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Abstract

This document specifies the Host Identity Protocol Diet EXchange

(HIP DEX), a variant of the Host Identity Protocol Version 2 (HIPv2)

and specifically developed for use on low end processors. The HIP

DEX protocol design aims at reducing the overhead of the employed

cryptographic primitives by omitting public-key signatures and

cryptographic hash functions.

The HIP DEX protocol is primarily designed for computation or

memory-constrained sensor/actuator devices. Like HIPv2, it is

expected to be used together with a suitable security protocol such

as the Encapsulated Security Payload (ESP) for the protection of

upper layer protocol data. Unlike HIPv2, HIP DEX does not support

Forward Secrecy (FS), and MUST only be used on devices where FS is

prohibitively expensive. In addition, HIP DEX can also be used as a

keying mechanism for security primitives at the MAC layer, e.g., for

IEEE 802.15.4 networks.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 23 July 2021.
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1. Introduction

This document specifies the Host Identity Protocol Diet EXchange

(HIP DEX), specifically developed for use on low end processors that

cannot support the cryptographic requirements of HIP Base EXchange

(HIP BEX). HIP DEX is derived from HIP BEX, which is defined in the

Host Identity Protocol Version 2 (HIPv2) [RFC7401]. HIP DEX

preserves the protocol semantics as well as the general packet

structure of HIPv2. Hence, it is recommended that [RFC7401] is well-

understood before reading this document.

The main differences between HIP BEX and HIP DEX are:

HIP DEX uses a different set of cryptographic primitives

compared to HIP BEX with the goal to reduce the protocol

overhead:

Peer authentication and key agreement in HIP DEX are based

on static Elliptic Curve Diffie-Hellman (ECDH) key pairs.

This replaces the use of public-key signatures and ephemeral

Diffie-Hellman key pairs in HIPv2.

HIP DEX uses AES-CTR for symmetric-key encryption of HIP

payloads and AES-CMAC as its MACing function. In contrast,

HIPv2 currently supports AES-CBC for encryption and HMAC-

SHA-1, HMAC-SHA-256, or HMAC-SHA-384 for MACing.

HIP DEX defines a simple fold function to efficiently

generate HITs, whereas the HIT generation of HIPv2 is based

on SHA-1, SHA-256, or SHA-384.

HIP DEX forfeits the HIPv2 Forward Secrecy property due to the

removal of the ephemeral Diffie-Hellman key agreement. As this

weakens the security properties of HIP DEX, it MUST be used

only with constrained devices where this is prohibitively

expensive as further explained in Section 1.2.
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HIP DEX forfeits the use of digital signatures with the removal

of a hash function. Peer authentication with HIP DEX,

therefore, is based on the use of the ECDH derived key in the

CMAC-based HIP_MAC parameter.

The forfeiture of the use of digital signatures leaves the R1

packet open to a MITM attack. Such an attack is managed in the

R2 packet validation and is yet another DOS attack mitigated

through the HIP state machine. This state machine mitigation is

augmented by HIT,HI ACL controls, Section 7.1.

The forfeiture of a cryptographic hash leaves the HIT generated

by a fold function vulnerable to pre-image attacks. This MUST

be mitigated through a HIT,HI pairing as in an ACL control

mechanism Section 7.1.

With HIP DEX, the ECDH derived key is only used to protect HIP

packets. Separate session key(s) are used to protect the

transmission of upper layer protocol data. These session key(s)

are established via a new secret exchange during the handshake.

HIP DEX introduces a new, optional retransmission strategy that

is specifically designed to handle potentially extensive

processing times of the employed cryptographic operations on

computationally constrained devices.

By eliminating the need for public-key signatures and the ephemeral

DH key agreement, HIP DEX reduces the computational, energy,

transmission, and memory requirements for public-key cryptography

(see [LN08]) in the HIPv2 protocol design. This makes HIP DEX

especially suitable for constrained devices as defined in [RFC7228].

Cryptographic hashing was eliminated due to the memory/code space or

gate cost for a hash. This is based on actual implementation efforts

on 8-bit CPU sensors with 16KB memory and 64KB flash for code.

This document focuses on the protocol specifications related to

differences between HIP BEX and HIP DEX. Where differences are not

called out explicitly, the protocol specification of HIP DEX is the

same as defined in [RFC7401].

1.1. The HIP Diet EXchange (DEX)

The HIP Diet EXchange is a two-party cryptographic protocol used to

establish a secure communication context between hosts. The first

party is called the Initiator and the second party the Responder.

The four-packet exchange helps to make HIP DEX Denial of Service

(DoS) resilient. The Initiator and the Responder exchange their

static Elliptic Curve Diffie-Hellman (ECDH) keys in the R1 and I2

handshake packet. The parties then authenticate each other in the I2
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and R2 handshake packets based on the ECDH-derived keying material.

The Initiator and the Responder additionally transmit keying

material for the session key in these last two handshake packets (I2

and R2). This is to prevent overuse of the static ECDH-derived

keying material. Moreover, the Responder starts a puzzle exchange in

the R1 packet and the Initiator completes this exchange in the I2

packet before the Responder performs computationally expensive

operations or stores any state from the exchange. Given this

handshake structure, HIP DEX operationally is very similar to HIP

BEX. Moreover, the employed model is also fairly equivalent to

802.11-2016 [IEEE.802-11.2016] Master Key and Pair-wise Transient

Key, but handled in a single exchange.

HIP DEX does not have the option to encrypt the Host Identity of the

Initiator in the I2 packet. The Responder's Host Identity also is

not protected. Thus, contrary to HIPv2, HIP DEX does not provide for

end-point anonymity and any signaling (i.e., HOST_ID parameter

contained with an ENCRYPTED parameter) that indicates such anonymity

should be ignored.

As in [RFC7401], data packets start to flow after the R2 packet. The

I2 and R2 packets may carry a data payload in the future. The

details of this may be defined later.

An existing HIP association can be updated with the update mechanism

defined in [RFC7401]. Likewise, the association can be torn down

with the defined closing mechanism for HIPv2 if it is no longer

needed. Standard HIPv2 uses a HIP_SIGNATURE to authenticate the

association close operation, but since DEX does not provide for

signatures, the usual per-message MAC suffices.

Finally, HIP DEX is designed as an end-to-end authentication and key

establishment protocol. As such, it can be used in combination with

Encapsulated Security Payload (ESP) [RFC7402] as well as with other

end-to-end security protocols. In addition, HIP DEX can also be used

as a keying mechanism for security primitives at the MAC layer,

e.g., for IEEE 802.15.4 networks [IEEE.802-15-4.2015]. It is worth

mentioning that the HIP DEX base protocol does not cover all the

fine-grained policy control found in Internet Key Exchange Version 2

(IKEv2) [RFC7296] that allows IKEv2 to support complex gateway

policies. Thus, HIP DEX is not a replacement for IKEv2.

1.2. Applicability

HIP DEX achieves its lightweight nature in large part due to the

intentional removal of Forward Secrecy (FS) from the key exchange.

Current mechanisms to achieve FS use an authenticated ephemeral

Diffie-Hellman exchange (e.g., SIGn-and-MAc Approach, SIGMA or

Password-Authenticated Key Agreement, PAKE). HIP DEX targets usage
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on devices where even the most lightweight ECDH exchange is

prohibitively expensive for recurring (ephemeral) use. For example,

experience with the 8-bit 8051-based ZWAVE ZW0500 microprocessor has

shown that EC25519 keypair generation exceeds 10 seconds and

consumes significant energy (i.e., battery resources). Even the ECDH

multiplication for the HIP DEX static-static key exchange takes 8-9

seconds, again with measurable energy consumption. The ECDH

multiplication resource consumption via a static EC25519 keypair is

tolerable as a one-time event during provisioning, but would render

the protocol unsuitable for use on these devices if it was required

to be a recurring part of the protocol. Further, for devices

constrained in this manner, a FS-enabled protocol's cost will likely

provide little gain. Since the resulting "FS" key, likely produced

during device deployment, would typically end up being used for the

remainder of the device's lifetime. Since this key (or the

information needed to regenerate it) persists for the device's

lifetime, the key step of 'throw away old keys' in achieving forward

secrecy does not occur, thus the forward secrecy would not be

obtained in practice.

With such a usage pattern, the inherent benefit of ephemeral keys is

not realized. The security properties of such usage are very similar

to those of using a statically provisioned symmetric pre-shared key,

in that there remains a single PSK in static storage that is

susceptible to exfiltration/compromise, and compromise of that key

in effect compromises the entire protocol for that node. HIP DEX

achieves marginally better security properties by computing the

effective long-term PSK from a DH exchange, so that the provisioning

service is not required to be part of the risk surface due to also

possessing the PSK.

If the device is not able to generate the ECDH keypair, the

provisioning service can generate and install the ECDH keypair

provided it wipes knowledge of the private key. Typically, the

provisioning service will make the public key (HI) and PSK available

for the deployment step.

Due to the substantially reduced security guarantees of HIP DEX

compared to HIP BEX, HIP DEX MUST only be used when at least one of

the two endpoints is a class 0 or 1 constrained device defined in

Section 3 of [RFC7228]). HIP DEX MUST NOT be used when both

endpoints are class 2 devices or unconstrained.

It is inevitable that both HIP BEX and DEX will be available on some

systems, most noticeably sensor gateways. HIP DEX MUST NOT be used

between systems capable of HIP BEX. This may be controlled by

limiting the use of DEX to an "internal" interface, or for such

systems to first offer a BEX HIT in an I1 and only if that fails to

try a DEX HIT. Note that such a downgrade (from BEX to DEX) offer

¶

¶

¶

¶



approach is open to attack, requiring additional mitigation (e.g.

ACL controls).

1.2.1. Partial Computational Cost of FS via SIGMA

From the Initator's process, FS via SIGMA [SIGMA] in HIP BEX comes

at a prohibitive cost for constrained, 8-bit devices. In BEX, the

Initator has:

Public key operations

2 Public Key signing verifications,

1 Public Key signing,

Key generation

1 Diffie-Hellman ephemeral keypair generation, and

1 Diffie-Hellman shared secret generation.

Whereas HIP DEX only has the Diffie-Hellman shared secret generation

cost.

Papers like [EfficientECC] show on the ATmega328P [ATmega328P] an

EdDSA25519 signature generation of 19M cycles and verification of

31M cycles. Thus the SIGMA Public Key operations come at a cost of

81M cycles. Actual wallclock time and energy consumption are not

provided in this paper, nor is the Curve25519 keypair generation

time.

This is just the cost of the Public Key operations, excluding

additional BEX over DEX processing. The added cost of HIP BEX (over

HIP DEX) has been a blocking factor to adoption of SIGMA based key

establishment on 8-bit processors with limited power.

1.3. Memo Structure

The rest of this memo is structured as follows. Section 2 defines

the central keywords, notation, and terms used throughout this

document. Section 3 defines the structure of the Host Identity and

its various representations. Section 4 gives an overview of the HIP

Diet EXchange protocol. Sections 5 and 6 define the detailed packet

formats and rules for packet processing. Finally, Sections 7, 8, 9,

and 10 discuss policy, interoperability between HIPv2 vs DEX,

security, and IANA considerations, respectively. Appendix B defines

a two factor authentication scheme and Appendix C highlights some

discussions with the IESG.

¶

¶

a. ¶

¶

¶

b. ¶

¶

¶

¶

¶

¶

¶



[x]

{x}

X(y)

<x>i

-->

<--

|

FOLD (X, K)

Ltrunc (M(x), K)

sort (HIT-I | HIT-R)

2. Terms, Notation and Definitions

2.1. Requirements Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2.2. Notation

indicates that x is optional.

indicates that x is encrypted.

indicates that y is a parameter of X.

indicates that x exists i times.

signifies "Initiator to Responder" communication (requests).

signifies "Responder to Initiator" communication (replies).

signifies concatenation of information - e.g., X | Y is the

concatenation of X and Y.

denotes the partitioning of X into n K-bit segments and

the iterative folding of these segments via XOR. I.e., X = x_1,

x_2, ..., x_n, where x_i is of length K and the last segment x_n

is padded to length K by appending 0 bits. FOLD then is computed

as FOLD(X, K) = t_n, where t_i = t_i-1 XOR x_i and t_1 = x_1.

denotes the lowest order K bits of the result of

the MAC function M on the input x.

is defined as the network byte order

concatenation of the two HITs, with the smaller HIT preceding the

larger HIT, resulting from the numeric comparison of the two HITs

interpreted as positive (unsigned) 128-bit integers in network

byte order.
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CKDF:

CMAC:

HIP association:

HIP DEX (Diet EXchange):

HIT Suite:

HI (Host Identity):

HIT (Host Identity Tag):

Initiator:

KEYMAT:

RHASH_len:

Nonce #I:

OGA (Orchid Generation Algorithm):

ORCHID (Overlay Routable Cryptographic Hash Identifiers):

Puzzle difficulty K:

2.3. Definitions

CMAC-based Key Derivation Function.

The Cipher-based Message Authentication Code with the 128-bit

Advanced Encryption Standard (AES) defined in [NIST.SP.800-38B].

The shared state between two peers after

completion of the HIP handshake.

The ECDH-based HIP handshake for

establishing a new HIP association.

A HIT Suite groups all algorithms that are required to

generate and use an HI and its HIT. In particular for HIP DEX,

these algorithms are: 1) ECDH and 2) FOLD.

The static ECDH public key that represents the

identity of the host. In HIP DEX, a host proves ownership of the

private key belonging to its HI by creating a HIP_MAC with the

derived ECDH key (see Section 3) in the appropriate I2 or R2

packet.

A shorthand for the HI in IPv6 format. It

is generated by folding the HI (see Section 3).

The host that initiates the HIP DEX handshake. This role

is typically forgotten once the handshake is completed.

Keying material. That is, the bit string(s) used as

cryptographic keys.

The natural output length of the RHASH Algorithm in

bits.

Nonce #I refers to the corresponding field in the PUZZLE

parameter (see section 5.2.4 in [RFC7401]. It is also referred to

as "random value #I" in this document.

Hash function used in generating

the ORCHID.

IPv6

addresses intended to be used as endpoint identifiers at

applications and Application Programming Interfaces (APIs) and

not as identifiers for network location at the IP layer.

The Initiator has to compute a solution for

the puzzle. The level of computational difficulty is denoted by
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Responder:

RHASH (Responder's HIT Hash Algorithm):

Security Association (SA):

the #K field in the puzzle parameter (see section 5.2.4 in 

[RFC7401].

The host that responds to the Initiator in the HIP DEX

handshake. This role is typically forgotten once the handshake is

completed.

In HIP DEX, RHASH is

redefined as CMAC. Still, note that CMAC is a message

authentication code (MAC) and not a cryptographic hash function.

Thus, a mapping from CMAC(x,y) to RHASH(z) must be defined where

RHASH is used. Moreover, RHASH has different security properties

in HIP DEX and is not used for HIT generation.

An SA is a simplex "connection" that

affords security services to the traffic carried by it. HIP DEX

has two forms of SAs, a Master Key SA for the actual HIP traffic,

and a Pair-wise Key SA for use by a data transport service.

3. Host Identity (HI) and its Structure

In this section, the properties of the Host Identity and Host

Identity Tag are discussed, and the exact format for them is

defined. In HIP, the public key of an asymmetric key pair is used as

the Host Identity (HI). Correspondingly, the host itself is defined

as the entity that holds the private key of the key pair. See the

HIP architecture specification [hip-rfc4423-bis] for more details on

the difference between an identity and the corresponding identifier.

HIP DEX implementations use Elliptic Curve Diffie-Hellman (ECDH) 

[RFC6090] key exchange for generating the HI as defined in Section

5.2.3. No alternative algorithms are defined at this time.

A compressed encoding of the HI, the Host Identity Tag (HIT), is

used in the handshake packets to represent the HI. The DEX Host

Identity Tag (HIT) is different from the BEX HIT in two ways:

The HIT suite ID MUST only be a DEX HIT ID (see Section 5.2.4).

The DEX HIT is not generated via a cryptographic hash. Rather, it

is a compression of the HI.

Due to the latter property, an attacker may be able to find a

collision with a HIT that is in use. Hence, policy decisions such as

access control MUST NOT use an unverified HIT as input. The full HI

of a host SHOULD be considered, and the HIT MAY be used as a hint

for locating the full HI (see Section 7.1).

Carrying HIs or HITs in the header of user data packets would

increase the overhead of packets. Thus, it is not expected that
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these parameters are carried in every packet, but other methods are

used to map the data packets to the corresponding HIs. In some

cases, this allows use of HIP DEX without any additional headers in

the user data packets. For example, if ESP is used to protect data

traffic, the Security Parameter Index (SPI) carried in the ESP

header can be used to map the encrypted data packet to the correct

HIP DEX association. When other user data packet formats are used,

the corresponding extensions need to define a replacement for the

ESP_TRANSFORM [RFC7402] parameter along with associated semantics,

but this procedure is outside the scope of this document.

3.1. Host Identity Tag (HIT)

With HIP DEX, the HIT is a 128-bit value - a compression of the HI

prepended with a specific prefix. There are two advantages of using

this compressed encoding over the actual variable-sized public key

in protocols. First, the fixed length of the HIT keeps packet sizes

manageable and eases protocol coding. Second, it presents a

consistent format for the protocol, independent of the underlying

identity technology in use.

The structure of the HIT is based on RFC 7343 [RFC7343], called

Overlay Routable Cryptographic Hash Identifiers (ORCHIDs), and

consists of three parts: first, an IANA assigned prefix to

distinguish it from other IPv6 addresses. Second, a four-bit

encoding of the algorithms that were used for generating the HI and

the compressed representation of the HI. Third, the 96-bit

compressed representation of the HI. In contrast to HIPv2, HIP DEX

employs HITs that are NOT generated by means of a cryptographic

hash. Instead, the HI is compressed to 96 bits as defined in the

following section.

3.2. Generating a HIT from an HI

The HIT does not follow the exact semantics of an ORCHID as there is

no hash function in HIP DEX. Still, its structure is strongly

aligned with the ORCHID design. The same IPv6 prefix used in HIPv2

is used for HIP DEX. The HIP DEX HIT suite (see Section 10) is used

for the four bits of the Orchid Generation Algorithm (OGA) field in

the ORCHID. The hash representation in an ORCHID is replaced with

FOLD((Context ID | HI),96) see Section 2.2 for the FOLD function.

The Context ID is the same as in HIP BEX, sec 3.2 RFC 7401

[RFC7401].

3.2.1. Why Introduce FOLD

HIP DEX by design lacks a cryptographic hash function. The

generation of the HIT is one of the few places in the protocol where

this presents a challenge. CMAC was first considered for this
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purpose, but to use CMAC for HIT generation would require using a

static key, either ZERO or some published value. NIST does not

consider CMAC an approved cryptographic hash as:

It is straightforward to demonstrate that CMAC is not collision-

resistant for any choice of a published key.

Since collision-resistance is not possible with the tools at hand,

any reasonable function (e.g. FOLD) that takes the full value of the

HI into generating the HIT can be used, provided that collision

detection is part of the HIP-DEX deployment design. This is achieved

here through either an ACL, Section 7.1, or some other lookup

process that externally binds the HIT and HI.

Even without collision-resistance, it is not trivial to create

duplicate FOLD generated HITs, as FOLD is starting out with a random

input (the HI). Although there is a set, {N}, of HIs that will have

duplicate FOLD HITs, even randomly generating duplicate HITs is

unlikely. Per Appendix A, 4T BEX HITs need be generated for a .01%

probability of a collision. The size of set above is not known, but

will not be large. In a test of 1M randomly generated FOLD HITs, no

duplicates were produced.

Note that HIT collisions have always been a statistical possibility

in BEX and thus the HI has always been a part of the R1 and I2

packets for HI validation.

4. Protocol Overview

This section gives a simplified overview of the HIP DEX protocol

operation and does not contain all the details of the packet formats

or the packet processing steps. Section 5 and Section 6 describe

these aspects in more detail and are normative in case of any

conflicts with this section. Importantly, the information given in

this section focuses on the differences between the HIPv2 and HIP

DEX protocol specifications.

4.1. Creating a HIP Association

By definition, the system initiating a HIP Diet EXchange is the

Initiator, and the peer is the Responder. This distinction is

typically forgotten once the handshake completes, and either party

can become the Initiator in future communications.

The HIP Diet EXchange serves to manage the establishment of state

between an Initiator and a Responder. The first packet, I1,

initiates the exchange, and the last three packets, R1, I2, and R2,

constitute an authenticated Diffie-Hellman [DH76] key exchange for

the Master Key Security Association (SA) generation. This Master Key

SA is used by the Initiator and the Responder to wrap secret keying
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material in the I2 and R2 packets. Based on the exchanged keying

material, the peers then derive a Pair-wise Key SA if cryptographic

keys are needed, e.g., for ESP-based protection of user data.

The Initiator first sends a trigger packet, I1, to the Responder.

This packet contains the HIT of the Initiator and the HIT of the

Responder, if it is known. Moreover, the I1 packet initializes the

negotiation of the Diffie-Hellman group that is used for generating

the Master Key SA by including a list of Diffie-Hellman Group IDs

supported by the Initiator.

The second packet, R1, starts the actual authenticated Diffie-

Hellman key exchange. It contains a puzzle - a cryptographic

challenge that the Initiator must solve before continuing the

exchange. The level of difficulty of the puzzle can be adjusted

based on level of knowledge of the Initiator, current load, or other

factors. In addition, the R1 contains the Responder's Diffie-Hellman

parameter and lists of cryptographic algorithms supported by the

Responder. Based on these lists, the Initiator can continue, abort,

or restart the handshake with a different selection of cryptographic

algorithms.

Unlike in HIP BEX, the R1 packet in DEX is not signed. Thus the

Initiator MUST compare the content of R1 with that it later gets in

R2 to ensure there was no MITM attack on R1.

In the I2 packet, the Initiator MUST display the solution to the

received puzzle. Without a correct solution, the I2 packet is

discarded. The I2 also contains a nonce and key wrap parameter that

carries secret keying material of the Initiator. This keying

material is only half of the final session (pair-wise) key. The

packet is authenticated by the sender (Initiator) via a MAC.

The R2 packet acknowledges the receipt of the I2 packet and

completes the handshake. The R2 echos the nonce from I2 and contains

a key wrap parameter that carries the rest of the keying material of

the Responder. The packet is authenticated by the sender (Responder)

via a MAC. The R2 repeats the lists from R1 for signed validation to

defend them against a MITM attack.

The HIP DEX handshake is illustrated below. The terms "ENC(DH,x)"

and "ENC(DH,y)" refer to the random values x and y that are wrapped

based on the Master Key SA (indicated by ENC and DH). Note that x

and y each constitute half of the final session key material. The

packets also contain other parameters that are not shown in this

figure.

¶

¶

¶

¶

¶

¶

¶



Figure 1: High-level overview of the HIP Diet EXchange

4.1.1. HIP Puzzle Mechanism

The purpose of the HIP puzzle mechanism is to protect the Responder

from a number of denial-of-service threats. It allows the Responder

to delay state creation until receiving the I2 packet. Furthermore,

the puzzle allows the Responder to use a fairly cheap calculation to

check that the Initiator is "sincere" in the sense that it has

churned enough CPU cycles in solving the puzzle.

The puzzle mechanism enables a Responder to immediately reject an I2

packet if it does not contain a valid puzzle solution. To verify the

puzzle solution, the Responder only has to compute a single CMAC

   Initiator                                         Responder

               I1: DH List

              -------------------------------------->

                                                     remain stateless

               R1: puzzle, (DH, Suite, Trans) Lists,

                   HI

              <-------------------------------------

solve puzzle

perform ECDH

encrypt x

               I2: solution, HI, ENC(DH,x), Trans List,

                   I_Nonce, mac

              -------------------------------------->

                                                     check puzzle

                                                     perform ECDH

                                                     check MAC

                                                     decrypt x

                                                     encrypt y

               R2: (DH, Suite, Trans) Lists, ENC(DH,y),

                   I_Nonce, mac

              <--------------------------------------

check MAC

validate lists in R1

decrypt y
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operation. After a successful puzzle verification, the Responder can

securely create session-specific state and perform CPU-intensive

operations such as a Diffie-Hellman key generation. By varying the

difficulty of the puzzle, the Responder can frustrate CPU or memory

targeted DoS attacks. Under normal network conditions, the puzzle

difficulty SHOULD be zero, thus effectively reverting the puzzle

mechanism to a cookie-based DoS protection mechanism. Without

setting the puzzle difficulty to zero under normal network

conditions, potentially scarce computation resources at the

Initiator would be churned unnecessarily.

Conceptually, the puzzle mechanism in HIP DEX is the same as in

HIPv2. Hence, this document refers to Sections 4.1.1 and 4.1.2 in 

[RFC7401] for more detailed information about the employed

mechanism. Notably, the only differences between the puzzle

mechanism in HIP DEX and HIPv2 are that HIP DEX does not employ pre-

computation of R1 packets and uses CMAC instead of a hash function

for solving and verifying a puzzle. The implications of these

changes on the puzzle implementation are discussed in Section 6.1.

4.1.2. HIP State Machine

The HIP DEX state machine has the same states as the HIPv2 state

machine (see Section 4.4. in [RFC7401]); this is for easier

comparison between the two Exchanges. However, HIP DEX features a

retransmission strategy with an optional reception acknowledgement

for the I2 packet. The goal of this additional acknowledgement is to

reduce premature I2 retransmissions in case of devices with low

computation resources [HWZ13]. As a result, there are minor changes

regarding the transitions in the HIP DEX state machine. The

following section documents these differences compared to HIPv2.

4.1.2.1. HIP DEX Retransmission Mechanism

For the retransmission of I1 and I2 packets, the Initiator adopts

the retransmission strategy of HIPv2 (see Section 4.4.3. in 

[RFC7401]). This strategy is based on a timeout that is set to a

value larger than the worst-case anticipated round-trip time (RTT).

For each received I1 or I2 packet, the Responder sends an R1 or R2

packet, respectively. This design trait to always send an R1 after

an I1 enables the Responder to remain stateless until the reception

and successful processing of the I2 packet. The Initiator stops

retransmitting I1 or I2 packets after the reception of the

corresponding R1 or R2. If the Initiator did not receive an R1

packet after I1_RETRIES_MAX tries, it stops I1 retransmissions.

Likewise, it stops retransmitting the I2 packet after I2_RETRIES_MAX

unsuccessful tries.
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For repeatedly received I2 packets, the Responder SHOULD NOT perform

operations related to the Diffie-Hellman key exchange or the keying

material wrapped in the ENCRYPTED_KEY parameters. Instead, it SHOULD

re-use the previously established state to re-create the

corresponding R2 packet in order to prevent unnecessary computation

overhead.

The potentially high processing time of an I2 packet at a (resource-

constrained) Responder may cause premature retransmissions if the

time required for I2 transmission and processing exceeds the RTT-

based retransmission timeout. Thus, the Initiator should also take

the processing time of the I2 packet at the Responder into account

for retransmission purposes. To this end, the Responder MAY notify

the Initiator about the anticipated delay once the puzzle solution

was successfully verified that the remaining I2 packet processing

will incur a high processing delay. The Responder MAY therefore send

a NOTIFY packet (see Section 5.3.6. in [RFC7401]) to the Initiator

before the Responder commences the ECDH operation. The NOTIFY packet

serves as an acknowledgement for the I2 packet and consists of a

NOTIFICATION parameter with Notify Message Type I2_ACKNOWLEDGEMENT

(see Section 5.2.19. in [RFC7401]). The NOTIFICATION parameter

contains the anticipated remaining processing time for the I2 packet

in milliseconds as two-octet Notification Data. This processing time

can, e.g., be estimated by measuring the computation time of the

ECDH key derivation operation during the Responder start-up

procedure. After the I2 processing has finished, the Responder sends

the regular R2 packet.

When the Initiator receives the NOTIFY packet, it sets the I2

retransmission timeout to the I2 processing time indicated in the

NOTIFICATION parameter plus half the RTT-based timeout value. In

doing so, the Initiator MUST NOT set the retransmission timeout to a

higher value than allowed by a local policy. This is to prevent

unauthenticated NOTIFY packets from maliciously delaying the

handshake beyond a well-defined upper bound in case of a lost R2

packet. At the same time, this extended retransmission timeout

enables the Initiator to defer I2 retransmissions until the point in

time when the Responder should have completed its I2 packet

processing and the network should have delivered the R2 packet

according to the employed worst-case estimates.

4.1.2.2. HIP State Processes

HIP DEX clarifies or introduces the following new transitions.

System behavior in state I2-SENT, Table 1.
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Trigger Action

Receive

NOTIFY,

process

Set I2 retransmission timer to value in

I2_ACKNOWLEDGEMENT Notification Data plus 1/2 RTT-

based timeout value and stay at I2-SENT

Timeout Increment trial counter

If counter is less than I2_RETRIES_MAX, send I2,

reset timer to RTT-based timeout, and stay at I2-

SENT

If counter is greater than I2_RETRIES_MAX, go to E-

FAILED

Table 1: I2-SENT - Waiting to finish the HIP Diet EXchange

4.1.2.3. Simplified HIP State Diagram

The following diagram shows the major state transitions. Transitions

based on received packets implicitly assume that the packets are

successfully authenticated or processed.¶



                            +--+       +----------------------------+

           recv I1, send R1 |  |       |                            |

                            |  v       v                            |

                          +--------------+  recv I2, send R2        |

         +----------------| UNASSOCIATED |----------------+         |

datagram |  +--+          +--------------+                |         |

to send, |  |  | Alg. not supported,                      |         |

 send I1 |  |  | send I1                                  |         |

  .      v  |  v                                          |         |

  .   +---------+  recv I2, send R2                       |         |

+---->| I1-SENT |--------------------------------------+  |         |

|     +---------+            +----------------------+  |  |         |

|          | recv R1,        | recv I2, send R2     |  |  |         |

|          v send I2         |                      v  v  v         |

|       +---------+----------+                    +---------+       |

|  +--->| I2-SENT |<-------------+   +------------| R2-SENT |<---+  |

|  |    +---------+ recv NOTIFY, |   |            +---------+    |  |

|  |          | | | reset timer  |   |      data or|             |  |

|  |recv R1,  | | +--------------+   |   EC timeout|             |  |

|  |send I2   +-|--------------------+             |  receive I2,|  |

|  |          | |         +-------------+          |      send R2|  |

|  |          | +-------->| ESTABLISHED |<---------+             |  |

|  |          |   recv R2 +-------------+                        |  |

|  |          |            |  |  |      receive I2, send R2      |  |

|  |          +------------+  |  +-------------------------------+  |

|  |          |               +-----------+                      |  |

|  |          |    no packet sent/received|    +---+             |  |

|  |          |    for UAL min, send CLOSE|    |   |timeout      |  |

|  |          |                           v    v   |(UAL+MSL)    |  |

|  |          |                        +---------+ |retransmit   |  |

+--|----------|------------------------| CLOSING |-+CLOSE        |  |

   |          |                        +---------+               |  |

   |          |                         | |   | |                |  |

   +----------|-------------------------+ |   | +----------------+  |

   |          |               +-----------+   +------------------|--+

   |          |               |recv CLOSE,      recv CLOSE_ACK   |  |

   |          +-------------+ |send CLOSE_ACK   or timeout       |  |

   |     recv CLOSE,        | |                 (UAL+MSL)        |  |

   |     send CLOSE_ACK     v v                                  |  |

   |                     +--------+  receive I2, send R2         |  |

   +---------------------| CLOSED |------------------------------+  |

                         +--------+                                 |

                          ^ |  |                                    |

recv CLOSE, send CLOSE_ACK| |  |              timeout (UAL+2MSL)    |

                          +-+  +------------------------------------+

¶



4.1.3. HIP DEX Security Associations

HIP DEX establishes two Security Associations (SA), one for the

Diffie-Hellman derived key, or Master Key, and one for the session

key, or Pair-wise Key.

4.1.3.1. Master Key SA

The Master Key SA is used to authenticate HIP packets and to encrypt

selected HIP parameters in the HIP DEX packet exchanges. Since only

a small amount of data is protected by this SA, it can be long-lived

with no need for rekeying. At the latest, the system MUST initiate

rekeying when its incoming ESP sequence counter is going to

overflow, and the system MUST NOT replace its keying material until

the rekeying packet exchange successfully completes as described in

Section 6.8 in [RFC7402].

The Master Key SA contains the following elements:

Source HIT

Destination HIT

HIP_Encrypt Key

HIP_MAC Key

The HIP_Encrypt and HIP_MAC keys are extracted from the Diffie-

Hellman derived key as described in Section 6.3. Their length is

determined by the HIP_CIPHER.

4.1.3.2. Pair-wise Key SA

The Pair-wise Key SA is used to authenticate and to encrypt user

data. It is refreshed (or rekeyed) using an UPDATE packet exchange.

The Pair-wise Key SA elements are defined by the data transform

(e.g., ESP_TRANSFORM [RFC7402]).

The keys for the Pair-wise Key SA are derived based on the wrapped

keying material exchanged in the ENCRYPTED_KEY parameter (see 

Section 5.2.5) of the I2 and R2 packets. Specifically, the exchanged

keying material of the two peers is concatenated. This concatenation

forms the input to a Key Derivation Function (KDF). If the data

transform does not specify its own KDF, the key derivation function

defined in Section 6.3 is used. Even though the concatenated input

is randomly distributed, a KDF Extract phase may be needed to get

the proper length for the input to the KDF Expand phase.
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4.1.4. User Data Considerations

The User Data Considerations in Section 4.5. of [RFC7401] also apply

to HIP DEX. There is only one difference between HIPv2 and HIP DEX.

Loss of state due to system reboot may be a critical performance

issue for resource-constrained devices. Thus, implementors MAY

choose to use non-volatile, secure storage for HIP states in order

for them to survive a system reboot as discussed in Section 6.11.

Using non-volatile storage will limit state loss during reboots to

only those situations with an SA timeout.

5. Packet Formats

5.1. Payload Format

HIP DEX employs the same fixed HIP header and payload structure as

HIPv2. As such, the specifications in Section 5.1 of [RFC7401] also

apply to HIP DEX.

5.2. HIP Parameters

The HIP parameters carry information that is necessary for

establishing and maintaining a HIP association. For example, the

peer's public keys as well as the signaling for negotiating ciphers

and payload handling are encapsulated in HIP parameters. Additional

information, meaningful for end-hosts or middleboxes, may also be

included in HIP parameters. The specification of the HIP parameters

and their mapping to HIP packets and packet types is flexible to

allow HIP extensions to define new parameters and new protocol

behavior.

In HIP packets, HIP parameters are ordered according to their

numeric type number and encoded in TLV format.

HIP DEX reuses the HIP parameters of HIPv2 defined in Section 5.2.

of [RFC7401] where possible. Still, HIP DEX further restricts and/or

extends the following existing parameter types:

DH_GROUP_LIST and HOST_ID are restricted to ECC-based suites.

HIP_CIPHER is restricted to AES-128-CTR.

HIT_SUITE_LIST is limited to the HIT suite ECDH/FOLD.

PUZZLE, SOLUTION, and HIP_MAC parameter processing is altered to

support CMAC in RHASH and RHASH_len (see Section 6.1 and Section

6.2).

In addition, HIP DEX introduces the following new parameters:
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TLV Type Length Data

ENCRYPTED_KEY
TBD1 (suggested

value 643)
variable

Encrypted container for

the session key exchange

I_NONCE
TBD6 (suggested

value 644)
variable

Nonce from Initator for

Master Key

Table 2

5.2.1. DH_GROUP_LIST

The DH_GROUP_LIST parameter contains the list of supported DH Group

IDs of a host. It is defined in Section 5.2.6 of [RFC7401]. With HIP

DEX, the DH Group IDs are restricted to:

The ECDH groups with values TBD7 and TBD8 are defined in [RFC7748].

These curves have cofactors of 8 and 4 (respectively).

It is not known if Curve448 Diffie Hellman can meet the performance

requirements on 8-bit CPUs. It is included for "completeness". An

implementor should ensure they can get the needed performance for

their target platform before committing to support this group.

5.2.2. HIP_CIPHER

The HIP_CIPHER parameter contains the list of supported cipher

algorithms to be used for encrypting the contents of the ENCRYPTED

and ENCRYPTED_KEY parameters. The HIP_CIPHER parameter is defined in

Section 5.2.8 of [RFC7401]. With HIP DEX, the Suite IDs are limited

to:

Mandatory implementation: AES-128-CTR.

The counter for AES-128-CTR MUST have a length of 128 bits. The

puzzle value #I and the puzzle solution #J (see Section 4.1.2 in 

[RFC7401]) are used to construct the initialization vector (IV) as

FOLD(I | J, 112) which are the high-order bits of the CTR counter. A

16 bit value as a block counter, which is initialized to zero on

¶

Group                        KDF           Value

Curve25519 [RFC7748]         CKDF          TBD7 (suggested value 12)

Curve448   [RFC7748]         CKDF          TBD8 (suggested value 13)

¶

¶

¶

¶

Suite ID           Value

RESERVED           0

AES-128-CTR        TBD4 (suggested: 5)     ([RFC3686])

¶

¶



first use, is appended to the IV in order to guarantee that a non-

repeating nonce is fed to the AES-CTR encryption algorithm.

This counter is incremented as it is used for all encrypted HIP

parameters. That is a single AES-129-CTR counter associated with the

Master Key SA.

5.2.3. HOST_ID

The HOST_ID parameter conveys the Host Identity (HI) along with

optional information about a host. The HOST_ID parameter is defined

in Section 5.2.9 of [RFC7401].

HIP DEX uses the public portion of a host's static ECDH key-pair as

the HI. Correspondingly, HIP DEX limits the HI algorithms to the

following new profile:

For hosts that implement ECDH as the algorithm, the following curves

are required:

HIP DEX HIs are serialized equally to the ECC-based HIs in HIPv2

(see Section 5.2.9. of [RFC7401]). The Group ID of the HIP DEX HI is

encoded in the "ECC curve" field of the HOST_ID parameter. The

supported DH Group IDs are defined in Section 5.2.1.

5.2.4. HIT_SUITE_LIST

The HIT_SUITE_LIST parameter contains a list of the supported HIT

suite IDs of the Responder. Based on the HIT_SUITE_LIST, the

Initiator can determine which source HIT Suite IDs are supported by

the Responder. The HIT_SUITE_LIST parameter is defined in Section

5.2.10 of [RFC7401].

The following new HIT Suite ID is defined for HIP DEX, and the

relationship between the four-bit ID value used in the OGA ID field

and the eight-bit encoding within the HIT_SUITE_LIST ID field is

clarified:

¶

¶

¶

¶

Algorithm profiles   Value

ECDH                 TBD5 (suggested: 11)    [RFC6090]   (REQUIRED)

¶

¶

Group                    Value

Curve25519               5 [RFC7748]

Curve448                 6 [RFC7748]

¶

¶

¶
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Note that the dedicated HIP DEX HIT Suite ID in the OGA ID field

allows the peers to distinguish a HIP DEX handshake from a HIPv2

handshake. The Responder MUST respond with a HIP DEX HIT suite ID

when the HIT of the Initiator is a HIP DEX HIT.

5.2.5. ENCRYPTED_KEY

The ENCRYPTED_KEY parameter encapsulates a random value that is

later used in the session key creation process (see Section 6.3).

This random value MUST have a length of at least 64 bits. The

HIP_CIPHER is used for the encryption.

Once this encryption process is completed, the "encrypted value"

data field is ready for inclusion in the Parameter. If necessary,

additional Padding for 8-byte alignment is then added according to

the rules of TLV Format in [RFC7401].

HIT Suite       Four-bit ID            Eight-bit encoding

ECDH/FOLD       TBD2 (suggestion: 4)   TBD3 (suggestion: 0x40)

¶

¶

   0                   1                   2                   3

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |             Type              |             Length            |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  /                        Encrypted value                        /

  /                                                               /

  /                               +-------------------------------+

  /                               |            Padding            |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type           TBD1 (suggested value 643)

  Length         length in octets, excluding Type, Length, and

                 Padding

  Encrypted      The value is encrypted using an encryption algorithm

  value          as defined in the HIP_CIPHER parameter.

¶

¶
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5.2.6. I_NONCE

The I_NONCE parameter encapsulates a random value that is later used

in the Master key creation process (see Section 6.3). This random

value MUST have a length of 2 x RHASH_len. This parameter is sent to

the Responder in I2 which echos it back to the Initiator in R2.

If necessary, additional Padding for 8-byte alignment is added

according to the rules of TLV Format in [RFC7401].

5.3. HIP Packets

HIP DEX uses the same eight basic HIP packets as HIPv2 (see Section

5.3 of [RFC7401]). Four of them are for the HIP handshake (I1, R1,

I2, and R2), one is for updating an association (UPDATE), one is for

sending notifications (NOTIFY), and two are for closing the

association (CLOSE and CLOSE_ACK). There are some differences

regarding the HIP parameters that are included in the handshake

packets concerning HIP BEX and HIP DEX. This section covers these

differences for the DEX packets. Packets not discussed here, follow

the structure defined in [RFC7401].

An important difference between packets in HIP BEX and HIP DEX is

that the DIFFIE_HELLMAN and the HIP_SIGNATURE parameters are not

included in HIP DEX. Thus, the R1 packet is completely unprotected

and can be spoofed. As a result, negotiation parameters contained in

the R1 packet have to be re-included in later, protected packets in

order to detect and prevent potential downgrading attacks. Moreover,

the I2, R2, UPDATE, NOTIFY, CLOSE, and CLOSE_ACK packets are not

covered by a signature and purely rely on the HIP_MAC parameter for

   0                   1                   2                   3

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |             Type              |             Length            |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  /                        Initiator Nonce                        /

  /                                                               /

  /                               +-------------------------------+

  /                               |            Padding            |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type           TBD6 (suggested value 644)

  Length         length in octets, excluding Type, Length, and

                 Padding

  Initiator      Nonce provided by the Initiator for use in the

  Nonce          Master Key

¶

¶

¶

¶



packet authentication. The processing of these packets is changed

accordingly.

In the future, an optional upper-layer payload MAY follow the HIP

header. The Next Header field in the header indicates if there is

additional data following the HIP header.

5.3.1. I1 - the HIP Initiator Packet

The HIP header values for the I1 packet:

Valid control bits: none

The I1 packet contains the fixed HIP header and the Initiator's

DH_GROUP_LIST. The Initiator's HIT Suite ID MUST be of a HIP DEX

type as defined in Section 5.2.4.

Regarding the Responder's HIT, the Initiator may receive this HIT

either from a DNS lookup of the Responder's FQDN (see [RFC8005]),

from some other repository, or from a local table. The Responder's

HIT also MUST be of a HIP DEX type. If the Initiator does not know

the Responder's HIT, it may attempt to use opportunistic mode by

using NULL (all zeros) as the Responder's HIT. See Section 4.1.8 of 

[RFC7401] for detailed information about the "HIP Opportunistic

Mode".

As the Initiator's and the Responder's HITs are compressions of the

employed HIs, they determine the DH Group ID that must be used in

order to successfully conclude the triggered handshake. HITs,

however, only include the OGA ID identifying the HI algorithm. They

do not include information about the specific group ID of the HI. To

inform the Responder about its employed and its otherwise supported

DH Group IDs, the Initiator therefore includes the DH_GROUP_LIST

parameter in the I1 packet. This parameter MUST include the DH group

ID that corresponds to the currently employed Initiator HIT as the

first list element. With HIP DEX, the DH_GROUP_LIST parameter MUST

only include ECDH groups defined in Section 5.2.1.

Since this packet is so easy to spoof even if it were protected, no

attempt is made to add to its generation or processing cost. As a

result, the DH_GROUP_LIST in the I1 packet is not protected.

¶
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  Header:

    Packet Type = 1

    SRC HIT = Initiator's HIT

    DST HIT = Responder's HIT, or NULL

  IP ( HIP ( DH_GROUP_LIST ) )

¶
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Implementations MUST be able to handle a storm of received I1

packets, discarding those with common content that arrive within a

small time delta.

5.3.2. R1 - the HIP Responder Packet

The HIP header values for the R1 packet:

Valid control bits: none

The Initiator's HIT MUST match the one received in the I1 packet if

the R1 is a response to an I1. If the Responder has multiple HIs,

the Responder's HIT MUST match the Initiator's request. If the

Initiator used opportunistic mode, the Responder may select among

its HIs as described below. See Section 4.1.8 of [RFC7401] for

detailed information about the "HIP Opportunistic Mode".

The R1 packet generation counter is used to determine the currently

valid generation of puzzles. The value is increased periodically,

and it is RECOMMENDED that it is increased at least as often as

solutions to old puzzles are no longer accepted.

The Puzzle contains a Random value #I and the puzzle difficulty K.

The difficulty K indicates the number of lower-order bits, in the

puzzle CMAC result, that MUST be zeros (see [RFC7401]). Responders

SHOULD set K to zero by default and only increase the puzzle

difficulty to protect against a DoS attack targeting the HIP DEX

handshake. A puzzle difficulty of zero effectively turns the puzzle

mechanism into a return-routability test and is strongly encouraged

during normal operation in order to conserve energy resources as

well as to prevent unnecessary handshake delay in case of a

resource-constrained Initiator. Please also refer to Section 7 for

further recommendations on choosing puzzle difficulty.

¶
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  Header:

    Packet Type = 2

    SRC HIT = Responder's HIT

    DST HIT = Initiator's HIT

  IP ( HIP ( [ R1_COUNTER, ]

             PUZZLE,

             DH_GROUP_LIST,

             HIP_CIPHER,

             HOST_ID,

             HIT_SUITE_LIST,

             TRANSPORT_FORMAT_LIST,

             [ <, ECHO_REQUEST_UNSIGNED >i ])
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The HIP_CIPHER contains the encryption algorithms supported by the

Responder to protect the key exchange, in the order of preference.

All implementations MUST support the AES-CTR [RFC3686].

The DH_GROUP_LIST parameter contains the Responder's order of

preference based on the Responder's choice the ECDH key contained in

the HOST_ID parameter (see below). This allows the Initiator to

begin to determine whether its own DH_GROUP_LIST in the I1 packet

was manipulated by an attacker. There is a further risk that the

Responder's DH_GROUP_LIST was manipulated by an attacker, as the R1

packet cannot be authenticated in HIP DEX. Thus, this parameter is

repeated in the R2 packet to allow for a final, cryptographically

secured validation.

The HIT_SUITE_LIST parameter is an ordered list of the Responder's

supported and preferred HIT Suites. It enables a Responder to notify

the Initiator about other available HIT suites than the one used in

the current handshake. Based on the received HIT_SUITE_LIST, the

Initiator MAY decide to abort the current handshake and initiate a

new handshake with a different mutually supported HIT suite. This

mechanism can, e.g., be used to move from an initial HIP DEX

handshake to a HIP BEX handshake for peers supporting both protocol

variants.

The HOST_ID parameter depends on the received DH_GROUP_LIST

parameter and the Responder HIT in the I1 packet. Specifically, if

the I1 contains a Responder HIT, the Responder verifies that this

HIT matches the preferred DH group based on the received

DH_GROUP_LIST parameter included in the I1. In case of a positive

result, the Responder selects the corresponding HOST_ID for

inclusion in the R1 packet. Likewise, if the Responder HIT in the I1

packet is NULL (i.e., during an opportunistic handshake), the

Responder chooses its HOST_ID according to the Initiator's employed

DH group as indicated in the received DH_GROUP_LIST parameter and

sets the source HIT in the R1 packet accordingly. If the Responder

however does not support the DH group required by the Initiator or

if the Responder HIT in the I1 packet does not match the required DH

group, the Responder selects the mutually preferred and supported DH

group based on the DH_GROUP_LIST parameter in the I1 packet. The

Responder then includes the corresponding ECDH key in the HOST_ID

parameter. This parameter also indicates the selected DH group.

Moreover, the Responder sets the source HIT in the R1 packet based

on the destination HIT from the I1 packet. Based on the deviating DH

group ID in the HOST_ID parameter, the Initiator then MUST abort the

current handshake and SHOULD initiate a new handshake with the

mutually supported DH group as far as local policies (see Section 7)

permit.
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The TRANSPORT_FORMAT_LIST parameter is an ordered list of the

Responder's supported and preferred transport format types. The list

allows the Initiator and the Responder to agree on a common type for

payload protection. The different format types are DEFAULT, ESP

(Mandatory to Implement) and ESP-TCP (Experimental, as explained in

Section 3.1 in [RFC6261]).

The ECHO_REQUEST_UNSIGNED parameters contain data that the sender

wants to receive unmodified in the corresponding response packet in

the ECHO_RESPONSE_UNSIGNED parameter. The R1 packet may contain zero

or more ECHO_REQUEST_UNSIGNED parameters.

5.3.3. I2 - the Second HIP Initiator Packet

The HIP header values for the I2 packet:

Valid control bits: none

The HITs MUST match the ones used in the R1 packet.

If present in the R1 packet, the Initiator MUST include an

unmodified copy of the R1_COUNTER parameter into the I2 packet.

The Solution contains the Random #I from the R1 packet and the

computed #J value. The low-order #K bits of the RHASH(I | ... | J)

MUST be zero.

The HIP_CIPHER contains the single encryption transform selected by

the Initiator that it uses to encrypt the ENCRYPTED and

ENCRYPTED_KEY parameters. The chosen cipher MUST correspond to one

of the ciphers offered by the Responder in the R1. All

implementations MUST support the AES-CTR transform [RFC3686].
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  Header:

    Type = 3

    SRC HIT = Initiator's HIT

    DST HIT = Responder's HIT

  IP ( HIP ( [R1_COUNTER,]

             SOLUTION,

             HIP_CIPHER,

             ENCRYPTED_KEY,

             HOST_ID,

             TRANSPORT_FORMAT_LIST,

             I_NONCE,

             HIP_MAC

             [<, ECHO_RESPONSE_UNSIGNED>i )] )
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The HOST_ID parameter contains the Initiator HI corresponding to the

Initiator HIT.

The ENCRYPTED_KEY parameter contains an Initiator generated random

value that MUST be uniformly distributed. This random value is

encrypted with the Master Key SA using the HIP_CIPHER encryption

algorithm.

The ECHO_RESPONSE_UNSIGNED parameter(s) contain the unmodified

Opaque data copied from the corresponding echo request parameter(s).

This parameter can also be used for two-factor password

authentication as shown in Appendix B.

The TRANSPORT_FORMAT_LIST parameter contains the single transport

format type selected by the Initiator. The chosen type MUST

correspond to one of the types offered by the Responder in the R1

packet. The different format types are DEFAULT, ESP and ESP-TCP as

explained in Section 3.1 in [RFC6261].

The I_NONCE parameter contains the nonce, supplied by the Initiator

for the Master Key generation as shown in Section 6.3. This is

echoed back to the Initiator in the R2 packet.

The MAC is calculated over the whole HIP envelope, excluding any

parameters after the HIP_MAC parameter as described in Section 6.2.

The Responder MUST validate the HIP_MAC parameter.

5.3.4. R2 - the Second HIP Responder Packet

The HIP header values for the R2 packet:

Valid control bits: none

The HITs used MUST match the ones used in the I2 packet.

¶

¶

¶

¶

¶

¶

¶

  Header:

    Packet Type = 4

    SRC HIT = Responder's HIT

    DST HIT = Initiator's HIT

  IP ( HIP ( DH_GROUP_LIST,

             HIP_CIPHER,

             ENCRYPTED_KEY,

             HIT_SUITE_LIST,

             TRANSPORT_FORMAT_LIST,

             I_NONCE,

             HIP_MAC)

¶
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The Responder repeats the DH_GROUP_LIST, HIP_CIPHER, HIT_SUITE_LIST,

and TRANSPORT_FORMAT_LIST parameters in the R2 packet. These

parameters MUST be the same as included in the R1 packet. The

parameter are re-included here because the R2 packet is MACed and

thus cannot be altered by an attacker. For verification purposes,

the Initiator re-evaluates the selected suites and compares the

results against the chosen ones. If the re-evaluated suites do not

match the chosen ones, the Initiator acts based on its local policy.

The ENCRYPTED_KEY parameter contains an Responder generated random

value that MUST be uniformly distributed. This random value is

encrypted with the Master Key SA using the HIP_CIPHER encryption

algorithm.

The I_NONCE parameter contains the nonce, supplied by the Initiator

for the Master Key generation as shown in Section 6.3. The Responder

is echoing the value back to the Initiator to show it used the

Initiator provided nonce.

The MAC is calculated over the whole HIP envelope, excluding any

parameters after the HIP_MAC, as described in Section 6.2. The

Initiator MUST validate the HIP_MAC parameter.

5.4. ICMP Messages

When a HIP implementation detects a problem with an incoming packet,

and it either cannot determine the identity of the sender of the

packet or does not have any existing HIP association with the sender

of the packet, it MAY respond with an ICMP packet. Any such reply

MUST be rate-limited as described in [RFC4443]. In most cases, the

ICMP packet has the Parameter Problem type (12 for ICMPv4, 4 for

ICMPv6) and Code of 0. The Pointer field pointing to the field that

caused the ICMP message to be generated, for example to the first 8

bytes of a UDP payload for "SPI is Unknown". The problem cases

specified in Section 5.4. of [RFC7401] also apply to HIP DEX.

6. Packet Processing

Due to the adopted protocol semantics and the inherited general

packet structure, the packet processing in HIP DEX only differs from

HIPv2 in very few places. Here, we focus on these differences and

refer to Section 6 in [RFC7401] otherwise.

The processing of outgoing and incoming application data remains the

same as in HIP BEX (see Sections 6.1 and 6.2 in [RFC7401]).

6.1. Solving the Puzzle

The procedures for solving and verifying a puzzle in HIP DEX are

strongly based on the corresponding procedures in HIPv2. The only
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Moreover, the Initiator solves a puzzle by computing:

Similarly, the Responder verifies a puzzle by computing:

exceptions are that HIP DEX does not use pre-computation of R1

packets and that RHASH is set to CMAC. As a result, the pre-

computation step in Section 6.3 of [RFC7401] is skipped in HIP DEX.

Ltrunc( CMAC( I, HIT-I | HIT-R | J ), K ) == 0

V := Ltrunc( CMAC( I, HIT-I | HIT-R | J ), K )

Apart from these modifications, the procedures defined in Section

6.3 of [RFC7401] also apply for HIP DEX.

6.2. HIP_MAC Calculation and Verification

The following subsections define the actions for processing the

HIP_MAC parameter.

6.2.1. CMAC Calculation

The HIP_MAC calculation uses RHASH, i.e., CMAC, as the underlying

cryptographic function. The scope of the calculation for HIP_MAC is:

where Parameters include all HIP parameters of the packet that is

being calculated with Type values ranging from 1 to (HIP_MAC's Type

value - 1) and exclude parameters with Type values greater or equal

to HIP_MAC's Type value.

During HIP_MAC calculation, the following applies:

In the HIP header, the Checksum field is set to zero.

In the HIP header, the Header Length field value is calculated to

the beginning of the HIP_MAC parameter.

The parameter order is described in Section 5.2.1 of [RFC7401].

The CMAC calculation and verification process is as follows:

Packet sender:

Create the HIP packet, without the HIP_MAC or any other

parameter with greater Type value than the HIP_MAC parameter

has.

Calculate the Header Length field in the HIP header.
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CMAC: { HIP header | [ Parameters ] }
¶
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Compute the CMAC using either HIP-gl or HIP-lg integrity key

retrieved from KEYMAT as defined in Section 6.3. HIP-gl refers

to host with greater HIT value and HIP-lg refers to the host

with smaller HIT value.

Add the HIP_MAC parameter to the packet and any parameter with

greater Type value than the HIP_MAC's that may follow.

Recalculate the Length field in the HIP header.

Packet receiver:

Verify the HIP header Length field.

Remove the HIP_MAC parameter, as well as all other parameters

that follow it with greater Type value, saving the contents if

they will be needed later.

Recalculate the HIP packet length in the HIP header and clear

the Checksum field (set it to all zeros).

Compute the CMAC using either HIP-gl or HIP-lg integrity key as

defined in Section 6.3 and verify it against the received CMAC.

Set Checksum and Header Length fields in the HIP header to

original values. Note that the Checksum and Length fields

contain incorrect values after this step.

6.3. HIP DEX KEYMAT Generation

The HIP DEX KEYMAT process is used to derive the keys for the Master

Key SA as well as for the Pair-wise Key SA. The keys for the Master

Key SA are based on the Diffie-Hellman derived key, Kij, which is

produced during the HIP DEX handshake. The Initiator generates Kij

during the creation of the I2 packet and the Responder generates Kij

once it receives the I2 packet. This is why the I2 packet can

already contain authenticated and/or encrypted information.

The keys derived for the Pair-wise Key SA are not used during the

HIP DEX handshake. Instead, these keys are made available as payload

protection keys (e.g., for IPsec's ESP).

The HIP DEX KEYMAT process is similar to the Hash-based Key

Derivation Function (HKDF) defined in [RFC5869], but uses CMAC in

place of a cryptographic hash. DEX KEYMAT follows the CMAC usage

guidance for a KDF construct provided in [NIST.SP.800-56C], 

[NIST.SP.800-108] and [KeyDerivation]. This CMAC Key Derivation

Function (CKDF) consists of two components, CKDF-Extract and CKDF-

Expand. The CKDF-Extract function compresses a non-uniformly

distributed key, such as the output of a Diffie-Hellman key
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derivation, to extract the key entropy into a fixed length output.

The CKDF-Expand function takes either the output of the Extract

function or directly uses a uniformly distributed key and expands

the length of the key, repeatedly distributing the key entropy, to

produce the keys needed.

The key derivation for the Master Key SA employs always both the

Extract and Expand phases. The Pair-wise Key SA needs only the

Extract phase when the key is smaller or equal to 128 bits, but

otherwise requires also the Expand phase.

The CKDF-Extract function is the following operation:

The CKDF-Expand function is the following operation:

¶

¶

¶

  CKDF-Extract(I, IKM, info) -> PRK

  Inputs:

    I         Random #I, provided by the Responder, from the PUZZLE

              parameter

    Kij       Diffie-Hellman derived key

    IKM       IKMm for Master Key SA Input keying material

              or

              IKMp for Pair-wise Key SA Input keying material

    IKMm      Kij | I_NONCE

    IKMp      Kij | I_NONCE | (concatenated random values of the

                  ENCRYPTED_KEY parameters in the same order as

                  the HITs with sort(HIT-I | HIT-R))

    info      sort(HIT-I | HIT-R) | "CKDF-Extract"

               Where the input text: "CKDF-Extract"

               Is the hex string: 0x434b44462d45787472616374

  Output:

    PRK       a pseudorandom key (of RHASH_len/8 octets)

The pseudorandom key PRK is calculated as follows:

    PRK     = CMAC(I, IKM | info)

¶

¶



sort(HIT-I | HIT-R) is defined as the network byte order

concatenation of the two HITs, with the smaller HIT preceding the

larger HIT, resulting from the numeric comparison of the two HITs

interpreted as positive (unsigned) 128-bit integers in network byte

order.

The initial keys for the Master Key SA are drawn sequentially in the

order that is determined by the numeric comparison of the two HITs,

with the comparison method described in the previous paragraph.

HOST_g denotes the host with the greater HIT value, and HOST_l the

host with the lower HIT value.

  CKDF-Expand(PRK, info, L) -> OKM

  Inputs:

    PRK       a pseudorandom key of at least RHASH_len/8 octets

              (either the output from the extract step or the

              concatenation of the random values of the

              ENCRYPTED_KEY parameters in the same order as the

              HITs with sort(HIT-I | HIT-R) in case of no extract)

    info      sort(HIT-I | HIT-R) | "CKDF-Expand"

              Where the input text: "CKDF-Expand"

              Is the hex string: 0x434b44462d457870616e64

    L         length of output keying material in octets

              (<= 255*RHASH_len/8)

  Output:

    OKM        output keying material (of L octets)

The output keying material OKM is calculated as follows:

    N       =  ceil(L/(RHASH_len/8))

    T       =  T(1) | T(2) | T(3) | ... | T(N)

    OKM     =  first L octets of T

where

    T(0) = empty string (zero length)

    T(1) = CMAC(PRK, T(0) | info | 0x01)

    T(2) = CMAC(PRK, T(1) | info | 0x02)

    T(3) = CMAC(PRK, T(2) | info | 0x03)

    ...

(where the constant concatenated to the end of each T(n) is a

single octet.)
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AES

The drawing order for initial keys:

HIP-gl encryption key for HOST_g's outgoing HIP packets

HIP-gl integrity (CMAC) key for HOST_g's outgoing HIP packets

HIP-lg encryption key for HOST_l's outgoing HIP packets

HIP-lg integrity (CMAC) key for HOST_l's outgoing HIP packets

The number of bits drawn for a given algorithm is the "natural" size

of the keys regarding the algorithm defined in the HIP_CIPHER. For

the mandatory algorithms, the following size applies:

128 bits

If other key sizes are used, they must be treated as different

encryption algorithms and defined separately.

6.4. Initiation of a HIP Diet EXchange

The initiation of a HIP DEX handshake proceeds as described in

Section 6.6 of [RFC7401]. The I1 packet contents are specified in 

Section 5.3.1.

6.5. Processing Incoming I1 Packets

I1 packets in HIP DEX are handled almost identical to HIPv2 (see

Section 6.7 of [RFC7401]). The main differences are that the

Responder SHOULD select a HIP DEX HIT Suite in the R1 response.

Moreover, as R1 packets are neither covered by a signature nor incur

the overhead of generating an ephemeral Diffie-Hellman key-pair,

pre-computation of an R1 is only marginally beneficial, but would

incur additional memory resources at the Responder. Hence, the R1

pre-computation SHOULD be omitted in HIP DEX.

Correspondingly, the modified conceptual processing rules for

responding to an I1 packet are as follows:

The Responder MUST check that the Responder's HIT in the

received I1 packet is either one of its own HITs or NULL.

Otherwise, it MUST drop the packet.

If the Responder is in ESTABLISHED state, the Responder MAY

respond to this with an R1 packet, prepare to drop an existing

HIP security association with the peer, and stay at ESTABLISHED

state.

If the Responder is in I1-SENT state, it MUST make a comparison

between the sender's HIT and its own (i.e., the receiver's)
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HIT. If the sender's HIT is greater than its own HIT, it should

drop the I1 packet and stay at I1-SENT. If the sender's HIT is

smaller than its own HIT, it SHOULD send the R1 packet and stay

at I1-SENT. The HIT comparison is performed as defined in 

Section 6.3.

If the implementation chooses to respond to the I1 packet with

an R1 packet, it creates a new R1 according to the format

described in Section 5.3.2. It chooses the HI based on the

destination HIT and the DH_GROUP_LIST in the I1 packet. If the

implementation does not support the DH group required by the

Initiator or if the destination HIT in the I1 packet does not

match the required DH group, it selects the mutually preferred

and supported DH group based on the DH_GROUP_LIST parameter in

the I1 packet. The implementation includes the corresponding

ECDH public key in the HOST_ID parameter. If no suitable DH

Group ID was contained in the DH_GROUP_LIST in the I1 packet,

it sends an R1 packet with any suitable ECDH public key.

If the received Responder's HIT in the I1 packet is not NULL,

the Responder's HIT in the R1 packet MUST match the destination

HIT in the I1 packet. Otherwise, the Responder MUST select a

HIT with the same HIT Suite as the Initiator's HIT. If this HIT

Suite is not supported by the Responder, it SHOULD select a

REQUIRED HIT Suite from Section 5.2.10 of [RFC7401], which is

currently RSA/DSA/SHA-256. Other than that, selecting the HIT

is a local policy matter.

The Responder expresses its supported HIP transport formats in

the TRANSPORT_FORMAT_LIST as described in Section 5.2.11 of 

[RFC7401]. The Responder MUST provide at least one payload

transport format type.

The Responder sends the R1 packet to the source IP address of

the I1 packet.

Note that only steps 4 and 5 have been changed with regard to the

processing rules of HIPv2. The considerations about R1 management

(except pre-computation) and malformed I1 packets in Sections 6.7.1

and 6.7.2 of [RFC7401] likewise apply to HIP DEX.

6.6. Processing Incoming R1 Packets

R1 packets in HIP DEX are handled identically to HIPv2 (see Section

6.8 in [RFC7401]) with the following exceptions: HIP DEX uses ECDH

public keys as HIs and does not employ signatures.

As R1 is not signed and no proof is possible in the authenticity of

its contents, all processing of the R1 is provisional until verified

by the R2 processing.
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The modified conceptual processing rules for responding to an R1

packet are as follows:

A system receiving an R1 MUST first check to see if it has sent

an I1 packet to the originator of the R1 packet (i.e., it has a

HIP association that is in state I1-SENT and that is associated

with the HITs in the R1). Unless the I1 packet was sent in

opportunistic mode (see Section 4.1.8 of [RFC7401]), the IP

addresses in the received R1 packet SHOULD be ignored by the R1

processing and, when looking up the correct HIP association,

the received R1 packet SHOULD be matched against the

associations using only the HITs. If a match exists, the system

processes the R1 packet as described below.

Otherwise, if the system is in any state other than I1-SENT or

I2-SENT with respect to the HITs included in the R1 packet, it

SHOULD silently drop the R1 packet and remain in the current

state.

If the HIP association state is I1-SENT or I2-SENT, the

received Initiator's HIT MUST correspond to the HIT used in the

original I1 packet. Also, the Responder's HIT MUST correspond

to the one used in the I1 packet, unless this packet contained

a NULL HIT.

If the HIP association state is I1-SENT, and multiple valid R1

packets are present, the system MUST select from among the R1

packets with the largest R1 generation counter.

The system MUST check that the Initiator's HIT Suite is

contained in the HIT_SUITE_LIST parameter in the R1 packet

(i.e., the Initiator's HIT Suite is supported by the

Responder). If the HIT Suite is supported by the Responder, the

system proceeds normally. Otherwise, the system MAY stay in

state I1-SENT and restart the HIP DEX handshake by sending a

new I1 packet with an Initiator HIT that is supported by the

Responder and hence is contained in the HIT_SUITE_LIST in the

R1 packet. The system MAY abort the handshake if no suitable

source HIT is available. The system SHOULD wait for an

acceptable time span to allow further R1 packets with higher R1

generation counters or different HIT and HIT Suites to arrive

before restarting or aborting the HIP DEX handshake.

The system MUST check that the DH Group ID in the HOST_ID

parameter in the R1 matches the first DH Group ID in the

Responder's DH_GROUP_LIST in the R1 packet, and also that this

Group ID corresponds to a value that was included in the

Initiator's DH_GROUP_LIST in the I1 packet. If the DH Group ID

of the HOST_ID parameter does not express the Responder's best
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choice, the Initiator can conclude that the DH_GROUP_LIST in

the I1 or R1 packet was adversely modified. In such a case, the

Initiator MAY send a new I1 packet; however, it SHOULD NOT

change its preference in the DH_GROUP_LIST in the new I1

packet. Alternatively, the Initiator MAY abort the HIP DEX

handshake. Moreover, if the DH Group ID indicated in the

HOST_ID parameter does not match the DH Group ID of the HI

employed by the Initiator, the system SHOULD wait for an

acceptable time span to allow further R1 packets with different

DH Group IDs to arrive before restarting or aborting the HIP

DEX handshake. When restarting the handshake, the Initiator

MUST consult local policies (see Section 7) regarding the use

of another, mutually supported DH group for the subsequent

handshake with the Responder.

If the HIP association state is I2-SENT, the system MAY re-

enter state I1-SENT and process the received R1 packet if it

has a larger R1 generation counter than the R1 packet responded

to previously.

The system SHOULD attempt to validate the HIT against the

received Host Identity by using the received Host Identity to

construct a HIT and verify that it matches the Sender's HIT.

The system MUST store the received R1 generation counter for

future reference.

The system attempts to solve the puzzle in the R1 packet. The

system MUST terminate the search after exceeding the remaining

lifetime of the puzzle. If the puzzle is not successfully

solved, the implementation MAY either resend the I1 packet

within the retry bounds or abandon the HIP base exchange.

The system computes standard Diffie-Hellman keying material

according to the public value and Group ID provided in the

HOST_ID parameter. The Diffie-Hellman keying material Kij is

used for key extraction as specified in Section 6.3.

The system selects the HIP_CIPHER ID from the choices presented

in the R1 packet and uses the selected values subsequently when

generating and using encryption keys, and when sending the I2

packet. If the proposed alternatives are not acceptable to the

system, it MAY either resend an I1 packet within the retry

bounds or abandon the HIP base exchange.

The system chooses one suitable transport format from the

TRANSPORT_FORMAT_LIST and includes the respective transport

format parameter in the subsequent I2 packet.
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The system initializes the remaining variables in the

associated state, including Update ID counters.

The system prepares and sends an I2 packet as described in 

Section 5.3.3.

The system SHOULD start a timer whose timeout value SHOULD be

larger than the worst-case anticipated RTT, and MUST increment

a trial counter associated with the I2 packet. The sender

SHOULD retransmit the I2 packet upon a timeout and restart the

timer, up to a maximum of I2_RETRIES_MAX tries.

If the system is in state I1-SENT, it SHALL transition to state

I2-SENT. If the system is in any other state, it remains in the

current state.

Note that step 4 from the original processing rules of HIPv2

(signature verification) has been removed in the above processing

rules for HIP DEX. Moreover, step 7 of the original processing rules

has been adapted in step 6 above to account for the fact that HIP

DEX uses ECDH public keys as HIs. The considerations about malformed

R1 packets in Sections 6.8.1 of [RFC7401] also apply to HIP DEX.

6.7. Processing Incoming I2 Packets

The processing of I2 packets follows similar rules as HIPv2 (see

Section 6.9 of [RFC7401]). The main differences to HIPv2 are that

HIP DEX introduces a new session key exchange via the ENCRYPTED_KEY

parameter as well as an I2 reception acknowledgement for

retransmission purposes. Moreover, with HIP DEX the Initiator is

responsible for triggering retransmissions, whereas the Responder

merely replies to received I2 packets.

The modified HIP DEX conceptual processing rules for responding to

an I2 packet are:

The system MAY perform checks to verify that the I2 packet

corresponds to a recently sent R1 packet. Such checks are

implementation dependent. See Appendix A in [RFC7401] for a

description of an example implementation.

The system MUST check that the Responder's HIT corresponds to

one of its own HITs and MUST drop the packet otherwise.

The system MUST further check that the Initiator's HIT Suite is

supported. The Responder SHOULD silently drop I2 packets with

unsupported Initiator HITs.

The system MUST validate the Initiator's HI per Section 9.3.

14. 

¶

15. 

¶

16. 

¶

17. 

¶

¶

¶

¶

1. 

¶

2. 

¶

3. 

¶

4. ¶



If the system's state machine is in the R2-SENT state, the

system MUST check to see if the newly received I2 packet is

similar to the one that triggered moving to R2-SENT. If so, it

MUST retransmit a previously sent R2 packet and reset the R2-

SENT timer. The system SHOULD re-use the previously established

state to re-create the corresponding R2 packet in order to

prevent unnecessary computation overhead.

If the system's state machine is in the I2-SENT state, the

system MUST make a comparison between its local and sender's

HITs (similarly as in Section 6.3). If the local HIT is smaller

than the sender's HIT, it should drop the I2 packet, use the

peer Diffie-Hellman key, ENCRYPTED_KEY keying material and

nonce #I from the R1 packet received earlier, and get the local

Diffie-Hellman key, ENCRYPTED_KEY keying material, and nonce #J

from the I2 packet sent to the peer earlier. Otherwise, the

system processes the received I2 packet and drops any

previously derived Diffie-Hellman keying material Kij and

ENCRYPTED_KEY keying material it might have generated upon

sending the I2 packet previously. The peer Diffie-Hellman key,

ENCRYPTED_KEY, and the nonce #J are taken from the just arrived

I2 packet. The local Diffie-Hellman key, ENCRYPTED_KEY keying

material, and the nonce #I are the ones that were sent earlier

in the R1 packet.

If the system's state machine is in the I1-SENT state, and the

HITs in the I2 packet match those used in the previously sent

I1 packet, the system uses this received I2 packet as the basis

for the HIP association it was trying to form, and stops

retransmitting I1 packets (provided that the I2 packet passes

the additional checks below).

If the system's state machine is in any state other than R2-

SENT, the system SHOULD check that the echoed R1 generation

counter in the I2 packet is within the acceptable range if the

counter is included. Implementations MUST accept puzzles from

the current generation and MAY accept puzzles from earlier

generations. If the generation counter in the newly received I2

packet is outside the accepted range, the I2 packet is stale

(and perhaps replayed) and SHOULD be dropped.

The system MUST validate the solution to the puzzle as

described in Section 6.1.

The I2 packet MUST have a single value in the HIP_CIPHER

parameter, which MUST match one of the values offered to the

Initiator in the R1 packet.
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The system MUST derive Diffie-Hellman keying material Kij based

on the public value and Group ID in the HOST_ID parameter. This

keying material is used to derive the keys of the Master Key SA

as described in Section 6.3. If the Diffie-Hellman Group ID is

unsupported, the I2 packet is silently dropped. If the

processing time for the derivation of the Diffie-Hellman keying

material Kij is likely to cause premature I2 retransmissions by

the Initiator, the system MAY send a NOTIFY packet before

starting the key derivation process. The NOTIFY packet contains

a NOTIFICATION parameter with Notify Message Type

I2_ACKNOWLEDGEMENT. The NOTIFICATION parameter indicates the

anticipated remaining processing time for the I2 packet in

milliseconds as two-octet Notification Data.

The implementation SHOULD also verify that the Initiator's HIT

in the I2 packet corresponds to the Host Identity sent in the

I2 packet. (Note: some middleboxes may not be able to make this

verification.)

The system MUST process the TRANSPORT_FORMAT_LIST parameter.

Other documents specifying transport formats (e.g., [RFC7402])

contain specifications for handling any specific transport

selected.

The system MUST verify the HIP_MAC according to the procedures

in Section 6.2.

If the checks above are valid, then the system proceeds with

further I2 processing; otherwise, it discards the I2 and its

state machine remains in the same state.

The system MUST decrypt the keying material from the

ENCRYPTED_KEY parameter. This keying material is a partial

input to the key derivation process for the Pair-wise Key SA

(see Section 6.3).

The system initializes the remaining variables in the

associated state, including Update ID counters.

Upon successful processing of an I2 packet when the system's

state machine is in state UNASSOCIATED, I1-SENT, I2-SENT, or

R2-SENT, an R2 packet is sent as described in Section 5.3.4 and

the system's state machine transitions to state R2-SENT.

Upon successful processing of an I2 packet when the system's

state machine is in state ESTABLISHED, the old HIP association

is dropped and a new one is installed, an R2 packet is sent as

described in Section 5.3.4, and the system's state machine

transitions to R2-SENT.
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Upon the system's state machine transitioning to R2-SENT, the

system starts a timer. The state machine transitions to

ESTABLISHED if some data has been received on the incoming HIP

association, or an UPDATE packet has been received (or some

other packet that indicates that the peer system's state

machine has moved to ESTABLISHED). If the timer expires

(allowing for a maximal amount of retransmissions of I2

packets), the state machine transitions to ESTABLISHED.

Note that steps 11 (encrypted HOST_ID) and 15 (signature

verification) from the original processing rules of HIPv2 have been

removed in the above processing rules for HIP DEX. Moreover, step 10

of the HIPv2 processing rules has been adapted to account for

optional extension of the retransmission mechanism. Step 16 has been

added to the processing rules in this document. The considerations

about malformed I2 packets in Sections 6.9.1 of [RFC7401] also apply

to HIP DEX.

6.8. Processing Incoming R2 Packets

R2 packets in HIP DEX are handled identically to HIPv2 (see Section

6.10 of [RFC7401]) with the following exceptions: HIP DEX introduces

a new session key exchange via the ENCRYPTED_KEY parameter and does

not employ signatures.

The modified conceptual processing rules for responding to an R2

packet are as follows:

If the system is in any other state than I2-SENT, the R2 packet

is silently dropped.

The system MUST verify that the HITs in use correspond to the

HITs that were received in the R1 packet that caused the

transition to the I2-SENT state.

The system MUST verify the HIP_MAC according to the procedures

in Section 6.2.

The system MUST re-evaluate the DH_GROUP_LIST, HIP_CIPHER,

HIT_SUITE_LIST, and TRANSPORT_FORMAT_LIST parameters in the R2

packet and compare the results against the chosen suites.

The system MUST validate the Responder's HI per Section 9.3.

If any of the checks above fail, there is a high probability of

an ongoing man-in-the-middle or other security attack. The

system SHOULD act accordingly (e.g. aborting with logging),

based on its local policy.
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The system MUST decrypt the keying material from the

ENCRYPTED_KEY parameter. This keying material is a partial

input to the key derivation process for the Pair-wise Key SA

(see Section 6.3).

Upon successful processing of the R2 packet, the state machine

transitions to state ESTABLISHED.

Note that step 4 (signature verification) from the original

processing rules of HIPv2 has been replaced with a negotiation re-

evaluation in the above processing rules for HIP DEX. Moreover, step

6 has been added to the processing rules.

6.9. Processing Incoming NOTIFY Packets

Processing of NOTIFY packets is OPTIONAL. If processed, any errors

in a received NOTIFICATION parameter SHOULD be logged. Received

errors MUST be considered only as informational, and the receiver

SHOULD NOT change its HIP state purely based on the received NOTIFY

packet.

If a NOTIFY packet is received in state I2-SENT, this packet is an

I2 reception acknowledgement of the optional retransmission

mechanism extension and SHOULD be processed. The following steps

define the conceptual processing rules for such incoming NOTIFY

packets in state I2-SENT:

The system MUST verify that the HITs in use correspond to the

HITs that were received in the R1 packet that caused the

transition to the I2-SENT state. If this check fails, the

NOTIFY packet MUST be dropped silently.

If the NOTIFY packet contains a NOTIFICATION parameter with

Notify Message Type I2_ACKNOWLEDGEMENT, the system SHOULD set

the I2 retransmission timer to the I2 processing time indicated

in the NOTIFICATION parameter plus half the RTT-based timeout

value. The system MUST NOT set the retransmission timeout to a

higher value than allowed by a local policy. Moreover, the

system SHOULD reset the I2 retransmission timer to the RTT-

based timeout value after the next I2 retransmission.

6.10. Processing UPDATE, CLOSE, and CLOSE_ACK Packets

UPDATE, CLOSE, and CLOSE_ACK packets are handled similarly in HIP

DEX as in HIPv2 (see Sections 6.11, 6.12, 6.14, and 6.15 of 

[RFC7401]). The only difference is the that the HIP_SIGNATURE is

never present and, therefore, is not required to be processed by the

receiving party.
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[RFC7402] specifies the rekeying of an existing HIP SA using the

UPDATE message. This rekeying procedure can also be used with HIP

DEX. However, where rekeying involves a new Diffie-Hellman key

exchange, HIP DEX peers MUST establish a new HIP association in

order to create a new Pair-wise Key SA due to the use of static ECDH

key-pairs with HIP DEX.

6.11. Handling State Loss

Implementors MAY choose to use non-volatile, secure storage for HIP

states in order for them to survive a system reboot. If no secure

storage capabilities are available, the system SHOULD delete the

corresponding HIP state, including the keying material. If the

implementation does drop the state (as RECOMMENDED), it MUST also

drop the peer's R1 generation counter value, unless a local policy

explicitly defines that the value of that particular host is stored.

Storing of the R1 generation counter values and ENCRYPTED_KEY

counter (Section 5.2.5) MUST be configured by explicit HITs.

7. HIP Policies

There are a number of variables that will influence the HIP

exchanges that each host must support. The value of puzzle

difficulty K used in the HIP R1 must be chosen with care. Values for

the K that are too high will exclude clients with weak CPUs because

these devices cannot solve the puzzle within a reasonable amount of

time. The K value should only be raised if a Responder is under high

load, i.e., it cannot process all incoming HIP handshakes any more.

If a Responder is not under high load, K SHOULD be 0.

All HIP DEX implementations SHOULD provide for an Access Control

List (ACL), representing for which hosts they accept HIP diet

exchanges, and the preferred transport format and local lifetimes.

Wildcarding SHOULD be supported for such ACLs.

7.1. HIT/HI ACL

Both the Initiator and Responder SHOULD implement an ACL. Minimally,

these ACLs will be a list of trusted HIT/HIs. They may also contain

the password used in the password-based two-factor authentication

(Appendix B) and preferred HIT Suite.

ACL processing is applied to all HIP packets. A HIP peer MAY reject

any packet where the Receiver's HIT is not in the ACL. The HI (in

the R1, I2, and optionally NOTIFY packets) MUST be validated as

well, when present in the ACL. This is the defense against collision

and second-image attacks on the HIT generation.
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Devices with no input mechanism (e.g. sensors) SHOULD accept R1

packets from unknown HITs. These R1 packets SHOULD contain the start

of the password-based two-factor authentication . If the R2 for this

HIT indicates success, then the device may add this HIT/HI to its

ACL for future use.

Devices unable to manage an ACL (e.g. sensors) are subject to MITM

attacks, even with the use of the password authentication (password

theft by attacker). As long as the other peer (e.g. sensor

controller) does use an ACL, the attack can be recognized there and

addressed. This is often seen where the sensor does not appear as

properly operating with the controller, as the attacker cannot

impersonate information in the ACL.

8. Interoperability between HIP DEX and HIPv2

HIP DEX and HIPv2 both use the same protocol number and packet

formats. Hence, an implementation that either supports HIP DEX or

HIPv2 has to be able to detect the dialect that the peer is

speaking. This section outlines how a HIP DEX implementation can

achieve such detection for the two relevant cases where:

the Initiator supports HIP DEX and the Responder supports HIP

BEX,

the Initiator supports HIP BEX and the Responder supports HIP

DEX.

In the first case, the HIP DEX implementation (Initiator) inspects

the Responder's HIT prior to sending the I1 packet. If the OGA ID

field of this HIT does not indicate the HIP DEX HIT Suite ID, the

HIP DEX implementation cancels the handshake. If the Responder is

unknown prior to sending the I1 packet (i.e., opportunistic mode),

the HIP DEX implementation performs the above check on reception of

the R1 packet and cancels the handshake in case of a negative

result. In both failure scenarios, the implementation should report

an error to the user via appropriate means.

In the second case, the HIP DEX implementation (Responder) inspects

the Initiator's HIT on reception of an I1 packet. If the OGA ID

field of this HIT does not indicate the HIP DEX HIT Suite ID, the

HIP DEX implementation cancels the handshake and sends an ICMP

packet with type Parameter Problem, with the Pointer pointing to the

source HIT, to the Initiator. As an off-path adversary could also

send such an ICMP packet with the aim to prevent the HIP DEX

handshake from completing, the Initiator SHOULD NOT react to an ICMP

message before retransmission counter reaches I1_RETRIES_MAX in its

state machine (see Table 3 in [RFC7401]).
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9. Security Considerations

HIP DEX closely resembles HIPv2. As such, the security

considerations discussed in Section 8 of [RFC7401] similarly apply

to HIP DEX. HIP DEX, however, replaces the SIGMA-based authenticated

Diffie-Hellman key exchange of HIPv2 with an exchange of random

keying material that is encrypted with a Diffie-Hellman derived key.

Both the Initiator and Responder contribute to this keying material.

As a result, the following additional security considerations apply

to HIP DEX:

The strength of the keys for both the Master and Pair-wise Key

SAs is based on the quality of the random keying material

generated by the Initiator and the Responder. As either peer may

be a sensor or an actuator device, there is a natural concern

about the quality of its random number generator. Thus at least a

CSPRNG SHOULD be used.

HIP DEX lacks the Forward Secrecy (FS) property of HIPv2.

Consequently, if an HI is compromised, all previous HIP

connections protected with that HI are compromised as explained

in Section 1.

The HIP DEX HIT generation may present new attack opportunities.

Hence, HIP DEX HITs MUST NOT be used as the only means to

identify a peer in an ACL. Instead, the use of the peer's HI is

recommended as explained in Section 3.

The R1 packet is unauthenticated and offers an adversary a new

attack vector against the Initiator. This is mitigated by only

processing a received R1 packet when the Initiator has previously

sent a corresponding I1 packet. Moreover, the Responder repeats

the DH_GROUP_LIST, HIP_CIPHER, HIT_SUITE_LIST, and

TRANSPORT_FORMAT_LIST parameters in the R2 packet in order to

enable the Initiator to verify that these parameters have not

been modified by an attacker in the unprotected R1 packet as

explained in Section 6.8.

Contrary to HIPv2, HIP DEX does not provide for end-point

anonymity for the Initiator or Responder. Thus, any signaling

that indicates such anonymity should be ignored as explained in 

Section 1.1.

It is critical to properly manage the ENCRYPTED_KEY counter

(Section 5.2.5). If non-volatile store is used to maintain HIP

state across system resets, then this counter MUST be part of the

state store.

The optional retransmission extension of HIP DEX is based on a

NOTIFY packet that the Responder can use to inform the Initiator
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about the reception of an I2 packet. The Responder, however, cannot

protect the authenticity of this packet as it did not yet set up the

Master Key SA. Hence, an eavesdropping adversary may send spoofed

reception acknowledgements for an overheard I2 packet and signal an

arbitrary I2 processing time to the Initiator. The adversary can,

e.g., indicate a lower I2 processing time than actually required by

the Responder in order to cause premature retransmissions. To

protect against this attack, the Initiator SHOULD set the NOTIFY-

based timeout value to the maximum indicated packet processing time

in case of conflicting NOTIFY packets. This allows the legitimate

Responder to extend the retransmission timeout to the intended

length. The adversary, however, can still arbitrarily delay the

protocol handshake beyond the Responder's actual I2 processing time.

To limit the extend of such a maliciously induced handshake delay,

this specification additionally requires the Initiator not to set

the NOTIFY-based timeout value higher than allowed by a local

policy.

Section 5.3.1 mentions that implementations need to be able to

handle storms of I1 packets. Contrary to HIPv2, R1 packets cannot be

pre-computed in HIP DEX and also the state machine does not include

an "R1_SENT" state (that would enable caching of R1 packets).

Therefore, an implementation has to cache information (e.g., at

least the HITs) from incoming I1 packets and rate control the

incoming I1 packets to avoid unnecessary packet processing during I1

packet storms.

9.1. Caution on using HIP DEX rather than HIP BEX

Due to the substantially reduced security guarantees of HIP DEX

compared to HIP BEX, HIP DEX MUST only be used when at least one of

the two endpoints is a class 0 or 1 constrained device defined in

Section 3 of [RFC7228]). HIP DEX MUST NOT be used when both

endpoints are class 2 devices or unconstrained.

9.2. Use of AES-CTR for HIP Parameter Encryption

AES-CTR is a basic cipher mode that does not accept an

initialization vector to allow for key re-use. In essence, it

stretches the initial key into a much longer keystream (akin to a

stream cipher) that is used like a one-time pad. Any reuse of that

keystream breaks the confidentiality of the protected data, so when

using AES-CTR, care must be taken to ensure that within a given

keystream the counter value is never reused, and that any given key

is only used to generate a single keystream. The integration of AES-

CTR into IPsec ESP (RFC 3686) used by HIP (and, thus, by HIP-DEX)

improves on the situation by partitioning the 128-bit counter space

into a 32-bit nonce, 64-bit IV, and 32-bits of counter. The counter

is incremented to provide a keystream for protecting a given packet,
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ENCRYPTED_KEY

DH_GROUP_LIST

HIT Suite ID

HIP Cipher ID

HI Algorithm

the IV is chosen by the encryptor in a "manner that ensures

uniqueness", and the nonce persists for the lifetime of a given SA.

In particular, in this usage the nonce must be unpredictable, not

just single-use. In HIP-DEX, the properties of nonce uniqueness/

unpredictability and per-packet IV uniqueness are defined in Section

5.2.2.

9.3. Need to Validate Public Keys

With the curves specified here, there is a straightforward key

extraction attack, which is a very serious problem with the use of

static keys by HIP-DEX. Thus it is MANDATORY to validate the peer's

Public Key.

For Curve25519 and Curve448, the contents of the public value are

the byte string inputs and outputs of the corresponding functions

defined in [RFC7748]: 32 bytes for EC25519 and 56 bytes for EC448.

The validation is done in Section 6.7, step 4 and Section 6.8, step

5.

10. IANA Considerations

The following changes to the "Host Identity Protocol (HIP)

Parameters" registries have been made:

"ENCRYPTED_KEY" with type number TBD1 (suggested:

643) (see Section 5.2.5) in the "Parameter Types" subregistry of

the "Host Identity Protocol (HIP) Parameters" registry.

This document defines the new DH_GROUPS Curve25519

with value TBD7 (suggested: 12) and Curve448 with value TBD8

(suggested: 13) (see Section 5.2.1) in the "Group IDs"

subregistry of the "Host Identity Protocol (HIP) Parameters"

registry.

This document defines the new HIT Suite "ECDH/FOLD"

without four-bit ID of TBD2 (suggested: 4) and eight-bit encoding

of TBD3 (suggested: 0x40) (see Section 5.2.4) in the "HIT Suite

ID" subregistry of the "Host Identity Protocol (HIP) Parameters"

registry.

This document defines the new HIP Cipher ID "AES-128-

CTR" with type number TBD4 (suggested: 5) (see Section 5.2.2) in

the "HIP Cipher ID" subregistry of the "Host Identity Protocol

(HIP) Parameters" registry.

This document defines the new HI Algorithm "ECDH" with

type number TBD5 (suggested: 11) (see Section 5.2.3) in the "HI
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I_NONCE

ECC Curve Label

Algorithm" subregistry of the "Host Identity Protocol (HIP)

Parameters" registry.

"I_NONCE" with type number TBD6 (suggested: 644) (see 

Section 5.2.6) in the "Parameter Types" subregistry of the "Host

Identity Protocol (HIP) Parameters" registry.

This document specifies a new algorithm-specific

subregistry named "ECDH Curve Label". The values for this

subregistry are defined in Section 5.2.1. The complete list of

algorithms for the DH_GROUP_LIST parameter are listed in the

"Group IDs" subregistry of the "Host Identity Protocol (HIP)

Parameters" registry.
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12. Changelog

This section summarizes the changes made from draft-moskowitz-hip-

rg-dex-05, which was the first stable version of the draft. Note

that the draft was renamed after draft-moskowitz-hip-rg-dex-06.

The draft was then renamed from draft-moskowitz-hip-dex to draft-

ietf-hip-dex.

12.1. Changes in draft-ietf-hip-dex-24

Apply editorial comments from Eric Vyncke in Section 1.2

Added SIGMA and ATmega328P references

Added non-paywall URL for EfficientECC reference

Added Section 9.1 and removed last NIST P-384 text.

12.2. Changes in draft-ietf-hip-dex-23

Apply editorial comment from Eric Vyncke
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Added concatenating Context ID with HI in FOLD to mirror HIPv2

ORCHID construction

Added Partial Computational Cost of FS via SIGMA, Section 1.2.1

Added further text to Section 3.2.1

12.3. Changes in draft-ietf-hip-dex-22

Apply editorial comment from Roman Danyliw

Clarify IKM content for Master SA and Pairwise SA in Section 6.3

Add behavior on BEX before DEX to Section 1.2

Added [NIST.SP.800-56C], [NIST.SP.800-108], and [KeyDerivation]

as source guidance for CKDF to Section 6.3

Removed NIST curves from Section 5.2.1 and Section 5.2.3 as too

slow for 8-bit CPUs

12.4. Changes in draft-ietf-hip-dex-21

Clarified on security concerns of using AES-CTR in Section 9.2

Edits for SECDIR comments

12.5. Changes in draft-ietf-hip-dex-20

Clarified text on AES-CTR for HIP parameter encryption. This

includes Section 9.2

Clarified text on R2 processing to validate content of R1.

Clarified Applicability section.

Expanded Fig 1.

Clarified differences between BEX and DEX state machines.

ESP transform is MTI and ESP-TCP is Experimental.

12.6. Changes in draft-ietf-hip-dex-19

Replaced reference to RFC4493 for CMAC with NIST SP800-38B.

Remove NIST P-521 from DH_GROUP_LIST.

Remove NULL-ENCRYPT.

Added reference to rfc8005 for HIT lookup in DNS.
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Remove setting Control bit: A.

Many textual improvements per Benjamin Kaduk comments.

12.7. Changes in draft-ietf-hip-dex-18

Changed Perfect Forward Secrecy to Forward Secrecy.

12.8. Changes in draft-ietf-hip-dex-17

Added hex values for strings CKDF-Extract and CKDF-Expand.

Replace Perfect Forward Secrecy with Forward Secrecy.

12.9. Changes in draft-ietf-hip-dex-16

Remove old placeholder text.

Remove SECP160R1. Experience has shown EC25519 performance equal

enough to not need it.

12.10. Changes in draft-ietf-hip-dex-15

Added Public Key validation in I2 and R2 processing.

Added ACL processing (Section 7.1).

Added IANA instructions for DH_GROUP_LIST.

12.11. Changes in draft-ietf-hip-dex-14

Changes to (Section 5.4) per Jeff Ahrenholz for Suresh Krishnan

comment

12.12. Changes in draft-ietf-hip-dex-12 and 13

Nits from Jeff Ahrenholz (including some formatting issues)

12.13. Changes in draft-ietf-hip-dex-11 and 12

Included more precise references to the IANA subregistries

Addressed GEN-ART feedback from Francis Dupont

Added reasoning for FS in a separate section, and it is mentioned

also in the abstract and intro.

Donald Eastlake's (secdir) nits addressed

Resolved IANA nits from Amanda Baber.
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New sections: "Why introduce folding" (Section 3.2.1), "SECP160R1

Considered Unsafe" (removed in ver 16), "Need to Validate Public

Keys" (Section 9.3), and "I_NONCE" (Section 5.2.6) to address

Eric Rescorla's concerns.

12.14. Changes in draft-ietf-hip-dex-11

Update IANA considerations as requested by Eric Envyncke

12.15. Changes in draft-ietf-hip-dex-10

Explanations on why the document includes so many SHOULDs

12.16. Changes in draft-ietf-hip-dex-09

Fixed values for

DH_GROUP_LIST

HIT_SUITE_LIST

to match [RFC7401].

12.17. Changes in draft-ietf-hip-dex-05

Clarified main differences between HIP BEX and HIP DEX in Section

1.

Addressed MitM attack in Section 8.

Minor editorial changes.

12.18. Changes in draft-ietf-hip-dex-04

Added new paragraph on rekeying procedure with HIP DEX.

Updated references.

Editorial changes.

12.19. Changes in draft-ietf-hip-dex-03

Added new section on HIP DEX/HIPv2 interoperability

Added reference to RFC4493 for CMAC.

Added reference to RFC5869 for CKDF.

Added processing of NOTIFY message in I2-SENT of state diagram.

Editorial changes.
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12.20. Changes in draft-ietf-hip-dex-02

Author address change.

12.21. Changes in draft-ietf-hip-dex-01

Added the new ECDH groups of Curve25519 and Curve448 from RFC

7748.

12.22. Changes in draft-ietf-hip-dex-00

The Internet Draft was adopted by the HIP WG.

12.23. Changes in draft-moskowitz-hip-rg-dex-06

A major change in the ENCRYPT parameter to use AES-CTR rather

than AES-CBC.

12.24. Changes in draft-moskowitz-hip-dex-00

Draft name change. HIPRG ended in IRTF, HIP DEX is now individual

submission.

Added the change section.

Added a Definitions section.

Changed I2 and R2 packets to reflect use of AES-CTR for

ENCRYPTED_KEY parameter.

Cleaned up KEYMAT Generation text.

Added Appendix with C code for the ECDH shared secret generation

on an 8 bit processor.

12.25. Changes in draft-moskowitz-hip-dex-01

Numerous editorial changes.

New retransmission strategy.

New HIT generation mechanism.

Modified layout of ENCRYPTED_KEY parameter.

Clarify use puzzle difficulty of zero under normal network

conditions.

Align inclusion directive of R1_COUNTER with HIPv2 (from SHOULD

to MUST).
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Align inclusion of TRANSPORT_FORMAT_LIST with HIPv2 (added to R1

and I2).

HIP_CIPHER, HIT_SUITE_LIST, and TRANSPORT_FORMAT_LIST must now be

echoed in R2 packet.

Added new author.

12.26. Changes in draft-moskowitz-hip-dex-02

Introduced formal definition of FOLD function.

Clarified use of CMAC for puzzle computation in section "Solving

the Puzzle".

Several editorial changes.

12.27. Changes in draft-moskowitz-hip-dex-03

Addressed HI crypto agility.

Clarified purpose of secret exchanged via ENCRYPTED_KEY

parameter.

Extended the IV in the ENCRYPTED_KEY parameter.

Introduced forward-references to HIP DEX KEYMAT process and

improved KEYMAT section.

Replaced Appendix A on "C code for ECC point multiplication" with

short discussion in introduction.

Updated references.

Further editorial changes.

12.28. Changes in draft-moskowitz-hip-dex-04

Improved retransmission extension.

Updated and strongly revised packet processing rules.

Updated security considerations.

Updated IANA considerations.

Move the HI Algorithm for ECDH to a value of 11.

Many editorial changes.
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Appendix A. Calculating Collision Probabilities

The accepted formula for calculating the probability of a collision

is:

Appendix B. Password-based two-factor authentication during the HIP

DEX handshake

HIP DEX allows identifying authorized connections based on a two-

factor authentication mechanism. With two-factor authentication,

devices that are authorized to communicate with each other are

required to be pre-provisioned with a shared (group) key. The

Initiator uses this pre-provisioned key to encrypt the

ECHO_RESPONSE_UNSIGNED in the I2 packet. Upon reception of the I2,

the Responder verifies that its challenge in the

ECHO_REQUEST_UNSIGNED parameter in the R1 packet has been encrypted

with the correct key. If verified successfully, the Responder

proceeds with the handshake. Otherwise, it silently drops the I2

packet.

Note that there is no explicit signaling in the HIP DEX handshake

for this behavior. Thus, knowledge of two-factor authentication must

be configured externally prior to the handshake.

¶

    p = 1 - e^{-k^2/(2n)}

    P   Collision Probability

    n   Total possible population

    k   Actual population

¶

¶

¶
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Appendix C. IESG Considerations

During IESG review, a concern was raised on the number of SHOULDs in

this document. Here is an analysis of the 57 SHOULDs in HIP DEX.

46 of SHOULDs are also in [RFC7401]. Here are the sections with

SHOULDs that match up with [RFC7401]:

Many of the other 11 SHOULDs are due to the nature of constrained

devices and in most cases the text points this out:

In Section 4.1.1, this is clearly adjusting for how the puzzle could

actually be an attack against a constrained device. Same situation

in Section 5.3.2.

The SHOULD in Section 6.3, clearly reflects new work with the new

Sponge Function KDFs:

The keys derived for the Pair-wise Key SA are not used during the

HIP DEX handshake. Instead, these keys are made available as payload

protection keys (e.g., for IPsec). Some payload protection

mechanisms have their own Key Derivation Function, and if so this

mechanism SHOULD be used. Otherwise, the HIP DEX KEYMAT process MUST

be used to derive the keys of the Pair-wise Key SA based on the

concatenation of the random values that are contained in the

exchanged ENCRYPTED_KEY parameters.

¶

¶

5.2.2.    HIP_CIPHER (same as 7401)

6.5.    Processing Incoming I1 Packets

    3.    (same as 7401)

    5.    (same as 7401)

6.6.    Processing Incoming R1 Packets    (same as 7401)

6.7.    Processing Incoming I2 Packets

    3.    (same as 7401)

    7.    (same as 7401)

    11.    (same as 7401)

6.8.    Processing Incoming R2 Packets

    5.    (same as 7401)

6.9.    Processing Incoming NOTIFY Packets

    1st para (same as 7401)

6.11.    Handling State Loss (same as 7401)

7.    HIP Policies (1st and 3rd same as 7401)

¶

¶

¶

¶

¶



In Section 6.5, the reason why this is a SHOULD should be clear to

any implementer. That is the HIT Suite list in I1 is a desire on

what suite to use. The Responder may have 'different ideas' about

the Suite to use (like what it supports). Thus it is best that the

Responder selects a DEX HIT, but there are good reasons, in an

implementation not to do so. The implementer should know this and

will deal with it appropriately.

The SHOULDs in Section 6.7 and Section 6.9 are there for

considerations for constrained systems. Some constrained systems

need this approach, others may not.

The 2nd SHOULD in Section 7 follows the same as above. ACLs and

constrained systems tend to go together.

Similarly in Section 8 the SHOULD is again is highlighting

constrained system processing considerations.
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