
Network Working Group I.B.C. Baz Castillo

Internet-Draft J.L.M. Luis Millan

Intended status: Standards Track XtraTelecom S.A.

Expires: March 16, 2012 V.P. Pascual

Acme Packet

September 13, 2011

WebSocket Transport for Session Initiation Protocol (SIP)

draft-ibc-rtcweb-sip-websocket-00

Abstract

This document specifies a WebSocket subprotocol for a new transport in

SIP (Session Initiation Protocol). The WebSocket protocol enables two-

way realtime communication between clients (typically web-based

applications) and servers. The main goal of this specification is to

integrate the SIP protocol within web applications.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on March 16, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction*

2. Conventions

3. Scope

4. SIP WebSocket Transport

4.1. Via Transport Parameter

4.2. SIP URI Transport Parameter

4.3. Sending Responses

5. The WebSocket SIP Subprotocol

6. WebSocket Client Usage

6.1. WebSocket Disconnection

7. WebSocket Server Usage

7.1. SIP Proxy Considerations

8. WebSocket Connection Keep Alive

9. Examples

9.1. Registration

9.2. INVITE dialog through a proxy

9.3. INVITE dialog through two proxies

10. Security Considerations

11. IANA Considerations

11.1. Registration of new Via transports

11.2. Registration of new SIP URI transport

11.3. Registration of the WebSocket SIP subprotocol

12. References

12.1. Normative References

12.2. Informative References

Authors' Addresses

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

1. Introduction

Integrating the SIP protocol [RFC3261] within modern web-based

applications has been a hard task historically due to the specification

complexity and inherent limitations in web browsers and HTTP protocol

[RFC2616]. The arrival of WebSocket [I-D.ietf-hybi-

thewebsocketprotocol] and [RTC-Web] (Real Time Collaboration on the

World Wide Web) provides a two-way communication technology for web-

based applications along with multimedia capabilities for audio and

video sessions in web browsers, making feasible the requeriments of the

SIP protocol.

This specification defines a new WebSocket subprotocol for transporting

SIP messages between a WebSocket client and server, a new transport for

the SIP protocol and procedures for SIP proxies when behaving as a

bridge between WebSocket and other SIP transports. No changes have been

made to the SIP protocol [RFC3261].

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

3. Scope

The WebSocket protocol is mostly suitable for web-based applications

running in a web browser. Other applications running out of web

browsers do not have the constraints of web applications since

typically they can directly access to the transport layer.

In the same manner, the WebSocket protocol adds a network overhead

since it works as an intermediary layer between the transport and

application layers. There is no benefit on using SIP over WebSocket

transport between two SIP nodes when none of them runs within a web

browser. Even more, the WebSocket protocol is not symmetric since just

a WebSocket client can open a connection to a WebSocket server (a

WebSocket client does not listen for incoming connections).

Given these arguments, this specification is mostly focused on

integrating the SIP protocol within web-based applications or any

client application using the WebSocket protocol. Other aspects such as

DNS NAPTR/SRV resolution for SIP over WebSocket transport are not

covered by this specification since they are mainly useless given the

WebSocket protocol nature.

This document just covers SIP as a signalling protocol, leaving

multimedia capabilities integration for a separate document once [RTC-

Web] (Real Time Collaboration on the World Wide Web) becomes a

standard.

4. SIP WebSocket Transport

WebSocket [I-D.ietf-hybi-thewebsocketprotocol] is a reliable protocol

and therefore the WebSocket subprotocol for a SIP transport defined by

this document is also a reliable transport. Thus, client and server

transactions using WebSocket transport MUST follow the procedures and

timer values for a reliable transport as defined in [RFC3261].

4.1. Via Transport Parameter

Via header fields carry the transport protocol identifier. This

document defines the value "WS" to be used for requests over plain

WebSocket protocol and "WSS" for requests over secure WebSocket

protocol (in which the WebSocket session is established on top of TLS

[RFC5246] over TCP transport).

 transport = "UDP" / "TCP" / "TLS" / "WS" / "WSS"

 / other-transport

The updated augmented BNF (Backus-Naur Form) [RFC5234] for this

parameter is the following (the original BNF for this parameter can be

found in [RFC3261]):

 Via: SIP/2.0/WS 1.2.3.4:28456

 Via: SIP/2.0/WSS [2001:0:63ba:74c:1806:7ea2:9aab:f892]:32802

The following are examples of Via header fields using "WS" and "WSS":

4.2. SIP URI Transport Parameter

This document defines the value "ws" as the transport parameter value

for a SIP URI [RFC3986] to be contacted using WebSocket protocol.

Whether to select a plain or secure WebSocket connection depends on the

SIP URI schema ("sip" schema means plain WebSocket connection while

"sips" schema requires secure WebSocket connection).

 transport-param = "transport="

 ("udp" / "tcp" / "sctp" / "tls" / "ws"

 / other-transport)

The updated augmented BNF (Backus-Naur Form) [RFC5234] for this

parameter is the following (the original BNF for this parameter can be

found in [RFC3261]):

 sip:alice@1.2.3.4:28456;transport=ws

 sips:bob@[2001:0:63ba:74c:1806:7ea2:9aab:f892]:32802;transport=ws

The following are examples of SIP URI's containing a "ws" transport

parameter:

4.3. Sending Responses

The SIP server transport uses the value of the top Via header field in

order to determine where to send a response. If the "sent-protocol" is

"WS" or "WSS" the response MUST be sent using the existing WebSocket

connection to the source of the original request, if that connection is

still open. This requires the server transport to maintain an

association between server transactions and transport connections. If

that connection is no longer open, the server MUST NOT attempt to open

a WebSocket connection to the Via "sent-by"/"received"/"rport".

This is due the nature of the WebSocket protocol in which just

the WebSocket client can establish a connection with the

WebSocket server. A WebSocket client does not listen for incoming

connections.

5. The WebSocket SIP Subprotocol

The term WebSocket subprotocol refers to the application-level protocol

layered over a WebSocket connection. This document specifies the

WebSocket SIP subprotocol for carrying SIP requests and responses

through a WebSocket connection.

WebSocket [I-D.ietf-hybi-thewebsocketprotocol] defines message units as

application data exchange for communication endpoints, becoming a

message boundary protocol. These messages can contain UTF-8 text or

binary data. The WebSocket SIP subprotocol specified in this document

mandates messages of type UTF-8 text.

The WebSocket client and WebSocket server send SIP messages to each

other. Each SIP message MUST be carried within a single WebSocket

message and MUST be a complete SIP message, so a Content-Length header

field is not mandatory. Sending more than one SIP message within a

single WebSocket message is not allowed, neither sending an incomplete

SIP message.

This makes parsing of SIP messages easier on client side

(typically web-based applications with an strict and simple API

for receiving WebSocket messages). There is no need to establish

boundaries (typically using Content-Length headers) between

different messages. Same advantage is present in other message-

based SIP transports as UDP or SCTP [RFC4168].

6. WebSocket Client Usage

As stated in [I-D.ietf-hybi-thewebsocketprotocol], a WebSocket URI

[RFC3986] is given to the WebSocket client (typically within a web-

based application) who resolves the URI destination and establishes a

WebSocket connection with the corresponding server (by performing the

handshake and negotiation procedures described in [I-D.ietf-hybi-

thewebsocketprotocol]).

*

*

The client application is supposed to be provided with SIP account

configuration values (as an AoR, outbound proxy and so on). Such values

are used by the client application when generating SIP messages.

After establishing the WebSocket connection, the client SHOULD discover

the source IP and port from which the server has received the TCP

connection. Such IP and port are required for constructing the client's

SIP local URI (to be used in Contact header during SIP registration and

SIP dialogs).

The mechanism used by the client application in order to discover

its source IP and port is currently out of the scope of this

specification, although it might be defined in future revisions

of this document.

The client's SIP local URI MUST be constructed as follows:

If the WebSocket connection is secure (given WebSocket URI has

"wss" schema) the URI MUST have "sips" schema, "sip" otherwise.

The URI username is up to the application.

The URI hostport is determined by the local IP and port

previously retrieved.

A "transport" parameter with value "ws" MUST be added to the URI.

This SIP local URI MUST be used by the client as a registration binding

(Contact URI in a REGISTER) and as a local target for SIP dialogs

(Contact URI in a request or response) since this URI is the only

adddress in which the client can be contacted, and just through the

WebSocket server.

Any new request sent by the client MUST contain the discovered local IP

and port in the Via "sent-by" field. Via "sent-transport" field MUST be

set to "WSS" if the WebSocket connection is secure, to "WS" otherwise.

Due to the nature of the WebSocket protocol, the client sends all the

SIP requests to the WebSocket server it is connected to, so the

WebSocket server behaves as a de facto outbound SIP proxy.

In case the client application decides to close the WebSocket

connection (for example when performing "logout" in a web application)

it is recommended to remove the existing SIP registration binding (if

present) by specifying an expiration interval of "0" for that contact

address in a REGISTER request as described in section 10.2.2 of

[RFC3261].

6.1. WebSocket Disconnection

In some circumstances the WebSocket connection could be terminated by

the WebSocket server (for example when the server is restarted). If the

client application wants to become reachable again it SHOULD reconnect

*

*

*

*

*

to the WebSocket server and perform the SIP local URI discovery process

again followed by a new SIP registration.

The client MAY also remove the previous registration binding in the

registrar server, as such address is no longer reachable.

When the WebSocket server is also the SIP registrar server, it

MAY remove the SIP registration bindings associated to a

WebSocket connection after such connection has been closed. Such

a decision is out of the scope of this specification and depends

on the SIP network topology.

7. WebSocket Server Usage

Here we assume that a SIP proxy or UAS (User Agent Server) is also

acting as a WebSocket server implementing the WebSocket subprotocol

described in this document. The server receives WebSocket connection

attempts from clients. How the server authorizes or not those

connections is out of the scope of this specification. Once the

WebSocket subprotocol defined in this document has been negotiated,

both client and server can send SIP messages to each other.

The server can only contact a SIP URI with the parameter "transport=ws"

in case the destination address belongs to an existing WebSocket

connection established from a WebSocket client. If not, a local

transport error MUST be generated (which involves a 500 or 503 SIP

response code).

Such a case could happen when an existing SIP registration

binding points to an already closed WebSocket connection which

was not removed.

7.1. SIP Proxy Considerations

A SIP proxy implementing WebSocket transport can intercommunicate

clients using SIP over WebSocket with other SIP clients or nodes using

any other transport.

When the proxy bridges between WebSocket transport and any other SIP

transport (including WebSocket transport) it MUST perform Loose Routing

as specified in [RFC3261]. Otherwise in-dialog requests would fail

since WebSocket clients cannot contact destinations other than their

WebSocket server, and non-WebSocket SIP nodes cannot establish a

connection to WebSocket clients. It is also recommended that the proxy

follows recommendations in [RFC5658] and uses double Record-Route

technique in these cases.

In the same way, if the SIP proxy implementing the WebSocket server

behaves as an outbound proxy for REGISTER requests, it MUST add a Path

header as described in [RFC3327]. Otherwise the WebSocket client would

never receive incoming requests from the SIP registrar server after the

lookup procedures in the SIP location service.

*

*

8. WebSocket Connection Keep Alive

It is recommended that the WebSocket client or server keeps the

WebSocket connection open by sending periodic Ping frames as described

in [I-D.ietf-hybi-thewebsocketprotocol] section 5.5.2. The mechanisms

of decision for a WebSocket endpoint to maintain, or not, the

connection over time is out of scope of this document.

In some cases due to transient network errors, the connection with the

WebSocket server could be lost without the WebSocket client being aware

of it. The WebSocket client would only realize of the network failure

when attempting to send new data over the WebSocket connection.

The authors of this specification have requested the W3C (World

Wide Web Consortium) to include a mechanism in the WebSocket API

[WS-API] for instructing the WebSocket client to supervise the

connection by sending periodical Ping frames at the interval

requested by the API user.

9. Examples

The flows depicted in this section describe the behavior of an initial

prototype which is currently under development.

9.1. Registration

Alice (SIP WS) WebSocket SIP Server

| |

|OPTIONS F1 |

|---------------------------->|

|200 OK F2 |

|<----------------------------|

| |

|REGISTER F3 |

|---------------------------->|

|200 OK F4 |

|<----------------------------|

| |

Alice is a WebSocket client running on a web browser. Alice establishes

a plain WebSocket connection with a WebSocket server (also a SIP proxy/

registrar) implementing the SIP subprotocol. Upon connection, Alice

sends a SIP OPTIONS request including an empty "rport" parameter

[RFC3581] in the Via header and obtains its source IP and port from the

Via "received" and "rport" parameters in the response. Alice then forms

its SIP local URI and constructs a REGISTER request.

Message details (authentication and SDP bodies are omitted for

simplicity):

*

F1 OPTIONS Alice -> WebSocket SIP Server

OPTIONS sip:ws-server.atlanta.com SIP/2.0

Via: SIP/2.0/WS 1.2.3.4;branch=z9hG4bKasudf;rport

From: sip:alice@atlanta.com;tag=ux8asodj

To: sip:ws-server.atlanta.com

Call-ID: 87djahs72kjsd

CSeq: 1 OPTIONS

Max-Forwards: 1

Accept: application/sdp

F2 200 OK WebSocket SIP Server -> Alice

SIP/2.0 200 OK

Via: SIP/2.0/WS 1.2.3.4;branch=z9hG4bKasudf;received=93.12.40.105;

 rport=19465

From: sip:alice@atlanta.com;tag=ux8asodj

To: sip:ws-server.atlanta.com;tag=jcx67hjm

Call-ID: 87djahs72kjsd

CSeq: 1 OPTIONS

Content-Type: application/sdp

F3 REGISTER Alice -> WebSocket SIP Server

REGISTER sip:proxy.atlanta.com SIP/2.0

Via: SIP/2.0/WS 93.12.40.105:19465;branch=z9hG4bKasudf

From: sip:alice@atlanta.com;tag=65bnmj.34asd

To: sip:ws-server.atlanta.com

Call-ID: aiuy7k9njasd

CSeq: 1 REGISTER

Max-Forwards: 70

Contact: <sip:alice@93.12.40.105:19465;transport=ws>

F4 200 OK WebSocket SIP Server -> Alice

SIP/2.0 200 OK

Via: SIP/2.0/WS 93.12.40.105:19465;branch=z9hG4bKasudf

From: sip:alice@atlanta.com;tag=65bnmj.34asd

To: sip:ws-server.atlanta.com;tag=12isjljn8

Call-ID: aiuy7k9njasd

CSeq: 1 REGISTER

Contact: <sip:alice@93.12.40.105:19465;transport=ws>

9.2. INVITE dialog through a proxy

Alice (SIP WSS) SIP Proxy (SIP UDP) Carol

| | |

|INVITE F1 | |

|---------------------------->| |

|100 Trying F2 | |

|<----------------------------| |

| |INVITE F3 |

| |---------------------------->|

| |200 OK F4 |

| |<----------------------------|

|200 OK F5 | |

|<----------------------------| |

| | |

|ACK F6 | |

|---------------------------->| |

| |ACK F7 |

| |---------------------------->|

| | |

| Both Way RTP Media |

|<===>|

| | |

| |BYE F8 |

| |<----------------------------|

|BYE F9 | |

|<----------------------------| |

|200 OK F10 | |

|---------------------------->| |

| |200 OK F11 |

| |---------------------------->|

| | |

Here the WebSocket server is also a SIP proxy and registrar for the

domain atlanta.com. Alice, a WebSocket SIP client, calls Carol's AoR

through a secure WebSocket connection. The WebSocket SIP server acts as

a SIP proxy routing the INVITE to the UDP location of Carol. The proxy

does Loose-Routing. Carol answers the call and terminates it later.

Message details (authentication and SDP bodies are omitted for

simplicity):

F1 INVITE Alice -> SIP Proxy (transport WSS)

INVITE sip:carol@atlanta.com SIP/2.0

Via: SIP/2.0/WSS 93.12.40.105:20565;branch=z9hG4bK56sdasks

From: sip:alice@atlanta.com;tag=asdyka899

To: sip:carol@atlanta.com

Call-ID: asidkj3ss

CSeq: 1 INVITE

Max-Forwards: 70

Contact: <sips:alice@93.12.40.105:20565;transport=ws>

Content-Type: application/sdp

F2 100 Trying SIP Proxy -> Alice (transport WSS)

SIP/2.0 100 Trying

Via: SIP/2.0/WSS 93.12.40.105:20565;branch=z9hG4bK56sdasks

From: sip:alice@atlanta.com;tag=asdyka899

To: sip:carol@atlanta.com

Call-ID: asidkj3ss

CSeq: 1 INVITE

F3 INVITE SIP Proxy -> Carol (transport UDP)

INVITE sip:carol@77.123.45.23:5060 SIP/2.0

Via: SIP/2.0/UDP 100.100.100.100;branch=z9hG4bKhjhjqw32c

Via: SIP/2.0/WSS 93.12.40.105:20565;branch=z9hG4bK56sdasks

Record-Route: <sip:100.100.100.100;transport=udp>,

 <sips:100.100.100.100:9090;transport=ws>

From: sip:alice@atlanta.com;tag=asdyka899

To: sip:carol@atlanta.com

Call-ID: asidkj3ss

CSeq: 1 INVITE

Max-Forwards: 69

Contact: <sips:alice@93.12.40.105:20565;transport=ws>

Content-Type: application/sdp

F4 200 OK Carol -> SIP Proxy (transport UDP)

SIP/2.0 200 OK

Via: SIP/2.0/UDP 100.100.100.100;branch=z9hG4bKhjhjqw32c

Via: SIP/2.0/WSS 93.12.40.105:20565;branch=z9hG4bK56sdasks

Record-Route: <sip:100.100.100.100;transport=udp>,

 <sips:100.100.100.100:9090;transport=ws>

From: sip:alice@atlanta.com;tag=asdyka899

To: sip:carol@atlanta.com;tag=bmqkjhsd

Call-ID: asidkj3ss

CSeq: 1 INVITE

Max-Forwards: 69

Contact: <sip:carol@77.123.45.23:5060;transport=udp>

Content-Type: application/sdp

F5 200 OK SIP Proxy -> Alice (transport WSS)

SIP/2.0 200 OK

Via: SIP/2.0/WSS 93.12.40.105:20565;branch=z9hG4bK56sdasks

Record-Route: <sip:100.100.100.100;transport=udp>,

 <sips:100.100.100.100:9090;transport=ws>

From: sip:alice@atlanta.com;tag=asdyka899

To: sip:carol@atlanta.com;tag=bmqkjhsd

Call-ID: asidkj3ss

CSeq: 1 INVITE

Max-Forwards: 69

Contact: <sip:carol@77.123.45.23:5060;transport=udp>

Content-Type: application/sdp

F6 ACK Alice -> SIP Proxy (transport WSS)

ACK sip:carol@77.123.45.23:5060;transport=udp SIP/2.0

Via: SIP/2.0/WSS 93.12.40.105:20565;branch=z9hG4bKhgqqp090

Route: <sips:100.100.100.100:9090;transport=ws>,

 <sip:100.100.100.100;transport=udp>

From: sip:alice@atlanta.com;tag=asdyka899

To: sip:carol@atlanta.com;tag=bmqkjhsd

Call-ID: asidkj3ss

CSeq: 1 ACK

Max-Forwards: 70

F7 ACK SIP Proxy -> Carol (transport UDP)

ACK sip:carol@77.123.45.23:5060;transport=udp SIP/2.0

Via: SIP/2.0/UDP 100.100.100.100;branch=z9hG4bKhwpoc80zzx

Via: SIP/2.0/WSS 93.12.40.105:20565;branch=z9hG4bKhgqqp090

From: sip:alice@atlanta.com;tag=asdyka899

To: sip:carol@atlanta.com;tag=bmqkjhsd

Call-ID: asidkj3ss

CSeq: 1 ACK

Max-Forwards: 69

F8 BYE Carol -> SIP Proxy (transport UDP)

BYE sips:alice@93.12.40.105:20565;transport=ws SIP/2.0

Via: SIP/2.0/UDP 77.123.45.23;branch=z9hG4bKbiuiansd001

Route: <sip:100.100.100.100;transport=udp>,

 <sips:100.100.100.100:9090;transport=ws>

From: sip:carol@atlanta.com;tag=bmqkjhsd

To: sip:alice@atlanta.com;tag=asdyka899

Call-ID: asidkj3ss

CSeq: 1201 BYE

Max-Forwards: 70

F9 BYE SIP Proxy -> Alice (transport WSS)

BYE sips:alice@93.12.40.105:20565;transport=ws SIP/2.0

Via: SIP/2.0/WSS 100.100.100.100:9090;branch=z9hG4bKmma01m3r5

Via: SIP/2.0/UDP 77.123.45.23;branch=z9hG4bKbiuiansd001

From: sip:carol@atlanta.com;tag=bmqkjhsd

To: sip:alice@atlanta.com;tag=asdyka899

Call-ID: asidkj3ss

CSeq: 1201 BYE

Max-Forwards: 69

F10 200 OK Alice -> SIP Proxy (transport WSS)

SIP/2.0 200 OK

Via: SIP/2.0/WSS 100.100.100.100:9090;branch=z9hG4bKmma01m3r5

Via: SIP/2.0/UDP 77.123.45.23;branch=z9hG4bKbiuiansd001

From: sip:carol@atlanta.com;tag=bmqkjhsd

To: sip:alice@atlanta.com;tag=asdyka899

Call-ID: asidkj3ss

CSeq: 1201 BYE

F11 200 OK SIP Proxy -> Carol (transport UDP)

SIP/2.0 200 OK

Via: SIP/2.0/UDP 77.123.45.23;branch=z9hG4bKbiuiansd001

From: sip:carol@atlanta.com;tag=bmqkjhsd

To: sip:alice@atlanta.com;tag=asdyka899

Call-ID: asidkj3ss

CSeq: 1201 BYE

9.3. INVITE dialog through two proxies

Alice (SIP WS) Proxy 1 (SIP UDP) Proxy 2 (SIP WSS) Bob

| | | |

|INVITE F1 | | |

|-------------------->| | |

|100 Trying F2 | | |

|<--------------------| | |

| |INVITE F3 | |

| |-------------------->| |

| |100 Trying F4 | |

| |<--------------------| |

| | |INVITE F5 |

| | |-------------------->|

| | |486 Busy Here F6 |

| | |<--------------------|

| | |ACK F7 |

| | |-------------------->|

| |486 Busy Here F8 | |

| |<--------------------| |

| |ACK F9 | |

| |-------------------->| |

|486 Busy Here F10 | | |

|<--------------------| | |

|ACK F11 | | |

|-------------------->| | |

| | | |

Alice and Bob are WebSocket clients running on web browsers. Alice

belongs to atlanta.com SIP domain while Bob does to biloxi.com. Each

domain has its own SIP proxy. Both proxies are also WebSocket servers.

Alice calls Bob's AoR through a WebSocket connection. Bob responds the

INVITE with a 486 Busy Here. Communication through proxies is made via

UDP transport protocol.

Message details (authentication and SDP bodies are omitted for

simplicity):

F1 INVITE Alice -> Proxy 1 (transport WS)

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/WS 93.12.40.105:21324;branch=z9hG4bKmmuuq

From: Alice <sip:alice@atlanta.com>;tag=lxtyr

To: Bob <sip:bob@biloxi.com>

Call-ID: aslke3dkj

CSeq: 1 INVITE

Max-Forwards: 70

Contact: <sip:alice@93.12.40.105:21324;transport=ws>

Content-Type: application/sdp

F2 100 Trying Proxy 1 -> Alice (transport WS)

SIP/2.0 100 Trying

Via: SIP/2.0/WS 93.12.40.105:21324;branch=z9hG4bKmmuuq

From: Alice <sip:alice@atlanta.com>;tag=lxtyr

To: Bob <sip:bob@biloxi.com>

Call-ID: aslke3dkj

CSeq: 1 INVITE

F3 INVITE Proxy 1 -> Proxy 2 (transport UDP)

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP 101.101.101.101;branch=z9hG4bKdkej

Via: SIP/2.0/WS 93.12.40.105:21324;branch=z9hG4bKmmuuq

Record-Route: <sip:101.101.101.101;transport=udp>

Record-Route: <sip:101.101.101.101:80;transport=ws>

From: Alice <sip:alice@atlanta.com>;tag=lxtyr

To: Bob <sip:bob@biloxi.com>

Call-ID: aslke3dkj

CSeq: 1 INVITE

Max-Forwards: 69

Contact: <sip:alice@93.12.40.105:21324;transport=ws>

Content-Type: application/sdp

F4 100 Trying Proxy 2 -> Proxy 1 (transport UDP)

SIP/2.0 100 Trying

Via: SIP/2.0/UDP 101.101.101.101;branch=z9hG4bKdkej

Via: SIP/2.0/WS 93.12.40.105:21324;branch=z9hG4bKmmuuq

From: Alice <sip:alice@atlanta.com>;tag=lxtyr

To: Bob <sip:bob@biloxi.com>

Call-ID: aslke3dkj

CSeq: 1 INVITE

F5 INVITE Proxy 2 -> Bob (transport WSS)

INVITE sips:bob@85.84.123.222:30142;transport=ws SIP/2.0

Via: SIP/2.0/WSS 102.102.102.102:443;branch=z9hG4bKqowin

Via: SIP/2.0/UDP 101.101.101.101;branch=z9hG4bKdkej

Via: SIP/2.0/WS 93.12.40.105:21324;branch=z9hG4bKmmuuq

Record-Route: <sips:102.102.102.102:443;transport=ws>

Record-Route: <sip:102.102.102.102;transport=udp>

Record-Route: <sip:101.101.101.101;transport=udp>

Record-Route: <sip:101.101.101.101:9090;transport=ws>

From: Alice <sip:alice@atlanta.com>;tag=lxtyr

To: Bob <sip:bob@biloxi.com>

Call-ID: aslke3dkj

CSeq: 1 INVITE

Max-Forwards: 68

Contact: <sip:alice@93.12.40.105:21324;transport=ws>

Content-Type: application/sdp

F6 486 Busy Here Bob -> Proxy 2 (transport WSS)

SIP/2.0 486 Busy Here

Via: SIP/2.0/WSS 102.102.102.102:443;branch=z9hG4bKqowin

Via: SIP/2.0/UDP 101.101.101.101;branch=z9hG4bKdkej

Via: SIP/2.0/WS 93.12.40.105:21324;branch=z9hG4bKmmuuq

From: Alice <sip:alice@atlanta.com>;tag=lxtyr

To: Bob <sip:bob@biloxi.com>;tag=dskfjd

Call-ID: aslke3dkj

CSeq: 1 INVITE

F7 ACK Proxy 2 -> Bob (transport WSS)

ACK sips:bob@85.84.123.222:30142;transport=ws SIP/2.0

Via: SIP/2.0/WSS 102.102.102.102:443;branch=z9hG4bKqowin

From: Alice <sip:alice@atlanta.com>;tag=lxtyr

To: Bob <sip:bob@biloxi.com>;tag=dskfjd

Call-ID: aslke3dkj

CSeq: 1 ACK

F8 486 Busy Here Proxy 2 -> Proxy 1 (transport UDP)

SIP/2.0 486 Busy Here

Via: SIP/2.0/UDP 101.101.101.101;branch=z9hG4bKdkej

Via: SIP/2.0/WS 93.12.40.105:21324;branch=z9hG4bKmmuuq

From: Alice <sip:alice@atlanta.com>;tag=lxtyr

To: Bob <sip:bob@biloxi.com>;tag=dskfjd

Call-ID: aslke3dkj

CSeq: 1 INVITE

WS:

WSS:

F9 ACK Proxy 1 -> Proxy 2 (transport UDP)

ACK sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP 101.101.101.101;branch=z9hG4bKdkej

From: Alice <sip:alice@atlanta.com>;tag=lxtyr

To: Bob <sip:bob@biloxi.com>;tag=dskfjd

Call-ID: aslke3dkj

CSeq: 1 ACK

F10 486 Busy Here Proxy 1 -> Alice (transport WS)

SIP/2.0 486 Busy Here

Via: SIP/2.0/WS 93.12.40.105:21324;branch=z9hG4bKmmuuq

From: Alice <sip:alice@atlanta.com>;tag=lxtyr

To: Bob <sip:bob@biloxi.com>;tag=dskfjd

Call-ID: aslke3dkj

CSeq: 1 INVITE

F11 ACK Alice -> Proxy 1 (transport WS)

ACK sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/WS 93.12.40.105:21324;branch=z9hG4bKmmuuq

From: Alice <sip:alice@atlanta.com>;tag=lxtyr

To: Bob <sip:bob@biloxi.com>;tag=dskfjd

Call-ID: aslke3dkj

CSeq: 1 ACK

10. Security Considerations

If the client (typically a web-based application) needs to protect the

privacy of the SIP traffic through the WebSocket connection, it is

encouraged to use a secure WebSocket connection.

11. IANA Considerations

11.1. Registration of new Via transports

This specification registers two new transport identifiers for Via

headers:

MUST be used when constructing a SIP request to be sent over a

plain WebSocket connection.

MUST be used when constructing a SIP request to be sent over a

secure WebSocket connection (tunneled over TLS [RFC5246]).

ws:

11.2. Registration of new SIP URI transport

This specification registers a new value for the "transport" parameter

in a SIP URI:

Identifies a SIP URI to be contacted using a WebSocket (plain or

secure) connection.

11.3. Registration of the WebSocket SIP subprotocol

If a registry is created for WebSocket subprotocols, the SIP

subprotocol defined in this specification will be registered.

12. References

12.1. Normative References

[RFC2119]

Bradner, S., "Key words for use in RFCs

to Indicate Requirement Levels", BCP 14,

RFC 2119, March 1997.

[RFC5234]

Crocker, D. and P. Overell, "Augmented

BNF for Syntax Specifications: ABNF", STD

68, RFC 5234, January 2008.

[RFC3261]

Rosenberg, J., Schulzrinne, H.,

Camarillo, G., Johnston, A., Peterson,

J., Sparks, R., Handley, M. and E.

Schooler, "SIP: Session Initiation

Protocol", RFC 3261, June 2002.

[I-D.ietf-hybi-

thewebsocketprotocol]

Fette, I and A Melnikov, "The WebSocket

protocol", Internet-Draft draft-ietf-

hybi-thewebsocketprotocol-14, September

2011.

12.2. Informative References

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC3986]

Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

[RFC4168]

Rosenberg, J., Schulzrinne, H. and G. Camarillo, "The

Stream Control Transmission Protocol (SCTP) as a

Transport for the Session Initiation Protocol (SIP)",

RFC 4168, October 2005.

[RFC5246]

Dierks, T. and E. Rescorla, "The Transport Layer

Security (TLS) Protocol Version 1.2", RFC 5246, August

2008.

[RFC3327]

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-14
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-14
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc4168
http://tools.ietf.org/html/rfc4168
http://tools.ietf.org/html/rfc4168
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246

Willis, D. and B. Hoeneisen, "Session Initiation

Protocol (SIP) Extension Header Field for Registering

Non-Adjacent Contacts", RFC 3327, December 2002.

[RFC3581]

Rosenberg, J. and H. Schulzrinne, "An Extension to the

Session Initiation Protocol (SIP) for Symmetric

Response Routing", RFC 3581, August 2003.

[RFC5658]

Froment, T., Lebel, C. and B. Bonnaerens, "Addressing

Record-Route Issues in the Session Initiation Protocol

(SIP)", RFC 5658, October 2009.

[WS-API] Hickson, I., "The Web Sockets API", September 2010.

[RTC-Web]
IETFW3C, "Real Time Collaboration on the World Wide

Web", October 2010.

Authors' Addresses

Inaki Baz Castillo Baz Castillo XtraTelecom S.A. Barakaldo, Basque

Country Spain EMail: ibc@aliax.net

Jose Luis Millan Luis Millan XtraTelecom S.A.

Bilbao, Basque Country Spain EMail: jmillan@aliax.net

Victor Pascual Pascual Acme Packet Anabel Segura 10 Madrid, Madrid

28108 Spain EMail: vpascual@acmepacket.com

http://tools.ietf.org/html/rfc3327
http://tools.ietf.org/html/rfc3327
http://tools.ietf.org/html/rfc3327
http://tools.ietf.org/html/rfc3581
http://tools.ietf.org/html/rfc3581
http://tools.ietf.org/html/rfc3581
http://tools.ietf.org/html/rfc5658
http://tools.ietf.org/html/rfc5658
http://tools.ietf.org/html/rfc5658
mailto:ibc@aliax.net
mailto:jmillan@aliax.net
mailto:vpascual@acmepacket.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions
	3. Scope
	4. SIP WebSocket Transport
	4.1. Via Transport Parameter
	4.2. SIP URI Transport Parameter
	4.3. Sending Responses
	5. The WebSocket SIP Subprotocol
	6. WebSocket Client Usage
	6.1. WebSocket Disconnection
	7. WebSocket Server Usage
	7.1. SIP Proxy Considerations
	8. WebSocket Connection Keep Alive
	9. Examples
	9.1. Registration
	9.2. INVITE dialog through a proxy
	9.3. INVITE dialog through two proxies
	10. Security Considerations
	11. IANA Considerations
	11.1. Registration of new Via transports
	11.2. Registration of new SIP URI transport
	11.3. Registration of the WebSocket SIP subprotocol
	12. References
	12.1. Normative References
	12.2. Informative References
	Authors' Addresses

