
HyBi Working Group T. Yoshino
Internet-Draft Google, Inc.
Intended status: Standards Track January 24, 2013
Expires: July 28, 2013

WebSocket Per-message Compression
draft-ietf-hybi-permessage-compression-05

Abstract

 This document specifies a framework for creating WebSocket extensions
 that add compression functionality to the WebSocket Protocol.
 Extensions based on this framework compress the payload of non-
 control WebSocket messages using a specified compression algorithm.
 One reserved bit RSV1 in the WebSocket frame header is allocated to
 control application of compression for each message. This document
 also specifies one specific compression extension using DEFLATE.

 Please send feedback to the hybi@ietf.org mailing list.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 28, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Yoshino Expires July 28, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft WebSocket Per-message Compression January 2013

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conformance Requirements 4
3. Extension Negotiation . 5
3.1. Negotiation Example 5

4. Framing . 7
4.1. Sending . 7
4.2. Receiving . 7

5. permessage-deflate extension 8
5.1. Method Parameters . 8
5.1.1. Disallow compression context takeover 8
5.1.2. Limit maximum LZ77 sliding window size 9
5.1.3. Example . 10

5.2. Application Data Transformation 10
5.2.1. Compression . 10
5.2.2. Decompression . 11
5.2.3. Examples . 12

5.3. Intermediaries . 14
5.4. Implementation Notes 15

6. Security Considerations 16
7. IANA Considerations . 17

 7.1. Registration of the "permessage-deflate" WebSocket
 Extension Name . 17
 7.2. Registration of the "Per-message Compressed" WebSocket
 Framing Header Bit . 17

8. Acknowledgements . 18
9. References . 19
9.1. Normative References 19
9.2. Informative References 19

 Author's Address . 20

Yoshino Expires July 28, 2013 [Page 2]

Internet-Draft WebSocket Per-message Compression January 2013

1. Introduction

 This section is non-normative.

 As well as other communication protocols, the WebSocket Protocol
 [RFC6455] can benefit from compression technology. This document
 specifies a framework for creating WebSocket extensions that apply a
 compression algorithm to octets exchanged over the WebSocket Protocol
 using its extension framework. Extensions based on this framework
 negotiate compression parameters during the opening handshake, and
 then compress the octets in non-control messages. Extensions for
 various compression algorithms can be specified by describing how to
 negotiate parameters and transform data in payloads. A client may
 offer multiple compression algorithms during the opening handshake by
 listing multiple compression extensions. The server may choose
 preferred one from them. Extensions based on this framework share
 the RSV1 bit of the WebSocket frame header to indicate whether the
 message is compressed or not, so that we can choose to skip messages
 with incompressible contents avoiding extra compression.

 This document also specifies one specific extension "permessage-
 deflate" which is based on DEFLATE [RFC1951] algorithm. We chose
 DEFLATE since it's widely available as library on various platforms
 and the overhead it adds for each chunk is small. To align the end
 of compressed data to octet boundary, this extension uses the
 algorithm described in the Section 2.1 of the PPP Deflate Protocol
 [RFC1979]. Endpoints can take over the LZ77 sliding window [LZ77]
 used to build previous messages to get better compression ratio. For
 resource-limited devices, this extension provides parameters to limit
 memory usage for compression context.

 The simplest "Sec-WebSocket-Extensions" header in the client's
 opening handshake to request permessage-deflate is the following:

 Sec-WebSocket-Extensions: permessage-deflate

 The simplest header from the server to accept this extension is the
 same.

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1979

Yoshino Expires July 28, 2013 [Page 3]

Internet-Draft WebSocket Per-message Compression January 2013

2. Conformance Requirements

 Everything in this specification except for sections explicitly
 marked non-normative is normative.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Yoshino Expires July 28, 2013 [Page 4]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft WebSocket Per-message Compression January 2013

3. Extension Negotiation

 Extension names and negotiation methods are specified individually
 for each compression algorithm. There is no additional rule for
 extension naming. Extensions build based on this framework are
 collectively called "Per-message Compression Extensions".

 To request use of a Per-message Compression Extension, a client MUST
 include an element with its extension token in the
 "Sec-WebSocket-Extensions" header in its opening handshake. The
 element contains extension parameters as specified by the
 specification of the extension. A client MAY list multiple Per-
 message Compression Extensions with the same name to offer use of the
 same algorithm with different configurations.

 To accept use of a Per-message Compression Extension, a server MUST
 include an element with its extension token in the
 "Sec-WebSocket-Extensions" header in its opening handshake. The
 element contains extension parameters as specified by the
 specification of the extension. The parameters MUST be derived from
 the parameters sent by the client and the server's capability. To
 reject use of a Per-message Compression Extension, a server MUST
 simply ignore the element in the "Sec-WebSocket-Extensions" header in
 the client's opening handshake.

 If a client doesn't support the extension and its parameters replied
 from the server, the client MUST _Fail the WebSocket Connection_.
 Otherwise, once _the WebSocket Connection is established_, both
 endpoints MUST use the algorithm described in Section 4 to exchange
 messages.

3.1. Negotiation Example

 This section is non-normative.

 These are "Sec-WebSocket-Extensions" header value examples that
 negotiate the Per-message Compression Extension. permessage-foo and
 permessage-bar in the examples are extension names of Per-message
 Compression Extensions for hypothetical compression algorithm foo and
 bar.

 o Request foo.

 permessage-foo

 o Request foo with a parameter x with 10 as its value.

 permessage-foo; x=10

Yoshino Expires July 28, 2013 [Page 5]

Internet-Draft WebSocket Per-message Compression January 2013

 o Request foo with a parameter z with "Hello World" (quotation for
 clarification) as its value. Since "Hello World" contains a
 space, it needs to be quoted.

 permessage-foo; z="Hello World"

 o Request foo and bar.

 permessage-foo, permessage-bar

 o Request foo with a parameter use_y which enables a feature y as
 first choice, and also list one without the parameter as a
 fallback plan.

 permessage-foo; use_y, permessage-foo

Yoshino Expires July 28, 2013 [Page 6]

Internet-Draft WebSocket Per-message Compression January 2013

4. Framing

 This section describes how to apply the negotiated compression method
 to the contents of WebSocket messages.

 This document allocates the RSV1 bit of the WebSocket header for
 extensions based on this framework, and names it the "Per-message
 Compressed" bit. Any other extension requiring the use of the RSV1
 bit is incompatible with these extensions. This bit MAY be set only
 on the first fragment of a message. This bit indicates whether the
 compression method is applied to the message or not. Messages with
 the "Per-message Compressed" bit set (on its first fragment) are
 called "compressed messages". They have compressed data in their
 payload. Messages with the bit unset are called "uncompressed
 messages". They have uncompressed data in their payload.

 Per-message Compression Extensions MUST NOT be used after any
 extension for which frame boundary needs to be preserved. Per-
 message Compression Extensions MUST NOT be used after any extension
 that uses "Extension data" field or any of the reserved bits on the
 WebSocket header as per-frame attribute.

 Per-message Compression Extensions operates only on data frames.

4.1. Sending

 To send a compressed message, an endpoint MUST use the following
 algorithm.

 1. Compress the payload of the message using the compression method.

 2. Build frame(s) for the message by putting the resulting octets
 instead of the original octets.

 3. Set the "Per-message Compressed" bit of the first fragment to 1.

 To send an uncompressed message, an endpoint MUST set the
 "Per-message Compressed" bit of the first fragment of the message to
 0. The payload of the message MUST be sent as-is without applying
 the compression method.

4.2. Receiving

 To receive a compressed message, an endpoint MUST decompress its
 payload.

 An endpoint MUST receive an uncompressed message as-is without
 decompression.

Yoshino Expires July 28, 2013 [Page 7]

Internet-Draft WebSocket Per-message Compression January 2013

5. permessage-deflate extension

 This section specifies a specific extension called
 "permessage-deflate" that compresses the payload of messages using
 DEFLATE [RFC1951] and byte boundary alignment method introduced in
 [RFC1979].

 The registered extension token for this extension is
 "permessage-deflate".

5.1. Method Parameters

 The following 4 parameters are defined in the following subsections
 for this extension.

 o "s2c_no_context_takeover"

 o "c2s_no_context_takeover"

 o "s2c_max_window_bits"

 o "c2s_max_window_bits"

 A server MUST ignore a "permessage-deflate" extension entry if any of
 the following is true:

 o It has any parameter unknown to the server

 o It has any parameter with an invalid value

 o It is not supported by the server

 A client MUST _Fail the WebSocket Connection_ if any of the following
 is true about the received "permessage-deflate" extension entry:

 o It has any parameter unknown to the client

 o It has any parameter with an invalid value

 o It is not supported by the client

5.1.1. Disallow compression context takeover

 A client MAY attach the "s2c_no_context_takeover" parameter to
 disallow the server to take over the LZ77 sliding window used to
 build previous messages. Servers SHOULD be able to accept the
 "s2c_no_context_takeover" parameter. To accept a request with this
 parameter, a server:

https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1979

Yoshino Expires July 28, 2013 [Page 8]

Internet-Draft WebSocket Per-message Compression January 2013

 o MUST attach this parameter to its response

 o MUST reset its LZ77 sliding window for sending to empty for each
 message

 A server MAY attach the "c2s_no_context_takeover" parameter to
 disallow the client to take over the LZ77 sliding window used to
 build previous messages. Clients SHOULD be able to accept the
 "c2s_no_context_takeover" parameter. A client that received this
 parameter MUST reset its LZ77 sliding window for sending to empty for
 each message.

 These parameters have no value.

5.1.2. Limit maximum LZ77 sliding window size

 A client MAY attach the "s2c_max_window_bits" parameter to limit the
 LZ77 sliding window size that the server uses to build messages.
 This parameter MUST have a decimal integer value in the range between
 8 to 15 indicating the base-2 logarithm of the LZ77 sliding window
 size. The ABNF [RFC5234] for the value of this parameter is 1*DIGIT.
 Servers MAY be able to accept the "s2c_max_window_bits" parameter.
 To accept a request with this parameter, the server:

 o MUST attach this parameter with the same value as one of the
 "accepted request" to its response

 o MUST NOT use LZ77 sliding window size greater than the size
 specified by this parameter to build messages

 A client MAY attach the "c2s_max_window_bits" parameter if the client
 can adjust LZ77 sliding window size based on the
 "c2s_max_window_bits" sent by the server. This parameter has no
 value.

 If the received request has the "c2s_max_window_bits" parameter, the
 server MAY respond to the request with the "c2s_max_window_bits"
 parameter to limit the LZ77 sliding window size that the client uses
 to build messages. Otherwise, the server MUST NOT accept the request
 with a response with the parameter. This parameter sent by the
 server MUST have a decimal integer value in the range between 8 to 15
 indicating the base-2 logarithm of the LZ77 sliding window size. The
 ABNF for the value of this parameter is 1*DIGIT. A client that
 received this parameter MUST NOT use LZ77 sliding window size greater
 than the size specified by this parameter to build messages.

https://datatracker.ietf.org/doc/html/rfc5234

Yoshino Expires July 28, 2013 [Page 9]

Internet-Draft WebSocket Per-message Compression January 2013

5.1.3. Example

 This section is non-normative.

 This example sent by a client is asking the server to use LZ77
 sliding window size of 1,024 bytes or less and declaring that the
 client can accept the "c2s_max_window_bits" parameter.

 Sec-WebSocket-Extensions: permessage-deflate;
 c2s_max_window_bits;
 s2c_max_window_bits=10

 This request might be rejected by the server because it doesn't
 support the "s2c_max_window_bits" parameter. Since there's only one
 compression extension listed in the header, the server need to give
 up use of the Per-message Compression Extension entirely. If
 reduction of LZ77 sliding window size by the server is mandatory for
 the client, this is fine.

 The next example lists two configurations so that the server can
 accept permessage-deflate by picking supported one from them.

 Sec-WebSocket-Extensions:
 permessage-deflate; s2c_max_window_bits=10,
 permessage-deflate

 The server can choose to accept the second extension entry by sending
 back this for example:

 Sec-WebSocket-Extensions: permessage-deflate

 Since the "c2s_max_window_bits" parameter was not specified for both
 of the extensions, the server cannot use the "c2s_max_window_bits"
 parameter.

5.2. Application Data Transformation

5.2.1. Compression

 An endpoint MUST use the following algorithm to compress a message.

 1. Compress all the octets of the payload of the message using
 DEFLATE.

 2. If the resulting data does not end with an empty block with no
 compression ("BTYPE" set to 0), append an empty block with no
 compression to the tail.

Yoshino Expires July 28, 2013 [Page 10]

Internet-Draft WebSocket Per-message Compression January 2013

 3. Remove 4 octets (that are 0x00 0x00 0xff 0xff) from the tail.
 After this step, the last octet of the compressed data contains
 the (part of) header bits with "BTYPE" set to 0.

 In the first step:

 o Multiple blocks MAY be used.

 o Any type of block MAY be used.

 o Both block with "BFINAL" set to 0 and 1 MAY be used.

 o When any block with "BFINAL" set to 1 doesn't end at byte
 boundary, minimal padding bits of 0 MUST be added to make it end
 at byte boundary, and then the next block MUST start at the byte
 boundary if any.

 An endpoint MUST NOT use an LZ77 sliding window greater than 32,768
 bytes to build messages to send.

 If the server specified the "s2c_no_context_takeover" parameter, the
 server MUST reset its LZ77 sliding window for sending to empty for
 each message. Otherwise, the server MAY take over the LZ77 sliding
 window used to build the last compressed message.

 If the server specified the "c2s_no_context_takeover" parameter, the
 client MUST reset its LZ77 sliding window for sending to empty for
 each message. Otherwise, the client MAY take over the LZ77 sliding
 window used to build the last compressed message.

 If the server specified the "s2c_max_window_bits" parameter and its
 value is w, the server MUST NOT use an LZ77 sliding window greater
 than w-th power of 2 bytes to build messages to send.

 If the server specified the "c2s_max_window_bits" parameter and its
 value is w, the client MUST NOT use an LZ77 sliding window greater
 than w-th power of 2 bytes to build messages to send.

5.2.2. Decompression

 An endpoint MUST use the following algorithm to decompress a message.

 1. Append 4 octets of 0x00 0x00 0xff 0xff to the tail of the payload
 of the message.

 2. Decompress the resulting octets using DEFLATE.

 If the server specified the "s2c_no_context_takeover" parameter, the

Yoshino Expires July 28, 2013 [Page 11]

Internet-Draft WebSocket Per-message Compression January 2013

 client MAY reset its LZ77 sliding window for receiving to empty for
 each message. Otherwise, the client MUST take over the LZ77 sliding
 window used to parse the last compressed message.

 If the server specified the "c2s_no_context_takeover" parameter, the
 server MAY reset its LZ77 sliding window for receiving to empty for
 each message. Otherwise, the server MUST take over the LZ77 sliding
 window used to parse the last compressed message.

 If the server specified the "s2c_max_window_bits" parameter and its
 value is w, the client MAY reduce the size of the LZ77 sliding window
 to decompress received messages down to the w-th power of 2 bytes.
 Otherwise, the client MUST use a 32,768 byte LZ77 sliding window to
 decompress received messages.

 If the server specified the "c2s_max_window_bits" parameter and its
 value is w, the server MAY reduce the size of the LZ77 sliding window
 to decompress received messages down to the w-th power of 2 bytes.
 Otherwise, the server MUST use a 32,768 byte LZ77 sliding window to
 decompress received messages.

5.2.3. Examples

 This section is non-normative.

 This section introduces examples of how the permessage-deflate
 transforms messages.

5.2.3.1. A message compressed using 1 compressed block

 Suppose that a text message "Hello" is sent. When 1 compressed block
 (compressed with fixed Huffman code, "BFINAL" is not set) is used,
 compressed data to be sent in payload is obtained as follows.

 Compress "Hello" into 1 compressed block and flush it into a byte
 array using an empty block with no compression:

 0xf2 0x48 0xcd 0xc9 0xc9 0x07 0x00 0x00 0x00 0xff 0xff

 Strip 0x00 0x00 0xff 0xff from the tail:

 0xf2 0x48 0xcd 0xc9 0xc9 0x07 0x00

 To send it without fragmentation, just build a frame putting the
 whole data in payload data:

 0xc1 0x07 0xf2 0x48 0xcd 0xc9 0xc9 0x07 0x00

Yoshino Expires July 28, 2013 [Page 12]

Internet-Draft WebSocket Per-message Compression January 2013

 The first 2 octets are the WebSocket protocol's overhead (FIN=1,
 RSV1=1, RSV2=0, RSV3=0, opcode=text, MASK=0, Payload length=7).

 To send it after fragmentation, split the compressed payload and
 build frames for each of split data as well as fragmentation process
 done when the compression extension is not used. For example, the
 first fragment may contain 3 octets of the payload:

 0x41 0x03 0xf2 0x48 0xcd

 and the second (last) fragment contain 4 octets of the payload:

 0x80 0x04 0xc9 0xc9 0x07 0x00

 Note that RSV1 is set only on the first fragment.

5.2.3.2. Sharing LZ77 Sliding Window

 Suppose that the next message to send is also "Hello". If it's
 disallowed by the other peer (using some extension parameter) to take
 over the LZ77 sliding window used for the last message, the next
 message is compressed into the same byte array (if the same "BTYPE"
 and "BFINAL" value are used). If it's allowed, the next message can
 be compressed into shorter payload:

 0xf2 0x00 0x11 0x00 0x00

 instead of:

 0xf2 0x48 0xcd 0xc9 0xc9 0x07 0x00

 Note that even if any uncompressed message is inserted between the
 two "Hello" messages, it doesn't affect context sharing between the
 two "Hello" messages.

5.2.3.3. Using a Block with No Compression

 Blocks with no compression can be also used. A block with no
 compression containing "Hello" flushed into a byte array using an
 empty block with no compression is:

 0x00 0x05 0x00 0xfa 0xff 0x48 0x65 0x6c 0x6c 0x6f 0x00
 0x00 0x00 0xff 0xff

 So, payload of a message containing "Hello" converted into a DEFLATE
 block with no compression is:

 0x00 0x05 0x00 0xfa 0xff 0x48 0x65 0x6c 0x6c 0x6f 0x00

Yoshino Expires July 28, 2013 [Page 13]

Internet-Draft WebSocket Per-message Compression January 2013

 If it's not fragmented, the frame for this message is:

 0xc1 0x0b 0x00 0x05 0x00 0xfa 0xff 0x48 0x65 0x6c 0x6c 0x6f 0x00

 The first 2 octets are the WebSocket protocol's overhead (FIN=1,
 RSV1=1, RSV2=0, RSV3=0, opcode=text, MASK=0, Payload length=7). Note
 that RSV1 must be set for this message (only on the first fragment of
 it) because RSV1 indicates whether DEFLATE is applied to the message
 including use of blocks with no compression or not.

5.2.3.4. Using a Block with BFINAL Set to 1

 On platform where the flush method based on an empty block with no
 compression is not avaiable, implementors can choose to flush data
 using blocks with "BFINAL" set to 1. Using a block with "BFINAL" set
 to 1 and "BTYPE" set to 1, "Hello" is compressed into:

 0xf3 0x48 0xcd 0xc9 0xc9 0x07 0x00

 So, payload of a message containing "Hello" compressed using this
 parameter setting is:

 0xf3 0x48 0xcd 0xc9 0xc9 0x07 0x00 0x00

 The last 1 octet contains the header bits with "BFINAL" set to 0 and
 "BTYPE" set to 0, and 7 padding bits of 0. It's necessary to make
 the payload able to be processed by the same manner as messages
 flushed using blocks with BFINAL unset.

5.2.3.5. Two Blocks in 1 Message

 Two or more blocks may be used in 1 message.

 0xf2 0x48 0x05 0x00 0x00 0x00 0xff 0xff 0xca 0xc9 0xc9 0x07 0x00

 The first 3 octets and the least significant two bits of the 4th
 octet consist one block with "BFINAL" set to 0 and "BTYPE" set to 1
 containing "He". The rest of the 4th octet contains the header bits
 with "BFINAL" set to 0 and "BTYPE" set to 0, and the 3 padding bits
 of 0. Together with the following 4 octets (0x00 0x00 0xff 0xff),
 the header bits consist an empty block with no compression. Then, a
 block containing "llo" follows.

5.3. Intermediaries

 When intermediaries forward messages, they MAY decompress and/or
 compress the messages according to the constraints negotiated during
 the opening handshake of the connection(s).

Yoshino Expires July 28, 2013 [Page 14]

Internet-Draft WebSocket Per-message Compression January 2013

5.4. Implementation Notes

 This section is non-normative.

 On most common software development platforms, the operation of
 aligning compressed data to byte boundaries using an empty block with
 no compression is available as a library. For example, Zlib [Zlib]
 does this when "Z_SYNC_FLUSH" is passed to deflate function.

 To get sufficient compression ratio, LZ77 sliding window size of
 1,024 or more is recommended.

Yoshino Expires July 28, 2013 [Page 15]

Internet-Draft WebSocket Per-message Compression January 2013

6. Security Considerations

 There are no security concerns for now.

Yoshino Expires July 28, 2013 [Page 16]

Internet-Draft WebSocket Per-message Compression January 2013

7. IANA Considerations

7.1. Registration of the "permessage-deflate" WebSocket Extension Name

 This section describes a WebSocket extension name registration in the
 WebSocket Extension Name Registry [RFC6455].

 Extension Identifier
 permessage-deflate

 Extension Common Name
 WebSocket Per-message Deflate

 Extension Definition
 This document.

 Known Incompatible Extensions
 None

 The "permessage-deflate" token is used in the
 "Sec-WebSocket-Extensions" header in the WebSocket opening handshake
 to negotiate use of the permessage-deflate extension.

7.2. Registration of the "Per-message Compressed" WebSocket Framing
 Header Bit

 This section describes a WebSocket framing header bit registration in
 the WebSocket Framing Header Bits Registry [RFC6455].

 Header Bit
 RSV1

 Common Name
 Per-message Compressed

 Meaning
 The message is compressed or not.

 Reference
Section 4 of this document.

 The "Per-message Compressed" framing header bit is used on the first
 fragment of non-control messages to indicate whether the payload of
 the message is compressed by the Per-message Compression Extension or
 not.

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455

Yoshino Expires July 28, 2013 [Page 17]

Internet-Draft WebSocket Per-message Compression January 2013

8. Acknowledgements

 Special thanks to Patrick McManus who wrote up the initial
 specification of DEFLATE based compression extension for the
 WebSocket Protocol to which I referred to write this specification.

 Thank you to the following people who participated in discussions on
 the HyBi WG and contributed ideas and/or provided detailed reviews
 (the list is likely to be incomplete): Alexey Melnikov, Arman
 Djusupov, Bjoern Hoehrmann, Brian McKelvey, Greg Wilkins, Inaki Baz
 Castillo, Jamie Lokier, Joakim Erdfelt, John A. Tamplin, Julian
 Reschke, Kenichi Ishibashi, Mark Nottingham, Peter Thorson, Roberto
 Peon and Simone Bordet. Note that people listed above didn't
 necessarily endorse the end result of this work.

Yoshino Expires July 28, 2013 [Page 18]

Internet-Draft WebSocket Per-message Compression January 2013

9. References

9.1. Normative References

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, December 2011.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [LZ77] Ziv, J. and A. Lempel, "A Universal Algorithm for
 Sequential Data Compression", IEEE Transactions on
 Information Theory, Vol. 23, No. 3, pp. 337-343.

9.2. Informative References

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, May 1996.

 [RFC1979] Woods, J., "PPP Deflate Protocol", RFC 1979, August 1996.

 [Zlib] Gailly, J. and M. Adler, "Zlib", <http://zlib.net/>.

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1979
http://zlib.net/

Yoshino Expires July 28, 2013 [Page 19]

Internet-Draft WebSocket Per-message Compression January 2013

Author's Address

 Takeshi Yoshino
 Google, Inc.

 Email: tyoshino@google.com

Yoshino Expires July 28, 2013 [Page 20]

