
AVTCORE Working Group J. Mattsson, Ed.
Internet-Draft Ericsson
Intended status: Standards Track D. McGrew
Expires: April 23, 2015 D. Wing
 F. Andreasen
 Cisco
 October 20, 2014

Encrypted Key Transport for Secure RTP
draft-ietf-avtcore-srtp-ekt-03

Abstract

 Encrypted Key Transport (EKT) is an extension to Secure Real-time
 Transport Protocol (SRTP) that provides for the secure transport of
 SRTP master keys, Rollover Counters, and other information. This
 facility enables SRTP to work for decentralized conferences with
 minimal control.

 This note defines EKT, and also describes how to use it with SDP
 Security Descriptions, DTLS-SRTP, and MIKEY. With EKT, these other
 key management protocols provide an EKT key to everyone in a session,
 and EKT coordinates the SRTP keys within the session.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 23, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Mattsson, et al. Expires April 23, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft EKT SRTP October 2014

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. History . 4
1.2. Conventions Used In This Document 5

2. Encrypted Key Transport 5
2.1. EKT Field Formats . 6
2.2. Packet Processing and State Machine 8
2.2.1. Outbound Processing 8
2.2.2. Inbound Processing 9

2.3. Ciphers . 11
2.3.1. The Default Cipher 12
2.3.2. Other EKT Ciphers 13

2.4. Synchronizing Operation 13
2.5. Transport . 13
2.6. Timing and Reliability Consideration 15

3. Use of EKT with SDP Security Descriptions 16
3.1. SDP Security Descriptions Recap 16
3.2. Relationship between EKT and SDESC 17
3.3. Overview of Combined EKT and SDESC Operation 19
3.4. EKT Extensions to SDP Security Descriptions 19
3.5. Offer/Answer Considerations 20
3.5.1. Generating the Initial Offer - Unicast Streams . . . 20
3.5.2. Generating the Initial Answer - Unicast Streams . . . 21

 3.5.3. Processing of the Initial Answer - Unicast Streams . 22
3.6. SRTP-Specific Use Outside Offer/Answer 23
3.7. Modifying the Session 23
3.8. Backwards Compatibility Considerations 24
3.9. Grammar . 25

4. Use of EKT with DTLS-SRTP 25
4.1. DTLS-SRTP Recap . 26
4.2. EKT Extensions to DTLS-SRTP 26
4.3. Offer/Answer Considerations 28
4.3.1. Generating the Initial Offer 28
4.3.2. Generating the Initial Answer 29
4.3.3. Processing the Initial Answer 29
4.3.4. Sending DTLS EKT Key Reliably 30
4.3.5. Modifying the Session 30

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Mattsson, et al. Expires April 23, 2015 [Page 2]

Internet-Draft EKT SRTP October 2014

5. Use of EKT with MIKEY . 30
5.1. EKT Extensions to MIKEY 32
5.2. Offer/Answer Considerations 33
5.2.1. Generating the Initial Offer 33
5.2.2. Generating the Initial Answer 34
5.2.3. Processing the Initial Answer 34
5.2.4. Modifying the Session 35

 6. Using EKT for Interoperability between Key Management Systems 35
7. Design Rationale . 36
7.1. Alternatives . 37

8. Security Considerations 37
9. IANA Considerations . 39
10. Acknowledgements . 39
11. References . 40
11.1. Normative References 40
11.2. Informative References 41

Appendix A. Using EKT to Optimize Interworking DTLS-SRTP with
 Security Descriptions 42
 Authors' Addresses . 44

1. Introduction

 RTP is designed to allow decentralized groups with minimal control to
 establish sessions, such as for multimedia conferences.
 Unfortunately, Secure RTP (SRTP [RFC3711]) cannot be used in many
 minimal-control scenarios, because it requires that SSRC values and
 other data be coordinated among all of the participants in a session.
 For example, if a participant joins a session that is already in
 progress, that participant needs to be told the SRTP keys (and SSRC,
 ROC and other details) of the other SRTP sources.

 The inability of SRTP to work in the absence of central control was
 well understood during the design of the protocol; the omission was
 considered less important than optimizations such as bandwidth
 conservation. Additionally, in many situations SRTP is used in
 conjunction with a signaling system that can provide most of the
 central control needed by SRTP. However, there are several cases in
 which conventional signaling systems cannot easily provide all of the
 coordination required. It is also desirable to eliminate the layer
 violations that occur when signaling systems coordinate certain SRTP
 parameters, such as SSRC values and ROCs.

 This document defines Encrypted Key Transport (EKT) for SRTP, an
 extension to SRTP that fits within the SRTP framework and reduces the
 amount of external signaling control that is needed in an SRTP
 session. EKT securely distributes the SRTP master key and other
 information for each SRTP source (SSRC), using SRTCP or SRTP to
 transport that information. With this method, SRTP entities are free

https://datatracker.ietf.org/doc/html/rfc3711

Mattsson, et al. Expires April 23, 2015 [Page 3]

Internet-Draft EKT SRTP October 2014

 to choose SSRC values as they see fit, and to start up new SRTP
 sources (SSRC) with new SRTP master keys (see Section 2.2) within a
 session without coordinating with other entities via external
 signaling or other external means. This fact allows to reinstate the
 RTP collision detection and repair mechanism, which is nullified by
 the current SRTP specification because of the need to control SSRC
 values closely. An SRTP endpoint using EKT can generate new keys
 whenever an existing SRTP master key has been overused, or start up a
 new SRTP source (SSRC) to replace an old SRTP source that has reached
 the packet-count limit. However, EKT does not allow SRTP's ROC to
 rollover; that requires re-keying outside of EKT (e.g., using MIKEY
 or DTLS-SRTP). EKT also solves the problem in which the burst loss
 of the N initial SRTP packets can confuse an SRTP receiver, when the
 initial RTP sequence number is greater than or equal to 2^16 - N.
 These features can simplify many architectures that implement SRTP.

 EKT provides a way for an SRTP session participant, either a sender
 or receiver, to securely transport its SRTP master key and current
 SRTP rollover counter to the other participants in the session. This
 data, possibly in conjunction with additional data provided by an
 external signaling protocol, furnishes the information needed by the
 receiver to instantiate an SRTP/SRTCP receiver context.

 EKT does not control the manner in which the SSRC is generated; it is
 only concerned with their secure transport. Those values may be
 generated on demand by the SRTP endpoint, or may be dictated by an
 external mechanism such as a signaling agent or a secure group
 controller.

 EKT is not intended to replace external key establishment mechanisms
 such as SDP Security Descriptions [RFC4568], DTLS-SRTP [RFC5764], or
 MIKEY [RFC3830][RFC4563]. Instead, it is used in conjunction with
 those methods, and it relieves them of the burden of tightly
 coordinating every SRTP source (SSRC) among every SRTP participant.

1.1. History

 [[RFC Editor Note: please remove this section prior to publication as
 an RFC.]]

 A substantial change occurred between the EKT documents draft-ietf-
avt-srtp-ekt-03 and draft-ietf-avtcore-srtp-ekt-00. The change makes

 it possible for the EKT data to be removed from a packet without
 affecting the ability of the receiver to correctly process the data
 that is present in that packet. This capability facilitates
 interoperability between SRTP implementations with different SRTP key
 management methods. The changes also greatly simplify the EKT

https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc5764
https://datatracker.ietf.org/doc/html/rfc3830
https://datatracker.ietf.org/doc/html/draft-ietf-avt-srtp-ekt-03
https://datatracker.ietf.org/doc/html/draft-ietf-avt-srtp-ekt-03
https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-srtp-ekt-00

Mattsson, et al. Expires April 23, 2015 [Page 4]

Internet-Draft EKT SRTP October 2014

 processing rules, and makes the EKT data that must be carried in SRTP
 and/or SRTCP packets somewhat larger.

 In draft-ietf-avtcore-srtp-ekt-02, SRTP master keys have to be always
 generated randomly and not re-used, MKI is no longer allowed with EKT
 (as MKI duplicates some of EKT's functions), and text clarifies that
 EKT must be negotiated during call setup. Some text was consolidated
 and re-written, notably Section 2.6 ("Timing and Reliability").
 Support for re-directing the DTLS-SRTP handshake to another host was
 removed, as it needed NAT traversal support.

 In draft-ietf-avtcore-srtp-ekt-03, the SRTCP compound packet problem
 is discussed. Updates and clarifications were made to the SDESC and
 MIKEY sections.

1.2. Conventions Used In This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Encrypted Key Transport

 In EKT, an SRTP master key is encrypted with a key encrypting key and
 the resulting ciphertext is transported in selected SRTCP packets or
 in selected SRTP packets. The key encrypting key is called an EKT
 key. A single such key suffices for a single SRTP session,
 regardless of the number of participants in that session. However,
 there can be multiple EKT keys used within a particular session.

 EKT defines a new method of providing SRTP master keys to an
 endpoint. In order to convey the ciphertext of the SRTP master key,
 and other additional information, an additional EKT field is added to
 SRTP or SRTCP packets. When added to SRTCP, the EKT field appears at
 the end of the packet, after the authentication tag, if that tag is
 present, or after the SRTCP index otherwise. When added to SRTP, The
 EKT field appears at the end of the SRTP packet, after the
 authentication tag (if that tag is present), or after the ciphertext
 of the encrypted portion of the packet otherwise.

 EKT MUST NOT be used in conjunction with SRTP's MKI (Master Key
 Identifier) or with SRTP's <From, To> [RFC3711], as those SRTP
 features duplicate some of the functions of EKT.

https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-srtp-ekt-02
https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-srtp-ekt-03
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3711

Mattsson, et al. Expires April 23, 2015 [Page 5]

Internet-Draft EKT SRTP October 2014

2.1. EKT Field Formats

 The EKT Field uses one of the two formats defined below. These two
 formats can always be unambiguously distinguished on receipt by
 examining the final bit of the EKT Field, which is also the final bit
 of the SRTP or SRTCP packet. The first format is the Full EKT Field
 (or Full_EKT_Field), and the second is the Short EKT Field (or
 Short_EKT_Field). The formats are defined as

 EKT_Plaintext = SRTP_Master_Key || SSRC || ROC || ISN

 EKT_Ciphertext = EKT_Encrypt(EKT_Key, EKT_Plaintext)

 Full_EKT_Field = EKT_Ciphertext || SPI || '1'

 Short_EKT_Field = Reserved || '0'

 Figure 1: EKT data formats

 Here || denotes concatenation, and '1' and '0' denote single one and
 zero bits, respectively. These fields and data elements are defined
 as follows:

 EKT_Plaintext: The data that is input to the EKT encryption
 operation. This data never appears on the wire, and is used only
 in computations internal to EKT.

 EKT_Ciphertext: The data that is output from the EKT encryption
 operation, described in Section 2.3. This field is included in
 SRTP and SRTCP packets when EKT is in use. The length of this
 field is variable, and is equal to the ciphertext size N defined
 in Section 2.3. Note that the length of the field is inferable
 from the SPI field, since the particular EKT cipher used by the
 sender of a packet can be inferred from that field.

 SRTP_Master_Key: On the sender side, the SRTP Master Key associated
 with the indicated SSRC. The length of this field depends on the
 cipher suite negotiated during call setup for SRTP or SRTCP.

 SSRC: On the sender side, this field is the SSRC for this SRTP
 source. The length of this field is fixed at 32 bits.

 Rollover Counter (ROC): On the sender side, this field is set to the
 current value of the SRTP rollover counter in the SRTP context
 associated with the SSRC in the SRTP or SRTCP packet. The length
 of this field is fixed at 32 bits.

Mattsson, et al. Expires April 23, 2015 [Page 6]

Internet-Draft EKT SRTP October 2014

 Initial Sequence Number (ISN): If this field is nonzero, it
 indicates the RTP sequence number of the initial RTP packet that
 is protected using the SRTP master key conveyed (in encrypted
 form) by the EKT Ciphertext field of this packet. When this field
 is present in an RTCP packet it indicates the RTP sequence number
 of the first RTP packet encrypted by this master key. If the ISN
 field is zero, it indicates that the initial RTP/RTCP packet
 protected using the SRTP master key conveyed in this packet
 preceded, or was concurrent with, the last roll-over of the RTP
 sequence number, and thus should be used as the current master key
 for processing this packet. The length of this field is fixed at
 16 bits.

 Security Parameter Index (SPI): This field is included in SRTP and
 SRTCP packets when EKT is in use. It indicates the appropriate
 EKT key and other parameters for the receiver to use when
 processing the packet. It is an "index" into a table of
 possibilities (which are established via signaling or some other
 out-of-band means), much like the IPsec Security Parameter Index
 [RFC4301]. The length of this field is fixed at 15 bits. The
 parameters identified by this field are:

 * The EKT key used to process the packet.

 * The EKT cipher used to process the packet.

 * The Secure RTP parameters associated with the SRTP Master Key
 carried by the packet and the SSRC value in the packet.

Section 8.2. of [RFC3711] summarizes the parameters defined by
 that specification.

 * The Master Salt associated with the Master Key. (This value is
 part of the parameters mentioned above, but we call it out for
 emphasis.) The Master Salt is communicated separately, via
 signaling, typically along with the EKT key.

 Together, these data elements are called an EKT parameter set.
 Within each SRTP session, each distinct EKT parameter set that may
 be used MUST be associated with a distinct SPI value, to avoid
 ambiguity.

 Reserved: The length of this field is 7 bits. MUST be all zeros on
 transmission, and MUST be ignored on reception.

 The Full_EKT_Field and Short_EKT_Field formats are shown in Figure 2
 and Figure 3, respectively. These figures show the on-the-wire data.
 The Ciphertext field holds encrypted data, and thus has no apparent
 inner structure.

https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc3711#section-8.2

Mattsson, et al. Expires April 23, 2015 [Page 7]

Internet-Draft EKT SRTP October 2014

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 : :
 : EKT Ciphertext :
 : :
 +-+
 | Security Parameter Index |1|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 2: Full EKT Field format

 0 1 2 3 4 5 6 7 8
 +-+-+-+-+-+-+-+-+-+
 | Reserved |0|
 +-+-+-+-+-+-+-+-+-+

 Figure 3: Short EKT Field format

2.2. Packet Processing and State Machine

 At any given time, each SRTP/SRTCP source (SSRC) has associated with
 it a single EKT parameter set. This parameter set is used to process
 all outbound packets, and is called the outbound parameter set.
 There may be other EKT parameter sets that are used by other SRTP/
 SRTCP sources in the same session, including other SRTP/SRTCP sources
 on the same endpoint (e.g., one endpoint with voice and video might
 have two EKT parameter sets, or there might be multiple video sources
 on an endpoint each with their own EKT parameter set). All of these
 EKT parameter sets SHOULD be stored by all of the participants in an
 SRTP session, for use in processing inbound SRTP and SRTCP traffic.

 All SRTP master keys MUST NOT be re-used, MUST be randomly generated
 according to [RFC4086], and MUST NOT be equal to or derived from
 other SRTP master keys.

2.2.1. Outbound Processing

 See Section 2.6 which describes when to send an EKT packet and
 describes if a Full EKT Field or Short EKT Field is sent.

 When an SRTP or SRTCP packet is to be sent, the EKT field for that
 packet is created as follows, or uses an equivalent set of steps.
 The creation of the EKT field MUST precede the normal SRTP or SRTCP
 packet processing. The ROC used in EKT processing MUST be the same
 as the one used in the SRTP processing.

https://datatracker.ietf.org/doc/html/rfc4086

Mattsson, et al. Expires April 23, 2015 [Page 8]

Internet-Draft EKT SRTP October 2014

 If the Short format is used, an all-zero octet is appended to the
 packet. Otherwise, processing continues as follows.

 The Rollover Counter field in the packet is set to the current value
 of the SRTP rollover counter (represented as an unsigned integer in
 network byte order).

 The Initial Sequence Number field is set to zero, if the initial RTP
 packet protected using the current SRTP master key for this source
 preceded, or was concurrent with, the last roll-over of the RTP
 sequence number. Otherwise, that field is set to the value of the
 RTP sequence number of the initial RTP packet that was or will be
 protected by that key. See "rekey" in Section 2.6. The rekeying
 event MUST NOT change the value of ROC (otherwise, the current value
 of the ROC would not be known to late joiners of existing sessions).
 This means rekeying near the end of sequence number space (e.g., 100
 packets before sequence number 65535) is not possible because ROC
 needs to roll over.

 The Security Parameter Index field is set to the value of the
 Security Parameter Index that is associated with the outbound
 parameter set.

 The EKT_Plaintext field is computed from the SRTP Master Key, SSRC,
 ROC, and ISN fields, as shown in Figure 1.

 The EKT_Ciphertext field is set to the ciphertext created by
 encrypting the EKT_Plaintext with the EKT cipher, using the EKT Key
 as the encryption key. The encryption process is detailed in

Section 2.3. Implementations MAY cache the value of this field to
 avoid recomputing it for each packet that is sent.

 Implementation note: Because of the format of the Full EKT Field, a
 packet containing the Full EKT Field MUST be sent when the ROC
 changes (i.e., every 2^16 packets).

2.2.2. Inbound Processing

 When an SRTP or SRTCP packet containing a Full EKT Field or Short EKT
 Field is received, it is processed as follows or using an equivalent
 set of steps. Inbound EKT processing MUST take place prior to the
 usual SRTP or SRTCP processing. Implementation note: the receiver
 may want to have a sliding window to retain old master keys for some
 brief period of time, so that out of order packets can be processed.
 The following steps show processing as packets are received in order.

 1. The final bit is checked to determine which EKT format is in use.
 If the packet contains a Short EKT Field then the Short EKT Field

Mattsson, et al. Expires April 23, 2015 [Page 9]

Internet-Draft EKT SRTP October 2014

 is removed and normal SRTP or SRTCP processing is applied. If
 the packet contains a Full EKT Field, then processing continues
 as described below.

 2. The Security Parameter Index (SPI) field is checked to determine
 which EKT parameter set should be used when processing the
 packet. If multiple parameter sets have been defined for the
 SRTP session, then the one that is associated with the value of
 the SPI field in the packet is used. This parameter set is
 called the matching parameter set below. If there is no matching
 SPI, then the verification function MUST return an indication of
 authentication failure, and the steps described below are not
 performed.

 3. The EKT_Ciphertext is decrypted using the EKT_Key and EKT_Cipher
 in the matching parameter set, as described in Section 2.3. If
 the EKT decryption operation returns an authentication failure,
 then the packet processing halts with an indication of failure.
 Otherwise, the resulting EKT_Plaintext is parsed as described in
 Figure 1, to recover the SRTP Master Key, SSRC, ROC, and ISN
 fields.

 4. The SSRC field output from the decryption operation is compared
 to the SSRC field from the SRTP header if EKT was received over
 SRTP, or from the SRTCP header if EKT was received over SRTCP.
 If the values of the two fields do not match, then packet
 processing halts with an indication of failure. Otherwise, it
 continues as follows.

 5. If an SRTP context associated with the SSRC in the previous step
 already exists and the ROC from the EKT_Plaintext is less than
 the ROC in the SRTP context, then EKT processing halts and the
 packet is processed as an out-of-order packet (if within the
 implementation's sliding window) or dropped (as it is a replay).
 Otherwise, the ROC in the SRTP context is set to the value of the
 ROC from the EKT_Plaintext, and the SRTP Master Key from the
 EKT_Plaintext is accepted as the SRTP master key corresponding to
 the SSRC indicated in the EKT_Plaintext, beginning at the
 sequence number indicated by the ISN (see next step).

 6. If the ISN from the EKT_Plaintext is less than the RTP sequence
 number of an authenticated received SRTP packet, then EKT
 processing halts (as this is a replay). If the Initial Sequence
 Number field is nonzero, then the initial sequence number for the
 SRTP master key is set to the packet index created by appending
 that field to the current rollover counter and treating the
 result as a 48-bit unsigned integer. The initial sequence number
 for the master key is equivalent to the "From" value of the

Mattsson, et al. Expires April 23, 2015 [Page 10]

Internet-Draft EKT SRTP October 2014

 <From, To> pair of indices (Section 8.1.1 of [RFC3711]) that can
 be associated with a master key.

 7. The newly accepted SRTP master key, the SRTP parameters from the
 matching parameter set, and the SSRC from the packet are stored
 in the crypto context associated with the SRTP source (SSRC).
 The SRTP Key Derivation algorithm is run in order to compute the
 SRTP encryption and authentication keys, and those keys are
 stored for use in SRTP processing of inbound packets. The Key
 Derivation algorithm takes as input the newly accepted SRTP
 master key, along with the Master Salt from the matching
 parameter set.

 8. At this point, EKT processing has successfully completed, and the
 normal SRTP or SRTCP processing takes place.

 Implementation note: the value of the EKT Ciphertext field is
 identical in successive packets protected by the same EKT
 parameter set and the same SRTP master key, ROC, and ISN.
 This ciphertext value MAY be cached by an SRTP receiver to
 minimize computational effort by noting when the SRTP master
 key is unchanged and avoiding repeating Steps 2 through 6.

2.3. Ciphers

 EKT uses an authenticated cipher to encrypt the EKT Plaintext, which
 is comprised of the SRTP master keys, SSRC, ROC, and ISN. We first
 specify the interface to the cipher, in order to abstract the
 interface away from the details of that function. We then define the
 cipher that is used in EKT by default. The default cipher described
 in Section 2.3.1 MUST be implemented, but another cipher that
 conforms to this interface MAY be used, in which case its use MUST be
 coordinated by external means (e.g., key management).

 The master salt length for the offered cipher suites MUST be the
 same. In practice the easiest way to achieve this is by offering the
 same crypto suite.

 An EKT cipher consists of an encryption function and a decryption
 function. The encryption function E(K, P) takes the following
 inputs:

 o a secret key K with a length of L bytes, and

 o a plaintext value P with a length of M bytes.

https://datatracker.ietf.org/doc/html/rfc3711#section-8.1.1

Mattsson, et al. Expires April 23, 2015 [Page 11]

Internet-Draft EKT SRTP October 2014

 The encryption function returns a ciphertext value C whose length is
 N bytes, where N is at least M. The decryption function D(K, C)
 takes the following inputs:

 o a secret key K with a length of L bytes, and

 o a ciphertext value C with a length of N bytes.

 The decryption function returns a plaintext value P that is M bytes
 long, or returns an indication that the decryption operation failed
 because the ciphertext was invalid (i.e. it was not generated by the
 encryption of plaintext with the key K).

 These functions have the property that D(K, E(K, P)) = P for all
 values of K and P. Each cipher also has a limit T on the number of
 times that it can be used with any fixed key value. For each key,
 the encryption function MUST NOT be invoked on more than T distinct
 values of P, and the decryption function MUST NOT be invoked on more
 than T distinct values of C.

 The length of the EKT Plaintext is ten bytes, plus the length of the
 SRTP Master Key.

 Security requirements for EKT ciphers are discussed in Section 8.

2.3.1. The Default Cipher

 The default EKT Cipher is the Advanced Encryption Standard (AES)
 [FIPS197] Key Wrap with Padding [RFC5649] algorithm. It requires a
 plaintext length M that is at least one octet, and it returns a
 ciphertext with a length of N = M + 8 octets. It can be used with
 key sizes of L = 16, 24, and 32, and its use with those key sizes is
 indicated as AESKW_128, AESKW_192, and AESKW_256, respectively. The
 key size determines the length of the AES key used by the Key Wrap
 algorithm. With this cipher, T=2^48.

 length of length of
 SRTP EKT EKT EKT length of
 transform transform plaintext ciphertext Full EKT Field
 --------- ------------ --------- ---------- --------------
 AES-128 AESKW_128 (m) 26 40 42
 AES-192 AESKW_192 34 48 50
 AES-256 AESKW_256 42 56 58
 F8-128 AESKW_128 26 40 42
 SEED-128 AESKW_128 26 40 42

 Figure 4: AESKW Table

https://datatracker.ietf.org/doc/html/rfc5649

Mattsson, et al. Expires April 23, 2015 [Page 12]

Internet-Draft EKT SRTP October 2014

 The mandatory to implement transform is AESKW_128, indicated by (m).

 As AES-128 is the mandatory to implement transform in SRTP [RFC3711],
 AESKW_128 MUST be implemented for EKT.

 For all the SRTP transforms listed in the table, the corresponding
 EKT transform MUST be used, unless a stronger EKT transform is
 negotiated by key management.

2.3.2. Other EKT Ciphers

 Other specifications may extend this one by defining other EKT
 ciphers per Section 9. This section defines how those ciphers
 interact with this specification.

 An EKT cipher determines how the EKT Ciphertext field is written, and
 how it is processed when it is read. This field is opaque to the
 other aspects of EKT processing. EKT ciphers are free to use this
 field in any way, but they SHOULD NOT use other EKT or SRTP fields as
 an input. The values of the parameters L, M, N, and T MUST be
 defined by each EKT cipher, and those values MUST be inferable from
 the EKT parameter set.

2.4. Synchronizing Operation

 A participant in a session MAY opt to use a particular EKT parameter
 set to protect outbound packets after it accepts that EKT parameter
 set for protecting inbound traffic. In this case, the fact that one
 participant has changed to using a new EKT key for outbound traffic
 can trigger other participants to switch to using the same key.

 If a source has its EKT key changed by key management, it MUST also
 change its SRTP master key, which will cause it to send out a new
 Full EKT Field. This ensures that if key management thought the EKT
 key needs changing (due to a participant leaving or joining) and
 communicated that in key management to a source, the source will also
 change its SRTP master key, so that traffic can be decrypted only by
 those who know the current EKT key.

 The use of EKT MUST be negotiated during key management or call setup
 (e.g., using DTLS-SRTP, Security Descriptions, MIKEY, or similar).

2.5. Transport

 EKT SHOULD be used over SRTP, and MAY be used over SRTCP. SRTP is
 preferred because it shares fate with transmitted media, because SRTP
 rekeying can occur without concern for RTCP transmission limits, and
 to avoid SRTCP compound packets with RTP translators and mixers.

https://datatracker.ietf.org/doc/html/rfc3711

Mattsson, et al. Expires April 23, 2015 [Page 13]

Internet-Draft EKT SRTP October 2014

 This specification requires the EKT SSRC match the SSRC in the RTCP
 header, but Section 6.1 of [RFC3550] encourages creating SRTCP
 compound packets:

 It is RECOMMENDED that translators and mixers combine individual
 RTCP packets from the multiple sources they are forwarding into
 one compound packet whenever feasible in order to amortize the
 packet overhead (see Section 7).

 These compound SRTCP packets might have an SSRC that does not match
 the EKT SSRC. To reduce the occasion of this occuring, EKT-aware RTP
 mixers and translators which are generating SRTCP compound packets
 SHOULD attempt to place an SRTCP payload containing an EKT tag at the
 front of the compound packet (so that the EKT receiver will process
 it), and MAY be even more robust and implement more sophisticated
 algorithms to ensure all EKT tags from different senders are sent at
 the front of the compound packet. However, no robust algorithm
 exists which ensures robust EKT delivery in conjunction with SRTCP
 compound packets. This impact to RTP translators and mixers, and the
 inability to realibly determine an RTP translator or mixer might be
 involved in an RTP session, provides further incentive to send EKT
 over RTP.

 The packet processing, state machine, and Authentication Tag format
 for EKT over SRTP are nearly identical to that for EKT over SRTCP.
 Differences are highlighted in Section 2.2.1 and Section 2.2.2.

 The Full EKT Field is appended to the SRTP or SRTCP payload and is
 42, 50, or 58 octets long for AES-128, AES-192, or AES-256,
 respectively. This length impacts the maximum payload size of the
 SRTP (or SRTCP) packet itself. To remain below the network path MTU,
 senders SHOULD constrain the SRTP (or SRTCP) payload size by this
 length of the Full EKT Field.

 EKT can be transported over SRTCP, but some of the information that
 it conveys is used for SRTP processing; some elements of the EKT
 parameter set apply to both SRTP and SRTCP. Furthermore, SRTCP
 packets can be lost and both SRTP and SRTCP packets may be delivered
 out of order. This can lead to various race conditions if EKT is
 transported over SRTCP but not SRTP, which we review below.

 The ROC signaled via EKT over SRTCP may be off by one when it is
 received by the other party(ies) in the session. In order to deal
 with this, receivers should simply follow the SRTP packet index
 estimation procedures defined in Section 3.3.1 [RFC3711].

https://datatracker.ietf.org/doc/html/rfc3550#section-6.1
https://datatracker.ietf.org/doc/html/rfc3711#section-3.3.1

Mattsson, et al. Expires April 23, 2015 [Page 14]

Internet-Draft EKT SRTP October 2014

2.6. Timing and Reliability Consideration

 A system using EKT has the SRTP master keys distributed with EKT,
 rather than with call signaling. A receiver can immediately decrypt
 an SRTP (or SRTCP packet) using that new key, provided the SRTP
 packet (or SRTCP packet) also contains a Full EKT Field.

 This section describes how to reliably and expediently deliver new
 SRTP master keys to receivers.

 There are three cases to consider. The first case is a new sender
 joining a session which needs to communicate its SRTP master key to
 all the receivers. The second case is a sender changing its SRTP
 master key which needs to be communicated to all the receivers. The
 third case is a new receiver joining a session already in progress
 which needs to know the sender's SRTP master key.

 New sender: A new sender SHOULD send a packet containing the Full EKT
 Field as soon as possible, always before or coincident with sending
 its initial SRTP packet. To accommodate packet loss, it is
 RECOMMENDED that three consectutive packets contain the Full EKT
 Field be transmitted. Inclusion of that Full EKT Field can be
 stopped early if the sender determines all receivers have received
 the new SRTP master key by receipt of an SRTCP receiver report or
 explicit ACK for a sequence number with the new key.

 Rekey: By sending EKT over SRTP, the rekeying event shares fate with
 the SRTP packets protected with that new SRTP master key. To avoid
 sending large SRTP packets (such as video key frames) with the Full
 EKT Field, it can be advantageous to send smaller SRTP packets with
 the Full EKT Field with the Initial Sequence Number prior to the
 actual rekey event, but this does eliminate the benefits of fate-
 sharing EKT with the SRTP packets with the new SRTP master key, which
 increases the chance a new receiver won't have seen the new SRTP
 master key.

 New receiver: When a new receiver joins a session it does not need to
 communicate its sending SRTP master key (because it is a receiver).
 When a new receiver joins a session the sender is generally unaware
 of the receiver joining the session. Thus, senders SHOULD
 periodically transmit the Full EKT Field. That interval depends on
 how frequently new receivers join the session, the acceptable delay
 before those receivers can start processing SRTP packets, and the
 acceptable overhead of sending the Full EKT Field. The RECOMMENDED
 frequency is the same as the key frame frequency if sending video or
 every 5 seconds. When joining a session it is likely that SRTP or
 SRTCP packets might be received before a packet containing the Full
 EKT Field is received. Thus, to avoid doubling the authentication

Mattsson, et al. Expires April 23, 2015 [Page 15]

Internet-Draft EKT SRTP October 2014

 effort, an implementation joining an EKT session SHOULD buffer
 received SRTP and SRTCP packets until it receives the Full EKT Field
 packet and use the information in that packet to authenticate and
 decrypt the received SRTP/SRTCP packets.

3. Use of EKT with SDP Security Descriptions

 The SDP Security Descriptions (SDESC) [RFC4568] specification defines
 a generic framework for negotiating security parameters for media
 streams negotiated via the Session Description Protocol with the
 "crypto" attribute and the Offer/Answer procedures defined in
 [RFC3264]. In addition to the general framework, SDESC also defines
 how to use that framework specifically to negotiate security
 parameters for Secure RTP. Below, we first provide a brief recap of
 the crypto attribute when used for SRTP and we then explain how it is
 complementary to EKT. In the rest of this Section, we provide
 extensions to the crypto attribute and associated offer/answer
 procedures to define its use with EKT.

3.1. SDP Security Descriptions Recap

 The SRTP crypto attribute defined for SDESC contains a tag followed
 by three types of parameters (refer to [RFC4568] for details):

 o Crypto-suite. Identifies the encryption and authentication
 transform.

 o Key parameters. SRTP keying material and parameters.

 o Session parameters. Additional (optional) SRTP parameters such as
 Key Derivation Rate, Forward Error Correction Order, use of
 unencrypted SRTP, and other parameters defined by SDESC.

 The crypto attributes in the example SDP in Figure 5 illustrate these
 parameters.

https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc4568

Mattsson, et al. Expires April 23, 2015 [Page 16]

Internet-Draft EKT SRTP October 2014

 v=0
 o=sam 2890844526 2890842807 IN IP4 192.0.2.5
 s=SRTP Discussion
 i=A discussion of Secure RTP
 u=http://www.example.com/seminars/srtp.pdf
 e=marge@example.com (Marge Simpson)
 c=IN IP4 192.0.2.12
 t=2873397496 2873404696
 m=audio 49170 RTP/SAVP 0
 a=crypto:1 AES_CM_128_HMAC_SHA1_80
 inline:WVNfX19zZW1jdGwgKCkgewkyMjA7fQp9CnVubGVz|2^20
 FEC_ORDER=FEC_SRTP
 a=crypto:2 F8_128_HMAC_SHA1_80
 inline:MTIzNDU2Nzg5QUJDREUwMTIzNDU2Nzg5QUJjiiKt|2^20
 FEC_ORDER=FEC_SRTP

 Figure 5: SDP Security Descriptions example

 For legibility the SDP shows line breaks that are not present on the
 wire.

 The first crypto attribute has the tag "1" and uses the crypto-suite
 AES_CM_128_HMAC_SHA1_80. The "inline" parameter provides the SRTP
 master key and salt and the master key lifetime (number of packets).
 Finally, the FEC_ORDER session parameter indicates the order of
 Forward Error Correction used (FEC is applied before SRTP processing
 by the sender of the SRTP media).

 The second crypto attribute has the tag "2", the crypto-suite
 F8_128_HMAC_SHA1_80, a SRTP master key, and its associated salt.
 Finally, the FEC_ORDER session parameter indicates the order of
 Forward Error Correction used.

3.2. Relationship between EKT and SDESC

 SDP Security Descriptions [RFC4568] define a generic framework for
 negotiating security parameters for media streams negotiated via the
 Session Description Protocol by use of the Offer/Answer procedures
 defined in [RFC3264]. In addition to the general framework, SDESC
 also defines how to use it specifically to negotiate security
 parameters for Secure RTP.

 EKT and SDP Security Descriptions are complementary. SDP Security
 Descriptions can negotiate several of the SRTP security parameters
 (e.g., cipher and use of Master Key Identifier) as well as SRTP
 master keys. SDESC, however, does not negotiate SSRCs and their
 associated Rollover Counter (ROC). Instead, SDESC relies on a so-
 called "late binding", where a newly observed SSRC will have its

https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc3264

Mattsson, et al. Expires April 23, 2015 [Page 17]

Internet-Draft EKT SRTP October 2014

 crypto context initialized to a ROC value of zero. Clearly, this
 does not work for participants joining an SRTP session that has been
 established for a while and hence has a non-zero ROC. It is
 impossible to use SDESC to join an SRTP session that is already in
 progress. In this case, EKT on the endpoint running SDESC can
 provide the additional signaling necessary to communicate the ROC
 (Section 6.4.1 of [RFC4568]). The use of EKT solves this problem by
 communicating the ROC associated with the SSRC in the media plane.

 SDP Security Descriptions negotiates different SRTP master keys in
 the send and receive direction. The offer contains the master key
 used by the offerer to send media, and the answer contains the master
 key used by the answerer to send media. Consequently, if media is
 received by the offerer prior to the answer being received, the
 offerer does not know the master key being used. Use of SDP security
 preconditions can solve this problem, however it requires an
 additional round-trip as well as a more complicated state machine.
 EKT solves this problem by simply sending the master key used in the
 media plane thereby avoiding the need for security preconditions.

 If multiple crypto-suites were offered, the offerer also will not
 know which of the crypto-suites offered was selected until the answer
 is received. EKT solves this problem by using a correlator, the
 Security Parameter Index (SPI), which uniquely identifies each crypto
 attribute in the offer.

 One of the primary call signaling protocols using offer/answer is the
 Session Initiation Protocol (SIP) [RFC3261]. SIP uses the INVITE
 message to initiate a media session and typically includes an offer
 SDP in the INVITE. An INVITE may be "forked" to multiple recipients
 which potentially can lead to multiple answers being received.
 SDESC, however, does not properly support this scenario, mainly
 because SDP and RTP/RTCP does not contain sufficient information to
 allow for correlation of an incoming RTP/RTCP packet with a
 particular answer SDP. Note that extensions providing this
 correlation do exist (e.g., Interactive Connectivity Establishment
 (ICE)). SDESC addresses this point-to-multipoint problem by moving
 each answer to a separate RTP transport address thereby turning a
 point-to-multipoint scenario into multiple point-to-point scenarios.
 There are however significant disadvantages to doing so. As long as
 the crypto attribute in the answer does not contain any declarative
 parameters that differ from those in the offer, EKT solves this
 problem by use of the SPI correlator and communication of the
 answerer's SRTP master key in EKT.

 As can be seen from the above, the combination of EKT and SDESC
 provides a better solution to SRTP negotiation for offer/answer than
 either of them alone. SDESC negotiates the various SRTP crypto

https://datatracker.ietf.org/doc/html/rfc4568#section-6.4.1
https://datatracker.ietf.org/doc/html/rfc3261

Mattsson, et al. Expires April 23, 2015 [Page 18]

Internet-Draft EKT SRTP October 2014

 parameters (which EKT does not), whereas EKT addresses some of the
 shortcomings of SDESC.

3.3. Overview of Combined EKT and SDESC Operation

 We define a new session parameter to SDESC to communicate the EKT
 cipher, EKT key, and Security Parameter Index to the peer. The
 original SDESC parameters are used as defined in [RFC4568], however
 the procedures associated with the SRTP master key differ slightly,
 since both SDESC and EKT communicate an SRTP master key. In
 particular, the SRTP master key communicated via SDESC is used only
 if there is currently no crypto context established for the SSRC in
 question. This will be the case when an entity has received only the
 offer or answer, but has yet to receive a valid EKT packet from the
 peer. Once a valid EKT packet is received for the SSRC, the crypto
 context is initialized accordingly, and the SRTP master key will then
 be derived from the EKT packet. Subsequent offer/answer exchanges do
 not change this: The most recent SRTP master key negotiated via EKT
 will be used, or, if none is available for the SSRC in question, the
 most recent SRTP master key negotiated via offer/answer will be used.
 This is done to avoid race conditions between the offer/answer
 exchange and EKT, even though this breaks some offer/answer rules.
 Note that with the rules described in this paragraph, once a valid
 EKT packet has been received for a given SSRC, rekeying for that SSRC
 can only be done via EKT. The associated SRTP crypto parameters
 however can be changed via SDESC.

3.4. EKT Extensions to SDP Security Descriptions

 In order to use EKT and SDESC in conjunction with each other, the new
 SDESC session parameter "EKT" is defined. It MUST NOT appear more
 than once in a given crypto attribute. In the Offer/Answer model,
 the EKT parameter is a negotiated parameter.The "EKT" session
 parameter consists of three parts (the formal grammar is provided in

Section 3.9):

 "EKT=" <EKT_Cipher> "|" <EKT_Key> "|" <EKT_SPI>

 Below are details on each of these attributes.

 EKT_Cipher: The (optional) EKT_Cipher field defines the EKT cipher
 used to encrypt the EKT key within SRTP and SRTCP packets. The
 default value is "AESKW_128" in accordance with Section 2.3.1.
 For the AES Key Wrap cipher, the values "AESKW_128", "AESKW_192",
 and "AESKW_256" are defined for values of L=16, 24, and 32
 respectively.

https://datatracker.ietf.org/doc/html/rfc4568

Mattsson, et al. Expires April 23, 2015 [Page 19]

Internet-Draft EKT SRTP October 2014

 EKT_Key: The (mandatory) EKT_Key field is the EKT key used to
 encrypt the SRTP Master Key within SRTP and SRTCP packets. The
 value is base64 encoded with "=" padding if padding is necessary
 (see Section 3.2 and 4 of [RFC4648]).

 EKT_SPI: The (mandatory) EKT_SPI field is the Security Parameter
 Index. It is encoded as an ASCII string representing the
 hexadecimal value of the Security Parameter Index. The SPI
 identifies the *offer* crypto attribute (including the EKT Key and
 Cipher) being used for the associated SRTP session. A crypto
 attribute corresponds to an EKT Parameter Set and hence the SPI
 effectively identifies a particular EKT parameter set. Note that
 the scope of the SPI is the SRTP session, which may or may not be
 limited to the scope of the associated SIP dialog. In particular,
 if one of the participants in an SRTP session is an SRTP
 translator, the scope of the SRTP session is not limited to the
 scope of a single SIP dialog. However, if all of the participants
 in the session are endpoints or mixers, the scope of the SRTP
 session will correspond to a single SIP dialog.

3.5. Offer/Answer Considerations

 In this section, we provide the offer/answer procedures associated
 with use of the new SDESC session parameter defined in Section 3.4.
 Since SDESC is defined only for unicast streams, we provide only
 offer/answer procedures for unicast streams here as well.

3.5.1. Generating the Initial Offer - Unicast Streams

 When the initial offer is generated, the offerer MUST follow the
 steps defined in [RFC4568] Section 7.1.1 as well as the following
 steps.

 [[Editor's Note: following paragraph would benefit from rewording.]]

 For each unicast media line using Security Descriptions and where use
 of EKT is desired, the offerer MUST include the EKT parameter in at
 least one "crypto" attribute (see [RFC4568]). The EKT paramater MUST
 contain the EKT_Key and EKT_SPI fields. The EKT_SPI field serves to
 identify the EKT parameter set used for a particular SRTP or SRTCP
 packet. Consequently, within a single media line, a given EKT_SPI
 value MUST NOT be used with multiple crypto attributes. Note that
 the EKT parameter set to use for the session is not yet established
 at this point; each offered crypto attribute contains a candidate EKT
 parameter set. Furthermore, if the media line refers to an existing
 SRTP session, then any SPI values used for EKT parameter sets in that
 session MUST NOT be remapped to any different EKT parameter sets.
 When an offer describes an SRTP session that is already in progress,

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4568#section-7.1.1
https://datatracker.ietf.org/doc/html/rfc4568

Mattsson, et al. Expires April 23, 2015 [Page 20]

Internet-Draft EKT SRTP October 2014

 the offer SHOULD use an EKT parameter set (including EKT_SPI and
 EKT_KEY) that is already in use.

 As EKT is not defined for use with MKI, a "crypto" attribute
 containing the EKT parameter MUST NOT contain MKI.

 Important Note: The scope of the offer/answer exchange is the SIP
 dialog(s) established as a result of the INVITE, however the scope
 of EKT is the direct SRTP session, i.e., all the participants that
 are able to receive SRTP and SRTCP packets directly. If an SRTP
 session spans multiple SIP dialogs, the EKT parameter sets MUST be
 synchronized between all the SIP dialogs where SRTP and SRTCP
 packets can be exchanged. In the case where the SIP entity
 operates as an RTP mixer (and hence re-originates SRTP and SRTCP
 packets with its own SSRC), this is not an issue, unless the mixer
 receives traffic from the various participants on the same
 destination IP address and port, in which case further
 coordination of SPI values and crypto parameters may be needed
 between the SIP dialogs (note that SIP forking with multiple early
 media senders is an example of this). However, if it operates as
 a transport translator (relay) then synchronized negotiation of
 the EKT parameter sets on *all* the involved SIP dialogs will be
 needed. This is non-trivial in a variety of use cases, and hence
 use of the combined SDES/EKT mechanism with RTP translators should
 be considered very carefully. It should be noted, that use of
 SRTP with RTP translators in general should be considered very
 carefully as well.

 The session parameter "EKT" can either be included as an optional or
 mandatory parameter.

3.5.2. Generating the Initial Answer - Unicast Streams

 When the initial answer is generated, the answerer MUST follow the
 steps defined in [RFC4568] Section 7.1.2 as well as the following
 steps.

 For each unicast media line using SDESC, the answerer examines the
 associated crypto attribute(s) for the presence of the session
 parameter "EKT". If a mandatory EKT parameter is included with a
 "crypto" attribute, the answerer MUST support those parameters in
 order to accept that offered crypto attribute. If an optional EKT
 parameter is included instead, the answerer MAY accept the offered
 crypto attribute without using EKT. However, doing so will prevent
 the offerer from processing any packets received before the answer.
 If no EKT parameter are included with a crypto attribute, and that
 crypto attribute is accepted in the answer, EKT MUST NOT be used. If

https://datatracker.ietf.org/doc/html/rfc4568#section-7.1.2

Mattsson, et al. Expires April 23, 2015 [Page 21]

Internet-Draft EKT SRTP October 2014

 a given a crypto attribute includes a malformed EKT parameter, that
 crypto attribute MUST be considered invalid.

 When EKT is used with SDESC, the offerer and answerer MUST use the
 same SRTP master salt. Thus, the SRTP key parameter(s) in the answer
 crypto attribute MUST use the same master salt as the one accepted
 from the offer.

 When the answerer accepts the offered media line and EKT is being
 used, the crypto attribute included in the answer MUST include the
 same EKT parameter values as found in the accepted crypto attribute
 from the offerer (however, if the default EKT cipher is being used,
 it may be omitted). Furthermore, the EKT parameter included MUST be
 mandatory (i.e., no "-" prefix).

 Acceptance of a crypto attribute with an EKT parameter leads to
 establishment of the EKT parameter set for the corresponding SRTP
 session. Consequently, the answerer MUST send packets in accordance
 with that particular EKT parameter set only. If the answerer wants
 to enable the offerer to process SRTP packets received by the offerer
 before it receives the answer, the answerer MUST NOT include any
 declarative session parameters that either were not present in the
 offered crypto attribute, or were present but with a different value.
 Otherwise, the offerer's view of the EKT parameter set would differ
 from the answerer's until the answer is received. Similarly, unless
 the offerer and answerer has other means for correlating an answer
 with a particular SRTP session, the answer SHOULD NOT include any
 declarative session parameters that either were not present in the
 offered crypto attribute, or were present but with a different value.
 If this recommendation is not followed and the offerer receives
 multiple answers (e.g., due to SIP forking), the offerer may not be
 able to process incoming media stream packets correctly.

3.5.3. Processing of the Initial Answer - Unicast Streams

 When the offerer receives the answer, it MUST perform the steps in
[RFC4568] Section 7.1.3 as well as the following steps for each SRTP

 media stream it offered with one or more crypto lines containing EKT
 parameters in it.

 [[Editor's Note: following paragraph would benefit from rewording.]]

 If the answer crypto line contains an EKT parameter, and the
 corresponding crypto line from the offer contained the same EKT
 values, use of EKT has been negotiated successfully and MUST be used
 for the media stream. When determining whether the values match, an
 optional and mandatory parameter MUST be considered equal.

https://datatracker.ietf.org/doc/html/rfc4568#section-7.1.3

Mattsson, et al. Expires April 23, 2015 [Page 22]

Internet-Draft EKT SRTP October 2014

 Furthermore, if the default EKT cipher is being used, it MAY be
 either present or absent in the offer and/or answer.

 If the answer crypto line does not contain an EKT parameter, then EKT
 MUST NOT be used for the corresponding SRTP session. Note that if
 the accepted crypto attribute contained a mandatory EKT parameter in
 the offer, and the crypto attribute in the answer does not contain an
 EKT parameter, then negotiation has failed (Section 5.1.3 of
 [RFC4568]).

 If the answer crypto line contains an EKT parameter but the
 corresponding offered crypto line did not, or if the values don't
 match or are invalid, then the offerer MUST consider the crypto line
 invalid (see Section 7.1.3 of [RFC4568] for further operation).

 The EKT parameter set is established when the answer is received,
 however there are a couple of special cases to consider here. First
 of all, if an SRTP packet containing a Full EKT Field is received
 prior to the answer, then the EKT parameter set is established
 provisionally based on the SPI included. Once the answer (which may
 include declarative session parameters) is received, the EKT
 parameter set is fully established. The second case involves receipt
 of multiple answers due to SIP forking. In this case, there will be
 multiple EKT parameter sets; one for each SRTP session. As mentioned
 earlier, reliable correlation of SIP dialogs to SRTP sessions
 requires extensions, and hence if one or more of the answers include
 declarative session parameters, it may be difficult to fully
 establish the EKT parameter set for each SRTP session. In the
 absence of a specific correlation mechanism, it is RECOMMENDED, that
 such correlation be done based on the signaled receive IP-address in
 the SDP and the observed source IP-address in incoming SRTP/SRTCP
 packets, and, if necessary, the signaled receive UDP port and the
 observed source UDP port.

3.6. SRTP-Specific Use Outside Offer/Answer

 Security Descriptions use for SRTP is not defined outside offer/
 answer and hence neither does Security Descriptions with EKT.

3.7. Modifying the Session

 When a media stream using the SRTP security descriptions has been
 established, and a new offer/answer exchange is performed, the
 offerer and answerer MUST follow the steps in Section 7.1.4 of
 [RFC4568] as well as the following steps. SDESC allows for all
 parameters of the session to be modified, and the EKT session
 parameter are no exception to that, however, there are a few
 additional rules to be adhered to when using EKT.

https://datatracker.ietf.org/doc/html/rfc4568#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc4568#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc4568#section-7.1.3
https://datatracker.ietf.org/doc/html/rfc4568#section-7.1.4
https://datatracker.ietf.org/doc/html/rfc4568#section-7.1.4

Mattsson, et al. Expires April 23, 2015 [Page 23]

Internet-Draft EKT SRTP October 2014

 It is permissible to start a session without the use of EKT, and then
 subsequently start using EKT, however the converse is not. Thus,
 once use of EKT has been negotiated on a particular media stream, EKT
 MUST continue to be used on that media stream in all subsequent
 offer/answer exchanges.

 The reason for this is that both SDESC and EKT communicate the SRTP
 master key with EKT communicated master keys taking precedence.
 Reverting back to an SDESC-controlled master key in a synchronized
 manner is difficult.

 Once EKT is being used, the salt for the direct SRTP session MUST NOT
 be changed. Thus, a new offer/answer which does not create a new
 SRTP session (e.g., because it reuses the same IP address and port)
 MUST use the same salt for all crypto attributes as is currently used
 for the direct SRTP session.

 [[Editor's Note: following paragraph would benefit from re-arranging
 into earlier-described steps.]]

 Finally, subsequent offer/answer exchanges MUST NOT remap a given SPI
 value to a different EKT parameter set until 2^15 other mappings have
 been used within the SRTP session. In practice, this requirements is
 most easily met by using a monotonically increasing SPI value (modulo
 2^15 and starting with zero) per direct SRTP session. Note that a
 direct SRTP session may span multiple SIP dialogs, and in such cases
 coordination of SPI values across those SIP dialogs will be required.
 In the simple point-to-point unicast case without translators, the
 requirement simply applies within each media line in the SDP. In the
 point-to-multipoint case, the requirement applies across all the
 associated SIP dialogs.

3.8. Backwards Compatibility Considerations

 Backwards compatibility can be achieved in a couple of ways. First
 of all, Security Descriptions allows for session parameters to be
 prefixed with "-" to indicate that they are optional. If the
 answerer does not support the EKT session parameter, such optional
 parameters will simply be ignored. When the answer is received,
 absence of the parameter will indicate that EKT is not being used.
 Receipt of SRTP or SRTCP packets prior to receipt of such an answer
 will obviously be problematic (as is normally the case for Security
 Descriptions without EKT).

 Alternatively, Security Descriptions allows for multiple crypto lines
 to be included for a particular media stream. Thus, two crypto lines
 that differ in their use of EKT parameters (presence in one, absence
 in the other) can be used as a way to negotiate use of EKT. When the

Mattsson, et al. Expires April 23, 2015 [Page 24]

Internet-Draft EKT SRTP October 2014

 answer is received, the accepted crypto attribute will indicate
 whether EKT is being used or not.

3.9. Grammar

 The ABNF [RFC5234] syntax for the one new SDP Security Descriptions
 session parameter, EKT, comprising three parts is shown in Figure 6.

 ekt = "EKT=" cipher "|" key "|" spi
 cipher = cipher-ext / "AESKW_128" / "AESKW_192" / "AESKW_256"
 cipher-ext = 1*64(ALPHA / DIGIT / "_")
 key = 1*(base64) ; See Section 4 of [RFC4648]
 base64 = ALPHA / DIGIT / "+" / "/" / "="
 spi = 4HEXDIG ; See [RFC5234]

 Figure 6: ABNF for the EKT session parameters

 Using the example from Figure 6 with the EKT extensions to SDP
 Security Descriptions results in the following example SDP:

 v=0
 o=sam 2890844526 2890842807 IN IP4 192.0.2.5
 s=SRTP Discussion
 i=A discussion of Secure RTP
 u=http://www.example.com/seminars/srtp.pdf
 e=marge@example.com (Marge Simpson)
 c=IN IP4 192.0.2.12
 t=2873397496 2873404696
 m=audio 49170 RTP/SAVP 0
 a=crypto:1 AES_CM_128_HMAC_SHA1_80
 inline:WVNfX19zZW1jdGwgKCkgewkyMjA7fQp9CnVubGVz|2^20
 FEC_ORDER=FEC_SRTP EKT=AESKW_128|WWVzQUxvdmVseUVLVGtleQ|AAE0
 a=crypto:2 F8_128_HMAC_SHA1_80
 inline:MTIzNDU2Nzg5QUJDREUwMTIzNDU2Nzg5QUJjZGVm|2^20
 FEC_ORDER=FEC_SRTP EKT=AESKW_128|VHdvTG92ZWx5RUtUa2V5cw|AAE1

 For legibility the SDP shows line breaks that are not present on the
 wire.

 Figure 7: SDP Security Descriptions example with EKT

4. Use of EKT with DTLS-SRTP

 This document defines an extension to DTLS-SRTP called Key Transport.
 The EKT with the DTLS-SRTP Key Transport enables secure transport of
 EKT keying material from one DTLS-SRTP peer to another. This enables
 those peers to process EKT keying material in SRTP (or SRTCP) and
 retrieve the embedded SRTP keying material. This combination of

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc5234

Mattsson, et al. Expires April 23, 2015 [Page 25]

Internet-Draft EKT SRTP October 2014

 protocols is valuable because it combines the advantages of DTLS
 (strong authentication of the endpoint and flexibility) with the
 advantages of EKT (allowing secure multiparty RTP with loose
 coordination and efficient communication of per-source keys).

4.1. DTLS-SRTP Recap

 DTLS-SRTP [RFC5764] uses an extended DTLS exchange between two peers
 to exchange keying material, algorithms, and parapeters for SRTP.
 The SRTP flow operates over the same transport as the DTLS-SRTP
 exchange (i.e., the same 5-tuple). DTLS-SRTP combines the
 performance and encryption flexibility benefits of SRTP with the
 flexibility and convenience of DTLS-integrated key and association
 management. DTLS-SRTP can be viewed in two equivalent ways: as a new
 key management method for SRTP, and a new RTP-specific data format
 for DTLS.

4.2. EKT Extensions to DTLS-SRTP

 This document adds a new TLS negotiated extension called "ekt". This
 adds a new TLS content type, EKT, and a new negotiated extension EKT.
 The negotiated extension MUST only be requested in conjunction with
 the "use_srtp" extension (Section 3.2 of [RFC5764]). The DTLS server
 MUST include "dtls-srtp-ekt" in its SDP (as a session or media level
 attribute) and "ekt" in its TLS ServerHello message. If a DTLS
 client includes "ekt" in its ClientHello, but does not receive "ekt"
 in the ServerHello, the DTLS client MUST NOT send DTLS packets with
 the "ekt" content-type.

 The formal description of the dtls-srtp-ekt attribute is defined by
 the following ABNF [RFC5234] syntax:

 attribute = "a=dtls-srtp-ekt"

https://datatracker.ietf.org/doc/html/rfc5764
https://datatracker.ietf.org/doc/html/rfc5764#section-3.2
https://datatracker.ietf.org/doc/html/rfc5234

Mattsson, et al. Expires April 23, 2015 [Page 26]

Internet-Draft EKT SRTP October 2014

 Using the syntax described in DTLS [RFC6347], the following
 structures are used:

 enum {
 ekt_key(0),
 ekt_key_ack(1),
 ekt_key_error(254),
 (255)
 } SRTPKeyTransportType;

 struct {
 SRTPKeyTransportType keytrans_type;
 uint24 length;
 uint16 message_seq;
 uint24 fragment_offset;
 uint24 fragment_length;
 select (SRTPKeyTransportType) {
 case ekt_key:
 EKTkey;
 };
 } KeyTransport;

 enum {
 RESERVED(0),
 AESKW_128(1),
 AESKW_192(2),
 AESKW_256(3),
 } ektcipher;

 struct {
 ektcipher EKT_Cipher;
 uint EKT_Key_Value<1..256>;
 uint EKT_Master_Salt<1..256>;
 uint16 EKT_SPI;
 } EKTkey;

 Figure 8: Additional TLS Data Structures

 The diagram below shows a message flow of DTLS client and DTLS server
 using the DTLS-SRTP Key Transport extension. SRTP packets exchanged
 prior to the ekt_message are encrypted using the SRTP master key
 derived from the normal DTLS-SRTP key derivation function. After the
 ekt_key message, they can be encrypted using the SRTP key carried by
 EKT.

https://datatracker.ietf.org/doc/html/rfc6347

Mattsson, et al. Expires April 23, 2015 [Page 27]

Internet-Draft EKT SRTP October 2014

 Client Server

 ClientHello + use_srtp + EKT
 -------->
 ServerHello + use_srtp + EKT
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 SRTP packets <-------> SRTP packets
 SRTP packets <-------> SRTP packets
 ekt_key -------->
 SRTP packets <-------> SRTP packets
 SRTP packets <-------> SRTP packets

 Figure 9: Handshake Message Flow

4.3. Offer/Answer Considerations

 This section describes Offer/Answer considerations for the use of EKT
 together with DTLS-SRTP for unicast and multicast streams. The
 offerer and answerer MUST follow the procedures specified in
 [RFC5764] as well as the following ones.

 As most DTLS-SRTP processing is performed on the media channel,
 rather than in SDP, there is little processing performed in SDP other
 than informational and to redirect DTLS-SRTP to an alternate host.
 Advertising support for the extension is necessary in SDP because in
 some cases it is required to establish an SRTP call. For example, a
 mixer may be able to only support SRTP listeners if those listeners
 implement DTLS Key Transport (because it lacks the CPU cycles
 necessary to encrypt SRTP uniquely for each listener).

4.3.1. Generating the Initial Offer

 The initial offer contains a new SDP attribute, "dtls-srtp-ekt",
 which contains no value. This attribute MUST only appear at the
 media level. This attribute indicates the offerer is capable of
 supporting DTLS-SRTP with EKT extensions, and indicates the desire to
 use the "ekt" extension during the DTLS-SRTP handshake.

https://datatracker.ietf.org/doc/html/rfc5764

Mattsson, et al. Expires April 23, 2015 [Page 28]

Internet-Draft EKT SRTP October 2014

 An example of SDP containing the dtls-srtp-ekt attribute::

 v=0
 o=sam 2890844526 2890842807 IN IP4 192.0.2.5
 s=SRTP Discussion
 i=A discussion of Secure RTP
 u=http://www.example.com/seminars/srtp.pdf
 e=marge@example.com (Marge Simpson)
 c=IN IP4 192.0.2.12
 t=2873397496 2873404696
 m=audio 49170 UDP/TLS/RTP/SAVP 0
 a=fingerprint:SHA-1
 4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB
 a=dtls-srtp-ekt

 For legibility the SDP shows line breaks that are not present on the
 wire.

4.3.2. Generating the Initial Answer

 Upon receiving the initial offer, the presence of the dtls-srtp-ekt
 attribute indicates a desire to receive the EKT extension in the
 DTLS-SRTP handshake. DTLS messages should be constructed according
 to those two attributes.

 If the answerer does not wish to perform EKT, it MUST NOT include
 a=dtls-srtp-ekt in the SDP answer, and it MUST NOT negotiate EKT
 during its DTLS-SRTP exchange.

 Otherwise, the dtls-srtp-ekt attribute SHOULD be included in the
 answer, and EKT SHOULD be negotiated in the DTLS-SRTP handshake.

4.3.3. Processing the Initial Answer

 The presence of the dtls-srtp-ekt attribute indicates a desire by the
 answerer to perform DTLS-SRTP with EKT extensions. There are two
 indications the remote peer does not want to do EKT: the dtls-srtp-
 ekt attribute is not present in the answer, or the DTLS-SRTP exchange
 fails to negotiate the EKT extension. If the dtls-srtp-ekt attribute
 is not present in the answer, the DTLS-SRTP exchange MUST NOT attempt
 to negotiate the EKT extension. If the dtls-srtp-ekt attribute is
 present in the answer but the DTLS-SRTP exchange fails to negotiate
 the EKT extension, EKT MUST NOT be used with that media stream.

 After successful DTLS negotiation of the EKT extension, the DTLS
 client and server MAY exchange SRTP packets, encrypted using the KDF
 described in [RFC5764]. This is normal and expected, even if Key
 Transport was negotiated by both sides, as neither side may (yet)

https://datatracker.ietf.org/doc/html/rfc5764

Mattsson, et al. Expires April 23, 2015 [Page 29]

Internet-Draft EKT SRTP October 2014

 have a need to alter the SRTP key. However, it is also possible that
 one (or both) peers will immediately send an EKT packet before
 sending any SRTP, and also possible that SRTP, encrypted with an
 unknown key, may be received before the EKT packet is received.

4.3.4. Sending DTLS EKT Key Reliably

 In the absence of a round trip time estimate, the DTLS ekt_key
 message is sent using an exponential backoff initialized to 250ms, so
 that if the first message is sent at time 0, the next transmissions
 are at 250ms, 500ms, 1000ms, and so on. If a recent round trip time
 estimate is available, exponential backoff is used with the first
 transmission at 1.5 times the round trip time estimate. In either
 case, re-transmission stops when ekt_key_ack or ekt_key_error message
 is received for the matching message_seq.

4.3.5. Modifying the Session

 As DTLS-SRTP-EKT processing is done on the DTLS-SRTP channel (media
 channel) rather than signaling, no special processing for modifying
 the session is necessary.

 If the initial offer and initial answer both contained EKT attributes
 (indicating the answerer desired to perform EKT), a subsequent offer/
 answer exchange MUST also contain those same EKT attributes. If not,
 operation is undefined and the sesion MAY be terminated. If the
 initial offer and answer failed to negotiate EKT (that is, the answer
 did not contain EKT attributes), EKT negotiation failed and a
 subsequent offer SHOULD NOT include EKT attributes.

5. Use of EKT with MIKEY

 The advantages outlined in Section 1 are useful in some scenarios in
 which MIKEY is used to establish SRTP sessions. In this section, we
 briefly review MIKEY and related work, and discuss these scenarios.

 An SRTP sender or a group controller can use MIKEY to establish a
 SRTP cryptographic context. This capability includes the
 distribution of a TEK generation key (TGK) or the TEK itself,
 security policy payload, crypto session bundle ID (CSB_ID) and a
 crypto session ID (CS_ID). The TEK directly maps to an SRTP master
 key, whereas the TGK is used along with the CSB_ID and a CS_ID to
 generate a TEK. The CS_ID is used to generate multiple TEKs (SRTP
 master keys) from a single TGK. For a media stream in SDP, MIKEY
 allocates two consecutive numbers for the crypto session IDs, so that
 each direction uses a different SRTP master key (see [RFC4567]).

https://datatracker.ietf.org/doc/html/rfc4567

Mattsson, et al. Expires April 23, 2015 [Page 30]

Internet-Draft EKT SRTP October 2014

 The MIKEY specification [RFC3830] defines three modes to exchange
 keys, associated parameters and to protect the MIKEY message: pre-
 shared key, public-key encryption and Diffie-Hellman key exchange.
 In the first two modes the MIKEY initiator only chooses and
 distributes the TGK or TEK, whereas in the third mode both MIKEY
 entities (the initiator and responder) contribute to the keys. All
 three MIKEY modes have in common that for establishing a SRTP session
 the exchanged key is valid for the send and receive direction.
 Especially for group communications it is desirable to update the
 SRTP master key individually per direction. EKT provides this
 property by distributing the SRTP master key within the SRTP/SRTCP
 packet.

 MIKEY already supports synchronization of ROC values between the
 MIKEY initiator and responder. The SSRC / ROC value pair is part of
 the MIKEY Common Header payload. This allows providing the current
 ROC value to late joiners of a session. However, in some scenarios a
 key management based ROC synchronization is not sufficient. For
 example, in mobile and wireless environments, members may go in and
 out of coverage and may miss a sequence number overrun. In point-to-
 multipoint translator scenarios it is desirable to not require the
 group controller to track the ROC values of each member, but to
 provide the ROC value by the originator of the SRTP packet. A better
 alternative to synchronize the ROC values is to send them directly
 via SRTP/SRTCP as EKT does. A separate SRTP extension [RFC4771]
 includes the ROC in a modified authentication tag but that extension
 does not support updating the SRTP master key.

 Besides the ROC, MIKEY synchronizes also the SSRC values of the SRTP
 streams. Each sender of a stream sends the associated SSRC within
 the MIKEY message to the other party. If an SRTP session participant
 starts a new SRTP source (SSRC) or a new participant is added to a
 group, subsequent SDP offer/answer and MIKEY exchanges are necessary
 to update the SSRC values. EKT improves these scenarios by updating
 the keys and SSRC values without coordination on the signaling
 channel. With EKT, SRTP can handle early media, since the EKT SPI
 allows the receiver to identify the cryptographic keys and parameters
 used by the source.

 The MIKEY specification [RFC3830] suggests the use of unicast for
 rekeying. This method does not scale well to large groups or
 interactive groups. The EKT extension of SRTP/SRTCP provides a
 solution for rekeying the SRTP master key and for ROC/SSRC
 synchronization. EKT is not a substitution for MIKEY, but rather a
 complementary addition to address the above described limitations of
 MIKEY.

https://datatracker.ietf.org/doc/html/rfc3830
https://datatracker.ietf.org/doc/html/rfc4771
https://datatracker.ietf.org/doc/html/rfc3830

Mattsson, et al. Expires April 23, 2015 [Page 31]

Internet-Draft EKT SRTP October 2014

 In the next section we provide an extension to MIKEY for support of
 EKT. EKT can be used only with the pre-shared key or public-key
 encryption MIKEY mode of [RFC3830]. The Diffie-Hellman exchange mode
 is not suitable in conjunction with EKT, because it is not possible
 to establish one common EKT key over multiple EKT entities.
 Additional MIKEY modes specified in separate documents are not
 considered for EKT.

5.1. EKT Extensions to MIKEY

 In order to use EKT with MIKEY, the EKT cipher, EKT key and EKT SPI
 is negotiated in the MIKEY message exchange.

 The following parameters are added to the MIKEY Security Protocol
 Parameters namespace ([RFC3830], Section 6.10.1). (TBD will be
 requested from IANA [NOTE TO RFC EDITOR])

 Type | Meaning | Possible values
 --
 TBD | EKT cipher | see below
 TBD | EKT SPI | a 15-bit value

 Figure 10: MIKEY Security Protocol Parameters

 EKT cipher | Value

 (reserved) | 0
 AESKW_128 | 1
 AESKW_192 | 2
 AESKW_256 | 3

 Figure 11: EKT Cipher Parameters

 EKT_Key is transported in the MIKEY KEMAC payload within one separate
 Key Data sub-payload. As specified in Section 6.2 of [RFC3830], the
 KEMAC payload carries the TEK Generation Key (TGK) or the Traffic
 Encryption Key (TEK). One or more TGKs or TEKs are carried in
 individual Key Data sub-payloads within the KEMAC payload. The KEMAC
 payload is encrypted as part of MIKEY. The Key Data sub- payload,
 specified in Section 6.13 of [RFC3830], has the following format:

https://datatracker.ietf.org/doc/html/rfc3830
https://datatracker.ietf.org/doc/html/rfc3830#section-6.10.1
https://datatracker.ietf.org/doc/html/rfc3830#section-6.2
https://datatracker.ietf.org/doc/html/rfc3830#section-6.13

Mattsson, et al. Expires April 23, 2015 [Page 32]

Internet-Draft EKT SRTP October 2014

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload | Type | KV | Key data length |
 +-+
 : Key data :
 +-+
 : Salt length (optional) ! Salt data (optional) :
 +-+
 : KV data (optional) :
 +-+

 Figure 12: Key Data Sub-Payload of MIKEY

 These fields are described below:

 Type: 4 bits in length, indicates the type of key included in the
 payload. We define Type = TBD (will be requested from IANA [NOTE
 TO RFC EDITOR]) to indicate transport of the EKT key.

 KV: (4 bits): indicates the type of key validity period specified.
 KV=1 is currently specified as an SPI. We use that value to
 indicate the KV data contains the EKT_SPI for the key type
 EKT_Key. KV data would be 16 bits in length, but it is also
 possible to interpret the length from the 'Key data len' field.
 KV data MUST be present for the key type EKT_Key when KV=1.

 Salt length, Salt Data: These optional fields SHOULD be omitted for
 the key type EKT_Key, if the SRTP master salt is already present
 in the TGK or TEK Key Data sub-payload. The EKT_Key sub-payload
 MUST contain a SRTP master salt, if the SRTP master salt is not
 already present in the TGK or TEK Key Data sub-payload.

 KV Data: length determined by Key Data Length field.

5.2. Offer/Answer Considerations

 This section describes Offer/Answer considerations for the use of EKT
 together with MIKEY for unicast streams. The offerer and answerer
 MUST follow the procedures specified in [RFC3830] and [RFC4567] as
 well as the following ones.

5.2.1. Generating the Initial Offer

 If it is intended to use MIKEY together with EKT, the offerer MUST
 include at least one MIKEY key-mgmt attribute with one EKT_Key Key
 Data sub-payload and the SRTP Security Policy payload (SP) with the
 policy parameter EKT SPI. The policy parameter EKT Cipher is

https://datatracker.ietf.org/doc/html/rfc3830
https://datatracker.ietf.org/doc/html/rfc4567

Mattsson, et al. Expires April 23, 2015 [Page 33]

Internet-Draft EKT SRTP October 2014

 OPTIONAL, The default value is "AESKW_128" in accordance with
Section 2.3.1. MIKEY can be used on session or media level. On

 session level, MIKEY provides the keys for multiple SRTP sessions in
 the SDP offer. The EKT SPI references a EKT parameter set including
 the Secure RTP parameters as specified in Section 8.2 in [RFC3711].
 If MIKEY is used on session level, it is only possible to use one EKT
 SPI value. Therefore, the session-level MIKEY message MUST contain
 one SRTP Security Policy payload only, which is valid for all related
 SRTP media lines. If MIKEY is used on media level, different SRTP
 Security Policy parameters (and consequently different EKT SPI
 values) can be used for each media line. If MIKEY is used on session
 and media level, the media level content overrides the session level
 content.

 EKT requires a single shared SRTP master salt between all
 participants in the direct SRTP session. If a MIKEY key-mgmt
 attribute contains more than one TGK or TEK Key Data sub-payload, all
 the sub-payloads MUST contain the same master salt value.
 Consequently, the EKT_Key Key Data sub-payload MAY also contain the
 same salt or MAY omit the salt value. If the SRTP master salt is not
 present in the TGK and TEK Key Data sub-payloads, the EKT_Key sub-
 payload MUST contain a master salt.

5.2.2. Generating the Initial Answer

 For each media line in the offer using MIKEY, provided on session
 and/or on media level, the answerer examines the related MIKEY key-
 mgmt attributes for the presence of EKT parameters. In order to
 accept the offered key-mgmt attribute, the MIKEY message MUST contain
 one EKT_Key Key Data sub-payload and the SRTP Security Policy payload
 with policy parameter EKT SPI. The answerer examines also the
 existence of a SRTP master salt in the TGK/TEK and/or the EKT_Key
 sub-payloads. If multiple salts are available, all values MUST be
 equal. If the salt values differ or no salt is present, the key-mgmt
 attribute MUST be considered as invalid.

 The MIKEY responder message in the SDP answer does not contain a
 MIKEY KEMAC or Security Policy payload and consequently does not
 contain any EKT parameters. If a key-mgmt attribute for a media line
 was accepted by the answerer, the EKT parameter set of the offerer is
 valid for both directions of the SRTP session.

5.2.3. Processing the Initial Answer

 On reception of the answer, the offerer examines if EKT has been
 accepted for the offered media lines. If a MIKEY key-mgmt attribute
 is received containing a valid MIKEY responder message, EKT has been
 successfully negotiated. On receipt of a MIKEY error message, EKT

https://datatracker.ietf.org/doc/html/rfc3711#section-8.2

Mattsson, et al. Expires April 23, 2015 [Page 34]

Internet-Draft EKT SRTP October 2014

 negotiation has failed. For example, this may happen if an EKT
 extended MIKEY initiator message is sent to a MIKEY entity not
 supporting EKT. A MIKEY error code 'Invalid SPpar' or 'Invalid DT'
 is returned to indicate that the EKT parameters (EKT Cipher and EKT
 SPI) in the SRTP Security Policy payload or the EKT_Key sub-payload
 is not supported. In this case, the offerer may send a second SDP
 offer with a MIKEY key-mgmt attribute without the additional EKT
 extensions.

 This behavior can be improved by offering two key-mgmt SDP
 attributes. One attribute offers MIKEY with SRTP and EKT and the
 other attribute offers MIKEY with SRTP without EKT.

5.2.4. Modifying the Session

 Once an SRTP stream has been established, a new offer/answer exchange
 can modify the session including the EKT parameters. If the EKT key
 or EKT cipher is modified (i.e., a new EKT parameter set is created)
 the offerer MUST also provide a new EKT SPI value. The offerer MUST
 NOT remap an existing EKT SPI value to a new EKT parameter set.
 Similar, a modification of the SRTP Security Policy leads to a new
 EKT parameter set and requires a fresh EKT SPI, even if the EKT key
 or cipher did not change.

 Once EKT is being used, the SRTP master salt for the SRTP session
 MUST NOT be changed. The salt in the Key Data sub-payloads within
 the subsequent offers MUST be the same as the one already used.

 After EKT has been successfully negotiated for a session and an SRTP
 master key has been transported by EKT, it is difficult to switch
 back to a pure MIKEY based key exchange in a synchronized way.
 Therefore, once EKT is being used for a session, EKT MUST be used
 also in all subsequent offer/answer exchanges for that session.

6. Using EKT for Interoperability between Key Management Systems

 A media gateway (MGW) can provide interoperability between an SRTP-
 EKT endpoint and a non-EKT SRTP endpoint. When doing this function,
 the MGW can perform non-cryptographic transformations on SRTP packets
 outlined above. However, there are some uses of cryptography that
 will be required for that gateway. If a new SRTP master key is
 communicated to the MGW (via EKT from the EKT leg, or via Security
 Descriptions without EKT from the Security Descriptions leg), the MGW
 needs to convert that information for the other leg, and that process
 will incur some cryptographic operations. Specifically, if the new
 key arrived via EKT, the key must be decrypted and then sent in
 Security Descriptions (e.g., as a SIP re-INVITE); likewise, if a new

Mattsson, et al. Expires April 23, 2015 [Page 35]

Internet-Draft EKT SRTP October 2014

 key arrives via Security Descriptions that must be encrypted via EKT
 and sent in SRTP/SRTCP.

 Additional non-normative information can be found in Appendix A.

7. Design Rationale

 From [RFC3550], a primary function of RTCP is to carry the CNAME, a
 "persistent transport-level identifier for an RTP source" since
 "receivers require the CNAME to keep track of each participant." EKT
 works in much the same way but uses SRTP to carry information needed
 for the proper processing of the SRTP traffic.

 With EKT, SRTP gains the ability to synchronize the creation of
 cryptographic contexts across all of the participants in a single
 session. This feature provides some, but not all, of the
 functionality that is present in IKE phase two (but not phase one).
 Importantly, EKT does not provide a way to indicate SRTP options.

 With EKT, external signaling mechanisms provide the SRTP options and
 the EKT Key, but need not provide the key(s) for each individual SRTP
 source. EKT provides a separation between the signaling mechanisms
 and the details of SRTP. The signaling system need not coordinate
 all SRTP streams, nor predict in advance how many sources will be
 present, nor communicate SRTP-level information (e.g., rollover
 counters) of current sessions.

 EKT is especially useful for multi-party sessions, and for the case
 where multiple RTP sessions are sent to the same destination
 transport address (see the example in the definition of "RTP session"
 in [RFC3550]). A SIP offer that is forked in parallel (sent to
 multiple endpoints at the same time) can cause multiple RTP sessions
 to be sent to the same transport address, making EKT useful for use
 with SIP.

 EKT can also be used in conjunction with a scalable group-key
 management system like GDOI [RFC6407]. In such a combination GDOI
 would provide a secure entity authentication method for group
 members, and a scalable way to revoke group membership; by itself,
 EKT does not attempt to provide either capability.

 EKT carries the encrypted key in a new SRTP field (at the end of the
 SRTP packet). This maintains compatibility with the existing SRTP
 specification by defining a new crypto function that incorporates the
 encrypted key, and a new authentication transform to provide implicit
 authentication of the encrypted key.

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc6407

Mattsson, et al. Expires April 23, 2015 [Page 36]

Internet-Draft EKT SRTP October 2014

 The main motivation for the use of the variable-length EKT format is
 bandwidth conservation. When EKT is sent over SRTP, there will be a
 loss of (usable) bandwidth due to the additional EKT bytes in each
 RTP packet. For some applications, this bandwidth loss is
 significant.

7.1. Alternatives

 In its current design, EKT requires that the Master Salt be
 established out of band. That requirement is undesirable. In an
 offer/answer environment, it forces the answerer to re-use the same
 Master Salt value used by the offerer. The Master Salt value could
 be carried in EKT packets though that would consume yet more
 bandwidth.

 In some scenarios, two SRTP sessions may be combined into a single
 session. When using EKT in such sessions, it is desirable to have an
 SPI value that is larger than 15 bits, so that collisions between SPI
 values in use in the two different sessions are unlikely (since each
 collision would confuse the members of one of the sessions).

 An alternative that addresses both of these needs is as follows: the
 SPI value can be lengthed from 15 bits to 63 bits, and the Master
 Salt can be identical to, or constructed from, the SPI value. SRTP
 conventionally uses a 14-byte Master Salt, but shorter values are
 acceptable. This alternative would add six bytes to each EKT packet;
 that overhead may be a reasonable tradeoff for addressing the
 problems outlined above. This is considered too high a bandwidth
 penalty.

8. Security Considerations

 EKT inherits the security properties of the SRTP keying it uses:
 Security Descriptions, DTLS-SRTP, or MIKEY.

 With EKT, each SRTP sender and receiver MUST generate distinct SRTP
 master keys. This property avoids any security concern over the re-
 use of keys, by empowering the SRTP layer to create keys on demand.
 Note that the inputs of EKT are the same as for SRTP with key-
 sharing: a single key is provided to protect an entire SRTP session.
 However, EKT remains secure even in the absence of out-of-band
 coordination of SSRCs, and even when SSRC values collide.

 The EKT Cipher includes its own authentication/integrity check. For
 an attacker to successfully forge a full EKT packet, it would need to
 defeat the authentication mechanisms of both the EKT Cipher and the
 SRTP authentication mechanism.

Mattsson, et al. Expires April 23, 2015 [Page 37]

Internet-Draft EKT SRTP October 2014

 The presence of the SSRC in the EKT_Plaintext ensures that an
 attacker cannot substitute an EKT_Ciphertext from one SRTP stream
 into another SRTP stream.

 An attacker who strips a Full_EKT_Field from an SRTP packet may
 prevent the intended receiver of that packet from being able to
 decrypt it. This is a minor denial of service vulnerability.
 Similarly, an attacker who adds a Full_EKT_Field can disrupt service.

 An attacker could send packets containing either Short EKT Field or
 Full EKT Field, in an attempt to consume additional CPU resources of
 the receiving system. In the case of the Short EKT Field, this field
 is stripped and normal SRTP or SRTCP processing is performed. In the
 case of the Full EKT Field, the attacker would have to have guessed
 or otherwise determined the SPI being used by the receiving system.
 If an invalid SPI is provided by the attacker, processing stops. If
 a valid SPI is provided by the attacker, the receiving system will
 decrypt the EKT ciphertext and return an authentication failure (Step
 3 of Section 2.2.2).

 EKT can rekey an SRTP stream until the SRTP rollover counter (ROC)
 needs to roll over. EKT does not extend SRTP's rollover counter
 (ROC), and like SRTP itself EKT cannot properly handle a ROC
 rollover. Thus even if using EKT, new (master or session) keys need
 to be established after 2^48 packets are transmitted in a single SRTP
 stream as described in Section 3.3.1 of [RFC3711]. Due to the
 relatively low packet rates of typical RTP sessions, this is not
 expected to be a burden.

 The confidentiality, integrity, and authentication of the EKT cipher
 MUST be at least as strong as the SRTP cipher.

 Part of the EKT_Plaintext is known, or easily guessable to an
 attacker. Thus, the EKT Cipher MUST resist known plaintext attacks.
 In practice, this requirement does not impose any restrictions on our
 choices, since the ciphers in use provide high security even when
 much plaintext is known.

 An EKT cipher MUST resist attacks in which both ciphertexts and
 plaintexts can be adaptively chosen. An EKT cipher MUST resist
 attacks in which both ciphertexts and plaintexts can be adaptively
 chosen and adversaries that can query both the encryption and
 decryption functions adaptively.

https://datatracker.ietf.org/doc/html/rfc3711#section-3.3.1

Mattsson, et al. Expires April 23, 2015 [Page 38]

Internet-Draft EKT SRTP October 2014

9. IANA Considerations

 IANA is requested to register EKT from Section 3.9 into the Session
 Description Protocol (SDP) Security Descriptions [iana-sdp-sdesc]
 registry for "SRTP Session Parameters".

 IANA is requested to register the following new attributes into the
 SDP Attributes registry [iana-sdp-attr].

 Attribute name: dtls-srtp-ekt

 Long form name: DTLS-SRTP with EKT

 Type of attribute: Media-level

 Subject to charset: No

 Purpose: Indicates support for DTLS-SRTP with EKT

 Appropriate values: No values

 Contact name: Dan Wing, dwing@cisco.com

 We request the following IANA assignments from the existing
 [iana-mikey] name spaces in the IETF consensus range (0-240)
 [RFC3830]:

 o From the Key Data payload name spaces, a value to indicate the
 type as the 'EKT_Key'.

 Furthermore, we need the following two new IANA registries created,
 populated with the initial values in this document. New values for
 both of these registries can be defined via Specification Required
 [RFC5226].

 o EKT parameter type, initially populated with the list from
 Figure 10

 o EKT cipher, initially populated with the list from Figure 11

10. Acknowledgements

 Thanks to Lakshminath Dondeti for assistance with earlier versions of
 this document. Thanks to Kai Fischer for writing the MIKEY section.

 Thanks to Nermeen Ismail, Eddy Lem,Rob Raymond, and Yi Cheng for
 fruitful discussions and comments. Thanks to Felix Wyss for his
 review and comments regarding ciphers. Thanks to Michael Peck for

https://datatracker.ietf.org/doc/html/rfc3830
https://datatracker.ietf.org/doc/html/rfc5226

Mattsson, et al. Expires April 23, 2015 [Page 39]

Internet-Draft EKT SRTP October 2014

 his review. Thanks to Magnus Westerlund for his review. Thanks to
 Michael Peck and Jonathan Lennox for their review comments.

11. References

11.1. Normative References

 [FIPS197] National Institute of Standards and Technology (NIST),
 "The Advanced Encryption Standard (AES)", FIPS-197 Federal
 Information Processing Standard, November 2001.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264, June
 2002.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",

RFC 3711, March 2004.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4563] Carrara, E., Lehtovirta, V., and K. Norrman, "The Key ID
 Information Type for the General Extension Payload in
 Multimedia Internet KEYing (MIKEY)", RFC 4563, June 2006.

 [RFC4567] Arkko, J., Lindholm, F., Naslund, M., Norrman, K., and E.
 Carrara, "Key Management Extensions for Session
 Description Protocol (SDP) and Real Time Streaming
 Protocol (RTSP)", RFC 4567, July 2006.

 [RFC4568] Andreasen, F., Baugher, M., and D. Wing, "Session
 Description Protocol (SDP) Security Descriptions for Media
 Streams", RFC 4568, July 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4563
https://datatracker.ietf.org/doc/html/rfc4567
https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226

Mattsson, et al. Expires April 23, 2015 [Page 40]

Internet-Draft EKT SRTP October 2014

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764, May 2010.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

11.2. Informative References

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3830] Arkko, J., Carrara, E., Lindholm, F., Naslund, M., and K.
 Norrman, "MIKEY: Multimedia Internet KEYing", RFC 3830,
 August 2004.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4771] Lehtovirta, V., Naslund, M., and K. Norrman, "Integrity
 Transform Carrying Roll-Over Counter for the Secure Real-
 time Transport Protocol (SRTP)", RFC 4771, January 2007.

 [RFC5649] Housley, R. and M. Dworkin, "Advanced Encryption Standard
 (AES) Key Wrap with Padding Algorithm", RFC 5649,
 September 2009.

 [RFC6407] Weis, B., Rowles, S., and T. Hardjono, "The Group Domain
 of Interpretation", RFC 6407, October 2011.

 [iana-mikey]
 IANA, , "Multimedia Internet KEYing (Mikey) Payload Name
 Spaces", 2011, <http://www.iana.org/assignments/mikey-

payloads/mikey-payloads.xhtml>.

 [iana-sdp-attr]
 IANA, , "SDP Parameters", 2011,
 <http://www.iana.org/assignments/sdp-parameters/

sdp-parameters.xml>.

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5764
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3830
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4771
https://datatracker.ietf.org/doc/html/rfc5649
https://datatracker.ietf.org/doc/html/rfc6407
http://www.iana.org/assignments/mikey-payloads/mikey-payloads.xhtml
http://www.iana.org/assignments/mikey-payloads/mikey-payloads.xhtml
http://www.iana.org/assignments/sdp-parameters/sdp-parameters.xml
http://www.iana.org/assignments/sdp-parameters/sdp-parameters.xml

Mattsson, et al. Expires April 23, 2015 [Page 41]

Internet-Draft EKT SRTP October 2014

 [iana-sdp-sdesc]
 IANA, , "Session Description Protocol (SDP) Security
 Descriptions: SRTP Session Parameters", 2011,
 <http://www.iana.org/assignments/sdp-security-

descriptions/sdp-security-descriptions.xml#sdp-security-
descriptions-4>.

Appendix A. Using EKT to Optimize Interworking DTLS-SRTP with Security
 Descriptions

 Today, SDP Security Descriptions [RFC4568] is used for distributing
 SRTP keys in several different IP PBX systems. The IP PBX systems
 are typically used within a single enterprise. A Session Border
 Controller is a reasonable solution to interwork between Security
 Descriptions in one network and DTLS-SRTP in another network. For
 example, a mobile operator (or an Enterprise) could operate Security
 Descriptions within their network and DTLS-SRTP towards the Internet.

 However, due to the way Security Descriptions and DTLS-SRTP manage
 their SRTP keys, such an SBC has to authenticate, decrypt, re-
 encrypt, and re-authenticate the SRTP (and SRTCP) packets in one
 direction, as shown in Figure 13, below. This is computationally
 expensive.

RFC4568 endpoint SBC DTLS-SRTP endpoint
 | | |
 1. |---key=A------------->| |
 2. | |<-DTLS-SRTP handshake->|
 3. |<--key=B--------------| |
 4. | |<--SRTP, encrypted w/B-|
 5. |<-SRTP, encrypted w/B-| |
 6. |-SRTP, encrypted w/A->| |
 7. | (decrypt, re-encrypt) |
 8. | |-SRTP, encrypted w/C-->|
 | | |

 Figure 13: Interworking Security Descriptions and DTLS-SRTP

 The message flow is as follows (similar steps occur with SRTCP):

 1. The Security Descriptions [RFC4568] endpoint discloses its SRTP
 key to the SBC, using a=crypto in its SDP.

 2. SBC completes DTLS-SRTP handshake. From this handshake, the SBC
 derives the SRTP key for traffic from the DTLS-SRTP endpoint (key
 B) and to the DTLS-SRTP endpoint (key C).

http://www.iana.org/assignments/sdp-security-descriptions/sdp-security-descriptions.xml#sdp-security-descriptions-4
http://www.iana.org/assignments/sdp-security-descriptions/sdp-security-descriptions.xml#sdp-security-descriptions-4
http://www.iana.org/assignments/sdp-security-descriptions/sdp-security-descriptions.xml#sdp-security-descriptions-4
https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc4568

Mattsson, et al. Expires April 23, 2015 [Page 42]

Internet-Draft EKT SRTP October 2014

 3. The SBC communicates the SRTP encryption key (key B) to the
 Security Descriptions endpoint (using a=crypto). (There is no
 way, with DTLS-SRTP, to communicate the Security Descriptions key
 to the DTLS-SRTP key endpoint.)

 4. The DTLS-SRTP endpoint sends an SRTP key, encrypted with its key
 B. This is received by the SBC.

 5. The received SRTP packet is simply forwarded; the SBC does not
 need to do anything with this packet as its key (key B) was
 already communicated in step 3.

 6. The Security Descriptions endpoint sends an SRTP packet,
 encrypted with its key A.

 7. The SBC has to authenticate and decrypt the SRTP packet (using
 key A), and re-encrypt it and generate an HMAC (using key C).

 8. The SBC sends the new SRTP packet.

 If EKT is deployed on the DTLS-SRTP endpoints, EKT helps to avoid the
 computationally expensive operation so the SBC does not need to
 perform any per-packet operations on the SRTP (or SRTCP) packets in
 either direction. With EKT the SBC can simply forward the SRTP (and
 SRTCP) packets in both directions without per-packet HMAC or
 cryptographic operations.

 To accomplish this interworking, DTLS-SRTP EKT must be supported on
 the DTLS-SRTP endpoint, which allows the SBC to transport the
 Security Description key to the EKT endpoint and send the DTLS-SRTP
 key to the Security Descriptions endpoint. This works equally well
 for both incoming and outgoing calls. An abbreviated message flow is
 shown in Figure 14, below.

RFC4568 endpoint SBC DTLS-SRTP endpoint
 | | |
 1. |---key=A------------->| |
 2. | |<-DTLS-SRTP handshake->|
 3. |<--key=B--------------| |
 4. | |--ekt:A--------------->|
 5. | |<--SRTP, encrypted w/B-|
 5. |<-SRTP, encrypted w/B-| |
 6. |-SRTP, encrypted w/A->| |
 7. | |-SRTP, encrypted w/A-->|
 | | |

 Figure 14: Interworking Security Descriptions and EKT

https://datatracker.ietf.org/doc/html/rfc4568

Mattsson, et al. Expires April 23, 2015 [Page 43]

Internet-Draft EKT SRTP October 2014

 The message flow is as follows (similar steps occur with SRTCP):

 1. Security Descriptions endpoint discloses its SRTP key to the SBC
 (a=crypto).

 2. SBC completes DTLS-SRTP handshake. From this handshake, the SBC
 derives the SRTP key for traffic from the DTLS-SRTP endpoint (key
 B) and to the DTLS-SRTP endpoint (key C).

 3. The SBC communicates the SRTP encryption key (key B) to the
 Security Descriptions endpoint.

 4. The SBC sends an EKT packet indicating that SRTP will be
 encrypted with 'key A' towards the DTLS-SRTP endpoint.

 5. The DTLS-SRTP endpoint sends an SRTP key, encrypted with its key
 B. This is received by the SBC.

 6. The received SRTP packet is simply forwarded; the SBC does not
 need to do anything with this packet as its key (key B) was
 communicated in step 3.

 7. The Security Descriptions endpoint sends an SRTP packet,
 encrypted with its key A.

 8. The received SRTP packet is simply forwarded; the SBC does not
 need to do anything with this packet as its key (key A) was
 communicated in step 4.

Authors' Addresses

 John Mattsson (editor)
 Ericsson AB
 SE-164 80 Stockholm
 Sweden

 Phone: +46 10 71 43 501
 Email: john.mattsson@ericsson.com

Mattsson, et al. Expires April 23, 2015 [Page 44]

Internet-Draft EKT SRTP October 2014

 David A. McGrew
 Cisco Systems, Inc.
 510 McCarthy Blvd.
 Milpitas, CA 95035
 US

 Phone: (408) 525 8651
 Email: mcgrew@cisco.com
 URI: http://www.mindspring.com/~dmcgrew/dam.htm

 Dan Wing
 Cisco Systems, Inc.
 510 McCarthy Blvd.
 Milpitas, CA 95035
 US

 Phone: (408) 853 4197
 Email: dwing@cisco.com

 Flemming Andreason
 Cisco Systems, Inc.
 499 Thornall Street
 Edison, NJ 08837
 US

 Email: fandreas@cisco.com

http://www.mindspring.com/~dmcgrew/dam.htm

Mattsson, et al. Expires April 23, 2015 [Page 45]

