
SDNRG                                                 E. Haleplidis, Ed.
Internet-Draft                                      University of Patras
Intended status: Informational                       K. Pentikousis, Ed.
Expires: February 2, 2015                                           EICT
                                                              S. Denazis
                                                    University of Patras
                                                           J. Hadi Salim
                                                       Mojatatu Networks
                                                                D. Meyer
                                                                 Brocade
                                                          O. Koufopavlou
                                                    University of Patras
                                                          August 1, 2014

SDN Layers and Architecture Terminology
draft-haleplidis-sdnrg-layer-terminology-07

Abstract

   Software-Defined Networking (SDN) can be defined as a new approach
   for network programmability.  Network programmability in this context
   refers to the capacity to initialize, control, change, and manage
   network behavior dynamically via open interfaces as opposed to
   relying on closed-box solutions and their associated proprietary
   interfaces.  SDN emphasizes the role of software in running networks
   through the introduction of an abstraction for the data forwarding
   plane and, by doing so, separates it from the control plane.  This
   separation allows faster innovation cycles at both planes as
   experience has already shown.  However, there is increasing confusion
   as to what exactly SDN is, what is the layer structure in an SDN
   architecture and how do layers interface with each other.  This
   document aims to answer these questions and provide a concise
   reference document for SDNRG, in particular, and the SDN community,
   in general, based on relevant peer-reviewed literature and documents
   in the RFC series.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

Haleplidis, et al.      Expires February 2, 2015                [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/


Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on February 2, 2015.

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
3.  SDN Layers and Architecture . . . . . . . . . . . . . . . . .   6
3.1.  Overview  . . . . . . . . . . . . . . . . . . . . . . . .   7
3.2.  Network Devices . . . . . . . . . . . . . . . . . . . . .  11
3.3.  Control Plane . . . . . . . . . . . . . . . . . . . . . .  12
3.4.  Management Plane  . . . . . . . . . . . . . . . . . . . .  13
3.5.  The Control vs. Management Plane Debate . . . . . . . . .  14
3.5.1.  Timescale . . . . . . . . . . . . . . . . . . . . . .  14
3.5.2.  Persistence . . . . . . . . . . . . . . . . . . . . .  15
3.5.3.  Locality  . . . . . . . . . . . . . . . . . . . . . .  15
3.5.4.  CAP Theorem Insights  . . . . . . . . . . . . . . . .  15

3.6.  Network Services Abstraction Layer  . . . . . . . . . . .  16
3.7.  Application Plane . . . . . . . . . . . . . . . . . . . .  17

4.  SDN Model View  . . . . . . . . . . . . . . . . . . . . . . .  17
4.1.  ForCES  . . . . . . . . . . . . . . . . . . . . . . . . .  18
4.2.  NETCONF . . . . . . . . . . . . . . . . . . . . . . . . .  19
4.3.  OpenFlow  . . . . . . . . . . . . . . . . . . . . . . . .  20
4.4.  I2RS  . . . . . . . . . . . . . . . . . . . . . . . . . .  21
4.5.  SNMP  . . . . . . . . . . . . . . . . . . . . . . . . . .  21
4.6.  PCEP  . . . . . . . . . . . . . . . . . . . . . . . . . .  22
4.7.  BFD . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

5.  Contributors  . . . . . . . . . . . . . . . . . . . . . . . .  23
6.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  23

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info


Haleplidis, et al.      Expires February 2, 2015                [Page 2]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  24
8.  Security Considerations . . . . . . . . . . . . . . . . . . .  24
9.  Informative References  . . . . . . . . . . . . . . . . . . .  24

   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  31

1.  Introduction

   Software-Defined Networking (SDN) is a relevant new term for the
   programmable networks paradigm [PNSurvey99][OF08].  In short, SDN
   refers to the ability of software applications to program individual
   network devices dynamically and therefore control the behavior of the
   network as a whole [NV09].  [RFC7149] points out that SDN is a set of
   techniques used to facilitate the design, delivery and operation of
   network services in a deterministic, dynamic, and scalable manner.

   A key element in SDN is the introduction of an abstraction between
   the (traditional) forwarding and control planes in order to separate
   them and provide applications with the means necessary to
   programmatically control the network.  The goal is to leverage this
   separation, and the associated programmability, in order to reduce
   complexity and enable faster innovation at both planes [A4D05].

   The historical evolution of the programmable networks R&D area is
   reviewed in detail in [SDNHistory][SDNSurvey], starting with efforts
   dating back to the 1980s.  As Feamster et al. document [SDNHistory],
   many of the ideas, concepts and concerns are applicable to the latest
   R&D in SDN, and SDN standardization we may add, and have been under
   extensive investigation and discussion in the research community for
   quite some time.  For example, Rooney et al.  [Tempest] discuss how
   to allow third-party access to the network without jeopardizing
   network integrity, or how to accommodate legacy networking solutions
   in their (then new) programmable environment.  Further, the concept
   of separating the control and data planes, which is prominent in SDN,
   has been extensively discussed even prior to 1998 [Tempest][P1520],
   in SS7 networks [ITUSS7], Ipsilon Flow Switching [RFC1953][RFC2297]
   and ATM [ITUATM].

   SDN research often focuses on varying aspects of programmability, and
   we are frequently confronted with conflicting points of view
   regarding what exactly SDN is.  For instance, we find that for
   various reasons (e.g. work focusing on one domain and therefore not
   necessarily applicable as-is to other domains), certain well-accepted
   definitions do not correlate well with each other.  For example, both
   OpenFlow [OpenFlow] and NETCONF [RFC6241] have been characterized as
   SDN interfaces, but they refer to control and management
   respectively.

https://datatracker.ietf.org/doc/html/rfc7149
https://datatracker.ietf.org/doc/html/rfc1953
https://datatracker.ietf.org/doc/html/rfc6241


Haleplidis, et al.      Expires February 2, 2015                [Page 3]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   This motivates us to consolidate the definitions of SDN in the
   literature and correlate them with earlier work in IETF and the
   research community.  Of particular interest is, for example, to
   determine which layers comprise the SDN architecture and which
   interfaces and their corresponding attributes are best suitable to be
   used between them.  As such, the aim of this document is not to
   standardize any particular layer or interface but rather to provide a
   concise reference document which reflects current approaches
   regarding the SDN layers architecture.  We expect that this document
   would be useful to upcoming work in SDNRG as well as future
   discussions within the SDN community as a whole.

   This document addresses the work item in the SDNRG charter named
   "Survey of SDN approaches and Taxonomies", fostering better
   understanding of prominent SDN technologies in a technology-impartial
   and business-agnostic manner.  It is meant as a common base for
   further discussion.  As such, we do not make any value statements nor
   discuss the applicability of any of the frameworks examined in this
   draft for any particular purpose.  Instead, we document their
   characteristics and attributes and classify them, thus providing a
   taxonomy.  This document does not intend to provide an exhaustive
   list of SDN research issues; interested readers should consider
   reviewing [SLTSDN] and [SDNACS].  In particular, [SLTSDN] overviews
   SDN-related research topics, e.g. control partitioning, which is
   related to the CAP theorem (Section 3.5.4) discussed later in this
   document.

   This document does not constitute a new IETF standard nor a new
   specification but obtained the consensus within SDNRG to be published
   in the IRTF Stream as per [RFC5743].

   The remainder of this document is organized as follows.  Section 2
   explains the terminology used in this document.  Section 3 introduces
   a high-level overview of current SDN architecture abstractions.
   Finally, Section 4 discusses how the SDN Layer Architecture relates
   with prominent SDN-enabling technologies

2.  Terminology

   This document uses the following terms:

      Software-Defined Networking (SDN) - A programmable networks
      approach that supports the separation of control and forwarding
      planes via standardized interfaces.

      Resource - A physical or virtual component available within a
      system.  Resources can be very simple or fine-grained, e.g. a port

https://datatracker.ietf.org/doc/html/rfc5743


Haleplidis, et al.      Expires February 2, 2015                [Page 4]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

      or a queue; or complex, comprised of multiple resources, e.g. a
      network device.

      Network Device - A device that performs one or more network
      operations related to packet manipulation and forwarding.  This
      reference model makes no distinction whether a network device is
      physical or virtual.  A device can also be considered as a
      container for resources and can be a resource in itself.

      Interface - A point of interaction between two entities.  In case
      the entities are not in the same physical location, the interface
      is usually implemented as a network protocol.  In case the
      entities are collocated in the same physical location the
      interface can be a network protocol or a software Application
      Programming Interface (API).

      Application (App) - An application in the context of SDN is a
      piece of software that utilizes underlying services to perform a
      function.  Application operation can be parametrized, for example
      by passing certain arguments at call time, but it is meant to be a
      standalone piece of software: an App does not offer any interfaces
      to other applications or services.

      Service - A piece of software that performs one or more functions
      and provides one or more APIs to applications or other services of
      the same or different layers to make use of said functions and
      returns one or more results.  Services can be combined with other
      services, or called in a certain serialized manner, to create a
      new service.

      Forwarding Plane (FP) - The network device part responsible for
      forwarding traffic.

      Operational Plane (OP) - The network device part responsible for
      managing the overall device operation.

      Control Plane (CP) - Part of the network functionality that is
      assigned to control one or more network devices.  CP instructs
      network devices with respect to how to treat and forward packets.
      The control plane interacts primarily with the forwarding plane
      and to a lesser extent with the operational plane.

      Management Plane (MP) - Part of the network functionality
      responsible for monitoring, configuring and maintaining one or
      more network devices.  The management plane is mostly related with
      the operational plane and less with the forwarding plane.



Haleplidis, et al.      Expires February 2, 2015                [Page 5]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

      Device and resource Abstraction Layer (DAL) - The device's
      resource abstraction layer based on one or more models.  If it is
      a physical device it may be referred to as the Hardware
      Abstraction Layer (HAL).  DAL provides a uniform point of
      reference for the device's forwarding and operational plane
      resources.

      Control Abstraction Layer (CAL) - The control plane's abstraction
      layer.  CAL provides access to the control plane southbound
      interface.

      Management Abstraction Layer (MAL) - The management plane's
      abstraction layer.  MAL provides access to the management plane
      southbound interface.

3.  SDN Layers and Architecture

   Figure 1 summarizes in the form of a detailed high-level schematic
   the SDN architecture abstractions.  Note that in a particular
   implementation planes can be collocated with other planes or can be
   physically separated, as we discuss below.

   SDN is based on the concept of separation between a controlled entity
   and a controller entity.  The controller manipulates the controlled
   entity via an Interface.  Interfaces, when local, are mostly API
   calls through some library or system call.  However, such interfaces
   may be extended via some protocol definition, which may use local
   inter-process communication (IPC) or a protocol that could also act
   remotely; the protocol may be defined as an open standard or in a
   proprietary manner.

   Day [PiNA] explores the use of IPC as the mainstay for the definition
   of recursive network architectures with varying degrees of scope and
   range of operation.  RINA [RINA] outlines a recursive network
   architecture based on IPC which capitalizes on repeating patterns and
   structures.  This document does not propose a new architecture--we
   simply document previous work through a taxonomy.  Although recursion
   is out of scope for this work, Figure 1 illustrates a hierarchical
   model in which layers can be stacked on top of each other and
   recursively employed as needed.



Haleplidis, et al.      Expires February 2, 2015                [Page 6]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

                   o--------------------------------o
                   |                                |
                   | +-------------+   +----------+ |
                   | | Application |   |  Service | |
                   | +-------------+   +----------+ |
                   |       Application Plane        |
                   o---------------Y----------------o
                                   |
     *-----------------------------Y---------------------------------*
     |           Network Services Abstraction Layer (NSAL)           |
     *------Y------------------------------------------------Y-------*
            |                                                |
            |               Service Interface                |
            |                                                |
     o------Y------------------o       o---------------------Y------o
     |      |    Control Plane |       | Management Plane    |      |
     | +----Y----+   +-----+   |       |  +-----+       +----Y----+ |
     | | Service |   | App |   |       |  | App |       | Service | |
     | +----Y----+   +--Y--+   |       |  +--Y--+       +----Y----+ |
     |      |           |      |       |     |               |      |
     | *----Y-----------Y----* |       | *---Y---------------Y----* |
     | | Control Abstraction | |       | | Management Abstraction | |
     | |     Layer (CAL)     | |       | |      Layer (MAL)       | |
     | *----------Y----------* |       | *----------Y-------------* |
     |            |            |       |            |               |
     o------------|------------o       o------------|---------------o
                  |                                 |
                  | CP                              | MP
                  | Southbound                      | Southbound
                  | Interface                       | Interface
                  |                                 |
     *------------Y---------------------------------Y----------------*
     |         Device and resource Abstraction Layer (DAL)           |
     *------------Y---------------------------------Y----------------*
     |            |                                 |                |
     |    o-------Y----------o   +-----+   o--------Y----------o     |
     |    | Forwarding Plane |   | App |   | Operational Plane |     |
     |    o------------------o   +-----+   o-------------------o     |
     |                       Network Device                          |
     +---------------------------------------------------------------+

                     Figure 1: SDN Layer Architecture

3.1.  Overview

   This document follows a network device centric approach: Control
   mostly refers to the device packet handling capability, while
   management tends to refer to the overall device operation aspects.



Haleplidis, et al.      Expires February 2, 2015                [Page 7]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   We view a network device as a complex resource which contains and is
   part of multiple resources similar to [DIOPR].  Resources can be
   simple, single components of a network device, for example a port or
   a queue of the device, and can also be aggregated into complex
   resources, for example a network card or a complete network device.

   The reader should keep in mind throughout this document that we make
   no distinction between "physical" and "virtual" resources, as we do
   not delve into implementation or performance aspects.  In other
   words, a resource can be implemented fully in hardware, fully in
   software, or any hybrid combination in between.  Further, we do not
   distinguish on whether a resource is implemented as an overlay or as
   a part/component of some other device.  In general, network device
   software can run on so-called "bare metal" or on a virtualized
   substrate.  Finally, this document does not discuss how resources are
   allocated, orchestrated, and released.  Indeed, orchestration is out
   of scope for this document.

   SDN spans multiple planes as illustrated in Figure 1.  Starting from
   the bottom part of the figure and moving towards the upper part, we
   identify the following planes:

   o  Forwarding Plane - Responsible for handling packets in the
      datapath.  Actions of the forwarding plane include, but are not
      limited to, forwarding, dropping and changing packets.  The
      forwarding plane is usually the termination point for control
      plane services and applications.  The forwarding plane can contain
      forwarding resources such as classifiers.

   o  Operational Plane - Responsible for managing the operational state
      of the network device, e.g. whether the device is active or
      inactive, the number of ports available, the status of each port,
      and so on.  The operational plane is usually the termination point
      for management plane services and applications.  The operational
      plane relates to (operational aspects of) network device resources
      such as ports, memory, and so on.  We note that some participants
      of the IRTF SDNRG have a different opinion in regards to the
      definition of the operational plane.  That is, one can argue that
      the operational plane does not constitute a "plane" per se, but it
      is in practice an amalgamation of functions on the forwarding
      plane.  For others, however, a "plane" allows to distinguish
      between different areas of operations and therefore the
      operational plane should be included as a "plane" in Figure 1.  We
      have adopted this latter view in this document.

   o  Control Plane - Responsible for taking decisions on how packets
      should be forwarded by one or more network devices and pushing
      such decisions down to the network devices for execution.  The



Haleplidis, et al.      Expires February 2, 2015                [Page 8]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

      control plane usually focuses mostly on the forwarding plane and
      less on the operational plane of the device.  The control plane
      may be interested in operational plane information which could
      include, for instance, the current state of a particular port or
      its capabilities.  The control plane's main job is to fine-tune
      the forwarding tables that reside in the forwarding plane, based
      on the network topology or external service requests.

   o  Management Plane - Responsible for monitoring, configuring and
      maintaining network devices, e.g. taking decisions regarding the
      state of a network device.  The management plane usually focuses
      mostly on the operational plane of the device and less on the
      forwarding plane.  The management plane may be used to configure
      the forwarding plane, but it does so infrequently and through a
      more wholesale approach than the control plane.  For instance, the
      management plane may set up all or part of the forwarding rules at
      once, although such action would be expected to be taken
      sparingly.

   o  Application Plane - The plane where applications that rely on the
      network to provide services for end users and processes reside.
      Applications that directly (or primarily) support the operation of
      the forwarding plane (such as routing processes within the control
      plane) are not considered part of the application plane.  Note
      that applications may be implemented in a modular and distributed
      fashion and, therefore, can often span multiple planes in
      Figure 1.

   All planes mentioned above are connected via interfaces (as indicated
   with "Y" in Figure 1.  An interface may take multiple roles depending
   on whether the connected planes reside on the same (physical or
   virtual) device.  If the respective planes are designed so that they
   do not have to reside in the same device, then the interface can only
   take the form of a protocol.  If the planes are co-located on the
   same device, then the interface could be implemented via an open/
   proprietary protocol, an open/proprietary software inter-process
   communication API, or operating system kernel system calls.

   Applications, i.e. software programs that perform specific
   computations that consume services without providing access to other
   applications, can be implemented natively inside a plane or can span
   multiple planes.  For instance, applications or services can span
   both the control and management plane and, thus, be able to use both
   the Control Plane Southbound Interface (CPSI) and Management Plane
   Southbound Interface (MPSI), although this is only implicitly
   illustrated in Figure 1.  An example of such a case would be an
   application that uses both [OpenFlow] and [OF-CONFIG].



Haleplidis, et al.      Expires February 2, 2015                [Page 9]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   Services, i.e. software programs that provide APIs to other
   applications or services, can also be natively implemented in
   specific planes.  Services that span multiple planes belong to the
   application plane as well.

   While not shown explicitly in Figure 1, services, applications and
   entire planes, can be placed in a recursive manner thus providing
   overlay semantics to the model.  For example, application plane
   services can provide through NSAL services to other applications or
   services.  Additional examples include virtual resources that are
   realized on top of a physical resources and hierarchical control
   plane controllers [KANDOO].

   It must be noted, however, that in Figure 1 we present an abstract
   view of the various planes, which is devoid of implementation
   details.  Many implementations in the past have opted for placing the
   management plane on top of the control plane.  This can be
   interpreted as having the control plane acting as a service to the
   management plane.  Further, traditionally, the control plane was
   tightly coupled with the network device.  When taken as whole, the
   control plane was distributed network-wide.  On the other hand, the
   management plane has been traditionally centralized and was
   responsible for managing the control plane and the devices.  However,
   with the adoption of SDN principles, this distinction is no longer so
   clear-cut.

   Additionally, this document considers four abstraction layers:

      The Device and resource Abstraction Layer (DAL) abstracts the
      device's forwarding and operational plane resources to the control
      and management plane.  Variations of DAL may abstract both planes
      or either of the two and may abstract any plane of the device to
      either the control or management plane.

      The Control Abstraction Layer (CAL) abstracts the CP southbound
      interface and the DAL from the applications and services of the
      control plane.

      The Management Abstraction Layer (MAL) abstracts the MP southbound
      interface and the DAL from the applications and services of the
      management plane.

      The Network Services Abstraction Layer (NSAL) provides service
      abstractions for use by applications and other services.

   We observe that the view presented in this document is quite well-
   aligned with recently published work by the ONF; see [ONFArch].  A



Haleplidis, et al.      Expires February 2, 2015               [Page 10]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   key difference, however, is that the ONF architecture does not
   include the management plane in its scope.

   At the time of this writing, SDN-related activities have begun in
   other SDOs.  For example, in ITU work on architectural [ITUSG13] and
   signaling requirements and protocols [ITUSG11] has commenced, but the
   respective study groups have yet to publish their documents at the
   time of this writing.  In addition, ITU has started a Joint
   Collaboration Activity (JCA) in regards to SDN.

3.2.  Network Devices

   A Network Device is an entity that receives packets on its ports and
   performs one or more network functions on them.  For example, the
   network device could forward a received packet, drop it, alter the
   packet header (or payload) and forward the packet, and so on.  A
   Network Device is an aggregation of multiple resources such as ports,
   CPU, memory and queues.  Resources are either simple or can be
   aggregated to form complex resources that can be viewed as one
   resource.  The Network Device is in itself a complex resource.
   Examples of Network Devices include switches and routers.  Additional
   examples include network elements that may operate at a layer above
   IP, such as firewalls, load balancers and video transcoders.

   Network devices can be implemented in hardware or software and can be
   either physical or virtual.  As has already been mentioned before,
   this document makes no such distinction.  Each network device has
   both a Forwarding Plane and an Operational Plane.

   The Forwarding Plane, commonly referred to as the "data path", is
   responsible for handling and forwarding packets.  The Forwarding
   Plane provides switching, routing transformation and filtering
   functions.  Resources of the forwarding plane include but are not
   limited to filters, meters, markers and classifiers.

   The Operational Plane is responsible for the operational state of the
   network device, for instance, with respect to status of network ports
   and interfaces.  Operational plane resources include, but are not
   limited to, memory, CPU, ports, interfaces and queues.

   The Forwarding and the Operational Planes are exposed via the Device
   and resource Abstraction Layer (DAL), which may be expressed by one
   or more abstraction models.  Examples of Forwarding Plane abstraction
   models are ForCES [RFC5812] and OpenFlow [OpenFlow].  Examples of the
   Operational Plane abstraction model include the ForCES model
   [RFC5812], the YANG model [RFC6020], and SNMP MIBs [RFC3418].

https://datatracker.ietf.org/doc/html/rfc5812
https://datatracker.ietf.org/doc/html/rfc5812
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc3418


Haleplidis, et al.      Expires February 2, 2015               [Page 11]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   Note that applications can also reside in a network device.  Examples
   of such applications include event monitoring, and handling
   (offloading) topology discovery or ARP [RFC0826] in the device itself
   instead of forwarding such traffic to the control plane.

3.3.  Control Plane

   The control plane is usually distributed and is responsible mainly
   for the configuration of the forwarding plane using a Control Plane
   Southbound Interface (CPSI) with DAL as a point of reference.  CP is
   responsible for instructing FP about how to handle network packets.

   Communication between control planes, colloquially referred to as the
   "east-west" interface, is usually implemented through gateway
   protocols such as BGP [RFC4271] or other protocols such as [RFC5440].
   However, the corresponding protocol messages are in fact exchanged
   in-band and subsequently redirected by the forwarding plane to the
   control plane for further processing.  Examples in this category
   include [RCP], [SoftRouter] and [RouteFlow].

   Control Plane functionalities usually include:

   o  Topology discovery and maintenance

   o  Packet route selection and instantiation

   o  Path failover mechanisms

   The CPSI is usually defined with the following characteristics:

   o  time-critical interface which requires low latency and sometimes
      high bandwidth in order to perform many operations in short order.

   o  oriented towards wire efficiency and device representation instead
      of human readability

   Examples include fast- and high-frequency of flow or table updates,
   high throughput and robustness for packet handling and events.

   CPSI can be implemented using a protocol, an API or even interprocess
   communication.  If the Control Plane and the Network Device are not
   collocated, then this interface is certainly a protocol.  Examples of
   CPSIs are ForCES [RFC5810] and the Openflow protocol [OpenFlow].

   The Control Abstraction Layer (CAL) provides access to control
   applications and services to various CPSIs.  The Control Plane may
   support more than one CPSIs.

https://datatracker.ietf.org/doc/html/rfc0826
https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc5440
https://datatracker.ietf.org/doc/html/rfc5810


Haleplidis, et al.      Expires February 2, 2015               [Page 12]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   Control applications can use CAL to control a network device without
   providing any service to upper layers.  Examples include applications
   that perform control functions, such as OSPF, IS-IS, and BGP.

   Control Plane service examples include a virtual private LAN service,
   service tunnels, topology services, etc.

3.4.  Management Plane

   The Management Plane is usually centralized and aims to ensure that
   the network as a whole is running optimally by communicating with the
   network devices' Operational Plane using a Management Plane
   Southbound Interface (MPSI) with DAL as a point of reference.

   Management plane functionalities are typically initiated, based on an
   overall network view, and traditionally have been human-centric.
   However, lately algorithms are replacing most human intervention.
   Management plane functionalities [FCAPS] [RFC3535] usually include:

   o  Fault and Monitoring management

   o  Configuration management

   In addition, management plane functionalities may also include
   entities such as orchestrators, Virtual Function Managers (VNF
   manager) and Virtualised Infrastructure Managers, as described in
   [NFVArch].  Such entities can use management interfaces to
   operational plane resources to request and provision resources for
   virtual functions, as well as instruct the instantiation of virtual
   forwarding functions on top of physical forwarding functions.
   explores the possibility of a common abstraction model for both SDN
   and NFV [SDNNFV].  Note, however, that these are only examples of
   applications and services in the management plane and not formal
   definitions of entities in this document.  As has been noted above,
   orchestration and therefore the definition of any associated entities
   is out of scope for this document.

   Normally MPSI, in contrast to the CPSI, is not a time-critical
   interface and does not share the CPSI requirements.

   MPSI is [RFC3535] typically closer to human interaction than CPSI
   and, therefore, MPSI usually has the following characteristics:

   o  It is oriented more towards usability, with optimal wire
      performance being a secondary concern.

   o  Messages tend to be less frequent than in the CPSI

https://datatracker.ietf.org/doc/html/rfc3535
https://datatracker.ietf.org/doc/html/rfc3535


Haleplidis, et al.      Expires February 2, 2015               [Page 13]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   As an example of usability versus performance, we refer to the
   consensus of the 2002 IAB Workshop [RFC3535], as per [RFC6632], where
   textual configuration files should be able to contain international
   characters.  Human-readable strings should utilize UTF-8, and
   protocol elements should be in case-insensitive ASCII which require
   more processing capabilities to parse.

   MPSI can range from a protocol, to an API or even interprocess
   communication.  If the Management Plane is not embedded in the
   network device, the MPSI is certainly a protocol.  Examples of MPSIs
   are ForCES [RFC5810], NETCONF [RFC6241], OVSDB [RFC7047] and SNMP
   [RFC3411].

   The Management Abstraction Layer (MAL) provides access to management
   applications and services to various MPSIs.  The Management Plane may
   support more than one MPSI.

   Management Applications can use MAL to manage the network device
   without providing any service to upper layers.  Examples of
   management applications include network monitoring, fault detection
   and recovery applications.

   Management Plane Services provide access to other services or
   applications above the Management Plane.

3.5.  The Control vs. Management Plane Debate

   During the IETF 88 and 89 SDNRG meetings as well as on the
   corresponding mailing list, one of the most commonly discussed
   topics, in regards to this document, was the definition of clear
   distinction between control and management.  Earlier we have observed
   that the role of the management plane has been largely ignored or
   specified as out-of-scope for the SDN ecosystem.  We argue that it is
   important to characterize and distinguish these two planes in order
   to have a clear understanding of the mechanics, capabilities and
   needs of the each respective interface.

   In the remainder of this subsection we summarize the characteristics
   that differentiate the two planes as per the discussions mentioned
   above.

3.5.1.  Timescale

   A point has been raised regarding the reference timescales for the
   control and management planes.  That is, how fast is the respective
   plane required to react, or needs to manipulate, the forwarding or
   operational plane of the device.  In general, the control plane needs
   to send updates "often", which translates roughly to a range of

https://datatracker.ietf.org/doc/html/rfc3535
https://datatracker.ietf.org/doc/html/rfc6632
https://datatracker.ietf.org/doc/html/rfc5810
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc7047
https://datatracker.ietf.org/doc/html/rfc3411


Haleplidis, et al.      Expires February 2, 2015               [Page 14]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   milliseconds; that requires high-bandwidth and low-latency links.  In
   contrast, the management plane reacts generally at longer time
   frames, i.e. minutes, hours or even days, and thus wire-efficiency is
   not always a critical concern.  A good example of this is the case of
   changing the configuration state of the device.

3.5.2.  Persistence

   Another distinction between the control and management planes relates
   to state persistence.  A state is considered ephemeral if it has a
   very limited lifespan.  A good example is determining routing, which
   is usually associated with the control plane.  On the other hand, a
   persistent state has an extended lifespan which may range from hours
   to days and months and is usually associated with the management
   plane.  Persistent state is also usually associated with data store
   of the state.

3.5.3.  Locality

   As mentioned earlier, traditionally the control plane has been
   executed locally on the network device and is distributed in nature
   whilst the management plane is usually executed in a centralized
   manner, remotely from the device.  However, with the advent of SDN
   centralizing, or "locally centralizing" the controller tends to
   muddle the distinction of the control and management plane based on
   locality.

3.5.4.  CAP Theorem Insights

   An additional distinction was introduced at IETF 89 with a reference
   to the CAP theorem.  The CAP theorem views a distributed computing
   system as composed of multiple computational resources (i.e., CPU,
   memory, storage) that are connected via a communications network and
   together perform a task.  The theorem (or conjecture by some)
   identifies three characteristics of distributed systems that are
   universally desirable:

      Consistency, meaning that the system responds identically to a
      query no matter which node receives the request (or does not
      respond at all)

      Availability, i.e. that the system always responds to a request
      (although the response may not be consistent or correct)

      Partition tolerance, namely that the system continues to function
      even when specific nodes or the communications network fail.



Haleplidis, et al.      Expires February 2, 2015               [Page 15]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   In 2000 Eric Brewer [CAPBR] conjectured that a distributed system can
   satisfy any two of these guarantees at the same time, but not all
   three.  This conjecture was later proven by Gilbert and Lynch [CAPGL]
   and is now usually referred to as the CAP theorem [CAPFN].

   Forwarding a packet through a network correctly is a computational
   problem.  One of the major abstractions that SDN posits is that all
   network elements are computational resources that perform the simple
   computational task of inspecting fields in an incoming packet and
   deciding how to forward it.  Since the task of forwarding a packet
   from network ingress to network egress is obviously carried out by a
   large number of forwarding elements, the network of forwarding
   devices is a distributed computational system.  Hence, the CAP
   theorem applies to forwarding of packets.

   In the context of the CAP theorem, if one considers partition
   tolerance of paramount importance, traditional control plane
   operations are usually local and fast (available), while management
   plane operations are usually centralized (consistent) and may be
   slow.

   The CAP theorem also provides insights into SDN architectures.  For
   example a centralized SDN controller acts as a consistent global
   database, and specific SDN mechanisms ensure that a packet entering
   the network is handled consistently by all SDN switches.  The issue
   of tolerance to loss of connectivity to the controller is not
   addressed by the basic SDN model.  When an SDN switch cannot reach
   its controller, the flow will be unavailable until the connection is
   restored.  The use of multiple non-collocated SDN controllers has
   been proposed (e.g., by configuring the SDN switch with a list of
   controllers); this may improve partition tolerance, but at the cost
   of loss of absolute consistency.  Panda et al.  [CAPFN] provide a
   first exploration of how the CAP theorem applies to SDN.

3.6.  Network Services Abstraction Layer

   The Network Services Abstraction Layer (NSAL) provides access from
   services of the control, management and application planes to
   services and applications of the application plane.  We note that the
   term SAL is overloaded, as it is often used in several contexts
   ranging from system design to service-oriented architectures,
   therefore we explicitly add "Network" to the title of this layer to
   emphasize that this term relates to Figure 1 and we map it
   accordingly in Section 4 to prominent SDN approaches.

   Service Interfaces can take many forms pertaining to their specific
   requirements.  Examples of service interfaces include but are not
   limited to, RESTful APIs, open or proprietary protocols such as



Haleplidis, et al.      Expires February 2, 2015               [Page 16]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   NETCONF, inter-process communication, CORBA interfaces, and so on.
   The two leading approaches for service interfaces are RESTful
   interfaces and RPC interfaces.  Both follow a client-server
   architecture and use XML or JSON to pass messages but each has some
   slightly different characteristics.

   RESTful interfaces, designed according to the representational state
   transfer design paradigm [REST], have the following characteristics:

      Resource identification - individual resources are identified
      using a resource identifier, for example a URI.

      Manipulation of resources through representations - Resources are
      represented in a format like JSON, XML or HTML.

      Self-descriptive messages - Each message has enough information to
      describe how the message is to be processed.

      Hypermedia as the engine of application state - a client needs no
      prior knowledge of how to interact with a server, not through a
      fixed interface.

   Remote procedure calls (RPC), e.g.  [RFC5531], XML-RPC and the like.,
   have the following characteristics:

      Individual procedures are identified using an identifier

      A client needs to know the procedure name and the associated
      parameters

3.7.  Application Plane

   Applications and services that use services from the control and/or
   management plane form the Application Plane.

   Additionally, services residing in the Application Plane may provide
   services to other services and applications that reside in the
   application plane via the service interface.

   Examples of applications include network topology discovery, network
   provisioning, path reservation, etc.

4.  SDN Model View

   We advocate that the SDN southbound interface should encompass both
   CSPI and MPSI.

https://datatracker.ietf.org/doc/html/rfc5531


Haleplidis, et al.      Expires February 2, 2015               [Page 17]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   The SDN northbound interface is implemented in the Network Services
   Abstraction Layer of Figure 1.

   The above model can be used to describe in a concise manner all
   prominent SDN-enabling technologies, as we explain in the following
   subsections.

4.1.  ForCES

   The IETF-standardized Forwarding and Control Element Separation
   (ForCES [RFC5810]) framework consists of one model and two protocols.
   ForCES separates the Forwarding from the Control Plane via an open
   interface, namely the ForCES protocol which operates on entities of
   the forwarding plane that have been modeled using the ForCES model.

   The ForCES model is based on the fact that a network element is
   composed of numerous logically separate entities that cooperate to
   provide a given functionality -such as routing or IP switching- and
   yet appear as a normal integrated network element to external
   entities and secondly with a protocol to transport information.

   ForCES models the Forwarding Plane using Logical Functional Blocks
   (LFBs) which are connected in a graph, composing the Forwarding
   Element (FE).  LFBs are described in an XML language, based on an XML
   schema.

   LFB definitions include:

   o  Base and custom-defined datatypes

   o  Metadata definitions

   o  Input and Output ports

   o  Operational parameters, or components

   o  Capabilities

   o  Event definitions

   The ForCES model can be used to define LFBs from fine- to coarse-
   grained as needed, irrespective of whether they are physical or
   virtual.

   The ForCES protocol is agnostic to the model and can be used to
   monitor, configure and control any ForCES-modeled element.  The
   protocol has very simple commands: Set, Get and Del(ete).  The ForCES
   protocol designed for high throughput and fast updates.

https://datatracker.ietf.org/doc/html/rfc5810


Haleplidis, et al.      Expires February 2, 2015               [Page 18]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   ForCES [RFC5810] can be mapped to the framework illustrated in
   Figure 1 as follows:

   o  The ForCES model can be used to describe DAL, both for the
      Operational and the Forwarding Plane, using LFBs .

   o  The ForCES protocol can then be both the CPSI and the MPSI.
      ForCES is inherently specified for the CPSI and satisfies its
      requirements, however it can also be utilized for the MPSI.

   o  CAL and MAL must be able to utilize the ForCES protocol.

4.2.  NETCONF

   The Network Configuration Protocol (NETCONF [RFC6241]), is an IETF-
   standardized network management protocol [RFC6632].  NETCONF provides
   mechanisms to install, manipulate, and delete the configuration of
   network devices.

   NETCONF protocol operations are realized as remote procedure calls
   (RPCs).  The NETCONF protocol uses an Extensible Markup Language
   (XML) based data encoding for the configuration data as well as the
   protocol messages.  Recent studies, such as [ESNet] and [PENet], have
   shown that NETCONF performs better than SNMP [RFC3411].

   Additionally, the YANG data modeling language [RFC6020] has been
   developed for specifying NETCONF data models and protocol operations.
   YANG is a data modeling language used to model configuration and
   state data manipulated by NETCONF, NETCONF remote procedure calls,
   and NETCONF notifications.

   YANG models the hierarchical organization of data as a tree, in which
   each node has either a value or a set of child nodes.  Additionally,
   YANG structures data models into modules and submodules allowing
   reusability and augmentation.  YANG models can describe constraints
   to be enforced on the data.  Additionally YANG has a set of base
   datatype and allows custom defined datatypes as well.

   YANG allows the definition of NETCONF RPCs allowing the protocol to
   have an extensible number of commands.  For RPC definition, the
   operations names, input parameters, and output parameters are defined
   using YANG data definition statements.

   NETCONF can be mapped to the framework illustrated in Figure 1 as
   follows:

   o  The YANG model [RFC6020] is suitable for specifying DAL for the
      operational plane and NETCONF [RFC6241] for the MPSI.

https://datatracker.ietf.org/doc/html/rfc5810
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6632
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241


Haleplidis, et al.      Expires February 2, 2015               [Page 19]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   o  Technically, the YANG model [RFC6020] can be used to specify DAL
      for the Forwarding plane as well.  That said, in principle,
      NETCONF [RFC6241] is a management protocol which was not
      (originally) designed for fast CP updates, and it might not be
      suitable for addressing the requirements of CPSI.

4.3.  OpenFlow

   [OpenFlow] is a framework originally developed by Stanford, and
   currently under active standards development through the Open
   Networking Foundation (ONF).  Initially, the goal was to provide a
   way for researchers to run experimental protocols in a production
   network [OFSIGC].  OpenFlow provides a protocol with which a
   controller may manage a static model of an OpenFlow switch.

   An OpenFlow switch consists of one or more flow tables which perform
   packet lookups, actions on a success packet lookup and forwarding, a
   group table and an OpenFlow channel to an external controller.  The
   switch communicates with the controller which manages the switch via
   the OpenFlow protocol.

   OpenFlow has undergone many revisions.  The current version is 1.4
   [OpenFlow] and supports amongst others, multiple controllers for high
   availability and extensible flow match field protocol messages to
   support arbitrary match fields.  Efforts to define OpenFlow 2.0
   [PPIPP] are already underway aiming to provide an abstract forwarding
   model to provide protocol independence and device programmability.

   OpenFlow can be mapped to the framework illustrated in Figure 1 as
   follows:

   o  The Openflow switch specifications [OpenFlow] covers DAL for the
      Forwarding Plane and provides the specification for CPSI.

   o  The OF-CONFIG protocol [OF-CONFIG] based on the YANG model
      [RFC6020], provides DAL for the Operational Plane and specifies
      NETCONF [RFC6241] as the MPSI.  OF-CONFIG overlaps with the
      OpenFlow DAL, but with NETCONF [RFC6241] as the transport protocol
      it shares the limitations described in the previous section.

   o  CAL must be able to utilize the OpenFlow protocol.

   o  MAL must be able to utilize the NETCONF protocol.

https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241


Haleplidis, et al.      Expires February 2, 2015               [Page 20]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

4.4.  I2RS

   I2RS is currently developed by a recently-established IETF working
   group.  The intention is to provide a standard interface to the
   routing system for real-time or event-driven interaction through a
   collection of protocol-based control or management interfaces.
   Essentially, I2RS aims to make the routing information base (RIB)
   programmable thus enabling new kinds of network provisioning and
   operation.

   I2RS does not initially intend to create new interfaces, but rather
   leverage or extend existing ones and define informational models for
   the routing system.  For example, the latest I2RS problem statement
   [I-D.ietf-i2rs-problem-statement] discusses previously-defined IETF
   protocols such as ForCES [RFC5810], NETCONF [RFC6241], and SNMP
   [RFC3417].  Regarding the definition of informational and data
   models, the I2RS working group has opted to use the YANG [RFC6020]
   modelling language.

   Currently the I2RS working group is developing an Information Model
   [I-D.ietf-i2rs-rib-info-model] in regards to the Network Services
   Abstraction Layer for the I2RS agent.

   I2RS can be mapped to the framework illustrated in Figure 1 as
   follows:

   o  The I2RS architecture [I-D.ietf-i2rs-architecture] encompasses the
      Control and Application Planes and uses any CPSI and DAL that is
      available, whether that may be ForCES [RFC5810], OpenFlow
      [OpenFlow] or another interface.

   o  The I2RS agent is a Control Plane Service.  All services or
      applications on top of that belong to either the Control,
      Management or the Application plane.  In the I2RS documents,
      management access to the agent may be provided by management
      protocols like SNMP and NETCONF.  The I2RS protocol may also be
      mapped to the Service Interface as it will provide access even to
      other than control applications.

4.5.  SNMP

   The Simple Network Management Protocol (SNMP) is an IETF-standardized
   management protocol and is currently at its third revision (SNMPv3)

RFC 3417 [RFC3417], RFC 3412 [RFC3412] and RFC 3414 [RFC3414].  It
   consists of a set of standards for network management, including an
   application layer protocol, a database schema, and a set of data
   objects.  SNMP exposes management data (managed objects) in the form
   of variables on the managed systems, which describe the system

https://datatracker.ietf.org/doc/html/rfc5810
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc3417
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc5810
https://datatracker.ietf.org/doc/html/rfc3417
https://datatracker.ietf.org/doc/html/rfc3417
https://datatracker.ietf.org/doc/html/rfc3412
https://datatracker.ietf.org/doc/html/rfc3412
https://datatracker.ietf.org/doc/html/rfc3414
https://datatracker.ietf.org/doc/html/rfc3414


Haleplidis, et al.      Expires February 2, 2015               [Page 21]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   configuration.  These variables can then be queried and set by
   managing applications.

   SNMP uses an extensible design for describing data, defined by
   management information bases (MIBs).  MIBs describe the structure of
   the management data of a device subsystem.  MIBs use a hierarchical
   namespace containing object identifiers (OID).  Each OID identifies a
   variable that can be read or set via SNMP.  MIBs use the notation
   defined by Structure of Management Information Version 2 SMIv2
   [RFC2578]

   SNMP could be mapped to the framework illustrated in Figure 1 as
   follows:

   1.  SNMP MIBs can be used to describe DAL for the Operational Plane.
       Similar to YANG, SNMP MIBs are able to describe DAL for the
       Forwarding Plane.

   2.  SNMP is suited for the MPSI.

4.6.  PCEP

   The Path Computation Element (PCE) [RFC4655] architecture describes
   the PCE, an entity capable of computing paths for a single or set of
   services.  A PCE might be a network node, network management station,
   or dedicated computational platform that is resource-aware and has
   the ability to consider multiple constraints for a variety of path
   computation problems and switching technologies.  The PCE
   Communication Protocol (PCEP) (PCEP) [RFC5440]. is an IETF protocol
   for communication between a Path Computation Client (PCC) and a PCE,
   or between multiple PCEs.

   The PCE represents a vision of networks that separates path
   computation for services, the signaling of end-to-end connections and
   actual packet forwarding.  The definition of online and offline path
   computation is dependent on the reachability of the PCE from network
   and NMS nodes, and the type of optimization request which may
   significantly impact the optimization response time from the PCE to
   the PCC.

   The PCEP messaging mechanism facilitates the specification of
   computation endpoints (source and destination node addresses) and
   objective functions (requested algorithm and optimization criteria),
   and the associated constraints such as traffic parameters (e.g.
   requested bandwidth), the switching capability, and encoding type.

   The PCE is a control plane service that provides services for control
   plane applications.

https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc4655
https://datatracker.ietf.org/doc/html/rfc5440


Haleplidis, et al.      Expires February 2, 2015               [Page 22]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   The PCEP may be used as an east-west interface between domain control
   entities (services and applications).

4.7.  BFD

   Bidirectional Forwarding Detection (BFD) [RFC5880], is an IETF-
   standardized network protocol designed for detecting communication
   failures between two forwarding elements which are directly
   connected.  It is intended to be implemented in some component of the
   forwarding engine of a system, in cases where the forwarding and
   control engines are separated.  BFD provides low-overhead detection
   of faults even on physical media that do not support failure
   detection of any kind, such as Ethernet, virtual circuits, tunnels
   and MPLS Label Switched Paths.

   BFD could be mapped to the framework illustrated in Figure 1 either
   as:

   1.  A control plane service or application that would use the CPSI
       towards the forwarding plane to send/receive BFD packets.

   2.  Or, better, as it was intended for, i.e. as an application that
       runs on the device itself and uses the forwarding plane to send/
       receive BFD packets and update the operational plane resources
       accordingly.

5.  Contributors

   The authors would like to acknowledge (in alphabetical order) the
   following persons as contributors to this document.  They all
   provided text, pointers and comments that made this document more
   complete:

   Daniel King for providing text related to the PCEP protocol.

   Scott Mansfield for information regarding the ITU status on SDN.

   Yaakov Stein for providing text related to the CAP theorem and SDO-
   related information.

   Russ White for text suggestions on the definitions on control,
   management and application.

6.  Acknowledgements

   The authors would like to acknowledge Salvatore Loreto and Sudhir
   Modali for their contributions in the initial discussion on the SDNRG

https://datatracker.ietf.org/doc/html/rfc5880


Haleplidis, et al.      Expires February 2, 2015               [Page 23]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   mailing list as well as their draft-specific comments; they helped
   put this document in a better shape.

   Additionally we would like to thank (in alphabetical order) Shivleela
   Arlimatti, Roland Bless, Scott Brim, Alan Clark, Tim Copley, Gurkan
   Deniz, Linda Dunbar, Francisco Javier Ros Munoz, Georgios
   Karagiannis, Bhumip Khasnabish, Sriganesh Kini, Ramki Krishnan, Dirk
   Kutscher, Diego Lopez, Scott Mansfield, Pedro Martinez-Julia, David E
   Mcdysan, Erik Nordmark, Carlos Pignataro, Robert Raszuk, Bless
   Roland, Yaakov Stein, Dimitri Staessens, Russ White and Lee Young for
   their critical comments and discussions at the IETF 88, IETF 89 and
   IETF 90 meetings and the SDNRG mailing list, which we took into
   consideration while revising this document.

7.  IANA Considerations

   This memo makes no requests to IANA.

8.  Security Considerations

   This document does not propose a new network architecture or protocol
   and therefore does not have any impact on the security of the
   Internet.  That said, security is paramount in networking and thus it
   should be given full consideration when designing a network
   architecture or operational deployment.  Security in SDN is discussed
   in the literature, for example in [SDNSecurity]and
   [SDNSecServ][SDNSecOF].  Security considerations regarding specific
   interfaces, such as, for example, ForCES, I2RS, SNMP, or NETCONF are
   addressed in their respective documents.

9.  Informative References

   [A4D05]    Greenberg, Albert, et al., "A clean slate 4D approach to
              network control and management", ACM SIGCOMM Computer
              Communication Review 35.5 (2005): 41-54 , 2005.

   [CAPBR]    Eric A. Brewer, "Towards robust distributed systems.",
              Symposium on Principles of Distributed Computing (PODC).
              2000 , 2000.

   [CAPFN]    Panda, Aurojit, Colin Scott, Ali Ghodsi, Teemu Koponen,
              and Scott Shenker., "CAP for Networks.", In Proceedings of
              the second ACM SIGCOMM workshop on Hot topics in software
              defined networking, pp. 91-96. ACM, 2013. , 2013.

https://datatracker.ietf.org/doc/html/draft-specific


Haleplidis, et al.      Expires February 2, 2015               [Page 24]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   [CAPGL]    Seth Gilbert, and Nancy Ann Lynch., "Brewer's conjecture
              and the feasibility of consistent, available, partition-
              tolerant web services", ACM SIGACT News 33.2 (2002):
              51-59. , 2002.

   [DIOPR]    Denazis, Spyros, Kazuho Miki, John Vicente, and Andrew
              Campbell., "Designing interfaces for open programmable
              routers.", In Active Networks, pp. 13-24. Springer Berlin
              Heidelberg, 1999 , 1999.

   [ESNet]    Yu, James, and Imad Al Ajarmeh., "An empirical study of
              the NETCONF protocol.", In Networking and Services (ICNS),
              2010 Sixth International Conference on, pp. 253-258. IEEE,
              2010. , 2010.

   [FCAPS]    International Telecommunication Union, "X.700: Management
              Framework For Open Systems Interconnection (OSI) For CCITT
              Applications", September 1992,
              <http://www.itu.int/rec/T-REC-X.700-199209-I/en>.

   [I-D.ietf-i2rs-architecture]
              Atlas, A., Halpern, J., Hares, S., Ward, D., and T.
              Nadeau, "An Architecture for the Interface to the Routing
              System", draft-ietf-i2rs-architecture-05 (work in
              progress), July 2014.

   [I-D.ietf-i2rs-problem-statement]
              Atlas, A., Nadeau, T., and D. Ward, "Interface to the
              Routing System Problem Statement", draft-ietf-i2rs-

problem-statement-04 (work in progress), June 2014.

   [I-D.ietf-i2rs-rib-info-model]
              Bahadur, N., Folkes, R., Kini, S., and J. Medved, "Routing
              Information Base Info Model", draft-ietf-i2rs-rib-info-

model-03 (work in progress), May 2014.

   [ITUATM]   CCITT, Geneva, Switzerland, "CCITT Recommendation 1.361,
              B-ISDN ATM Layer Specification", 1990.

   [ITUSG11]  Telecommunication Standardization sector of ITU, "ITU,
              Study group 11", 2013, <http://www.itu.int/en/ITU-T/

studygroups/2013-2016/11/Pages/default.aspx>.

   [ITUSG13]  Telecommunication Standardization sector of ITU, "ITU,
              Study group 13", 2013, <http://www.itu.int/en/ITU-T/

studygroups/2013-2016/13/Pages/default.aspx>.

http://www.itu.int/rec/T-REC-X.700-199209-I/en
https://datatracker.ietf.org/doc/html/draft-ietf-i2rs-architecture-05
https://datatracker.ietf.org/doc/html/draft-ietf-i2rs-problem-statement-04
https://datatracker.ietf.org/doc/html/draft-ietf-i2rs-problem-statement-04
https://datatracker.ietf.org/doc/html/draft-ietf-i2rs-rib-info-model-03
https://datatracker.ietf.org/doc/html/draft-ietf-i2rs-rib-info-model-03
http://www.itu.int/en/ITU-T/studygroups/2013-2016/11/Pages/default.aspx
http://www.itu.int/en/ITU-T/studygroups/2013-2016/11/Pages/default.aspx
http://www.itu.int/en/ITU-T/studygroups/2013-2016/13/Pages/default.aspx
http://www.itu.int/en/ITU-T/studygroups/2013-2016/13/Pages/default.aspx


Haleplidis, et al.      Expires February 2, 2015               [Page 25]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   [ITUSS7]   Telecommunication Standardization sector of ITU, "ITU,
              Q.700 : Introduction to CCITT Signalling System No. 7",
              1993.

   [KANDOO]   Hassas Yeganeh, Soheil, and Yashar Ganjali., "Kandoo: a
              framework for efficient and scalable offloading of control
              applications.", In Proceedings of the first workshop on
              Hot topics in software defined networks, pp. 19-24. ACM
              SIGCOMM, 2012. , 2012.

   [NFVArch]  European Telecommunication Standards Institute, "Network
              Functions Virtualisation (NFV): Architectural Framework;
              White paper, ETSI GS 9 NFV 002, 2013", December 2013,
              <http://www.etsi.org/deliver/etsi_gs/

NFV/001_099/003/01.01.01_60/gs_NFV003v010101p.pdf>.

   [NV09]     Chowdhury, NM Mosharaf Kabir, and Raouf Boutaba, "Network
              virtualization: state of the art and research challenges",
              Communications Magazine, IEEE 47.7 (2009): 20-26 , 2009.

   [OF-CONFIG]
              Open Networking Foundation, "OpenFlow Management and
              Configuration Protocol 1.1.1", March 2013,
              <https://www.opennetworking.org/images/stories/downloads/

sdn-resources/onf-specifications/openflow-config/of-
config-1-1-1.pdf>.

   [OF08]     McKeown, Nick, et al., "OpenFlow: enabling innovation in
              campus networks", ACM SIGCOMM Computer Communication
              Review 38.2 (2008): 69-74 , 2008.

   [OFSIGC]   McKeown, Nick, Tom Anderson, Hari Balakrishnan, Guru
              Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker,
              and Jonathan Turner., "OpenFlow: enabling innovation in
              campus networks.", ACM SIGCOMM Computer Communication
              Review 38, no. 2 (2008): 69-74. , 1998.

   [ONFArch]  Open Networking Foundation, "SDN Architecture Overview",
              December 2013,
              <https://www.opennetworking.org/images/stories/downloads/

sdn-resources/technical-reports/SDN-architecture-overview-
1.0.pdf>.

http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.01.01_60/gs_NFV003v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.01.01_60/gs_NFV003v010101p.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1-1-1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1-1-1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1-1-1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf


Haleplidis, et al.      Expires February 2, 2015               [Page 26]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   [OpenFlow]
              Open Networking Foundation, "The OpenFlow 1.4
              Specification.", October 2013,
              <https://www.opennetworking.org/images/stories/downloads/

sdn-resources/onf-specifications/openflow/openflow-spec-
v1.4.0.pdf>.

   [P1520]    Biswas, Jit, Aurel A. Lazar, J-F. Huard, Koonseng Lim,
              Semir Mahjoub, L-F. Pau, Masaaki Suzuki, Soren
              Torstensson, Weiguo Wang, and Stephen Weinstein., "The
              IEEE P1520 standards initiative for programmable network
              interfaces.", Communications Magazine, IEEE 36, no. 10
              (1998): 64-70. , 1998.

   [PENet]    Hedstrom, Brian, Akshay Watwe, and Siddharth Sakthidharan,
              "Protocol Efficiencies of NETCONF versus SNMP for
              Configuration Management Functions", PhD dissertation,
              Master's thesis, University of Colorado, 2011 , 2011.

   [PNSurvey99]
              Campbell, Andrew T., et al, "A survey of programmable
              networks", ACM SIGCOMM Computer Communication Review 29.2
              (1999): 7-23 , September 1992.

   [PPIPP]    Bosshart, Pat, Dan Daly, Martin Izzard, Nick McKeown,
              Jennifer Rexford, Dan Talayco, Amin Vahdat, George
              Varghese, and David Walker., "Programming Protocol-
              Independent Packet Processors.", arXiv preprint
              arXiv:1312.1719 (2013). , 2013.

   [PiNA]     John Day, "Patterns in network architecture: a return to
              fundamentals.", Prentice Hall (ISBN 0132252422). , 2007.

   [RCP]      Caesar, Matthew, Donald Caldwell, Nick Feamster, Jennifer
              Rexford, Aman Shaikh, and Jacobus van der Merwe., "Design
              and implementation of a routing control platform.", In
              Proceedings of the 2nd conference on Symposium on
              Networked Systems Design & Implementation-Volume 2, pp.
              15-28. USENIX Association, 2005. , 2005.

   [REST]     Fielding, Roy, "Fielding Dissertation: Chapter 5:
              Representational State Transfer (REST).", 2000.

   [RFC0826]  Plummer, D., "Ethernet Address Resolution Protocol: Or
              converting network protocol addresses to 48.bit Ethernet
              address for transmission on Ethernet hardware", STD 37,

RFC 826, November 1982.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://datatracker.ietf.org/doc/html/rfc826


Haleplidis, et al.      Expires February 2, 2015               [Page 27]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   [RFC1953]  Newman, P., Edwards, W., Hinden, R., Hoffman, E., Ching
              Liaw, F., Lyon, T., and G. Minshall, "Ipsilon Flow
              Management Protocol Specification for IPv4 Version 1.0",

RFC 1953, May 1996.

   [RFC2297]  Newman, P., Edwards, W., Hinden, R., Hoffman, E., Liaw,
              F., Lyon, T., and G. Minshall, "Ipsilon's General Switch
              Management Protocol Specification Version 2.0", RFC 2297,
              March 1998.

   [RFC2578]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
              Schoenwaelder, Ed., "Structure of Management Information
              Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

   [RFC3411]  Harrington, D., Presuhn, R., and B. Wijnen, "An
              Architecture for Describing Simple Network Management
              Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
              December 2002.

   [RFC3412]  Case, J., Harrington, D., Presuhn, R., and B. Wijnen,
              "Message Processing and Dispatching for the Simple Network
              Management Protocol (SNMP)", STD 62, RFC 3412, December
              2002.

   [RFC3414]  Blumenthal, U. and B. Wijnen, "User-based Security Model
              (USM) for version 3 of the Simple Network Management
              Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

   [RFC3417]  Presuhn, R., "Transport Mappings for the Simple Network
              Management Protocol (SNMP)", STD 62, RFC 3417, December
              2002.

   [RFC3418]  Presuhn, R., "Management Information Base (MIB) for the
              Simple Network Management Protocol (SNMP)", STD 62, RFC

3418, December 2002.

   [RFC3535]  Schoenwaelder, J., "Overview of the 2002 IAB Network
              Management Workshop", RFC 3535, May 2003.

   [RFC4271]  Rekhter, Y., Li, T., and S. Hares, "A Border Gateway
              Protocol 4 (BGP-4)", RFC 4271, January 2006.

   [RFC4655]  Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
              Element (PCE)-Based Architecture", RFC 4655, August 2006.

   [RFC5440]  Vasseur, JP. and JL. Le Roux, "Path Computation Element
              (PCE) Communication Protocol (PCEP)", RFC 5440, March
              2009.

https://datatracker.ietf.org/doc/html/rfc1953
https://datatracker.ietf.org/doc/html/rfc2297
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3412
https://datatracker.ietf.org/doc/html/rfc3414
https://datatracker.ietf.org/doc/html/rfc3417
https://datatracker.ietf.org/doc/html/rfc3418
https://datatracker.ietf.org/doc/html/rfc3418
https://datatracker.ietf.org/doc/html/rfc3535
https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc4655
https://datatracker.ietf.org/doc/html/rfc5440


Haleplidis, et al.      Expires February 2, 2015               [Page 28]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   [RFC5531]  Thurlow, R., "RPC: Remote Procedure Call Protocol
              Specification Version 2", RFC 5531, May 2009.

   [RFC5743]  Falk, A., "Definition of an Internet Research Task Force
              (IRTF) Document Stream", RFC 5743, December 2009.

   [RFC5810]  Doria, A., Hadi Salim, J., Haas, R., Khosravi, H., Wang,
              W., Dong, L., Gopal, R., and J. Halpern, "Forwarding and
              Control Element Separation (ForCES) Protocol
              Specification", RFC 5810, March 2010.

   [RFC5812]  Halpern, J. and J. Hadi Salim, "Forwarding and Control
              Element Separation (ForCES) Forwarding Element Model", RFC

5812, March 2010.

   [RFC5880]  Katz, D. and D. Ward, "Bidirectional Forwarding Detection
              (BFD)", RFC 5880, June 2010.

   [RFC6020]  Bjorklund, M., "YANG - A Data Modeling Language for the
              Network Configuration Protocol (NETCONF)", RFC 6020,
              October 2010.

   [RFC6241]  Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
              Bierman, "Network Configuration Protocol (NETCONF)", RFC

6241, June 2011.

   [RFC6632]  Ersue, M. and B. Claise, "An Overview of the IETF Network
              Management Standards", RFC 6632, June 2012.

   [RFC7047]  Pfaff, B. and B. Davie, "The Open vSwitch Database
              Management Protocol", RFC 7047, December 2013.

   [RFC7149]  Boucadair, M. and C. Jacquenet, "Software-Defined
              Networking: A Perspective from within a Service Provider
              Environment", RFC 7149, March 2014.

   [RINA]     John Day, Ibrahim Matta, and Karim Mattar., "Networking is
              IPC: a guiding principle to a better internet.", In
              Proceedings of the 2008 ACM CoNEXT Conference, p. 67. ACM,
              2008. , 2008.

https://datatracker.ietf.org/doc/html/rfc5531
https://datatracker.ietf.org/doc/html/rfc5743
https://datatracker.ietf.org/doc/html/rfc5810
https://datatracker.ietf.org/doc/html/rfc5812
https://datatracker.ietf.org/doc/html/rfc5812
https://datatracker.ietf.org/doc/html/rfc5880
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6632
https://datatracker.ietf.org/doc/html/rfc7047
https://datatracker.ietf.org/doc/html/rfc7149


Haleplidis, et al.      Expires February 2, 2015               [Page 29]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   [RouteFlow]
              Nascimento, Marcelo R., Christian E. Rothenberg, Marcos R.
              Salvador, Carlos NA Correa, Sidney C. de Lucena, and
              Mauricio F. Magalhaes., "Virtual routers as a service: the
              routeflow approach leveraging software-defined networks.",
              In Proceedings of the 6th International Conference on
              Future Internet Technologies, pp. 34-37. ACM, 2011. ,
              2011.

   [SDNACS]   Diego Kreutz, Fernando M. V. Ramos, Paulo Verissimo,
              Christian Esteve Rothenberg, Siamak Azodolmolky, Steve
              Uhlig, "Software-Defined Networking: A Comprehensive
              Survey.", arXiv preprint arXiv:1406.0440 , 2014.

   [SDNHistory]
              Feamster, Nick, Jennifer Rexford, and Ellen Zegura., "The
              Road to SDN", ACM Queue11, no. 12 (2013): 20. , 2013.

   [SDNNFV]   Haleplidis, Evangelos, Jamal Hadi Salim, Spyros Denazis,
              and Odysseas Koufopavlou., "Towards a Network Abstraction
              Model for SDN.", Journal of Network and Systems Management
              (2014): 1-19. Special Issue on Management of Software
              Defined Networks, Springer , 2014.

   [SDNSecOF]
              Kloti, Rowan, Vasileios Kotronis, and Paul Smith.,
              "Openflow: A security analysis.", Proceedings Workshop on
              Secure Network Protocols (NPSec). IEEE (2013). , 2013,
              <http://www.csg.ethz.ch/people/vkotroni/openflow_sec>.

   [SDNSecServ]
              Sandra Scott-Hayward, Gemma O'Callaghan, and Sakir Sezer.,
              "SDN security: A survey.", In Future Networks and Services
              (SDN4FNS), 2013 IEEE SDN for, pp. 1-7. IEEE, 2013. , 2013.

   [SDNSecurity]
              Diego Kreutz, Fernando Ramos, and Paulo Verissimo.,
              "Towards secure and dependable software-defined
              networks.", In Proceedings of the second ACM SIGCOMM
              workshop on Hot topics in software defined networking, pp.
              55-60. ACM, 2013. , 2013.

   [SDNSurvey]
              Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam Nguyen,
              Katia Obraczka, and Thierry Turletti, "A Survey of
              Software-Defined Networking: Past, Present, and Future of
              Programmable Networks", IEEE Communications Surveys and
              Tutorials DOI:10.1109/SURV.2014.012214.00180 , 2014.

http://www.csg.ethz.ch/people/vkotroni/openflow_sec


Haleplidis, et al.      Expires February 2, 2015               [Page 30]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   [SLTSDN]   Yosr Jarraya, Taous Madi, and Mourad Debbabi, "A Survey
              and a Layered Taxonomy of Software-Defined Networking", To
              be published in Communications Surveys and Tutorials, IEEE
              Issue: 99 , 2014.

   [SoftRouter]
              Lakshman, T. V., T. Nandagopal, R. Ramjee, K. Sabnani, and
              T. Woo., "The softrouter architecture.", In Proc. ACM
              SIGCOMM Workshop on Hot Topics in Networking. 2004. ,
              2004.

   [Tempest]  Rooney, Sean, Jacobus E. van der Merwe, Simon A. Crosby,
              and Ian M. Leslie., "The Tempest: a framework for safe,
              resource assured, programmable networks.", Communications
              Magazine, IEEE 36, no. 10 (1998): 42-53 , 1998.

Authors' Addresses

   Evangelos Haleplidis (editor)
   University of Patras
   Department of Electrical and Computer Engineering
   Patras  26500
   Greece

   Email: ehalep@ece.upatras.gr

   Kostas Pentikousis (editor)
   EICT GmbH
   Torgauer Strasse 12-15
   10829 Berlin
   Germany

   Email: k.pentikousis@eict.de

   Spyros Denazis
   University of Patras
   Department of Electrical and Computer Engineering
   Patras  26500
   Greece

   Email: sdena@upatras.gr



Haleplidis, et al.      Expires February 2, 2015               [Page 31]



Internet-Draft   SDN Layers and Architecture Terminology     August 2014

   Jamal Hadi Salim
   Mojatatu Networks
   Suite 400, 303 Moodie Dr.
   Ottawa, Ontario  K2H 9R4
   Canada

   Email: hadi@mojatatu.com

   David Meyer
   Brocade

   Email: dmm@1-4-5.net

   Odysseas Koufopavlou
   University of Patras
   Department of Electrical and Computer Engineering
   Patras  26500
   Greece

   Email: odysseas@ece.upatras.gr



Haleplidis, et al.      Expires February 2, 2015               [Page 32]


