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Abstract

   JSON Pointer defines a string syntax for identifying a specific value
   within a JavaScript Object Notation (JSON) document.
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1.  Introduction

   This specification defines JSON Pointer, a string syntax for
   identifying a specific value within a JavaScript Object Notation
   (JSON) [RFC4627] document.  It is intended to be easily expressed in
   JSON string values as well as Uniform Resource Identifier (URI)
   [RFC3986] fragment identifiers.

2.  Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   This specification expresses normative syntax rules using Augmented
   Backus-Naur Form (ABNF) [RFC5234] notation.

3.  Syntax

   A JSON Pointer is a Unicode string (see [RFC4627], Section 3)
   containing a sequence of zero or more reference tokens, each prefixed
   by a '/' (%x2F) character.

   Because the characters '~' (%x7E) and '/' (%x2F) have special
   meanings in JSON Pointer, '~' needs to be encoded as '~0' and '/'
   needs to be encoded as '~1' when these characters appear in a
   reference token.

   The ABNF syntax of a JSON Pointer is:

   json-pointer = *( "/" reference-token )
   reference-token = *( unescaped / escaped )
   unescaped = %x00-2E / %x30-7D / %x7F-10FFFF
     ; %x2F ('/') and %x7E ('~') are excluded from 'unescaped'
   escaped = "~" ( "0" / "1" )
     ; representing '~' and '/', respectively

   It is an error condition if a JSON Pointer value does not conform to
   this syntax (see Section 7).

   Note that JSON Pointers are specified in characters, not as bytes.

4.  Evaluation

   Evaluation of a JSON Pointer begins with a reference to the root

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc4627#section-3
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   value of a JSON document and completes with a reference to some value
   within the document.  Each reference token in the JSON Pointer is
   sequentially evaluated.

   Evaluation of each reference token begins by decoding any escaped
   character sequence; this is performed by first transforming any
   occurrence of the sequence '~1' to '/', then transforming any
   occurrence of the sequence '~0' to '~'.  By performing the
   substitutions in this order, an implementation avoids the error of
   turning '~01' first into '~1' and then into '/', which would be
   incorrect (the string '~01' correctly becomes '~1' after
   transformation).

   The reference token then modifies which value is referenced according
   to the following scheme:

   o  If the currently referenced value is a JSON object, the new
      referenced value is the object member with the name identified by
      the reference token.  The member name is equal to the token if it
      has the same number of Unicode characters as token and their code
      points are position-wise equal.  No Unicode character
      normalization is performed.  If a referenced member name is not
      unique in an object, the member that is referenced is undefined,
      and evaluation fails (see below).

   o  If the currently referenced value is a JSON array, the reference
      token MUST contain either:

      *  characters comprised of digits (see ABNF below; note that
         leading zeros are not allowed) that represent an unsigned
         base-10 integer value, making the new referenced value the
         array element with the zero-based index identified by the
         token, or

      *  exactly the single character "-", making the new referenced
         value the (non-existant) member after the last array element.

   The ABNF syntax for array indices is:

   array-index = %x30 / ( %x31-39 *(%x30-39) )
                 ; "0", or digits without a leading "0"

   Implementations will evaluate each reference token against the
   document's contents, and terminate evaluation with an error condition
   if it fails to resolve a concrete value for any of the JSON pointer's
   reference tokens.  For example, if an array is referenced with a non-
   numeric token, it will fail.  See Section 7 for details.
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   Note that the use of the "-" character to index an array will always
   result in such an error; applications of JSON Pointer thus need to
   specify how it is to be handled, if it is to be useful.

5.  JSON String Representation

   A JSON Pointer can be represented in a JSON string value.  Per
[RFC4627], Section 2.5, all instances of quotation mark '"' (%x22),

   reverse solidus '\' (%x5C) and control (%x00-1F) characters MUST be
   escaped.

   Note that before processing a JSON string as a JSON Pointer,
   backslash escape sequences must be unescaped.

   For example, given the JSON document

   {
      "foo": ["bar", "baz"],
      "": 0,
      "a/b": 1,
      "c%d": 2,
      "e^f": 3,
      "g|h": 4,
      "i\\j": 5,
      "k\"l": 6,
      " ": 7,
      "m~n": 8
   }

   Then the following JSON strings evaluate to the accompanying values:

    ""           // the whole document
    "/foo"       ["bar", "baz"]
    "/foo/0"     "bar"
    "/"          0
    "/a~1b"      1
    "/c%d"       2
    "/e^f"       3
    "/g|h"       4
    "/i\\j"      5
    "/k\"l"      6
    "/ "         7
    "/m~0n"      8

https://datatracker.ietf.org/doc/html/rfc4627#section-2.5
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6.  URI Fragment Identifier Representation

   A JSON Pointer can be represented in a URI fragment identifier by
   encoding it into octets using UTF-8 [RFC3629], percent-encoding those
   characters not allowed by the fragment rule in [RFC3986].

   Note that a given media type needs to specify JSON Pointer as its
   fragment identifier syntax explicitly (usually, in its registration
   [RFC4288]); i.e., just because a document is JSON does not imply that
   JSON Pointer can be used as its fragment identifier syntax.  In
   particular, the fragment identifier syntax for application/json is
   not JSON Pointer.

   Given the same example document as above, the following URI fragment
   identifiers evaluate to the accompanying values:

    #            // the whole document
    #/foo        ["bar", "baz"]
    #/foo/0      "bar"
    #/           0
    #/a~1b       1
    #/c%25d      2
    #/e%5Ef      3
    #/g%7Ch      4
    #/i%5Cj      5
    #/k%22l      6
    #/%20        7
    #/m~0n       8

7.  Error Handling

   In the event of an error condition, evaluation of the JSON Pointer
   fails to complete.

   This includes, but is not limited to:

   o  Invalid pointer syntax

   o  A pointer that references a non-existent value

   This specification does not define how errors are handled; an
   application of JSON Pointer SHOULD specify the impact and handling of
   each type of error.

   For example, some applications might stop pointer processing upon an
   error; others may attempt to recover from missing values by inserting

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4288
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   default ones.

8.  IANA Considerations

   This document has no impact upon IANA.

9.  Security Considerations

   A given JSON Pointer is not guaranteed to reference an actual JSON
   value.  Therefore, applications using JSON Pointer should anticipate
   this by defining how a pointer that does not resolve ought to be
   handled.

   Note that JSON pointers can contain the NUL (Unicode U+0000)
   character.  Care is needed not to misinterpret this character in
   programming languages that use NUL to mark the end of a string.
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