection, either the resource needs to
   understand the difference between an 'inside' and an 'outside'
   address and know which is which, or it needs a traversal algorithm
   that changes the addresses.  For peer-to-peer applications, this
   ultimately means providing a network design in which those issues
   don't apply.

   IPv6 provides global addresses, enough of them that there is no real
   expectation of running out any time soon, making these issues go
   away.  In addition, with the IPv4 address space running out, both
   globally and within today's large datacenters, there aren't
   necessarily addresses available for an IPv4 application to use, even
   as a floating IP address.

   Hence, the model we propose is that a resource in a tenant is told
   the addresses of the other resources with which it communicates.
   They are IPv6 addresses, and the data center takes care to ensure
   that inappropriate communications do not take place.

3.2.1.1.  Use of Global Unicast Addresses by Tenants

   A unicast address in an IP network identifies a topological location,
   by association with an IP prefix (which might be for a subnet or any
   aggregate of subnets).  It also identifies a single interface located
   within that subnet, which may or may not be instantiated at the time.
   We assume that there is a subnet associated with a top-of-rack switch
   or whatever its counterpart would be in a given network design, and
   that the physical and virtual machines located in that rack have
   addresses in that subnet.  This is the same prefix that is used by
   the datacenter administrator.
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3.2.1.2.  Unique Local Addresses

   A common requirement is that tenants have the use of some form of
   private address space.  In an IPv6 network, a Unique Local IPv6
   Unicast Address [RFC4193] may be used to accomplish this.  In this
   case, however, the addresses will need to be explicitly assigned to
   physical or virtual machines used by the tenant, perhaps using DHCP
   or YANG, where a standard IPv6 address could be allocated using
   SLAAC, DHCPv6, or other technologies.

   The value of this is that the distinction between a Global Address
   and a Unique Local Address is a corner case in the data center; a ULA
   will not generally be useful when communicating outside the data
   center, but within the data center it is rational.  Tenants have no
   routing information or other awareness of the prefix.  This is not
   intended for use behind a NAPT; resources that need accessibility to
   or from resources outside the tenant, and especially outside the data
   center, need global addresses.

3.2.1.3.  Multicast Domains

   Multicast capability is a capability enjoyed by some groups of
   resources, that enables them to send a single message and have it
   delivered to multiple destinations roughly simultaneously.  At the
   link layer, this means sending a message once that is received by a
   specified set of recipient resources using hardware capabilities.  IP
   multicast can be implemented on a LAN as specified in [RFC4291], and
   can also cross multiple subnets directly, using routing protocols
   such as Protocol Independent Multicast [RFC4601] [RFC4602] [RFC4604]
   [RFC4605] [RFC4607].  In IPv6, the model would be that when a group
   of resources is created with a multicast capability, it is allocated
   one or more source-specific transient group addresses as defined in

section 2.7 of that RFC.

3.2.1.4.  IPv4 Interaction Model

   OpenStack IPv4 Neutron uses "floating IPv4 addresses" - global or
   public IPv4 addresses and Network Address Translation - to enable
   remote resources to connect to tenant private network endpoints.
   Tenant end points can connect out to remote resources through an
   "External Default Gateway".  Both of these depend on NAPT (DNAT/SNAT)
   [RFC2391] to ensure that IPv4 end points are able communicate and at
   the same time ensure tenant isolation.

   If IPv6 is deployed in a data center, there are fundamentally two
   ways a tenant can interact with IPv4 peers:

https://datatracker.ietf.org/doc/html/rfc4193
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4601
https://datatracker.ietf.org/doc/html/rfc4602
https://datatracker.ietf.org/doc/html/rfc4604
https://datatracker.ietf.org/doc/html/rfc4605
https://datatracker.ietf.org/doc/html/rfc4607
https://datatracker.ietf.org/doc/html/rfc2391
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   o  it can run existing IPv4 OpenStack technology in parallel with the
      IPv6 deployment, or

   o  It can have a translator at the data center edge (such as
      described in [I-D.ietf-v6ops-siit-dc]) that associates an IPv4
      address or address plus port with an IPv6 address or address plus
      port.  The IPv4 address, in this model, becomes a floating IPv4
      address attached to an internal IPv6 address.  The 'data center
      edge' is, by definition, a system that has IPv4 reachability to at
      least the data center's upstream ISP and all IPv4 systems in the
      data center, IPv6 connectivity to all of the IPv6 systems in the
      data center, and (if the upstream offers IPv6 service) IPv6
      connectivity to the upstream as well.

   The first model is complex, if for no other reason than that there
   are two fundamental models in use, one with various encapsulations
   hiding overlapping address space and one with non-overlapping address
   space.

   To simplify the network, as noted in Section 2.1, we suggest that the
   data center be internally IPv6-only, and IPv4 be translated to IPv6
   at the data center edge.  The advantage is that it enables IPv4
   access while that remains in use, and as IPv6 takes over, it reduces
   the impact of vestigial support for IPv4.

   The SIIT Translation model in [I-D.ietf-v6ops-siit-dc] has IPv4
   traffic come to an translator [RFC6145][RFC6146] having a pre-
   configured translation, resulting in an IPv6 packet indistinguishable
   from the packet the remote resource might have sent had it been
   IPv6-capable, with one exception.  The IPv6 destination address is
   that of the endpoint (the same address advertised in a AAAA record),
   but the source address is an IPv4-Embedded IPv6 Address [RFC6052]
   with the IPv4 address of the sender embedded in a prefix used by the
   translator.

   Access to external IPv4 resources is provided in the same way: an
   DNS64 [RFC6147] server is implemented that contains AAAA records with
   an IPv4-Embedded IPv6 Address [RFC6052] with the IPv4 address of the
   remote resource embedded in a prefix used by the translator.

   This follows the Framework for IPv4/IPv6 Translation [RFC6144],
   making the internal IPv4 address a floating IP address attached to an
   internal IPv6 address, and the external 'dial-out' address
   indistinguishable from a native IPv6 address.

https://datatracker.ietf.org/doc/html/rfc6145
https://datatracker.ietf.org/doc/html/rfc6052
https://datatracker.ietf.org/doc/html/rfc6147
https://datatracker.ietf.org/doc/html/rfc6052
https://datatracker.ietf.org/doc/html/rfc6144
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3.2.1.5.  Legacy IPv4 OpenStack

   The other possible model, applicable to IPv4-only devices, is to run
   a legacy OpenStack environment inside IPv6 tunnels.  This preserves
   the data center IPv6-only, and enables IPv4-only applications,
   notably those whose licenses tie them to IPv4 addresses, to run.
   However, it adds significant overhead in terms of encapsulation size
   and network management complexity.

3.2.2.  Use of Global Addresses by the Data Center

   Every rack and physical host requires an IP prefix that is reachable
   by the OpenStack operator.  This will normally be a global IPv6
   unicast address.  For scalability purposes, as isolation is handled
   separately, this is normally the same prefix as is used by tenants in
   the rack.

3.3.  Inter-tenant security services

   In this model, the a label is used to identify a set of virtual or
   physical systems under common ownership and administration that are
   authorized to communicate freely among themselves - a tenant.
   Tenants are not generally authorized to communicate with each other,
   but interactions between specified tenants may be authorized, and
   specific systems may be authorized to communicate generally.

   The fundamental premise is that the vSwitch can determine whether a
   VM is authorized to send or receive a given message.  It does so by
   finding the label in a message being sent or received and comparing
   it to a locally-held authorization policy.  This policy would
   indicate that the VM is permitted to send or receive messages
   containing one of a small list of labels.  In the case of a label
   contained in the IID of an IPv6 address, it would also need to verify
   the prefix used in the address, as this type of policy would be
   specific to an IPv6 prefix.

   A set of possible choices that were considered is to be found in
Appendix B. The key questions are a list of considerations, presented

   in no particular order:

   o  In what way does the approach the IPv6 Path MTU?

   o  How does the address come into being?

   o  What security implications apply?  For example, how hard would it
      be for a VM to spoof the source address or attack a random
      destination?
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   o  What is the service offered?  Can, for example, policy be applied
      at

      *  The sender of a datagram?

      *  The receiver of a datagram?

      *  An arbitrary point between the sender and receiver?

      *  At the data center edge, on arriving or departing traffic other
         data centers?

      *  At the data center edge, on arriving or departing traffic
         random locations?

   o  In what way does the approach the IPv6 Path MTU?

3.4.  IPv6 Tenant Isolation using the Label

   Neutron today already implements a form of Network Ingress Filtering
   [RFC2827].  It prevents the VM from emitting traffic with an
   unauthorized MAC, IPv4, or IPv6 source address.

   In addition to this, in this model Neutron prevents the VM from
   transmitting a network packet with an unauthorized label value.  The
   VM MAY be configured with and authorized to use one of a short list
   of authorized label values, as opposed to simply having its choice
   overridden; in that case, Neutron verifies the value and overwrites
   one not in the list.

   When a hypervisor is about to deliver an IPv6 packet to a VM, it
   checks the label value against a list of values that the VM is
   permitted to receive.  If it contains an unauthorized value, the
   hypervisor discards the packet rather than deliver it.  If the Flow
   Label is in use, Neutron zeros the label prior to delivery.

   The intention is to hide the label value from malware potentially
   found in the VM, and enable the label to be used as a form of first
   and last hop security.  This provides basic tenant isolation, if the
   label is assigned as a tenant identifier, and may be used more
   creatively such as to identify a network management application as
   separate from a managed resource.

3.5.  Isolation in Routing

   This concept has the weakness that if a packet is not dropped at its
   source, it is dropped at its destination.  It would be preferable for

https://datatracker.ietf.org/doc/html/rfc2827


Baker, et al.            Expires August 12, 2015               [Page 14]



Internet-Draft                                             February 2015

   the packet to be dropped in flight, such as at the top-of-rack switch
   or an aggregation router.

   Concepts discussed in IS-IS LSP Extendibility
   [I-D.baker-ipv6-isis-dst-flowlabel-routing][RFC5120][RFC5308] and
   OSPFv3 LSA Extendibility [I-D.baker-ipv6-ospf-dst-flowlabel-routing]
   [I-D.ietf-ospf-ospfv3-lsa-extend][RFC5340] may be used to isolate
   tenants in the routing of the data center backbone.  This is not
   strictly necessary, if Section 3.4 is uniformly and correctly
   implemented.  It does, however, present a second defense against
   misconfiguration, as the filter becomes ubiquitous in the data center
   and as scalable as routing.

4.  BCP 38 Ingress Filtering

   As noted in Section 3.4, Neutron today implements a form of Network
   Ingress Filtering [RFC2827].  It prevents the VM from emitting
   traffic with an unauthorized MAC, IPv4, or IPv6 source address.

   In IPv6, this is readily handled when the address or addresses used
   by a VM are selected by the OpenStack operator.  It may then
   configure a per-VM filter with the addresses it has chosen, following
   logic similar to the Source Address Validation Solution for DHCP
   [I-D.ietf-savi-dhcp] or SEND [RFC7219].  This is also true of IPv6
   Stateless Address Autoconfiguration (SLAAC) [RFC4862] when the MAC
   address is known and not shared.

   However, when SLAAC is in use and either the MAC address is unknown
   or SLAAC's Privacy Extensions [RFC4941][RFC7217], are in use, Neutron
   will need to implement the provisions of FCFS SAVI: First-Come,
   First-Served Source Address Validation [RFC6620] in order to learn
   the addresses that a VM is using and include them in the per-VM
   filter.

5.  Moving virtual machines

   This design supports these kinds of required layer 2 networks with
   the additional use of a layer 2 over layer 3 encapsulation and
   tunneling protocol, such as VXLAN [RFC7348].  The important point
   here being that these overlays are used to address specific tenant
   network requirements and NOT deployed to remove the scalability
   limitations of OpenStack networking.

   There are at least three ways VM movement can be accomplished:

   o  Recreation of the VM

   o  VLAN Modification

https://datatracker.ietf.org/doc/html/rfc5308
https://datatracker.ietf.org/doc/html/bcp38
https://datatracker.ietf.org/doc/html/rfc2827
https://datatracker.ietf.org/doc/html/rfc7219
https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc4941
https://datatracker.ietf.org/doc/html/rfc6620
https://datatracker.ietf.org/doc/html/rfc7348
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   o  Live Migration of a Running Virtual Machine

5.1.  Recreation of the VM

   The simplest and most reliable is to

   1.  Create a new VM in the new location,

   2.  Add its address to the DNS Resource Record for the name, allowing
       new references to the name to send transactions there,

   3.  Remove the old address from the DNS Resource Record (including
       the SIIT translation, if one exists), ending the use of the old
       VM for new transactions,

   4.  Wait for the period of the DNS Resource Record's lifetime
       (including the SIIT translation, if one exists), as it will get
       new requests throughout that interval,

   5.  Wait for the for the old VM to finish any outstanding
       transactions, and then

   6.  Kill the old VM.

   This is obviously not movement of an existing VM, but preservation of
   the same number and function of VMs by creation of a new VM and
   killing the old.

5.2.  Live Migration of a Running Virtual Machine

   At http://blogs.vmware.com/vsphere/2011/02/vmotion-whats-going-on-
under-the-covers.html, VMWare describes its capability, called

   vMotion, in the following terms:

   1.  Shadow VM created on the destination host.

   2.  Copy each memory page from the source to the destination via the
       vMotion network.  This is known as preCopy.

   3.  Perform another pass over the VM's memory, copying any pages that
       changed during the last preCopy iteration.

   4.  Continue this iterative memory copying until no changed pages
       (outstanding to be-copied pages) remain or 100 seconds elapse.

   5.  Stun the VM on the source and resume it on the destination.

   In a native-address environment, we add three steps:

http://blogs.vmware.com/vsphere/2011/02/vmotion-whats-going-on-under-the-covers.html
http://blogs.vmware.com/vsphere/2011/02/vmotion-whats-going-on-under-the-covers.html
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   1.  Shadow VM created on the destination host.

   2.  Copy each memory page from the source to the destination via the
       vMotion network.  This is known as preCopy.

   3.  Perform another pass over the VM's memory, copying any pages that
       changed during the last preCopy iteration.

   4.  Continue this iterative memory copying until no changed pages
       (outstanding to be-copied pages) remain or 100 seconds elapse.

   5.  Stitch routing for the old address.

   6.  Stun the VM on the source and resume it on the destination.

   7.  Renumber the VM as instructed in [RFC4192].

   8.  Unstitch routing for the old address.

   If the VM is moved within the same subnet (which usually implies the
   same rack), there is no stitching or renumbering apart from ensuring
   that the MAC address moves with the VM.  When the VM moves to a
   different subnet, however, we need to restitch routing, at least
   temporarily.  This obviously calls for some definitions.

   Stitching Routing:  The VM is potentially in communication with two
      sets of peers: VMs in the same subnet, and VMs in different
      subnets.

      *  The router in the new subnet is instructed to advertise a host
         route (/128) to the moved VM, and to install a static route to
         the old address with the VM's address in the new subnet as its
         next hop address.  Traffic from VMs from other subnets will now
         follow the host route to the VM in its new location.

      *  The router in the old subnet is instructed to direct LAN
         traffic to the VM's MAC Address to its IPv6 forwarding logic.
         Traffic from other VMs in the old subnet will now follow the
         host route to the moved VM.

   Renumbering:  This step is optional, but is good hygiene if the VM
      will be there a while.  If the VM will reside in its new location
      only temporarily, it can be skipped.

      Note that every IPv6 address, unlike an IPv4 address, has a
      lifetime.  At least in theory, when the lifetime expires, neighbor
      relationships with the address must be extended or the address
      removed from the system.  The Neighbor Discovery [RFC4861] process

https://datatracker.ietf.org/doc/html/rfc4192
https://datatracker.ietf.org/doc/html/rfc4861
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      in the subnet router will periodically emit a Router
      Advertisement; the VM will gain an IPv6 address in the new subnet
      at that time if not earlier.  As described in [RFC4192], DNS
      should be changed to report the new address instead of the old.
      The DNS lifetime and any ambient sessions using the old address
      are now allowed to expire.  That this point, any new sessions will
      be using the new address, and the old is vestigial.

      Waiting for sessions using the address to expire can take an
      arbitrarily long interval, because the session generally has no
      knowledge of the lifetime of the IPv6 address.

   Unstitching Routing:  This is the reverse process of stitching.  If
      the VM is renumbered, when the old address becomes vestigial, the
      address will be discarded by the VM; if the VM is subsequently
      taken out of service, it has the same effect.  At that point, the
      host route is withdrawn, and the MAC address in the old subnet
      router's tables is removed.

6.  OpenStack implications

6.1.  Configuration implications

   1.  Neutron MUST be configured with a pre-determined default label
       value for each tenant virtual network Section 3.4.

   2.  Neutron MAY be configured with a set of authorized label values
       for each tenant virtual network Section 3.4.

   3.  A virtual tenant network MAY be configured with a set of
       authorized label values Section 3.4.

   4.  Neutron MUST be configured with one or more label values per
       virtual tenant network that the network is permitted to receive

Section 3.4.

6.2.  vSwitch implications

   On messages transmitted by a virtual machine

   Label Correctness:  As described in Section 3.3, ensure that the
      label in the packet is one that the VM is authorized to use.
      Exactly what label is in view is a deferred, and potentially
      configurable, option.  Again Depending on configuration, the
      vSwitch may overwrite whatever value is there, or may ratify that
      the value there is as specified in a VM-specific list.

https://datatracker.ietf.org/doc/html/rfc4192
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   Source Address Validation:  As described in Section 4, force the
      source address to be among those the VM is authorized to use.  The
      VM may simultaneously be authorized to use several addresses.

   Destination Address Validation:  OpenStack for IPv4 permits a NAT
      translation, called a 'floating IP address', to enable a VM to
      communicate outside the domain; without that, it cannot.  For
      IPv6, the destination address should be permitted by some access
      list, which may permit all addresses, or addresses matching one or
      more CIDR prefixes such as permitted multicast addresses, and the
      prefix of the data center.

   On messages received for delivery to a virtual machine

   Label Authorization:  As described in Section 3.4, the vSwitch only
      delivers a packet to a VM if the VM is authorized to receive it.
      The VM may have been authorized to receive several such labels.

   Each approach in the appendix discusses filtering.

7.  IANA Considerations

   This document does not ask IANA to do anything.

8.  Security Considerations

   In Section 2.5 and Section 3.3, this specification considers inter-
   tenant and intra-tenant network isolation.  It is intended to
   contribute to the security of a network, much like encapsulation in a
   maze of tunnels or VLANs might, but without the complexities and
   overhead of the management of such resources.  This does not replace
   the use of IPSec, SSH, or TLS encryption or the use authentication
   technologies; if these would be appropriate in an on-premises
   corporate data center, they remain appropriate in a multi-tenant data
   center regardless of the isolation technology.  However, one can
   think of this as a simple inter-tenant firewall based on the concepts
   of role-based access control; if it can be readily determined that a
   sender is not authorized to communicate with a receiver, such a
   transmission is prevented.

9.  Privacy Considerations

   This specification places no personally identifying information in an
   unencrypted part of a packet.
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Appendix B.  Alternative Labels considered

B.1.  IPv6 Flow Label

   The IPv6 flow label may be used to identify a tenant or part of a
   tenant, and to facilitate access control based on the flow label
   value.  The flow label is a flat 20 bits, facilitating the
   designation of 2^20 (1,048,576) tenants without regard to their
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   location.  1,048,576 is less than infinity, but compared to current
   data centers is large, and much simpler to manage.

   Note that this usage differs from the current IPv6 Flow Label
   Specification [RFC6437].  It also differs from the use of a flow
   label recommended by the IPv6 Specification [RFC2460], and the
   respective usages of the flow label in the Resource ReSerVation
   Protocol [RFC2205] and the previous IPv6 Flow Label Specification
   [RFC3697], and the projected usage in Low-Power and Lossy Networks
   [RFC5548][RFC5673].  Within a target domain, the usage may be
   specified by the domain.  That is the viewpoint taken in this
   specification.

B.1.1.  Metaconsiderations

B.1.1.1.  Service offered

   To Be Supplied

B.1.1.2.  Pros and Cons

B.1.1.2.1.  The case in favor of this approach

   To Be Supplied

B.1.1.2.2.  The case against

   To Be Supplied

B.1.1.3.  Filtering considerations

   To Be Supplied

B.2.  Federated Identity

B.2.1.  Introduction

   In the course of developing draft-baker-ipv6-openstack-model, it was
   determined that a way was needed to encode a federated identity for
   use in Role-Based Access Control.  This appendix describes an IPv6
   [RFC2460] option that could be carried in the Hop-by-Hop or
   Destination Options Header.  The format of an option is defined in

section 4.2 of that document, and the Hop-by-Hop and Destination
   Options are defined in sections 4.3 and 4.6 of that document
   respectively.

   A 'Federated Identity', in the words of the Wikipedia, 'is the means
   of linking an electronic identity and attributes, stored across

https://datatracker.ietf.org/doc/html/rfc6437
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc3697
https://datatracker.ietf.org/doc/html/rfc5548
https://datatracker.ietf.org/doc/html/draft-baker-ipv6-openstack-model
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   multiple distinct identity management systems.'  In this context, it
   is a fairly weak form of that; it is intended for quick
   interpretation in an access list at the Internet layer as opposed to
   deep analysis for login or other security purposes at the application
   layer, and rather than identifying an individual or a system, it
   identifies a set of systems whose members are authorized to
   communicate freely among themselves and may also be authorized to
   communicate with other identified sets of systems.  Either two
   systems are authorized to communicate or they are not, and
   unauthorized traffic can be summarily discarded.  The identifier is
   defined in a hierarchical fashion, for flexibility and scalability.

   'Role-Based Access Control', in this context, applies to groups of
   virtual or physical hosts, not individuals.  In the simplest case,
   the several tenants of a multi-tenant data center might be
   identified, and authorized to communicate only with other systems
   within the same 'tenant' or with identified systems in other tenants
   that manage external access.  One could imagine a company purchasing
   cloud services from multiple data center operators, and as a result
   wanting to identify the systems in its tenant in one cloud service as
   being authorized to communicate with the systems its tenant of the
   other.  One could further imagine a given department within that
   company being authorized to speak only with itself and an identified
   set of other departments within the same company.  To that end, when
   a datagram is sent, it is tagged with the federated identify of the
   sender (e.g., {datacenter, client, department}), and the receiving
   system filters traffic it receives to limit itself to a specific set
   of authorized communicants.

B.2.2.  Federated identity Option

   The option is defined as a sequence of numbers that identify relevant
   parties hierarchically.  The specific semantics (as in, what number
   identifies what party) are beyond the scope of this specification,
   but they may be interpreted as being successively more specific; as
   shown in Figure 3, the first might identify a cloud operator, the
   second, if present, might identify a client of that operator, and the
   third, if present, might identify a subset of that client's systems.
   In an application entirely used by Company A, there might be only one
   number, and it would identify sets of systems important to Company A
   such as business units.  If Company A uses the services of a multi-
   tenant data center #1, it might require that there be two numbers,
   identifying Company A and its internal structure.  If Company A uses
   the services of both multi-tenant data centers #1 and #2, and they
   are federated, the identifier might need to identify the data center,
   the client, and the structure of the client.
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                         _.----------------------.
                 _.----''                         `------.
            ,--''                                         `---.
         ,-' DataCenter      .---------------------.           `-.
       ,'    Company #2,---''      Unauthorized     `----.        `.
      ;              ,' ,-----+-----.        ,--+--------.`.        :
      |             (  ( Department 1)--//--( Department 2) )       |
      ;              `. `-----+----+'        `-----------','        |
       `.              `----. |     X Company A     _.---'        ,'
         '-.                 A|------X------------''           ,-'
            `---.            u|       X                   _.--'
                 `------.    t|        X          _.----''
                         `---h|---------X-------''
                             o|          X
                         _.--r+-----------X------.
                 _.----''    i|            X      `------.
            ,--''            z|             X             `---.
         ,-' DataCenter      e|--------------X-----.           `-.
       ,'    Company #2,---''d|               X     `----.        `.
      ;              ,' ,-----+-----.        ,-+---------.`.        :
      |             (  ( Department 1)      ( Department 2) )       |
      ;              `. `-----------'        `-----------','        |
       `.              `----.     Company A         _.---'        ,'
         '-.                 `--------------------''           ,-'
            `---.                                         _.--'
                 `------.                         _.----''
                         `----------------------''

   Figure 3: Use case: Identifying authorized communicatants in an RBAC
                                environment

B.2.2.1.  Option Format

   A number (Figure 4) is represented as a base 128 number whose
   coefficients are stored in the lower 7 bits of a string of bytes.
   The upper bit of each byte is zero, except in the final byte, in
   which case it is 1.  The most significant coefficient of a non-zero
   number is never zero.
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                  8 = 8*128^0
                  +-+------+
                  |1|    8 |
                  +-+------+

                  987 = 7*128^1 + 91*128^0
                  +-+------+-+------+
                  |0|    7 |1|   91 |
                  +-+------+-+------+

                  121393 = 7*128^2 + 52*128^1 + 49*128^0
                  +-+------+-+------+-+------+
                  |0|    7 |0|   52 |1|   49 |
                  +-+------+-+------+-+------+

                         Figure 4: Sample numbers

   The identifier {8, 987, 121393} looks like

     +-------+-------+-+-----+-+-----+-+-----+-+-----+-+-----+-+-----+
     | type  | len=6 |1|   8 |0|   7 |1|  91 |0|   7 |0|  52 |1|  49 |
     +-------+-------+-+-----+-+-----+-+-----+-+-----+-+-----+-+-----+

                                 Figure 5

B.2.2.1.1.  Use in the Destination Options Header

   In an environment in which the validation of the option only occurs
   in the receiving system or its hypervisor, this option is best placed
   in the Destination Options Header.

B.2.2.1.2.  Use in the Hop-by-Hop Header

   In an environment in which the validation of the option occurs in
   transit, such as in a firewall or other router, this option is best
   placed in the Hop-by-Hop Header.

B.2.3.  Metaconsiderations

B.2.3.1.  Service offered

   To Be Supplied

B.2.3.2.  Pros and Cons
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B.2.3.2.1.  The case in favor of this approach

   To Be Supplied

B.2.3.2.2.  The case against

   To Be Supplied

B.2.3.3.  Filtering considerations

   To Be Supplied

B.3.  Universal Cloud Classification

B.3.1.  Introduction

   Cloud environments suffer from ambiguity in identifying their
   services and tenants.  Traffic from different cloud providers cannot
   be distinguished easily on the Internet.  Filters are simply not able
   to obtain the provider, service and tenant identities from network
   packets without leveraging other more latency intense inspection
   methods.  This appendix describes the Universal Cloud Classification
   (UCC) [UCC] approach as a way to identify cloud providers, their
   services and tenants on the network layer.  It introduces a Cloud-ID,
   Service-ID and Tenant-ID.  The IDs are incorporated into an IPv6
   extension header and can be used for different use-cases both within
   and outside a Cloud Environment.  The format of the IDs and their
   characteristics are defined in Appendix B.3.2 of the document and the
   extension header is defined in Appendix B.3.3.

   Applications and users are defined in many different ways in cloud
   environments, therefore ambiguity is multifold:

   1.  The first ambiguity is described by how a service is defined in
       cloud environments.  Here, an application within a Cloud Provider
       is called a service.  However, the cloud providers network can
       not distinguish services from services run on top of other
       services.  Distinguishing sub-services hosted by a service
       becomes critical when applying network services to specific sub-
       services.

   2.  Secondly, a tenant in a cloud provider can have different
       meanings.  Here, tenant is used to define a consumer of a cloud
       service.  At the same time a service run on top of another
       service can be considered a tenant of that particular service.
       These ambiguities make it extremely difficult to uniquely
       identify services and their tenants in cloud environments.  This
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       multi-layered service and tenant relationship is one of the most
       complex tasks to handle using existing technologies.

   A service can be defined as a group of entities offering a specific
   function to a tenant within a Cloud Provider.

B.3.2.  Universal Cloud Classification Options

   Three IDs are defined that classify a Tenant specific to the service
   used within a certain Cloud Provider.  The Cloud-ID, Service-ID and
   Tenant-ID are defined hierarchically and support service-stacking.
   The IDs are based on the 'Digital Object Identifier' scheme and
   support incorporating metadata per ID.  The ID can be of variable
   length but Cloud-ID, Service-ID and Tenant-ID are proposed within a 4
   byte, 6 byte and 6 byte tuple respectively.

B.3.2.1.  Cloud ID

   The Cloud ID is a globally unique ID that is managed by a registrar
   similar to DNS.  It is 4 bytes in sizes and defined with a 10 bit
   location part and a 22 bit provider ID.

B.3.2.2.  Service ID

   The Service ID is used to identify a service both within and outside
   a cloud environment.  It is a 6 byte long ID that is separated into
   several sub-IDs defining the data center, service and an option
   field.  The Data Center location is defined by 8 bits, the Service is
   32 bits long and the Option field provides another 8 bits.  The
   option bits can be used to incorporate information used for en-route
   or destination tasks.

B.3.2.3.  Tenant ID

   The Tenant-ID is classifying consumers (tenants) of Cloud Services.
   It is a 6 byte long ID that is defined and managed by the Cloud
   Provider.  Similar to the Service-ID the Tenant-ID incorporates
   metadata specific to that tenant.  The MetaData field is of variable
   length and can be defined by the Cloud Provider as needed.

B.3.3.  UCC Extension Header

   The UCC proposal [UCC] defines an IPv6 hop-by-hop extension header to
   incorporate the Cloud-ID, Service-ID and Tenant-ID.  Each ID area
   also includes bits to define enroute behavior for devices
   understanding/not-understanding the newly defined hop-by-hop
   extension header.  This is useful for legacy devices on the Internet
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   to avoid drops the packet but forward it without processing the added
   IPv6 extension header.

    0       8       16      24      32      40      48      56      64
    +-------+-------+-------+-------+-------+-------+-------+-------+
    | FLAG  |  SIZE |    CLOUD-ID                   |  FLAG | SIZE  |
    +-------+-------+-------+-------+-------+-------+-------+-------+
    |                    SERVICE-ID                 |  FLAG | SIZE  |
    +-------+-------+-------+-------+-------+-------+-------+-------+
    |                    TENANT-ID                  |
    +-------+-------+-------+-------+-------+-------+

              Figure 6: UCC IPv6 hop-by-hop extension header

   The overall extension header size is 22 bytes.

B.4.  Policy List in Segment Routing Header

   The model here suggests using the Policy List described in the IPv6
   Segment Routing Header [I-D.previdi-6man-segment-routing-header].
   Technically, it would violate that specification, as the Policy List
   is described as containing a set of optional addresses representing
   specific nodes in the SR path, where in this case it would be a 128
   bit number identifying the tenant or other set of communicating
   nodes.

B.4.1.  Metaconsiderations

B.4.1.1.  Service offered

   To Be Supplied

B.4.1.2.  Pros and Cons

B.4.1.2.1.  The case in favor of this approach

   To Be Supplied

B.4.1.2.2.  The case against

   To Be Supplied

B.4.1.3.  Filtering considerations

   To Be Supplied
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B.5.  RFC 4291 Interface Identifier (IID)

   The approach starts from the observation that Openstack assigns the
   MAC address used by a VM, and can assign it according to any
   algorithm it chooses.  A desire has been expressed to put the tenant
   identifier into the IPv6 address.  This would put it into the IID in
   that address without modifying the VM OS or the virtual switch.

B.5.1.  Address Format

   The proposed address format is identical to the IPv6 EUI-48 based
   Address [RFC4291], and is derived from the MAC address space
   specified in SLAAC [RFC4862].  However, the MAC address provided by
   the OpenStack Controller differs from an IEEE 802.3 MAC Address.

   Walking through the details, an IEEE 802.3 MAC Address (Figure 7)
   consists of two single bit fields, a 22 bit Organizationally Unique
   Identifier (OUI), and a serial number or other NIC-specific
   identifier.  The intention is to create a globally unique address, so
   that the NIC may be used on any LAN in the world without colliding
   with other addresses.

              0       8       16      24      32      40
             +-------+-------+-------+-------+-------+-------+
             |Organizationally Unique|  NIC Specific Number  |
             | Identifier (OUI)      |                       |
             +-------+-------+-------+-------+-------+-------+
                   AA
                   |+--- 0=Unicast/1=Multicast
                   +---- 1=Local/0=Global

         Figure 7: Ethernet MAC Address as specified by IEEE 802.3

   [RFC4291] describes a transformation from that address (which it
   refers to as an EUI-48 address) to the IID of an IPv6 Address
   (Figure 8).

      0       8       16      24      32      40      48      56
     +-------+-------+-------+-------+-------+-------+-------+-------+
     |Organizationally Unique| Fixed Value   |  NIC Specific Number  |
     | Identifier (OUI)      |               |                       |
     +-------+-------+-------+-------+-------+-------+-------+-------+
           AA
           |+--- Reserved
           +---- 0=Local/1=Global

                      Figure 8: RFC 4291 IPv6 Address

https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc4291
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   OpenStack today specifies a local IEEE 802.3 address (bit 6 is one).
   IPv6 addresses are either installed using DHCP or derived from the
   MAC address via SLAAC.

   One could imagine the MAC address used in an OpenStack environment
   including both a tenant identifier and a system number on a LAN.  If
   the tenant identifier is 24 bits (it could be longer or shorter, but
   for this document it is treated as 24 bits), as in common in VxLAN
   and QinQ implementations, that would allow for a 22 bit system
   number, plus two magic bits specifying a locally defined unicast
   address, as shown in Figure 9.  Alternatively, the first byte could
   be some specified values such as 0xFA (as is common with current
   OpenStack implementations), followed by a 16 bit system number within
   the subnet.

              0       8       16      24      32      40    47
             +-------+-------+-------+-------+-------+-------+
             |System Number within   | Openstack Tenant      |
             |    LAN                | Identifier            |
             +-------+-------+-------+-------+-------+-------+
                   AA
                   |+--- 0=Unicast/1=Multicast
                   +---- 1=Local/0=Global

         Figure 9: Ethernet MAC Address as installed by OpenStack

   After being passed through SLAAC, that results in an IID that
   contains the Tenant ID in bits 48..63, has bit 6 zero as a locally-
   specified unicast address, and a 22 bit system number, as in
   Figure 10.

      0       8       16      24      32      40      48      56    63
     +-------+-------+-------+-------+-------+-------+-------+-------+
     |system number within   | Fixed Value   |  24 bit OpenStack     |
     | LAN                   |               |  Tenant Identifier    |
     +-------+-------+-------+-------+-------+-------+-------+-------+
           AA
           |+--- Reserved
           +---- 0=Local/1=Global

      Figure 10: RFC 4291 IPv6 IID Derived from OpenStack MAC Address

   More generally, if SLAAC is not in use and addresses are conveyed
   using DHCPv6 or another technology, the IID would be as described in
   Figure 11.

https://datatracker.ietf.org/doc/html/rfc4291
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      0       8       16      24      32      40      48      56    63
     +-------+-------+-------+-------+-------+-------+-------+-------+
     |        system number within LAN       |  24 bit OpenStack     |
     |                                       |  Tenant Identifier    |
     +-------+-------+-------+-------+-------+-------+-------+-------+
           AA
           |+--- Reserved
           +---- 0=Local/1=Global

                     Figure 11: Generalized Tenant IID

   As noted, the Tenant Identifier might be longer or shorter in a given
   implementation.  Specifically in Figure 11, a 32 bit Tenant ID would
   occupy bit positions 32..63, and a 16 bit Tenant ID would occupy
   positions 48..63.

   Following the same model, IPv6 Multicast Addresses can be associated
   with a tenant identifier by placing the tenant identifier in the same
   set of bits and using the remaining bits of the Multicast Group ID as
   the ID within the tenant as show in Figure 12.  Flags and scope are
   as specified in [RFC4291] section 2.7.  To avoid clashes with
   multicast addresses specified in ibid 2.7.1 and future allocations,
   The Tenant Group ID MUST NOT be zero.

    |   8    |  4 |  4 |           88 bits               24 bits     |
    +------ -+----+----+-----------------------------+---------------+
    |11111111|flgs|scop|        Tenant Group ID      |  Tenant ID    |
    +--------+----+----+-----------------------------+---------------+

           Figure 12: RFC 4291 Multicast Address with Tenant ID

B.5.2.  Metaconsiderations

B.5.2.1.  Service offered

   The fundamental seervice offered in this model is that the key policy
   parameter, the Tenant ID, is encoded in every datagram for both
   sender and receiver, and can therefore be tested by sender, receiver,
   or any other party.  It is secure in the sense that it cannot be
   directly spoofed; in the sender vSwitch, the vSwitch prevents the
   sender from sending another address as discussed in Section 4, and if
   the recipient address is a randomly chosen address, even if it meets
   inter-tenant communication policy, there is unlikely to be a matching
   destination to deliver it to.  Where this breaks down is if a valid
   and acceptable destination is discovered and used; that is the
   argument for further protection via TLS.

https://datatracker.ietf.org/doc/html/rfc4291#section-2.7
https://datatracker.ietf.org/doc/html/rfc4291
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B.5.2.2.  Pros and Cons

B.5.2.2.1.  The case in favor of this approach

   The case in favor of this approach consists of several observations:

   o  Many Cisco customers are using and prefer SLAAC for IPv6 clients
      in OpenStack environments.

   o  It is easy to configure this IID from the Neutron Controller
      without modifying the VM, or it even knowing it happened.

   o  From a security perspective, the tenant ID cannot be spoofed per
      se; the sender of a message is not permitted to send a message
      from the wrong address or to an unauthorized address.

   o  Since it requires no extension headers or other encapsulations, it
      has no impact on Path MTU.

   o  Filters can be applied anywhere, and notably at the sender and the
      receiver of a message.

B.5.2.2.2.  The case against

   In [I-D.ietf-6man-default-iids], the IETF is moving toward
   deprecating [RFC4291]'s Modified EUI-64 IID.

B.5.2.3.  Filtering considerations

   In this model, the vSwitch needs, for each VM it manages, two access
   control lists:

   o  Zero or more {IPv6 prefix, tenant ID} pairs; these may be read as
      'if the IPv6 prefix matches {prefix}, the IID contains a tenant
      ID, and it may be {tenant ID}.'

   o  Zero or more IPv6 prefixes that the VM is authorized to
      communicate without regard to tenant ID.

   Generally speaking, one would expect at least one of those three
   lists to contain an entry - at minimum, the VM would be authorized to
   communicate with ::/0, which is to say 'anyone'.

   Among the generic IPv6 prefixes that may be communicated with, there
   may be zero or more IPv4-embedded IPv6 prefix [RFC6052] prefixes that
   the VM is permitted to communicate with.  For example, if the
   [I-D.ietf-v6ops-siit-dc] translation prefix is 2001:db8:0:1::/96, and

https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc6052
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   the enterprise is using 192.0.2.0/24 as its IPv4 address, the filter
   would contain the prefix 2001:db8:0:1:0:0:c000:0200/120.

   Note that the lists may also include multicast prefixes as specified
   in Appendix B.5.1, such as locally-scoped multicast ff01::/104 or
   locally-scoped multicast within the tenant {ff01::/16, tenant id} .
   While these access lists are applied in both directions (as a sender,
   what prefixes may the destination address contain, and as a receiver,
   what prefixes may the source address contain), only the destination
   address may contain multicast addresses.  For multicast, therefore,
   the vSwitch should filter Multicast Listener Discovery [RFC2710]
   using the multicast subset, permitting the VM to only join relevant
   multicast groups.

B.6.  Modified IID using modified Privacy Extension

   This variant reflects and builds on the IPv6 Addressing Architecture
   [RFC4291] Stateless Address Autoconfiguration [RFC4862], and the
   associated Privacy Extensions [RFC4941].  The address format is
   identical to that of Appendix B.5, with the exception that The
   'System Number within the LAN' is a random number determined by the
   host rather than being specified by the controller.

   It does have implications, however.  It will require

   o  a modification to [RFC4941] to have the host include the Tenant ID
      in the IID,

   o  a means to inform the host of the Tenant ID,

   o  a means to inform the vSwitch of the Tenant ID,

   o  a the vSwitch to follow FCFS SAVI [RFC6620] to learn the addresses
      being used by the host, and

   o  a filter to prevent FCFS SAVI from learning addresses that have
      the wrong Tenant ID.

B.6.1.  Metaconsiderations

B.6.1.1.  Service offered

   To Be Supplied

https://datatracker.ietf.org/doc/html/rfc2710
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc4941
https://datatracker.ietf.org/doc/html/rfc4941
https://datatracker.ietf.org/doc/html/rfc6620
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B.6.1.2.  Pros and Cons

B.6.1.2.1.  The case in favor of this approach

   To Be Supplied

B.6.1.2.2.  The case against

   To Be Supplied

B.6.1.3.  Filtering considerations

   To Be Supplied
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