
Network Working Group F. Baker, Ed.
Internet-Draft C. Marino
Intended status: Informational I. Wells
Expires: August 12, 2015 R. Agarwalla
 S. Jeuk
 G. Salgueiro
 Cisco Systems
 February 8, 2015

A Model for IPv6 Operation in OpenStack
draft-baker-openstack-ipv6-model-02

Abstract

 This is an overview of a network model for OpenStack, designed to
 dramatically simplify scalable network deployment and operations.

Requirements Language

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 document are to be interpreted as described in [RFC2119].

Design Principle

 Perfection is achieved, not when there is nothing more to add, but
 when there is nothing left to take away.

 Antoine de Saint-Exupery

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 12, 2015.

Baker, et al. Expires August 12, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft February 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. What is OpenStack? 3
1.2. OpenStack Scaling Issues 4

2. Requirements . 5
2.1. Design approach . 5
2.2. Multiple Data Centers 6
2.3. Large Data Centers 6
2.4. Multi-tenancy . 6
2.5. Isolation . 6
2.5.1. Inter-tenant isolation 6
2.5.2. Intra-tenant isolation 7

2.6. Operational Simplicity 7
2.7. Address space . 7
2.8. Data Center Federation 7
2.9. Path MTU Issues . 7

3. Models . 8
3.1. Configuration Model 8
3.2. Data Center Model . 8
3.2.1. Tenant Address Model 9
3.2.2. Use of Global Addresses by the Data Center 13

3.3. Inter-tenant security services 13
3.4. IPv6 Tenant Isolation using the Label 14
3.5. Isolation in Routing 14

4. BCP 38 Ingress Filtering 15
5. Moving virtual machines 15
5.1. Recreation of the VM 16
5.2. Live Migration of a Running Virtual Machine 16

6. OpenStack implications 18
6.1. Configuration implications 18
6.2. vSwitch implications 18

7. IANA Considerations . 19

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/bcp38

Baker, et al. Expires August 12, 2015 [Page 2]

Internet-Draft February 2015

8. Security Considerations 19
9. Privacy Considerations 19
10. Acknowledgements . 20
11. Contributors . 20
12. References . 20
12.1. Normative References 20
12.2. Informative References 20

Appendix A. Change Log . 24
Appendix B. Alternative Labels considered 24
B.1. IPv6 Flow Label . 24
B.1.1. Metaconsiderations 25

B.2. Federated Identity 25
B.2.1. Introduction . 25
B.2.2. Federated identity Option 26
B.2.3. Metaconsiderations 28

B.3. Universal Cloud Classification 29
B.3.1. Introduction . 29
B.3.2. Universal Cloud Classification Options 30
B.3.3. UCC Extension Header 30

B.4. Policy List in Segment Routing Header 31
B.4.1. Metaconsiderations 31

B.5. RFC 4291 Interface Identifier (IID) 32
B.5.1. Address Format 32
B.5.2. Metaconsiderations 34

B.6. Modified IID using modified Privacy Extension 36
B.6.1. Metaconsiderations 36

 Authors' Addresses . 37

1. Introduction

 OpenStack, and its issues.

1.1. What is OpenStack?

 OpenStack is a cloud computing orchestration solution developed using
 an open source community process. It consists of a collection of
 'projects', each implementing the creation, control, and
 administration of tenant resources. There are separate OpenStack
 projects for managing compute, storage and network resources.

 Neutron is the project that manages OpenStack networking. It exposes
 a northbound API to the other OpenStack projects for programmatic
 control over tenant network connectivity. The southbound interface
 is implemented as one or more device driver plugins that are built to
 interact with specific devices in the network. This approach
 provides the flexibility to deploy OpenStack networking using a range
 of alternative techniques.

https://datatracker.ietf.org/doc/html/rfc4291

Baker, et al. Expires August 12, 2015 [Page 3]

Internet-Draft February 2015

 An OpenStack tenant, in the Kilo and earlier releases, is required to
 create what OpenStack identifies as a 'Neutron Network' connecting
 their virtual machines. This Network is instantiated via the plugins
 as either a layer 2 network, a layer 3 network, or as an overlay
 network. The actual implementation is unknown to the tenant. The
 technology used to provide these networks is selected by the
 OpenStack operator based upon the requirements of the cloud
 deployment.

 The tenant also is required, in the Kilo and earlier releases, to
 specify an 'IP Subnet' for each Network. This specification is made
 by providing a CIDR prefix for IPv4 address allocation via DHCP or
 for IPv6 address allocation via DHCP or SLAAC. This address range
 may be from within the address range of the datacenter (non-
 overlapping), or overlapping [RFC1918] addresses. Tenants may create
 multiple Networks, each with its own Subnet.

 An OpenStack Subnet is a logical layer 2 network and requires layer 3
 routing for packets to exit the Subnet. This is achieved by
 attaching the Subnet to a Neutron Router. The Neutron router
 implements Network Address Translation for external traffic from
 tenant networks as well for providing connectivity to tenant networks
 from the outside. Using Linux utilities, OpenStack can support
 overlapping RFC 1918 addresses between tenants.

 OpenStack Subnets are typically implemented as VLANs in a datacenter.
 When tenant scalability requirement grow large, an overlay approach
 is typically used. Because of the difficulties in scaling and
 administering large layer 2 and/or overlay networks, some OpenStack
 integrations chose not to provide isolated Subnets and simply offer
 tenants a layer 3 based network alternative.

 OpenStack uses Layer 3 and Layer 2 Linux utilities on hosts to
 provide protection against IP/MAC spoofing and ARP poisoning.

1.2. OpenStack Scaling Issues

 One of the fundamental requirements of OpenStack Networking (Neutron)
 is to provide scalable, isolated tenant networks. Today this is
 achieved via L2 segmentation using either a) standard 802.1Q VLANs or
 b) an overlay approach based on one of several L2 over L3
 encapsulation techniques available today such as 802.1ad, VXLAN, STT
 or NVGRE.

 However, these approaches still struggle to provide scalable,
 transparent, manageable, high performance, isolated tenant networks.
 VLAN's don't scale beyond 4096 (2^12) networks and have complex
 trunking requirements when tenants span host and racks. IEEE 802.1ad

https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1918

Baker, et al. Expires August 12, 2015 [Page 4]

Internet-Draft February 2015

 (QinQ) partially solves that, but adds another limit - at most 2^12
 tenants, each of which may have 2^12 VLANs. IP Encapsulation
 introduces additional complexity on host computers running
 hypervisors as well as impact performance of tenant applications
 running on virtual machines. Overlay based isolation techniques may
 also impair traditional network monitoring and performance management
 tools. Moreover, when these isolated (L2) networks require external
 access to other networks or the public Internet, they require even
 more complex solutions to accommodate overlapping IP prefixes and
 network address translation (NAT).

 As more capabilities are built on to these layer 2 based 'virtual'
 networks, complexity continues to grow.

 This draft presents a new Layer 3 based approach to OpenStack
 networking using IPv6 that can be deployed natively on IPv6 networks.
 It will be shown that this approach can provide tenant isolation
 without the limitations of existing alternatives, as well as deliver
 high performance networks transparently using a simplified tenant
 network connectivity model, without the overhead of encapsulation or
 managing overlapping IP addresses and address translations. We note
 that some large content providers, notably Google and Facebook
 [FaceBook-IPv6], are going in exactly this direction.

2. Requirements

 In this section, we attempt to list critical requirements.

2.1. Design approach

 As a design approach, we presume an IPv6-only data center in a world
 that might have IPv4 or IPv6 clients outside of it. This design
 explicitly does not depend on VLANs, QinQ, VXLAN, MPLS, Segment
 Routing, LISP, IP/IP or GRE tunnels, or any other supporting
 encapsulation. Data center operators remain free to use any of those
 tools, but they are not required. If we can do everything required
 for OpenStack networking with IPv6 alone, these other networking
 technologies may be used as optimizations. If we are unable to
 satisfy the OpenStack requirements that also is something we wish to
 know and understand.

 OpenStack is designed to be used by many cloud users or 'tenants'.
 Scalable, secure and isolated tenant networks are a requirement for
 building a multi-tenant cloud datacenter. The OpenStack
 administrator/operator can design and configure a cloud environment
 to provide network isolation using the approach described in this
 document, alone, or in combination with any of the above network
 technologies . However, all the details of the underlying technology

Baker, et al. Expires August 12, 2015 [Page 5]

Internet-Draft February 2015

 and implementation details are completely transparent to the tenant
 itself.

2.2. Multiple Data Centers

 A common requirement in network and data center operations is
 reliability, serviceability, and maintainability of their operations
 in the presence of an outage. At minimum, this implies multihoming
 in the sense of having multiple upstream ISPs; in many cases, it also
 implies multiple and at times duplicate data centers, and tenants
 stretched or able to be readily moved or recreated across multiple
 data centers.

2.3. Large Data Centers

 Microsoft Azure [Microsoft-Azure] has purchased a 100 acre piece of
 land for the construction of a single data center. In terms of
 physical space, that is enough for a data center with about half a
 million 19' RETMA racks.

 With even modest virtual machine density, infrastructure at this
 scale easily exhausts the 16M available RFC 1918 private addresses
 (i.e. 10.0.0.0/8) and explains the recent efforts by webscale cloud
 providers to deploy IPv6 throughout their new datacenters.

2.4. Multi-tenancy

 While it is possible that a single tenant would require a 100 acre
 data center, it would be unusual. In most such data centers, one
 would expect a large number of tenants.

2.5. Isolation

 Isolation is required between tenants, and at times between tenants
 hierarchically related to larger tenants.

2.5.1. Inter-tenant isolation

 A 'tenant' is defined as a set of resources under common
 administrative control. It may be appropriate for tenants to
 communicate with each other within the context of an application or
 relationships among their owners or operators. However, unless
 specified otherwise, tenants are intended to operate as if they were
 on their own company's premises and be isolated from one another.

https://datatracker.ietf.org/doc/html/rfc1918

Baker, et al. Expires August 12, 2015 [Page 6]

Internet-Draft February 2015

2.5.2. Intra-tenant isolation

 There are often security compartments within a corporate network,
 just as there are security barriers between companies. As a result,
 there is a recursive isolation requirement: it must be possible to
 isolate an identified part of a tenant (which we also think of as a
 tenant) from another part of the same tenant.

2.6. Operational Simplicity

 To the extent possible (and, for operators, the concept will bring a
 smile), operation of a multi-location multi-tenant data center, and
 the design of an application that runs in one, should be simple and
 uncoupled.

 As discussed in [RFC3439], this requires that the operational model
 required to support a tenant with only two physical machines, or
 virtual machines in the same physical chassis, should be the same as
 that required to support a tenant running a million machines in a
 federated multiple data center application. Additionally, this same
 operational model should scale from running a single tenant up to
 many thousands of tenants.

2.7. Address space

 As described in Section 1.1, currently, an OpenStack tenant is
 required to specify a Subnet's CIDR prefix for IP address allocation.
 With this proposal, this is no longer required.

2.8. Data Center Federation

 It must be possible to extend the architecture across multiple data
 centers. These data centers may be operated by distinct entities,
 with security policies that apply to their interconnection.

2.9. Path MTU Issues

 An issue in virtualized data center architectures is Path MTU
 Discovery [RFC1981] implementation. Implementing Path MTU requires
 the ICMPv6 [RFC4443] Packet Too Big message to get from the
 originating router or middleware to the indicated host, which is in
 this case virtual and potentially hidden within a tunnel. This is a
 special case of the issues raised in [RFC2923].

https://datatracker.ietf.org/doc/html/rfc3439
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc2923

Baker, et al. Expires August 12, 2015 [Page 7]

Internet-Draft February 2015

3. Models

3.1. Configuration Model

 In the OpenStack model, the cloud computing user, or tenant, is
 building something Edward Yourdon might call a 'structured design'
 for the application they are building. In the 1960's, when Yourdon
 started specifying process and data flow diagrams, these were job
 steps in a deck of Job Control Language cards; in OpenStack, they are
 multiple, individual machines, virtual or physical, running parts of
 a structured application.

 In these, one might find a load balancer that receives and
 distributes requests to request processors, a set of stored data
 processing applications, and the storage they depend on. What is
 important to the OpenStack tenant is that 'this' and 'that'
 communicate, potentially using or not using multicast communications,
 and don't communicate with 'the other'. Typically unnecessary is any
 and all information regarding how this communication actually needs
 to occur (i.e. placement of routers, switches, and IP subnets,
 prefixes, etc.).

 An IPv6 based networking model simplifies the configuration of tenant
 connectivity requirements. Global reachability eliminates the need
 for network address translation devices as well as tenant-specified
 Subnet prefixes (Section 2.7), although tenant-specified ULA prefixes
 or prefixes from the owner of the tenant's address space are usable
 with it. With the exception of network security functions, no
 network devices need to be specified or configured to provide
 connectivity.

3.2. Data Center Model

 The premises of the routing and addressing models are that

 o The address tells the routing system what topological location to
 deliver a packet to, and within that, what interface to deliver it
 to, and

 o The routing system should deliver traffic to a resource if and
 only if the sender is authorized to communicate with that
 resource.

 o Contrary to the OpenStack Neutron Networking Model, tunnels are
 not necessary to provide tenant network isolation; we include
 resources in a tenant network by a Role-based Access Control
 model, but address the tenant resources within the data center in
 a manner that scales for the data center.

Baker, et al. Expires August 12, 2015 [Page 8]

Internet-Draft February 2015

 We expect to find the data center to be composed of some minimal unit
 of connectivity and maintenance, such as a rack or row, and equipped
 with one or more Top-of-Rack or End-of-Row switch(es); each
 configured with at least one subnet prefix, perhaps one per such
 switch. For the purposes of this note, these will be called Racks
 and Top-of-Rack switches, and when applied to other architectures the
 appropriate translation needs to be imposed.

 Figure 1 describes a relatively typical rack design. It is a simple
 fat-tree architecture, with every device in a pair, so that any
 failure has an immediate hot backup. There are other common designs,
 such as those that consider each rack to be in a 'row' and in a
 'column', with one or more distribution switches in each.

 Distribution Switches connecting
 / Layer / racks in a pod, and
 / / connecting pods
 / /
 +-+-+ +-+-+ Mutual backup TOR
 +-+TOR+---+TOR+-+ switches
 | +---+ +---+ |
 | +-----------+ |
 +-+ host +-+ Each host has two
 | +-----------+ | Ethernet interfaces
 +-+ host +-+ with separate subnets
 | +-----------+ |
 | . . |
 | . . |
 | . . | Design premise: complete
 | +-----------+ | redundancy, with every
 +-+ host +-+ switch and every cable
 | +-----------+ | backed up by a doppelganger
 +-+ host +-+
 +-----------+

 Figure 1: Typical Rack Design

3.2.1. Tenant Address Model

 Tenant resources need to be told, by configuration or naming, the
 addresses of resources they communicate with. This is true
 regardless of their location or relationship to a given tenant. In
 environments with well-known addresses, this becomes complex and
 unscalable. This was learned very early with Internet hostnames; a
 single 'hostfile' was maintained by a central entity and updated
 daily, which quickly became unwieldy. The result was the development
 of the Domain Name System; the level of indirection between names and
 addresses improved scalability. It also facilitated ongoing

Baker, et al. Expires August 12, 2015 [Page 9]

Internet-Draft February 2015

 maintenance. If a service needed multiple servers, or a server
 needed to change its address, that was trivially solved by changing
 the DNS Resource Record; every resource that needed the new address
 would obtain it the next time it queried the DNS. It has also
 facilitated the IPv4/IPv6 transition; a resource that has an IPv6
 address is given a AAAA record in addition to, or to replace, its
 IPv4 A record.

 Similarly, today's reliance on NAPT technology frequently limits the
 capabilities of an application. It works reasonably well for a
 client accessing a client/server application when the protocol does
 not carry addressing information. If there is an expectation that
 one resource's private address will be meaningful to a peer, such as
 when an SIP client presents its address in SDP or an HTTP server
 presents an address in a redirection, either the resource needs to
 understand the difference between an 'inside' and an 'outside'
 address and know which is which, or it needs a traversal algorithm
 that changes the addresses. For peer-to-peer applications, this
 ultimately means providing a network design in which those issues
 don't apply.

 IPv6 provides global addresses, enough of them that there is no real
 expectation of running out any time soon, making these issues go
 away. In addition, with the IPv4 address space running out, both
 globally and within today's large datacenters, there aren't
 necessarily addresses available for an IPv4 application to use, even
 as a floating IP address.

 Hence, the model we propose is that a resource in a tenant is told
 the addresses of the other resources with which it communicates.
 They are IPv6 addresses, and the data center takes care to ensure
 that inappropriate communications do not take place.

3.2.1.1. Use of Global Unicast Addresses by Tenants

 A unicast address in an IP network identifies a topological location,
 by association with an IP prefix (which might be for a subnet or any
 aggregate of subnets). It also identifies a single interface located
 within that subnet, which may or may not be instantiated at the time.
 We assume that there is a subnet associated with a top-of-rack switch
 or whatever its counterpart would be in a given network design, and
 that the physical and virtual machines located in that rack have
 addresses in that subnet. This is the same prefix that is used by
 the datacenter administrator.

Baker, et al. Expires August 12, 2015 [Page 10]

Internet-Draft February 2015

3.2.1.2. Unique Local Addresses

 A common requirement is that tenants have the use of some form of
 private address space. In an IPv6 network, a Unique Local IPv6
 Unicast Address [RFC4193] may be used to accomplish this. In this
 case, however, the addresses will need to be explicitly assigned to
 physical or virtual machines used by the tenant, perhaps using DHCP
 or YANG, where a standard IPv6 address could be allocated using
 SLAAC, DHCPv6, or other technologies.

 The value of this is that the distinction between a Global Address
 and a Unique Local Address is a corner case in the data center; a ULA
 will not generally be useful when communicating outside the data
 center, but within the data center it is rational. Tenants have no
 routing information or other awareness of the prefix. This is not
 intended for use behind a NAPT; resources that need accessibility to
 or from resources outside the tenant, and especially outside the data
 center, need global addresses.

3.2.1.3. Multicast Domains

 Multicast capability is a capability enjoyed by some groups of
 resources, that enables them to send a single message and have it
 delivered to multiple destinations roughly simultaneously. At the
 link layer, this means sending a message once that is received by a
 specified set of recipient resources using hardware capabilities. IP
 multicast can be implemented on a LAN as specified in [RFC4291], and
 can also cross multiple subnets directly, using routing protocols
 such as Protocol Independent Multicast [RFC4601] [RFC4602] [RFC4604]
 [RFC4605] [RFC4607]. In IPv6, the model would be that when a group
 of resources is created with a multicast capability, it is allocated
 one or more source-specific transient group addresses as defined in

section 2.7 of that RFC.

3.2.1.4. IPv4 Interaction Model

 OpenStack IPv4 Neutron uses "floating IPv4 addresses" - global or
 public IPv4 addresses and Network Address Translation - to enable
 remote resources to connect to tenant private network endpoints.
 Tenant end points can connect out to remote resources through an
 "External Default Gateway". Both of these depend on NAPT (DNAT/SNAT)
 [RFC2391] to ensure that IPv4 end points are able communicate and at
 the same time ensure tenant isolation.

 If IPv6 is deployed in a data center, there are fundamentally two
 ways a tenant can interact with IPv4 peers:

https://datatracker.ietf.org/doc/html/rfc4193
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4601
https://datatracker.ietf.org/doc/html/rfc4602
https://datatracker.ietf.org/doc/html/rfc4604
https://datatracker.ietf.org/doc/html/rfc4605
https://datatracker.ietf.org/doc/html/rfc4607
https://datatracker.ietf.org/doc/html/rfc2391

Baker, et al. Expires August 12, 2015 [Page 11]

Internet-Draft February 2015

 o it can run existing IPv4 OpenStack technology in parallel with the
 IPv6 deployment, or

 o It can have a translator at the data center edge (such as
 described in [I-D.ietf-v6ops-siit-dc]) that associates an IPv4
 address or address plus port with an IPv6 address or address plus
 port. The IPv4 address, in this model, becomes a floating IPv4
 address attached to an internal IPv6 address. The 'data center
 edge' is, by definition, a system that has IPv4 reachability to at
 least the data center's upstream ISP and all IPv4 systems in the
 data center, IPv6 connectivity to all of the IPv6 systems in the
 data center, and (if the upstream offers IPv6 service) IPv6
 connectivity to the upstream as well.

 The first model is complex, if for no other reason than that there
 are two fundamental models in use, one with various encapsulations
 hiding overlapping address space and one with non-overlapping address
 space.

 To simplify the network, as noted in Section 2.1, we suggest that the
 data center be internally IPv6-only, and IPv4 be translated to IPv6
 at the data center edge. The advantage is that it enables IPv4
 access while that remains in use, and as IPv6 takes over, it reduces
 the impact of vestigial support for IPv4.

 The SIIT Translation model in [I-D.ietf-v6ops-siit-dc] has IPv4
 traffic come to an translator [RFC6145][RFC6146] having a pre-
 configured translation, resulting in an IPv6 packet indistinguishable
 from the packet the remote resource might have sent had it been
 IPv6-capable, with one exception. The IPv6 destination address is
 that of the endpoint (the same address advertised in a AAAA record),
 but the source address is an IPv4-Embedded IPv6 Address [RFC6052]
 with the IPv4 address of the sender embedded in a prefix used by the
 translator.

 Access to external IPv4 resources is provided in the same way: an
 DNS64 [RFC6147] server is implemented that contains AAAA records with
 an IPv4-Embedded IPv6 Address [RFC6052] with the IPv4 address of the
 remote resource embedded in a prefix used by the translator.

 This follows the Framework for IPv4/IPv6 Translation [RFC6144],
 making the internal IPv4 address a floating IP address attached to an
 internal IPv6 address, and the external 'dial-out' address
 indistinguishable from a native IPv6 address.

https://datatracker.ietf.org/doc/html/rfc6145
https://datatracker.ietf.org/doc/html/rfc6052
https://datatracker.ietf.org/doc/html/rfc6147
https://datatracker.ietf.org/doc/html/rfc6052
https://datatracker.ietf.org/doc/html/rfc6144

Baker, et al. Expires August 12, 2015 [Page 12]

Internet-Draft February 2015

3.2.1.5. Legacy IPv4 OpenStack

 The other possible model, applicable to IPv4-only devices, is to run
 a legacy OpenStack environment inside IPv6 tunnels. This preserves
 the data center IPv6-only, and enables IPv4-only applications,
 notably those whose licenses tie them to IPv4 addresses, to run.
 However, it adds significant overhead in terms of encapsulation size
 and network management complexity.

3.2.2. Use of Global Addresses by the Data Center

 Every rack and physical host requires an IP prefix that is reachable
 by the OpenStack operator. This will normally be a global IPv6
 unicast address. For scalability purposes, as isolation is handled
 separately, this is normally the same prefix as is used by tenants in
 the rack.

3.3. Inter-tenant security services

 In this model, the a label is used to identify a set of virtual or
 physical systems under common ownership and administration that are
 authorized to communicate freely among themselves - a tenant.
 Tenants are not generally authorized to communicate with each other,
 but interactions between specified tenants may be authorized, and
 specific systems may be authorized to communicate generally.

 The fundamental premise is that the vSwitch can determine whether a
 VM is authorized to send or receive a given message. It does so by
 finding the label in a message being sent or received and comparing
 it to a locally-held authorization policy. This policy would
 indicate that the VM is permitted to send or receive messages
 containing one of a small list of labels. In the case of a label
 contained in the IID of an IPv6 address, it would also need to verify
 the prefix used in the address, as this type of policy would be
 specific to an IPv6 prefix.

 A set of possible choices that were considered is to be found in
Appendix B. The key questions are a list of considerations, presented

 in no particular order:

 o In what way does the approach the IPv6 Path MTU?

 o How does the address come into being?

 o What security implications apply? For example, how hard would it
 be for a VM to spoof the source address or attack a random
 destination?

Baker, et al. Expires August 12, 2015 [Page 13]

Internet-Draft February 2015

 o What is the service offered? Can, for example, policy be applied
 at

 * The sender of a datagram?

 * The receiver of a datagram?

 * An arbitrary point between the sender and receiver?

 * At the data center edge, on arriving or departing traffic other
 data centers?

 * At the data center edge, on arriving or departing traffic
 random locations?

 o In what way does the approach the IPv6 Path MTU?

3.4. IPv6 Tenant Isolation using the Label

 Neutron today already implements a form of Network Ingress Filtering
 [RFC2827]. It prevents the VM from emitting traffic with an
 unauthorized MAC, IPv4, or IPv6 source address.

 In addition to this, in this model Neutron prevents the VM from
 transmitting a network packet with an unauthorized label value. The
 VM MAY be configured with and authorized to use one of a short list
 of authorized label values, as opposed to simply having its choice
 overridden; in that case, Neutron verifies the value and overwrites
 one not in the list.

 When a hypervisor is about to deliver an IPv6 packet to a VM, it
 checks the label value against a list of values that the VM is
 permitted to receive. If it contains an unauthorized value, the
 hypervisor discards the packet rather than deliver it. If the Flow
 Label is in use, Neutron zeros the label prior to delivery.

 The intention is to hide the label value from malware potentially
 found in the VM, and enable the label to be used as a form of first
 and last hop security. This provides basic tenant isolation, if the
 label is assigned as a tenant identifier, and may be used more
 creatively such as to identify a network management application as
 separate from a managed resource.

3.5. Isolation in Routing

 This concept has the weakness that if a packet is not dropped at its
 source, it is dropped at its destination. It would be preferable for

https://datatracker.ietf.org/doc/html/rfc2827

Baker, et al. Expires August 12, 2015 [Page 14]

Internet-Draft February 2015

 the packet to be dropped in flight, such as at the top-of-rack switch
 or an aggregation router.

 Concepts discussed in IS-IS LSP Extendibility
 [I-D.baker-ipv6-isis-dst-flowlabel-routing][RFC5120][RFC5308] and
 OSPFv3 LSA Extendibility [I-D.baker-ipv6-ospf-dst-flowlabel-routing]
 [I-D.ietf-ospf-ospfv3-lsa-extend][RFC5340] may be used to isolate
 tenants in the routing of the data center backbone. This is not
 strictly necessary, if Section 3.4 is uniformly and correctly
 implemented. It does, however, present a second defense against
 misconfiguration, as the filter becomes ubiquitous in the data center
 and as scalable as routing.

4. BCP 38 Ingress Filtering

 As noted in Section 3.4, Neutron today implements a form of Network
 Ingress Filtering [RFC2827]. It prevents the VM from emitting
 traffic with an unauthorized MAC, IPv4, or IPv6 source address.

 In IPv6, this is readily handled when the address or addresses used
 by a VM are selected by the OpenStack operator. It may then
 configure a per-VM filter with the addresses it has chosen, following
 logic similar to the Source Address Validation Solution for DHCP
 [I-D.ietf-savi-dhcp] or SEND [RFC7219]. This is also true of IPv6
 Stateless Address Autoconfiguration (SLAAC) [RFC4862] when the MAC
 address is known and not shared.

 However, when SLAAC is in use and either the MAC address is unknown
 or SLAAC's Privacy Extensions [RFC4941][RFC7217], are in use, Neutron
 will need to implement the provisions of FCFS SAVI: First-Come,
 First-Served Source Address Validation [RFC6620] in order to learn
 the addresses that a VM is using and include them in the per-VM
 filter.

5. Moving virtual machines

 This design supports these kinds of required layer 2 networks with
 the additional use of a layer 2 over layer 3 encapsulation and
 tunneling protocol, such as VXLAN [RFC7348]. The important point
 here being that these overlays are used to address specific tenant
 network requirements and NOT deployed to remove the scalability
 limitations of OpenStack networking.

 There are at least three ways VM movement can be accomplished:

 o Recreation of the VM

 o VLAN Modification

https://datatracker.ietf.org/doc/html/rfc5308
https://datatracker.ietf.org/doc/html/bcp38
https://datatracker.ietf.org/doc/html/rfc2827
https://datatracker.ietf.org/doc/html/rfc7219
https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc4941
https://datatracker.ietf.org/doc/html/rfc6620
https://datatracker.ietf.org/doc/html/rfc7348

Baker, et al. Expires August 12, 2015 [Page 15]

Internet-Draft February 2015

 o Live Migration of a Running Virtual Machine

5.1. Recreation of the VM

 The simplest and most reliable is to

 1. Create a new VM in the new location,

 2. Add its address to the DNS Resource Record for the name, allowing
 new references to the name to send transactions there,

 3. Remove the old address from the DNS Resource Record (including
 the SIIT translation, if one exists), ending the use of the old
 VM for new transactions,

 4. Wait for the period of the DNS Resource Record's lifetime
 (including the SIIT translation, if one exists), as it will get
 new requests throughout that interval,

 5. Wait for the for the old VM to finish any outstanding
 transactions, and then

 6. Kill the old VM.

 This is obviously not movement of an existing VM, but preservation of
 the same number and function of VMs by creation of a new VM and
 killing the old.

5.2. Live Migration of a Running Virtual Machine

 At http://blogs.vmware.com/vsphere/2011/02/vmotion-whats-going-on-
under-the-covers.html, VMWare describes its capability, called

 vMotion, in the following terms:

 1. Shadow VM created on the destination host.

 2. Copy each memory page from the source to the destination via the
 vMotion network. This is known as preCopy.

 3. Perform another pass over the VM's memory, copying any pages that
 changed during the last preCopy iteration.

 4. Continue this iterative memory copying until no changed pages
 (outstanding to be-copied pages) remain or 100 seconds elapse.

 5. Stun the VM on the source and resume it on the destination.

 In a native-address environment, we add three steps:

http://blogs.vmware.com/vsphere/2011/02/vmotion-whats-going-on-under-the-covers.html
http://blogs.vmware.com/vsphere/2011/02/vmotion-whats-going-on-under-the-covers.html

Baker, et al. Expires August 12, 2015 [Page 16]

Internet-Draft February 2015

 1. Shadow VM created on the destination host.

 2. Copy each memory page from the source to the destination via the
 vMotion network. This is known as preCopy.

 3. Perform another pass over the VM's memory, copying any pages that
 changed during the last preCopy iteration.

 4. Continue this iterative memory copying until no changed pages
 (outstanding to be-copied pages) remain or 100 seconds elapse.

 5. Stitch routing for the old address.

 6. Stun the VM on the source and resume it on the destination.

 7. Renumber the VM as instructed in [RFC4192].

 8. Unstitch routing for the old address.

 If the VM is moved within the same subnet (which usually implies the
 same rack), there is no stitching or renumbering apart from ensuring
 that the MAC address moves with the VM. When the VM moves to a
 different subnet, however, we need to restitch routing, at least
 temporarily. This obviously calls for some definitions.

 Stitching Routing: The VM is potentially in communication with two
 sets of peers: VMs in the same subnet, and VMs in different
 subnets.

 * The router in the new subnet is instructed to advertise a host
 route (/128) to the moved VM, and to install a static route to
 the old address with the VM's address in the new subnet as its
 next hop address. Traffic from VMs from other subnets will now
 follow the host route to the VM in its new location.

 * The router in the old subnet is instructed to direct LAN
 traffic to the VM's MAC Address to its IPv6 forwarding logic.
 Traffic from other VMs in the old subnet will now follow the
 host route to the moved VM.

 Renumbering: This step is optional, but is good hygiene if the VM
 will be there a while. If the VM will reside in its new location
 only temporarily, it can be skipped.

 Note that every IPv6 address, unlike an IPv4 address, has a
 lifetime. At least in theory, when the lifetime expires, neighbor
 relationships with the address must be extended or the address
 removed from the system. The Neighbor Discovery [RFC4861] process

https://datatracker.ietf.org/doc/html/rfc4192
https://datatracker.ietf.org/doc/html/rfc4861

Baker, et al. Expires August 12, 2015 [Page 17]

Internet-Draft February 2015

 in the subnet router will periodically emit a Router
 Advertisement; the VM will gain an IPv6 address in the new subnet
 at that time if not earlier. As described in [RFC4192], DNS
 should be changed to report the new address instead of the old.
 The DNS lifetime and any ambient sessions using the old address
 are now allowed to expire. That this point, any new sessions will
 be using the new address, and the old is vestigial.

 Waiting for sessions using the address to expire can take an
 arbitrarily long interval, because the session generally has no
 knowledge of the lifetime of the IPv6 address.

 Unstitching Routing: This is the reverse process of stitching. If
 the VM is renumbered, when the old address becomes vestigial, the
 address will be discarded by the VM; if the VM is subsequently
 taken out of service, it has the same effect. At that point, the
 host route is withdrawn, and the MAC address in the old subnet
 router's tables is removed.

6. OpenStack implications

6.1. Configuration implications

 1. Neutron MUST be configured with a pre-determined default label
 value for each tenant virtual network Section 3.4.

 2. Neutron MAY be configured with a set of authorized label values
 for each tenant virtual network Section 3.4.

 3. A virtual tenant network MAY be configured with a set of
 authorized label values Section 3.4.

 4. Neutron MUST be configured with one or more label values per
 virtual tenant network that the network is permitted to receive

Section 3.4.

6.2. vSwitch implications

 On messages transmitted by a virtual machine

 Label Correctness: As described in Section 3.3, ensure that the
 label in the packet is one that the VM is authorized to use.
 Exactly what label is in view is a deferred, and potentially
 configurable, option. Again Depending on configuration, the
 vSwitch may overwrite whatever value is there, or may ratify that
 the value there is as specified in a VM-specific list.

https://datatracker.ietf.org/doc/html/rfc4192

Baker, et al. Expires August 12, 2015 [Page 18]

Internet-Draft February 2015

 Source Address Validation: As described in Section 4, force the
 source address to be among those the VM is authorized to use. The
 VM may simultaneously be authorized to use several addresses.

 Destination Address Validation: OpenStack for IPv4 permits a NAT
 translation, called a 'floating IP address', to enable a VM to
 communicate outside the domain; without that, it cannot. For
 IPv6, the destination address should be permitted by some access
 list, which may permit all addresses, or addresses matching one or
 more CIDR prefixes such as permitted multicast addresses, and the
 prefix of the data center.

 On messages received for delivery to a virtual machine

 Label Authorization: As described in Section 3.4, the vSwitch only
 delivers a packet to a VM if the VM is authorized to receive it.
 The VM may have been authorized to receive several such labels.

 Each approach in the appendix discusses filtering.

7. IANA Considerations

 This document does not ask IANA to do anything.

8. Security Considerations

 In Section 2.5 and Section 3.3, this specification considers inter-
 tenant and intra-tenant network isolation. It is intended to
 contribute to the security of a network, much like encapsulation in a
 maze of tunnels or VLANs might, but without the complexities and
 overhead of the management of such resources. This does not replace
 the use of IPSec, SSH, or TLS encryption or the use authentication
 technologies; if these would be appropriate in an on-premises
 corporate data center, they remain appropriate in a multi-tenant data
 center regardless of the isolation technology. However, one can
 think of this as a simple inter-tenant firewall based on the concepts
 of role-based access control; if it can be readily determined that a
 sender is not authorized to communicate with a receiver, such a
 transmission is prevented.

9. Privacy Considerations

 This specification places no personally identifying information in an
 unencrypted part of a packet.

Baker, et al. Expires August 12, 2015 [Page 19]

Internet-Draft February 2015

10. Acknowledgements

 This document grew out of a discussion among the authors and
 contributors.

11. Contributors

 Puneet Konghot
 Cisco Systems
 San Jose, California 95134
 USA
 Email: pkonghot@cisco.com

 Shannon McFarland
 Cisco Systems
 Boulder, Colorado 80301
 USA
 Email: shmcfarl@cisco.com

 Figure 2

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

12.2. Informative References

 [FaceBook-IPv6]
 Pepelnjak, I., "Facebook Is Close to Having an IPv6-only
 Data Center http://blog.ipspace.net/2014/03/

facebook-is-close-to-having-ipv6-only.html", March 2014.

 [I-D.baker-ipv6-isis-dst-flowlabel-routing]
 Baker, F., "Using IS-IS with Role-Based Access Control",

draft-baker-ipv6-isis-dst-flowlabel-routing-00 (work in
 progress), February 2013.

 [I-D.baker-ipv6-ospf-dst-flowlabel-routing]
 Baker, F., "Using OSPFv3 with Role-Based Access Control",

draft-baker-ipv6-ospf-dst-flowlabel-routing-02 (work in
 progress), May 2013.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
http://blog.ipspace.net/2014/03/facebook-is-close-to-having-ipv6-only
http://blog.ipspace.net/2014/03/facebook-is-close-to-having-ipv6-only
https://datatracker.ietf.org/doc/html/draft-baker-ipv6-isis-dst-flowlabel-routing-00
https://datatracker.ietf.org/doc/html/draft-baker-ipv6-ospf-dst-flowlabel-routing-02

Baker, et al. Expires August 12, 2015 [Page 20]

Internet-Draft February 2015

 [I-D.ietf-6man-default-iids]
 Gont, F., Cooper, A., Thaler, D., and W. Will,
 "Recommendation on Stable IPv6 Interface Identifiers",

draft-ietf-6man-default-iids-01 (work in progress),
 October 2014.

 [I-D.ietf-ospf-ospfv3-lsa-extend]
 Lindem, A., Mirtorabi, S., Roy, A., and F. Baker, "OSPFv3
 LSA Extendibility", draft-ietf-ospf-ospfv3-lsa-extend-03
 (work in progress), May 2014.

 [I-D.ietf-savi-dhcp]
 Bi, J., Wu, J., Yao, G., and F. Baker, "SAVI Solution for
 DHCP", draft-ietf-savi-dhcp-26 (work in progress), May
 2014.

 [I-D.ietf-v6ops-siit-dc]
 tore, t., "SIIT-DC: Stateless IP/ICMP Translation for IPv6
 Data Centre Environments", draft-ietf-v6ops-siit-dc-00
 (work in progress), December 2014.

 [I-D.previdi-6man-segment-routing-header]
 Previdi, S., Filsfils, C., Field, B., and I. Leung, "IPv6
 Segment Routing Header (SRH)", draft-previdi-6man-segment-

routing-header-04 (work in progress), November 2014.

 [Microsoft-Azure]
 Sverdlik, Y., "Report: Microsoft Buys 100 Acres of Iowa
 land for Data Center http://www.datacenterknowledge.com/

archives/2014/08/01/
 report-microsoft-buys-100-acres-iowa-land-data-center/",
 August 2014.

 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
 E. Lear, "Address Allocation for Private Internets", BCP

5, RFC 1918, February 1996.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC2205] Braden, B., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, September 1997.

 [RFC2391] Srisuresh, P. and D. Gan, "Load Sharing using IP Network
 Address Translation (LSNAT)", RFC 2391, August 1998.

https://datatracker.ietf.org/doc/html/draft-ietf-6man-default-iids-01
https://datatracker.ietf.org/doc/html/draft-ietf-ospf-ospfv3-lsa-extend-03
https://datatracker.ietf.org/doc/html/draft-ietf-savi-dhcp-26
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-siit-dc-00
https://datatracker.ietf.org/doc/html/draft-previdi-6man-segment-routing-header-04
https://datatracker.ietf.org/doc/html/draft-previdi-6man-segment-routing-header-04
http://www.datacenterknowledge.com/archives/2014/08/01/
http://www.datacenterknowledge.com/archives/2014/08/01/
https://datatracker.ietf.org/doc/html/bcp5
https://datatracker.ietf.org/doc/html/bcp5
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2391

Baker, et al. Expires August 12, 2015 [Page 21]

Internet-Draft February 2015

 [RFC2710] Deering, S., Fenner, W., and B. Haberman, "Multicast
 Listener Discovery (MLD) for IPv6", RFC 2710, October
 1999.

 [RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source
 Address Spoofing", BCP 38, RFC 2827, May 2000.

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery", RFC
2923, September 2000.

 [RFC3439] Bush, R. and D. Meyer, "Some Internet Architectural
 Guidelines and Philosophy", RFC 3439, December 2002.

 [RFC3697] Rajahalme, J., Conta, A., Carpenter, B., and S. Deering,
 "IPv6 Flow Label Specification", RFC 3697, March 2004.

 [RFC4192] Baker, F., Lear, E., and R. Droms, "Procedures for
 Renumbering an IPv6 Network without a Flag Day", RFC 4192,
 September 2005.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, October 2005.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control
 Message Protocol (ICMPv6) for the Internet Protocol
 Version 6 (IPv6) Specification", RFC 4443, March 2006.

 [RFC4601] Fenner, B., Handley, M., Holbrook, H., and I. Kouvelas,
 "Protocol Independent Multicast - Sparse Mode (PIM-SM):
 Protocol Specification (Revised)", RFC 4601, August 2006.

 [RFC4602] Pusateri, T., "Protocol Independent Multicast - Sparse
 Mode (PIM-SM) IETF Proposed Standard Requirements
 Analysis", RFC 4602, August 2006.

 [RFC4604] Holbrook, H., Cain, B., and B. Haberman, "Using Internet
 Group Management Protocol Version 3 (IGMPv3) and Multicast
 Listener Discovery Protocol Version 2 (MLDv2) for Source-
 Specific Multicast", RFC 4604, August 2006.

 [RFC4605] Fenner, B., He, H., Haberman, B., and H. Sandick,
 "Internet Group Management Protocol (IGMP) / Multicast
 Listener Discovery (MLD)-Based Multicast Forwarding ("IGMP
 /MLD Proxying")", RFC 4605, August 2006.

https://datatracker.ietf.org/doc/html/rfc2710
https://datatracker.ietf.org/doc/html/bcp38
https://datatracker.ietf.org/doc/html/rfc2827
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc3439
https://datatracker.ietf.org/doc/html/rfc3697
https://datatracker.ietf.org/doc/html/rfc4192
https://datatracker.ietf.org/doc/html/rfc4193
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4601
https://datatracker.ietf.org/doc/html/rfc4602
https://datatracker.ietf.org/doc/html/rfc4604
https://datatracker.ietf.org/doc/html/rfc4605

Baker, et al. Expires August 12, 2015 [Page 22]

Internet-Draft February 2015

 [RFC4607] Holbrook, H. and B. Cain, "Source-Specific Multicast for
 IP", RFC 4607, August 2006.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862, September 2007.

 [RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy
 Extensions for Stateless Address Autoconfiguration in
 IPv6", RFC 4941, September 2007.

 [RFC5120] Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi
 Topology (MT) Routing in Intermediate System to
 Intermediate Systems (IS-ISs)", RFC 5120, February 2008.

 [RFC5308] Hopps, C., "Routing IPv6 with IS-IS", RFC 5308, October
 2008.

 [RFC5340] Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF
 for IPv6", RFC 5340, July 2008.

 [RFC5548] Dohler, M., Watteyne, T., Winter, T., and D. Barthel,
 "Routing Requirements for Urban Low-Power and Lossy
 Networks", RFC 5548, May 2009.

 [RFC5673] Pister, K., Thubert, P., Dwars, S., and T. Phinney,
 "Industrial Routing Requirements in Low-Power and Lossy
 Networks", RFC 5673, October 2009.

 [RFC6052] Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and X.
 Li, "IPv6 Addressing of IPv4/IPv6 Translators", RFC 6052,
 October 2010.

 [RFC6144] Baker, F., Li, X., Bao, C., and K. Yin, "Framework for
 IPv4/IPv6 Translation", RFC 6144, April 2011.

 [RFC6145] Li, X., Bao, C., and F. Baker, "IP/ICMP Translation
 Algorithm", RFC 6145, April 2011.

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, April 2011.

https://datatracker.ietf.org/doc/html/rfc4607
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc4941
https://datatracker.ietf.org/doc/html/rfc5120
https://datatracker.ietf.org/doc/html/rfc5308
https://datatracker.ietf.org/doc/html/rfc5340
https://datatracker.ietf.org/doc/html/rfc5548
https://datatracker.ietf.org/doc/html/rfc5673
https://datatracker.ietf.org/doc/html/rfc6052
https://datatracker.ietf.org/doc/html/rfc6144
https://datatracker.ietf.org/doc/html/rfc6145
https://datatracker.ietf.org/doc/html/rfc6146

Baker, et al. Expires August 12, 2015 [Page 23]

Internet-Draft February 2015

 [RFC6147] Bagnulo, M., Sullivan, A., Matthews, P., and I. van
 Beijnum, "DNS64: DNS Extensions for Network Address
 Translation from IPv6 Clients to IPv4 Servers", RFC 6147,
 April 2011.

 [RFC6437] Amante, S., Carpenter, B., Jiang, S., and J. Rajahalme,
 "IPv6 Flow Label Specification", RFC 6437, November 2011.

 [RFC6620] Nordmark, E., Bagnulo, M., and E. Levy-Abegnoli, "FCFS
 SAVI: First-Come, First-Served Source Address Validation
 Improvement for Locally Assigned IPv6 Addresses", RFC

6620, May 2012.

 [RFC7217] Gont, F., "A Method for Generating Semantically Opaque
 Interface Identifiers with IPv6 Stateless Address
 Autoconfiguration (SLAAC)", RFC 7217, April 2014.

 [RFC7219] Bagnulo, M. and A. Garcia-Martinez, "SEcure Neighbor
 Discovery (SEND) Source Address Validation Improvement
 (SAVI)", RFC 7219, May 2014.

 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
 eXtensible Local Area Network (VXLAN): A Framework for
 Overlaying Virtualized Layer 2 Networks over Layer 3
 Networks", RFC 7348, August 2014.

 [UCC] Jeuk, S., Szefer, J., and S. Zhou, "Towards Cloud, Service
 and Tenant Classification for Cloud Computing", IEEE
 Xplore Digital Library: Cluster, Cloud and Grid Computing
 (CCGrid), 2014 14th IEEE/ACM International Symposium, May
 2014.

Appendix A. Change Log

 Initial Version: October 2014

 First update: January 2015

Appendix B. Alternative Labels considered

B.1. IPv6 Flow Label

 The IPv6 flow label may be used to identify a tenant or part of a
 tenant, and to facilitate access control based on the flow label
 value. The flow label is a flat 20 bits, facilitating the
 designation of 2^20 (1,048,576) tenants without regard to their

https://datatracker.ietf.org/doc/html/rfc6147
https://datatracker.ietf.org/doc/html/rfc6437
https://datatracker.ietf.org/doc/html/rfc6620
https://datatracker.ietf.org/doc/html/rfc6620
https://datatracker.ietf.org/doc/html/rfc7217
https://datatracker.ietf.org/doc/html/rfc7219
https://datatracker.ietf.org/doc/html/rfc7348

Baker, et al. Expires August 12, 2015 [Page 24]

Internet-Draft February 2015

 location. 1,048,576 is less than infinity, but compared to current
 data centers is large, and much simpler to manage.

 Note that this usage differs from the current IPv6 Flow Label
 Specification [RFC6437]. It also differs from the use of a flow
 label recommended by the IPv6 Specification [RFC2460], and the
 respective usages of the flow label in the Resource ReSerVation
 Protocol [RFC2205] and the previous IPv6 Flow Label Specification
 [RFC3697], and the projected usage in Low-Power and Lossy Networks
 [RFC5548][RFC5673]. Within a target domain, the usage may be
 specified by the domain. That is the viewpoint taken in this
 specification.

B.1.1. Metaconsiderations

B.1.1.1. Service offered

 To Be Supplied

B.1.1.2. Pros and Cons

B.1.1.2.1. The case in favor of this approach

 To Be Supplied

B.1.1.2.2. The case against

 To Be Supplied

B.1.1.3. Filtering considerations

 To Be Supplied

B.2. Federated Identity

B.2.1. Introduction

 In the course of developing draft-baker-ipv6-openstack-model, it was
 determined that a way was needed to encode a federated identity for
 use in Role-Based Access Control. This appendix describes an IPv6
 [RFC2460] option that could be carried in the Hop-by-Hop or
 Destination Options Header. The format of an option is defined in

section 4.2 of that document, and the Hop-by-Hop and Destination
 Options are defined in sections 4.3 and 4.6 of that document
 respectively.

 A 'Federated Identity', in the words of the Wikipedia, 'is the means
 of linking an electronic identity and attributes, stored across

https://datatracker.ietf.org/doc/html/rfc6437
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc3697
https://datatracker.ietf.org/doc/html/rfc5548
https://datatracker.ietf.org/doc/html/draft-baker-ipv6-openstack-model
https://datatracker.ietf.org/doc/html/rfc2460

Baker, et al. Expires August 12, 2015 [Page 25]

Internet-Draft February 2015

 multiple distinct identity management systems.' In this context, it
 is a fairly weak form of that; it is intended for quick
 interpretation in an access list at the Internet layer as opposed to
 deep analysis for login or other security purposes at the application
 layer, and rather than identifying an individual or a system, it
 identifies a set of systems whose members are authorized to
 communicate freely among themselves and may also be authorized to
 communicate with other identified sets of systems. Either two
 systems are authorized to communicate or they are not, and
 unauthorized traffic can be summarily discarded. The identifier is
 defined in a hierarchical fashion, for flexibility and scalability.

 'Role-Based Access Control', in this context, applies to groups of
 virtual or physical hosts, not individuals. In the simplest case,
 the several tenants of a multi-tenant data center might be
 identified, and authorized to communicate only with other systems
 within the same 'tenant' or with identified systems in other tenants
 that manage external access. One could imagine a company purchasing
 cloud services from multiple data center operators, and as a result
 wanting to identify the systems in its tenant in one cloud service as
 being authorized to communicate with the systems its tenant of the
 other. One could further imagine a given department within that
 company being authorized to speak only with itself and an identified
 set of other departments within the same company. To that end, when
 a datagram is sent, it is tagged with the federated identify of the
 sender (e.g., {datacenter, client, department}), and the receiving
 system filters traffic it receives to limit itself to a specific set
 of authorized communicants.

B.2.2. Federated identity Option

 The option is defined as a sequence of numbers that identify relevant
 parties hierarchically. The specific semantics (as in, what number
 identifies what party) are beyond the scope of this specification,
 but they may be interpreted as being successively more specific; as
 shown in Figure 3, the first might identify a cloud operator, the
 second, if present, might identify a client of that operator, and the
 third, if present, might identify a subset of that client's systems.
 In an application entirely used by Company A, there might be only one
 number, and it would identify sets of systems important to Company A
 such as business units. If Company A uses the services of a multi-
 tenant data center #1, it might require that there be two numbers,
 identifying Company A and its internal structure. If Company A uses
 the services of both multi-tenant data centers #1 and #2, and they
 are federated, the identifier might need to identify the data center,
 the client, and the structure of the client.

Baker, et al. Expires August 12, 2015 [Page 26]

Internet-Draft February 2015

 _.----------------------.
 _.----'' `------.
 ,--'' `---.
 ,-' DataCenter .---------------------. `-.
 ,' Company #2,---'' Unauthorized `----. `.
 ; ,' ,-----+-----. ,--+--------.`. :
 | ((Department 1)--//--(Department 2)) |
 ; `. `-----+----+' `-----------',' |
 `. `----. | X Company A _.---' ,'
 '-. A|------X------------'' ,-'
 `---. u| X _.--'
 `------. t| X _.----''
 `---h|---------X-------''
 o| X
 _.--r+-----------X------.
 _.----'' i| X `------.
 ,--'' z| X `---.
 ,-' DataCenter e|--------------X-----. `-.
 ,' Company #2,---''d| X `----. `.
 ; ,' ,-----+-----. ,-+---------.`. :
 | ((Department 1) (Department 2)) |
 ; `. `-----------' `-----------',' |
 `. `----. Company A _.---' ,'
 '-. `--------------------'' ,-'
 `---. _.--'
 `------. _.----''
 `----------------------''

 Figure 3: Use case: Identifying authorized communicatants in an RBAC
 environment

B.2.2.1. Option Format

 A number (Figure 4) is represented as a base 128 number whose
 coefficients are stored in the lower 7 bits of a string of bytes.
 The upper bit of each byte is zero, except in the final byte, in
 which case it is 1. The most significant coefficient of a non-zero
 number is never zero.

Baker, et al. Expires August 12, 2015 [Page 27]

Internet-Draft February 2015

 8 = 8*128^0
 +-+------+
 |1| 8 |
 +-+------+

 987 = 7*128^1 + 91*128^0
 +-+------+-+------+
 |0| 7 |1| 91 |
 +-+------+-+------+

 121393 = 7*128^2 + 52*128^1 + 49*128^0
 +-+------+-+------+-+------+
 |0| 7 |0| 52 |1| 49 |
 +-+------+-+------+-+------+

 Figure 4: Sample numbers

 The identifier {8, 987, 121393} looks like

 +-------+-------+-+-----+-+-----+-+-----+-+-----+-+-----+-+-----+
 | type | len=6 |1| 8 |0| 7 |1| 91 |0| 7 |0| 52 |1| 49 |
 +-------+-------+-+-----+-+-----+-+-----+-+-----+-+-----+-+-----+

 Figure 5

B.2.2.1.1. Use in the Destination Options Header

 In an environment in which the validation of the option only occurs
 in the receiving system or its hypervisor, this option is best placed
 in the Destination Options Header.

B.2.2.1.2. Use in the Hop-by-Hop Header

 In an environment in which the validation of the option occurs in
 transit, such as in a firewall or other router, this option is best
 placed in the Hop-by-Hop Header.

B.2.3. Metaconsiderations

B.2.3.1. Service offered

 To Be Supplied

B.2.3.2. Pros and Cons

Baker, et al. Expires August 12, 2015 [Page 28]

Internet-Draft February 2015

B.2.3.2.1. The case in favor of this approach

 To Be Supplied

B.2.3.2.2. The case against

 To Be Supplied

B.2.3.3. Filtering considerations

 To Be Supplied

B.3. Universal Cloud Classification

B.3.1. Introduction

 Cloud environments suffer from ambiguity in identifying their
 services and tenants. Traffic from different cloud providers cannot
 be distinguished easily on the Internet. Filters are simply not able
 to obtain the provider, service and tenant identities from network
 packets without leveraging other more latency intense inspection
 methods. This appendix describes the Universal Cloud Classification
 (UCC) [UCC] approach as a way to identify cloud providers, their
 services and tenants on the network layer. It introduces a Cloud-ID,
 Service-ID and Tenant-ID. The IDs are incorporated into an IPv6
 extension header and can be used for different use-cases both within
 and outside a Cloud Environment. The format of the IDs and their
 characteristics are defined in Appendix B.3.2 of the document and the
 extension header is defined in Appendix B.3.3.

 Applications and users are defined in many different ways in cloud
 environments, therefore ambiguity is multifold:

 1. The first ambiguity is described by how a service is defined in
 cloud environments. Here, an application within a Cloud Provider
 is called a service. However, the cloud providers network can
 not distinguish services from services run on top of other
 services. Distinguishing sub-services hosted by a service
 becomes critical when applying network services to specific sub-
 services.

 2. Secondly, a tenant in a cloud provider can have different
 meanings. Here, tenant is used to define a consumer of a cloud
 service. At the same time a service run on top of another
 service can be considered a tenant of that particular service.
 These ambiguities make it extremely difficult to uniquely
 identify services and their tenants in cloud environments. This

Baker, et al. Expires August 12, 2015 [Page 29]

Internet-Draft February 2015

 multi-layered service and tenant relationship is one of the most
 complex tasks to handle using existing technologies.

 A service can be defined as a group of entities offering a specific
 function to a tenant within a Cloud Provider.

B.3.2. Universal Cloud Classification Options

 Three IDs are defined that classify a Tenant specific to the service
 used within a certain Cloud Provider. The Cloud-ID, Service-ID and
 Tenant-ID are defined hierarchically and support service-stacking.
 The IDs are based on the 'Digital Object Identifier' scheme and
 support incorporating metadata per ID. The ID can be of variable
 length but Cloud-ID, Service-ID and Tenant-ID are proposed within a 4
 byte, 6 byte and 6 byte tuple respectively.

B.3.2.1. Cloud ID

 The Cloud ID is a globally unique ID that is managed by a registrar
 similar to DNS. It is 4 bytes in sizes and defined with a 10 bit
 location part and a 22 bit provider ID.

B.3.2.2. Service ID

 The Service ID is used to identify a service both within and outside
 a cloud environment. It is a 6 byte long ID that is separated into
 several sub-IDs defining the data center, service and an option
 field. The Data Center location is defined by 8 bits, the Service is
 32 bits long and the Option field provides another 8 bits. The
 option bits can be used to incorporate information used for en-route
 or destination tasks.

B.3.2.3. Tenant ID

 The Tenant-ID is classifying consumers (tenants) of Cloud Services.
 It is a 6 byte long ID that is defined and managed by the Cloud
 Provider. Similar to the Service-ID the Tenant-ID incorporates
 metadata specific to that tenant. The MetaData field is of variable
 length and can be defined by the Cloud Provider as needed.

B.3.3. UCC Extension Header

 The UCC proposal [UCC] defines an IPv6 hop-by-hop extension header to
 incorporate the Cloud-ID, Service-ID and Tenant-ID. Each ID area
 also includes bits to define enroute behavior for devices
 understanding/not-understanding the newly defined hop-by-hop
 extension header. This is useful for legacy devices on the Internet

Baker, et al. Expires August 12, 2015 [Page 30]

Internet-Draft February 2015

 to avoid drops the packet but forward it without processing the added
 IPv6 extension header.

 0 8 16 24 32 40 48 56 64
 +-------+-------+-------+-------+-------+-------+-------+-------+
 | FLAG | SIZE | CLOUD-ID | FLAG | SIZE |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 | SERVICE-ID | FLAG | SIZE |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 | TENANT-ID |
 +-------+-------+-------+-------+-------+-------+

 Figure 6: UCC IPv6 hop-by-hop extension header

 The overall extension header size is 22 bytes.

B.4. Policy List in Segment Routing Header

 The model here suggests using the Policy List described in the IPv6
 Segment Routing Header [I-D.previdi-6man-segment-routing-header].
 Technically, it would violate that specification, as the Policy List
 is described as containing a set of optional addresses representing
 specific nodes in the SR path, where in this case it would be a 128
 bit number identifying the tenant or other set of communicating
 nodes.

B.4.1. Metaconsiderations

B.4.1.1. Service offered

 To Be Supplied

B.4.1.2. Pros and Cons

B.4.1.2.1. The case in favor of this approach

 To Be Supplied

B.4.1.2.2. The case against

 To Be Supplied

B.4.1.3. Filtering considerations

 To Be Supplied

Baker, et al. Expires August 12, 2015 [Page 31]

Internet-Draft February 2015

B.5. RFC 4291 Interface Identifier (IID)

 The approach starts from the observation that Openstack assigns the
 MAC address used by a VM, and can assign it according to any
 algorithm it chooses. A desire has been expressed to put the tenant
 identifier into the IPv6 address. This would put it into the IID in
 that address without modifying the VM OS or the virtual switch.

B.5.1. Address Format

 The proposed address format is identical to the IPv6 EUI-48 based
 Address [RFC4291], and is derived from the MAC address space
 specified in SLAAC [RFC4862]. However, the MAC address provided by
 the OpenStack Controller differs from an IEEE 802.3 MAC Address.

 Walking through the details, an IEEE 802.3 MAC Address (Figure 7)
 consists of two single bit fields, a 22 bit Organizationally Unique
 Identifier (OUI), and a serial number or other NIC-specific
 identifier. The intention is to create a globally unique address, so
 that the NIC may be used on any LAN in the world without colliding
 with other addresses.

 0 8 16 24 32 40
 +-------+-------+-------+-------+-------+-------+
 |Organizationally Unique| NIC Specific Number |
 | Identifier (OUI) | |
 +-------+-------+-------+-------+-------+-------+
 AA
 |+--- 0=Unicast/1=Multicast
 +---- 1=Local/0=Global

 Figure 7: Ethernet MAC Address as specified by IEEE 802.3

 [RFC4291] describes a transformation from that address (which it
 refers to as an EUI-48 address) to the IID of an IPv6 Address
 (Figure 8).

 0 8 16 24 32 40 48 56
 +-------+-------+-------+-------+-------+-------+-------+-------+
 |Organizationally Unique| Fixed Value | NIC Specific Number |
 | Identifier (OUI) | | |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 AA
 |+--- Reserved
 +---- 0=Local/1=Global

 Figure 8: RFC 4291 IPv6 Address

https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc4291

Baker, et al. Expires August 12, 2015 [Page 32]

Internet-Draft February 2015

 OpenStack today specifies a local IEEE 802.3 address (bit 6 is one).
 IPv6 addresses are either installed using DHCP or derived from the
 MAC address via SLAAC.

 One could imagine the MAC address used in an OpenStack environment
 including both a tenant identifier and a system number on a LAN. If
 the tenant identifier is 24 bits (it could be longer or shorter, but
 for this document it is treated as 24 bits), as in common in VxLAN
 and QinQ implementations, that would allow for a 22 bit system
 number, plus two magic bits specifying a locally defined unicast
 address, as shown in Figure 9. Alternatively, the first byte could
 be some specified values such as 0xFA (as is common with current
 OpenStack implementations), followed by a 16 bit system number within
 the subnet.

 0 8 16 24 32 40 47
 +-------+-------+-------+-------+-------+-------+
 |System Number within | Openstack Tenant |
 | LAN | Identifier |
 +-------+-------+-------+-------+-------+-------+
 AA
 |+--- 0=Unicast/1=Multicast
 +---- 1=Local/0=Global

 Figure 9: Ethernet MAC Address as installed by OpenStack

 After being passed through SLAAC, that results in an IID that
 contains the Tenant ID in bits 48..63, has bit 6 zero as a locally-
 specified unicast address, and a 22 bit system number, as in
 Figure 10.

 0 8 16 24 32 40 48 56 63
 +-------+-------+-------+-------+-------+-------+-------+-------+
 |system number within | Fixed Value | 24 bit OpenStack |
 | LAN | | Tenant Identifier |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 AA
 |+--- Reserved
 +---- 0=Local/1=Global

 Figure 10: RFC 4291 IPv6 IID Derived from OpenStack MAC Address

 More generally, if SLAAC is not in use and addresses are conveyed
 using DHCPv6 or another technology, the IID would be as described in
 Figure 11.

https://datatracker.ietf.org/doc/html/rfc4291

Baker, et al. Expires August 12, 2015 [Page 33]

Internet-Draft February 2015

 0 8 16 24 32 40 48 56 63
 +-------+-------+-------+-------+-------+-------+-------+-------+
 | system number within LAN | 24 bit OpenStack |
 | | Tenant Identifier |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 AA
 |+--- Reserved
 +---- 0=Local/1=Global

 Figure 11: Generalized Tenant IID

 As noted, the Tenant Identifier might be longer or shorter in a given
 implementation. Specifically in Figure 11, a 32 bit Tenant ID would
 occupy bit positions 32..63, and a 16 bit Tenant ID would occupy
 positions 48..63.

 Following the same model, IPv6 Multicast Addresses can be associated
 with a tenant identifier by placing the tenant identifier in the same
 set of bits and using the remaining bits of the Multicast Group ID as
 the ID within the tenant as show in Figure 12. Flags and scope are
 as specified in [RFC4291] section 2.7. To avoid clashes with
 multicast addresses specified in ibid 2.7.1 and future allocations,
 The Tenant Group ID MUST NOT be zero.

 | 8 | 4 | 4 | 88 bits 24 bits |
 +------ -+----+----+-----------------------------+---------------+
 |11111111|flgs|scop| Tenant Group ID | Tenant ID |
 +--------+----+----+-----------------------------+---------------+

 Figure 12: RFC 4291 Multicast Address with Tenant ID

B.5.2. Metaconsiderations

B.5.2.1. Service offered

 The fundamental seervice offered in this model is that the key policy
 parameter, the Tenant ID, is encoded in every datagram for both
 sender and receiver, and can therefore be tested by sender, receiver,
 or any other party. It is secure in the sense that it cannot be
 directly spoofed; in the sender vSwitch, the vSwitch prevents the
 sender from sending another address as discussed in Section 4, and if
 the recipient address is a randomly chosen address, even if it meets
 inter-tenant communication policy, there is unlikely to be a matching
 destination to deliver it to. Where this breaks down is if a valid
 and acceptable destination is discovered and used; that is the
 argument for further protection via TLS.

https://datatracker.ietf.org/doc/html/rfc4291#section-2.7
https://datatracker.ietf.org/doc/html/rfc4291

Baker, et al. Expires August 12, 2015 [Page 34]

Internet-Draft February 2015

B.5.2.2. Pros and Cons

B.5.2.2.1. The case in favor of this approach

 The case in favor of this approach consists of several observations:

 o Many Cisco customers are using and prefer SLAAC for IPv6 clients
 in OpenStack environments.

 o It is easy to configure this IID from the Neutron Controller
 without modifying the VM, or it even knowing it happened.

 o From a security perspective, the tenant ID cannot be spoofed per
 se; the sender of a message is not permitted to send a message
 from the wrong address or to an unauthorized address.

 o Since it requires no extension headers or other encapsulations, it
 has no impact on Path MTU.

 o Filters can be applied anywhere, and notably at the sender and the
 receiver of a message.

B.5.2.2.2. The case against

 In [I-D.ietf-6man-default-iids], the IETF is moving toward
 deprecating [RFC4291]'s Modified EUI-64 IID.

B.5.2.3. Filtering considerations

 In this model, the vSwitch needs, for each VM it manages, two access
 control lists:

 o Zero or more {IPv6 prefix, tenant ID} pairs; these may be read as
 'if the IPv6 prefix matches {prefix}, the IID contains a tenant
 ID, and it may be {tenant ID}.'

 o Zero or more IPv6 prefixes that the VM is authorized to
 communicate without regard to tenant ID.

 Generally speaking, one would expect at least one of those three
 lists to contain an entry - at minimum, the VM would be authorized to
 communicate with ::/0, which is to say 'anyone'.

 Among the generic IPv6 prefixes that may be communicated with, there
 may be zero or more IPv4-embedded IPv6 prefix [RFC6052] prefixes that
 the VM is permitted to communicate with. For example, if the
 [I-D.ietf-v6ops-siit-dc] translation prefix is 2001:db8:0:1::/96, and

https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc6052

Baker, et al. Expires August 12, 2015 [Page 35]

Internet-Draft February 2015

 the enterprise is using 192.0.2.0/24 as its IPv4 address, the filter
 would contain the prefix 2001:db8:0:1:0:0:c000:0200/120.

 Note that the lists may also include multicast prefixes as specified
 in Appendix B.5.1, such as locally-scoped multicast ff01::/104 or
 locally-scoped multicast within the tenant {ff01::/16, tenant id} .
 While these access lists are applied in both directions (as a sender,
 what prefixes may the destination address contain, and as a receiver,
 what prefixes may the source address contain), only the destination
 address may contain multicast addresses. For multicast, therefore,
 the vSwitch should filter Multicast Listener Discovery [RFC2710]
 using the multicast subset, permitting the VM to only join relevant
 multicast groups.

B.6. Modified IID using modified Privacy Extension

 This variant reflects and builds on the IPv6 Addressing Architecture
 [RFC4291] Stateless Address Autoconfiguration [RFC4862], and the
 associated Privacy Extensions [RFC4941]. The address format is
 identical to that of Appendix B.5, with the exception that The
 'System Number within the LAN' is a random number determined by the
 host rather than being specified by the controller.

 It does have implications, however. It will require

 o a modification to [RFC4941] to have the host include the Tenant ID
 in the IID,

 o a means to inform the host of the Tenant ID,

 o a means to inform the vSwitch of the Tenant ID,

 o a the vSwitch to follow FCFS SAVI [RFC6620] to learn the addresses
 being used by the host, and

 o a filter to prevent FCFS SAVI from learning addresses that have
 the wrong Tenant ID.

B.6.1. Metaconsiderations

B.6.1.1. Service offered

 To Be Supplied

https://datatracker.ietf.org/doc/html/rfc2710
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc4941
https://datatracker.ietf.org/doc/html/rfc4941
https://datatracker.ietf.org/doc/html/rfc6620

Baker, et al. Expires August 12, 2015 [Page 36]

Internet-Draft February 2015

B.6.1.2. Pros and Cons

B.6.1.2.1. The case in favor of this approach

 To Be Supplied

B.6.1.2.2. The case against

 To Be Supplied

B.6.1.3. Filtering considerations

 To Be Supplied

Authors' Addresses

 Fred Baker (editor)
 Cisco Systems
 Santa Barbara, California 93117
 USA

 Email: fred@cisco.com

 Chris Marino
 Cisco Systems
 San Jose, California 95134
 USA

 Email: chrmarin@cisco.com

 Ian Wells
 Cisco Systems
 San Jose, California 95134
 USA

 Email: iawells@cisco.com

 Rohit Agarwalla
 Cisco Systems
 San Jose, California 95134
 USA

 Email: roagarwa@cisco.com

Baker, et al. Expires August 12, 2015 [Page 37]

Internet-Draft February 2015

 Sebastian Jeuk
 Cisco Systems
 San Jose, California 95134
 USA

 Email: sjeuk@cisco.com

 Gonzalo Salgueiro
 Cisco Systems
 Research Triangle Park, NC 27709
 US

 Email: gsalguei@cisco.com

Baker, et al. Expires August 12, 2015 [Page 38]

