
Applications Area Working Group P. Bryan, Ed.
Internet-Draft Salesforce.com
Intended status: Standards Track K. Zyp
Expires: July 8, 2013 SitePen (USA)
 M. Nottingham, Ed.
 Akamai
 January 4, 2013

JavaScript Object Notation (JSON) Pointer
draft-ietf-appsawg-json-pointer-08

Abstract

 JSON Pointer defines a string syntax for identifying a specific value
 within a JavaScript Object Notation (JSON) document.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 8, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bryan, et al. Expires July 8, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSON Pointer January 2013

Table of Contents

1. Introduction . 3
2. Conventions . 3
3. Syntax . 3
4. Evaluation . 3
5. JSON String Representation 5
6. URI Fragment Identifier Representation 6
7. Error Handling . 6
8. IANA Considerations . 7
9. Security Considerations . 7
10. Acknowledgements . 7
11. References . 7
11.1. Normative References 7
11.2. Informative References 8

 Authors' Addresses . 8

Bryan, et al. Expires July 8, 2013 [Page 2]

Internet-Draft JSON Pointer January 2013

1. Introduction

 This specification defines JSON Pointer, a string syntax for
 identifying a specific value within a JavaScript Object Notation
 (JSON) [RFC4627] document. It is intended to be easily expressed in
 JSON string values as well as Uniform Resource Identifier (URI)
 [RFC3986] fragment identifiers.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This specification expresses normative syntax rules using Augmented
 Backus-Naur Form (ABNF) [RFC5234] notation.

3. Syntax

 A JSON Pointer is a Unicode string (see [RFC4627], Section 3)
 containing a sequence of zero or more reference tokens, each prefixed
 by a '/' (%x2F) character.

 Because the characters '~' (%x7E) and '/' (%x2F) have special
 meanings in JSON Pointer, '~' needs to be encoded as '~0' and '/'
 needs to be encoded as '~1' when these characters appear in a
 reference token.

 The ABNF syntax of a JSON Pointer is:

 json-pointer = *("/" reference-token)
 reference-token = *(unescaped / escaped)
 unescaped = %x00-2E / %x30-7D / %x7F-10FFFF
 ; %x2F ('/') and %x7E ('~') are excluded from 'unescaped'
 escaped = "~" ("0" / "1")
 ; representing '~' and '/', respectively

 It is an error condition if a JSON Pointer value does not conform to
 this syntax (see Section 7).

 Note that JSON Pointers are specified in characters, not as bytes.

4. Evaluation

 Evaluation of a JSON Pointer begins with a reference to the root

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc4627#section-3

Bryan, et al. Expires July 8, 2013 [Page 3]

Internet-Draft JSON Pointer January 2013

 value of a JSON document and completes with a reference to some value
 within the document. Each reference token in the JSON Pointer is
 sequentially evaluated.

 Evaluation of each reference token begins by decoding any escaped
 character sequence; this is performed by first transforming any
 occurrence of the sequence '~1' to '/', then transforming any
 occurrence of the sequence '~0' to '~'. By performing the
 substitutions in this order, an implementation avoids the error of
 turning '~01' first into '~1' and then into '/', which would be
 incorrect (the string '~01' correctly becomes '~1' after
 transformation).

 The reference token then modifies which value is referenced according
 to the following scheme:

 o If the currently referenced value is a JSON object, the new
 referenced value is the object member with the name identified by
 the reference token. The member name is equal to the token if it
 has the same number of Unicode characters as token and their code
 points are position-wise equal. No Unicode character
 normalization is performed. If a referenced member name is not
 unique in an object, the member that is referenced is undefined,
 and evaluation fails (see below).

 o If the currently referenced value is a JSON array, the reference
 token MUST contain either:

 * characters comprised of digits (see ABNF below; note that
 leading zeros are not allowed) that represent an unsigned
 base-10 integer value, making the new referenced value the
 array element with the zero-based index identified by the
 token, or

 * exactly the single character "-", making the new referenced
 value the (non-existant) member after the last array element.

 The ABNF syntax for array indices is:

 array-index = %x30 / (%x31-39 *(%x30-39))
 ; "0", or digits without a leading "0"

 Implementations will evaluate each reference token against the
 document's contents, and terminate evaluation with an error condition
 if it fails to resolve a concrete value for any of the JSON pointer's
 reference tokens. For example, if an array is referenced with a non-
 numeric token, it will fail. See Section 7 for details.

Bryan, et al. Expires July 8, 2013 [Page 4]

Internet-Draft JSON Pointer January 2013

 Note that the use of the "-" character to index an array will always
 result in such an error; applications of JSON Pointer thus need to
 specify how it is to be handled, if it is to be useful.

5. JSON String Representation

 A JSON Pointer can be represented in a JSON string value. Per
[RFC4627], Section 2.5, all instances of quotation mark '"' (%x22),

 reverse solidus '\' (%x5C) and control (%x00-1F) characters MUST be
 escaped.

 Note that before processing a JSON string as a JSON Pointer,
 backslash escape sequences must be unescaped.

 For example, given the JSON document

 {
 "foo": ["bar", "baz"],
 "": 0,
 "a/b": 1,
 "c%d": 2,
 "e^f": 3,
 "g|h": 4,
 "i\\j": 5,
 "k\"l": 6,
 " ": 7,
 "m~n": 8
 }

 Then the following JSON strings evaluate to the accompanying values:

 "" // the whole document
 "/foo" ["bar", "baz"]
 "/foo/0" "bar"
 "/" 0
 "/a~1b" 1
 "/c%d" 2
 "/e^f" 3
 "/g|h" 4
 "/i\\j" 5
 "/k\"l" 6
 "/ " 7
 "/m~0n" 8

https://datatracker.ietf.org/doc/html/rfc4627#section-2.5

Bryan, et al. Expires July 8, 2013 [Page 5]

Internet-Draft JSON Pointer January 2013

6. URI Fragment Identifier Representation

 A JSON Pointer can be represented in a URI fragment identifier by
 encoding it into octets using UTF-8 [RFC3629], percent-encoding those
 characters not allowed by the fragment rule in [RFC3986].

 Note that a given media type needs to specify JSON Pointer as its
 fragment identifier syntax explicitly (usually, in its registration
 [RFC4288]); i.e., just because a document is JSON does not imply that
 JSON Pointer can be used as its fragment identifier syntax. In
 particular, the fragment identifier syntax for application/json is
 not JSON Pointer.

 Given the same example document as above, the following URI fragment
 identifiers evaluate to the accompanying values:

 # // the whole document
 #/foo ["bar", "baz"]
 #/foo/0 "bar"
 #/ 0
 #/a~1b 1
 #/c%25d 2
 #/e%5Ef 3
 #/g%7Ch 4
 #/i%5Cj 5
 #/k%22l 6
 #/%20 7
 #/m~0n 8

7. Error Handling

 In the event of an error condition, evaluation of the JSON Pointer
 fails to complete.

 This includes, but is not limited to:

 o Invalid pointer syntax

 o A pointer that references a non-existent value

 This specification does not define how errors are handled; an
 application of JSON Pointer SHOULD specify the impact and handling of
 each type of error.

 For example, some applications might stop pointer processing upon an
 error; others may attempt to recover from missing values by inserting

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4288

Bryan, et al. Expires July 8, 2013 [Page 6]

Internet-Draft JSON Pointer January 2013

 default ones.

8. IANA Considerations

 This document has no impact upon IANA.

9. Security Considerations

 A given JSON Pointer is not guaranteed to reference an actual JSON
 value. Therefore, applications using JSON Pointer should anticipate
 this by defining how a pointer that does not resolve ought to be
 handled.

 Note that JSON pointers can contain the NUL (Unicode U+0000)
 character. Care is needed not to misinterpret this character in
 programming languages that use NUL to mark the end of a string.

10. Acknowledgements

 The following individuals contributed ideas, feedback and wording to
 this specification:

 Mike Acar, Carsten Bormann, Tim Bray, Jacob Davies, Martin J.
 Duerst, Bjoern Hoehrmann, James H. Manger, Drew Perttula, Julian
 Reschke.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4627

Bryan, et al. Expires July 8, 2013 [Page 7]

Internet-Draft JSON Pointer January 2013

 Specifications: ABNF", STD 68, RFC 5234, January 2008.

11.2. Informative References

 [RFC4288] Freed, N. and J. Klensin, "Media Type Specifications and
 Registration Procedures", BCP 13, RFC 4288, December 2005.

Authors' Addresses

 Paul C. Bryan (editor)
 Salesforce.com

 Phone: +1 604 783 1481
 Email: pbryan@anode.ca

 Kris Zyp
 SitePen (USA)

 Phone: +1 650 968 8787
 Email: kris@sitepen.com

 Mark Nottingham (editor)
 Akamai

 Email: mnot@mnot.net

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc4288

Bryan, et al. Expires July 8, 2013 [Page 8]

