JOSE Working Group M. Jones

Internet-Draft Microsoft
Intended status: Standards Track E. Rescorla
Expires: January 31, 2013 RTFM
J. Hildebrand

Cisco

July 30, 2012

JSON Web Encryption (JWE)
draft-ietf-jose-json-web-encryption-05

Abstract

JSON Web Encryption (JWE) is a means of representing encrypted
content using JavaScript Object Notation (JSON) data structures.
Cryptographic algorithms and identifiers for use with this
specification are described in the separate JSON Web Algorithms (JWA)
specification. Related digital signature and MAC capabilities are
described in the separate JSON Web Signature (JWS) specification.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 31, 2013.
Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect

Jones, et al. Expires January 31, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft

to this document.

Table of Contents

(=

W IN

Introduction .
1.1. Notational Conventlons
Terminology
JSON Web Encryption (JWE) Overv1ew

JWE

July 2012

Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

3.1. Example JWE with an Integrated Integrlty Check
3.2. Example JWE with a Separate Integrity Check

[

4.1.1.
4.1.2.
.1.3.
1.4.

N

N

.5,
6

FNTN
(I [N

INTN
(R [N

N
=
©

ENGITN
[Y

.12,
.1.13.
.14,
.1.15.

CTNETNETNETN
(R[N (R [

N

IN
w

‘I—\ l© |00 [N o |0
® - - - -

JWE Header . e e
.1. Reserved Header Parameter Names

llalg n
"enc"
"int"
"kdf"

(Algorithm) Header Parameter

(Encryption Method) Header Parameter
(Integrity Algorithm) Header Parameter
(Key Derivation Function) Header Parameter

"iv" (Initialization Vector) Header Parameter

llepkll
Ilzipll
IIJ' kull
" k"
"x5u"
"x5t"

(Ephemeral Public Key) Header Parameter
(Compression Algorithm) Header Parameter
(JWK Set URL) Header Parameter

(JSON Web Key) Header Parameter

(X.509 URL) Header Parameter

(X.509 Certificate Thumbprint) Header

Parameter

IIX5CII
n kidll
n typll
"Cty”

(X.509 Certlflcate Chaln) Header Parameter
(Key ID) Header Parameter

(Type) Header Parameter .

(Content Type) Header Parameter

Public Header Parameter Names

Private Header Parameter Names

Message Encryption

Message Decryption

CMK Encryption

Integrity Value Calculatlon .

Encrypting JWEs with Cryptographic Algorlthms
IANA Considerations

10.1. Registration of JWE Header Parameter Names
10.1.1. Registry Contents

10.2. JSON Web Signature and Encryptlon Type Values

Registration

10.2.1. Registry Contents

10.3. Media Type Registration
10.3.1. Registry Contents

11. Security Considerations

e T [Qg g [
‘w‘w‘w‘m‘m‘m‘m‘p‘p‘p‘o‘o\m\m\m\h\b\b

NN N R R R PR R R R R R
‘@‘o‘o‘o‘o‘m‘ﬂ‘w‘m‘m‘m‘h‘b‘b‘w

NN N NN
SRRRR

Jones, et al. Expires January 31, 2013 [Page 2]

Internet-Draft JWE

12. Open Issues
13. References e
13.1. Normative References
13.2. Informative References
Appendix A. JWE Examples
A.1. Example JWE using RSAES OAEP and AES GCM
A.1.1. JWE Header .
A.1.2. Encoded JWE Header
A.1.3 Content Master Key (CMK)
A.1.4 Key Encryption .
A.1.5. Encoded JWE Encrypted Key e
A.1.6 "Additional Authenticated Data" Parameter
A.1.7 Plaintext Encryption
Encoded JWE Ciphertext
Encoded JWE Integrity Value
A.1.10. Complete Representation
A.1.11. Validation
2 Example JWE using RSAES-PKCS1-V1_5 and AES CBC
JWE Header .
Encoded JWE Header
A.2.3 Content Master Key (CMK)
A.2.4. Key Encryption
Encoded JWE Encrypted Key
Key Derivation
A.2.7. Plaintext Encryption
A.2.8. Encoded JWE Ciphertext
A.2.9. Secured Input Value
.10. JWE Integrity Value .
.2.11. Encoded JWE Integrity Value
.12. Complete Representation
.2.13. Validation . e e e
Example Key Derivation w1th Outputs <= Hash Size
.1. CEK Generation
.2. CIK Generation e e e
A.4. Example Key Derivation w1th Outputs >= Hash Size
A.4.1. CEK Generation
A.4.2. CIK Generation
Appendix B. Acknowledgements
Appendix C. Document History
Authors' Addresses

>
N
w W NN NN

July 2012

AIDNBDBDIBDPDPDWIWIWI[WI[WI[W[W[W[W[W[WI[WI[WI[W|W[WI[w[W[W[WI[wWI[WI|WI[NININNNNININ NN
GRREEEERIEEBEEBELEEREEEERKRREREREERRRREES KRB

Jones, et al. Expires January 31, 2013 [Page 3]

Internet-Draft JWE July 2012

1.

IN

Introduction

JSON Web Encryption (JWE) is a compact encryption format intended for
space constrained environments such as HTTP Authorization headers and
URI query parameters. It represents this content using JavaScript
Object Notation (JSON) [RFEC4627] based data structures. The JWE
cryptographic mechanisms encrypt and provide integrity protection for
arbitrary sequences of bytes.

Cryptographic algorithms and identifiers for use with this
specification are described in the separate JSON Web Algorithms (JWA)
[JWA] specification. Related digital signature and MAC capabilities
are described in the separate JSON Web Signature (JWS) [JWS]
specification.

.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in Key words for use in

RFCs to Indicate Requirement Levels [RFC2119].

Terminology

JSON Web Encryption (JWE) A data structure representing an encrypted
message. The structure consists of four parts: the JWE Header,
the JWE Encrypted Key, the JWE Ciphertext, and the JWE Integrity
Value.

Plaintext The bytes to be encrypted - a.k.a., the message. The
plaintext can contain an arbitrary sequence of bytes.

Ciphertext An encrypted representation of the Plaintext.

Content Encryption Key (CEK) A symmetric key used to encrypt the
Plaintext for the recipient to produce the Ciphertext.

Content Integrity Key (CIK) A key used with a MAC function to ensure
the integrity of the Ciphertext and the parameters used to create
it.

Content Master Key (CMK) A key from which the CEK and CIK are
derived. When key wrapping or key encryption are employed, the
CMK is randomly generated and encrypted to the recipient as the
JWE Encrypted Key. When direct encryption with a shared symmetric
key is employed, the CMK is the shared key. When key agreement
without key wrapping is employed, the CMK is the result of the key

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc2119

Jones, et al. Expires January 31, 2013 [Page 4]

Internet-Draft JWE July 2012

agreement algorithm.

JWE Header A string representing a JSON object that describes the
encryption operations applied to create the JWE Encrypted Key, the
JWE Ciphertext, and the JWE Integrity Value.

JWE Encrypted Key When key wrapping or key encryption are employed,
the Content Master Key (CMK) is encrypted with the intended
recipient's key and the resulting encrypted content is recorded as
a byte array, which is referred to as the JWE Encrypted Key.
Otherwise, when direct encryption with a shared or agreed upon
symmetric key is employed, the JWE Encrypted Key is the empty byte
array.

JWE Ciphertext A byte array containing the Ciphertext.

JWE Integrity Value A byte array containing a MAC value that ensures
the integrity of the Ciphertext and the parameters used to create
it.

Base64url Encoding The URL- and filename-safe Base64 encoding
described in RFC 4648 [RFC4648], Section 5, with the (non URL-
safe) '=' padding characters omitted, as permitted by Section 3.2.
(See Appendix C of [JWS] for notes on implementing base64url
encoding without padding.)

Encoded JWE Header Base64url encoding of the bytes of the UTF-8
[REC3629] representation of the JWE Header.

Encoded JWE Encrypted Key Base64url encoding of the JWE Encrypted
Key.

Encoded JWE Ciphertext Base64url encoding of the JWE Ciphertext.

Encoded JWE Integrity Value Base64url encoding of the JWE Integrity
Value.

Header Parameter Name The name of a member of the JSON object
representing a JWE Header.

Header Parameter Value The value of a member of the JSON object
representing a JWE Header.

JWE Compact Serialization A representation of the JWE as the
concatenation of the Encoded JWE Header, the Encoded JWE Encrypted
Key, the Encoded JWE Ciphertext, and the Encoded JWE Integrity
Value in that order, with the four strings being separated by
period ('.') characters.

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc3629

Jones, et al. Expires January 31, 2013 [Page 5]

Internet-Draft JWE July 2012

AEAD Algorithm An Authenticated Encryption with Associated Data
(AEAD) [REC5116] encryption algorithm is one that provides an
integrated content integrity check. AES Galois/Counter Mode (GCM)
is one such algorithm.

Collision Resistant Namespace A namespace that allows names to be
allocated in a manner such that they are highly unlikely to
collide with other names. For instance, collision resistance can
be achieved through administrative delegation of portions of the
namespace or through use of collision-resistant name allocation
functions. Examples of Collision Resistant Namespaces include:
Domain Names, Object Identifiers (0IDs) as defined in the ITU-T
X.660 and X.670 Recommendation series, and Universally Unique
IDentifiers (UUIDs) [RFC4122]. When using an administratively
delegated namespace, the definer of a name needs to take
reasonable precautions to ensure they are in control of the
portion of the namespace they use to define the name.

StringOrURI A JSON string value, with the additional requirement
that while arbitrary string values MAY be used, any value
containing a ":" character MUST be a URI [RFC3986]. StringOrURI
values are compared as case-sensitive strings with no
transformations or canonicalizations applied.

3. JSON Web Encryption (JWE) Overview

JWE represents encrypted content using JSON data structures and
base64url encoding. The representation consists of four parts: the
JWE Header, the JWE Encrypted Key, the JWE Ciphertext, and the JWE
Integrity Value. 1In the Compact Serialization, the four parts are
base64url-encoded for transmission, and represented as the
concatenation of the encoded strings in that order, with the four
strings being separated by period ('.') characters. (A JSON
Serialization for this information is defined in the separate JSON
Web Encryption JSON Serialization (JWE-JS) [JWE-JS] specification.)

JWE utilizes encryption to ensure the confidentiality of the
Plaintext. JWE adds a content integrity check if not provided by the
underlying encryption algorithm.

3.1. Example JWE with an Integrated Integrity Check
This example encrypts the plaintext "Live long and prosper." to the
recipient using RSAES OAEP and AES GCM. The AES GCM algorithm has an

integrated integrity check.

The following example JWE Header declares that:

https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc3986

Jones, et al. Expires January 31, 2013 [Page 6]

Internet-Draft JWE July 2012

the Content Master Key is encrypted to the recipient using the
RSAES OAEP algorithm to produce the JWE Encrypted Key,

the Plaintext is encrypted using the AES GCM algorithm with a 256
bit key to produce the Ciphertext, and

the 96 bit Initialization Vector (IV) with the base64url encoding
"48V1_ALb6US04U3b" was used.

{"alg":"RSA-OAEP", "enc":"A256GCM", "iv" :"48V1_ALb6USO4U3b"}

Base64url encoding the bytes of the UTF-8 representation of the JWE
Header yields this Encoded JWE Header value (with line breaks for
display purposes only):

eyJhbGci0iJSUGEtTOFFUCISIMVUYYI6IKEYNTZHQOOiLCIpdiI6IjQ4aViFfQuxi
N1VTMDRVM2IifQ

The remaining steps to finish creating this JWE are:

o

Generate a random Content Master Key (CMK)

Encrypt the CMK with the recipient's public key using the RSAES
OAEP algorithm to produce the JWE Encrypted Key

Base64url encode the JWE Encrypted Key to produce the Encoded JWE
Encrypted Key

Concatenate the Encoded JWE Header value, a period character
('."), and the Encoded JWE Encrypted Key to create the "additional
authenticated data" parameter for the AES GCM algorithm.

Encrypt the Plaintext with AES GCM, using the IV, the CMK as the
encryption key, and the "additional authenticated data" value
above, requesting a 128 bit "authentication tag" output

Base64url encode the resulting Ciphertext to create the Encoded
JWE Ciphertext

Base64url encode the resulting "authentication tag" to create the
Encoded JWE Integrity Value

Assemble the final representation: The Compact Serialization of
this result is the concatenation of the Encoded JWE Header, the
Encoded JWE Encrypted Key, the Encoded JWE Ciphertext, and the
Encoded JWE Integrity Value in that order, with the four strings
being separated by three period ('.') characters.

Jones, et al. Expires January 31, 2013 [Page 7]

Internet-Draft JWE July 2012

The final result in this example (with line breaks for display
purposes only) is:

eyJhbGci0iJSUGELTOFFUCISIMVUYYI6IKEYNTZHQOO1LCIpdiI6IjQ4VjFfQUxi
N1VTMDRVM2IifQ.
jvwoyhWxOMboB5cxX6ncA17Wp3Q5FKRt1mIx35pfROHpEa6Oy - iIEpXEqQM3OW3YCR
Q8WU90uR005jd6tfdcpX-2X-0teHw4dnMXdML JHGGXx86LMDeFRAN2KGz7EGPJiva
wOyM80fzT3zYOPKrIvUSm11M5szqUnX4JwO-PNCIM_j-L5YkLhv3YKkO4XCwTJIwxN
NmXCflYAQO9f00Aa213TJIJIr6dbHV6I642FwU-EWVtEfN3evgX3EFIVYSNT3HCHKA
AIdBQ9ykD-abRzVA_dGp_yJAZQcrZuNTqzThd_22YMPhIpzTygfC_4k7qgqxI6t7L
e_15_o-taUG7vaNAl5FjEQ.

_e21tGGhac_peEFKLXr2dMPUZiUKrw.

YbZSeHCNDZBgAdzpROlyiw

See Appendix A.1 for the complete details of computing this JWE.
3.2. Example JWE with a Separate Integrity Check

This example encrypts the plaintext "Now is the time for all good men
to come to the aid of their country." to the recipient using RSAES-
PKCS1-v1_5 and AES CBC. AES CBC does not have an integrated
integrity check, so a separate integrity check calculation is
performed using HMAC SHA-256, with separate encryption and integrity
keys being derived from a master key using the Concat KDF with the
SHA-256 digest function.

The following example JWE Header (with line breaks for display
purposes only) declares that:

o the Content Master Key is encrypted to the recipient using the
RSAES-PKCS1-V1_5 algorithm to produce the JWE Encrypted Key,

o the Plaintext is encrypted using the AES CBC algorithm with a 128
bit key to produce the Ciphertext,

o the JWE Integrity Value safeguarding the integrity of the
Ciphertext and the parameters used to create it was computed with
the HMAC SHA-256 algorithm, and

o the 128 bit Initialization Vector (IV) with the base64url encoding
"AxY8DCtDaGlsbGljb3R0ozZQ" was used.
{"alg":"RSA1_5", "enc":"A128CBC", "int":"HS256", "iv": "AxY8DCtDaGls

bG1jb3R0ZQ"}

Base64url encoding the bytes of the UTF-8 representation of the JWE
Header yields this Encoded JWE Header value (with line breaks for

Jones, et al. Expires January 31, 2013 [Page 8]

Internet-Draft JWE July 2012

display purposes only):

eyJhbGci01JSUGEXXzUiLCJI1bmMiOiJIBMTI4Q0JIDIiwiaW50IjoiSFMyNTYiLCJIp
diI6IKF4WThEQ3REYUdsc2JHbGpiM1JVWIEifQ

The remaining steps to finish creating this JWE are like the previous
example, but with an additional step to compute the separate
integrity value:

o

Generate a random Content Master Key (CMK)

Encrypt the CMK with the recipient's public key using the RSAES-
PKCS1-V1_5 algorithm to produce the JWE Encrypted Key

Base64url encode the JWE Encrypted Key to produce the Encoded JWE
Encrypted Key

Use the Concat key derivation function to derive Content
Encryption Key (CEK) and Content Integrity Key (CIK) values from
the CMK

Encrypt the Plaintext with AES CBC using the CEK and IV to produce
the Ciphertext

Base64url encode the resulting Ciphertext to create the Encoded
JWE Ciphertext

Concatenate the Encoded JWE Header value, a period character
('."'"), the Encoded JWE Encrypted Key, a second period character,
and the Encoded JWE Ciphertext to create the value to integrity
protect

Compute the HMAC SHA-256 of this value using the CIK to create the
JWE Integrity Value

Base64url encode the resulting JWE Integrity Value to create the
Encoded JWE Integrity Value

Assemble the final representation: The Compact Serialization of
this result is the concatenation of the Encoded JWE Header, the
Encoded JWE Encrypted Key, the Encoded JWE Ciphertext, and the
Encoded JWE Integrity Value in that order, with the four strings
being separated by three period ('.') characters.

The final result in this example (with line breaks for display
purposes only) is:

Jones, et al. Expires January 31, 2013 [Page 9]

Internet-Draft JWE July 2012

[

IS

eyJhbGci0iJSUOEXXzUiLCJ1bmMi0iJBMTI4Q0JIDIiwiaW50IjoiSFMyNTYiLCJp
diI6IkFAWThEQ3REYUdsc2JHbGpiM1JVWI1EifQ.
IPI_z172hSWHMFgEDS8EGI9DM6hIXU_6Na0l1DImCnOvNeuoBq847S16qw_GHSYHJUQ
XtXJQq7S_CxWVrI82wjrOyaQca5tLZRZc45BfKHeqByThKI261QeVEK56SyAwwX K
KZjSvkQ5dwTFSgfy76rMSUvVynHYEhdCatBFOHWTALIXPXx7hgZixG1lFeP_QCmOylz
2VC1VyYFCbjKREOWBFf - puNYf075S3LN1JUtTSGGQL20TKpMsSEiUTdefkje91VX9
h89g79081FsggbjV7NicJsufuXxnTj1fcWIrRDeNIOmakiPEODiOgTSz0Oou-W-LWK
-3T1zY10IiIKBJjSEXQKZ-w.
_Z_djlIoC4MDSCKirewS2beti4Q6iSG2UjFujQvdz-_PQdUcFNkOulegD6BgjgdF
LjeB4HHOO7UHVP8PEDuURadsA2a_-CIOw2YQQ2QQe35M.
c41k4T4eAgCCt63m8ZNmMi0inMciFFypOFpvid7i6D0k

See Appendix A.2 for the complete details of computing this JWE.

JWE Header

The members of the JSON object represented by the JWE Header describe
the encryption applied to the Plaintext and optionally additional
properties of the JWE. The Header Parameter Names within this object
MUST be unique; JWEs with duplicate Header Parameter Names MUST be
rejected. Implementations MUST understand the entire contents of the
header; otherwise, the JWE MUST be rejected.

There are two ways of distinguishing whether a header is a JWS Header
or a JWE Header. The first is by examining the "alg" (algorithm)
header value. If the value represents a digital signature or MAC
algorithm, or is the value "none", it is for a JWS; if it represents
an encryption or key agreement algorithm, it is for a JWE. A second
method is determining whether an "enc" (encryption method) member
exists. If the "enc" member exists, it is a JWE; otherwise, it is a
JWS. Both methods will yield the same result for all legal input
values.

There are three classes of Header Parameter Names: Reserved Header
Parameter Names, Public Header Parameter Names, and Private Header
Parameter Names.

Reserved Header Parameter Names

The following header parameter names are reserved with meanings as
defined below. All the names are short because a core goal of JWE is
for the representations to be compact.

Additional reserved header parameter names MAY be defined via the
IANA JSON Web Signature and Encryption Header Parameters registry
[JWS]. As indicated by the common registry, JWSs and JWEs share a
common header parameter space; when a parameter is used by both

Jones, et al. Expires January 31, 2013 [Page 10]

Internet-Draft JWE July 2012

specifications, its usage must be compatible between the
specifications.

4.1.1. "alg" (Algorithm) Header Parameter

The "alg" (algorithm) header parameter identifies the cryptographic
algorithm used to encrypt or determine the value of the Content
Master Key (CMK). The algorithm specified by the "alg" value MUST be
supported by the implementation and there MUST be a key for use with
that algorithm associated with the intended recipient or the JWE MUST
be rejected. "alg" values SHOULD either be registered in the IANA
JSON Web Signature and Encryption Algorithms registry [JWA] or be a
URI that contains a Collision Resistant Namespace. The "alg" value
is a case sensitive string containing a StringOrURI value. This
header parameter is REQUIRED.

A list of defined "alg" values can be found in the IANA JSON Web
Signature and Encryption Algorithms registry [JWA],; the initial
contents of this registry is the values defined in Section 4.1 of the
JSON Web Algorithms (JWA) [JWA] specification.

4.1.2. "enc" (Encryption Method) Header Parameter

The "enc" (encryption method) header parameter identifies the
symmetric encryption algorithm used to encrypt the Plaintext to
produce the Ciphertext. The algorithm specified by the "enc" value
MUST be supported by the implementation or the JWE MUST be rejected.
"enc" values SHOULD either be registered in the IANA JSON Web
Signature and Encryption Algorithms registry [JWA] or be a URI that
contains a Collision Resistant Namespace. The "enc" value is a case
sensitive string containing a StringOrURI value. This header
parameter is REQUIRED.

A list of defined "enc" values can be found in the IANA JSON Web
Signature and Encryption Algorithms registry [JWA]; the initial
contents of this registry is the values defined in Section 4.2 of the
JSON Web Algorithms (JWA) [JWA] specification.

4.1.3. "int" (Integrity Algorithm) Header Parameter

The "int" (integrity algorithm) header parameter identifies the
cryptographic algorithm used to safeguard the integrity of the
Ciphertext and the parameters used to create it. The "int" parameter
uses the MAC subset of the algorithm values used by the JwS "alg"
parameter. "int" values SHOULD either be registered in the IANA JSON
Web Signature and Encryption Algorithms registry [JWA] or be a URI
that contains a Collision Resistant Namespace. The "int" value is a
case sensitive string containing a StringOrURI value. This header

Jones, et al. Expires January 31, 2013 [Page 11]

Internet-Draft JWE July 2012

parameter is REQUIRED when an AEAD algorithm is not used to encrypt
the Plaintext and MUST NOT be present when an AEAD algorithm is used.

A list of defined "int" values can be found in the IANA JSON Web
Signature and Encryption Algorithms registry [JWA]; the initial
contents of this registry is the values defined in Section 4.3 of the
JSON Web Algorithms (JWA) [JWA] specification.

4.1.4. "kdf" (Key Derivation Function) Header Parameter

The "kdf" (key derivation function) header parameter identifies the
cryptographic algorithm used to derive the CEK and CIK from the CMK.
"kdf" values SHOULD either be registered in the IANA JSON Web
Signature and Encryption Algorithms registry [JWA] or be a URI that
contains a Collision Resistant Namespace. The "kdf" value is a case
sensitive string containing a StringOrURI value. This header
parameter is OPTIONAL when an AEAD algorithm is not used to encrypt
the Plaintext and MUST NOT be present when an AEAD algorithm is used.

When an AEAD algorithm is not used and no "kdf" header parameter is
present, the "CS256" KDF [JWA] SHALL be used.

A list of defined "kdf" values can be found in the IANA JSON Web
Signature and Encryption Algorithms registry [JWA]; the initial
contents of this registry is the values defined in Section 4.4 of the
JSON Web Algorithms (JWA) [JWA] specification.

4.1.5. "iv" (Initialization Vector) Header Parameter

The "iv" (initialization vector) value for algorithms requiring it,
represented as a base64url encoded string. This header parameter is
OPTIONAL, although its use is REQUIRED with some "enc" algorithms.

4.1.6. "epk" (Ephemeral Public Key) Header Parameter

The "epk" (ephemeral public key) value created by the originator for
the use in key agreement algorithms. This key is represented as a
JSON Web Key [JWK] value. This header parameter is OPTIONAL,
although its use is REQUIRED with some "alg" algorithms.

4.1.7. "zip" (Compression Algorithm) Header Parameter

The "zip" (compression algorithm) applied to the Plaintext before
encryption, if any. If present, the value of the "zip" header
parameter MUST be the case sensitive string "DEF". Compression is
performed with the DEFLATE [REC1951] algorithm. If no "zip"
parameter is present, no compression is applied to the Plaintext
before encryption. This header parameter is OPTIONAL.

https://datatracker.ietf.org/doc/html/rfc1951

Jones, et al. Expires January 31, 2013 [Page 12]

Internet-Draft JWE July 2012

4.1.8. "jku" (JWK Set URL) Header Parameter

The "jku" (JWK Set URL) header parameter is a URI [RFC3986] that
refers to a resource for a set of JSON-encoded public keys, one of
which corresponds to the key used to encrypt the JWE; this can be
used to determine the private key needed to decrypt the JWE. The
keys MUST be encoded as a JSON Web Key Set (JWK Set) [JwWK]. The
protocol used to acquire the resource MUST provide integrity
protection; an HTTP GET request to retrieve the certificate MUST use
TLS [REC2818] [RFC5246]; the identity of the server MUST be
validated, as per Section 3.1 of HTTP Over TLS [RFC2818]. This
header parameter is OPTIONAL.

4.1.9. "jwk" (JSON Web Key) Header Parameter

The "jwk" (JSON Web Key) header parameter is a public key that
corresponds to the key used to encrypt the JWE; this can be used to
determine the private key needed to decrypt the JWE. This key is
represented as a JSON Web Key [JWK]. This header parameter is
OPTIONAL.

4.1.10. "x5u" (X.509 URL) Header Parameter

The "x5u" (X.509 URL) header parameter is a URI [RFC3986] that refers
to a resource for the X.509 public key certificate or certificate
chain [REC5280] corresponding to the key used to encrypt the JWE;
this can be used to determine the private key needed to decrypt the
JWE. The identified resource MUST provide a representation of the
certificate or certificate chain that conforms to RFC 5280 [RFC5280]
in PEM encoded form [REC1421]. The certificate containing the public
key of the entity that encrypted the JWE MUST be the first
certificate. This MAY be followed by additional certificates, with
each subsequent certificate being the one used to certify the
previous one. The protocol used to acquire the resource MUST provide
integrity protection; an HTTP GET request to retrieve the certificate
MUST use TLS [RFEC2818] [REC5246]; the identity of the server MUST be
validated, as per Section 3.1 of HTTP Over TLS [RFEC2818]. This
header parameter is OPTIONAL.

4.1.11. "x5t" (X.509 Certificate Thumbprint) Header Parameter

The "x5t" (X.509 Certificate Thumbprint) header parameter provides a
base64url encoded SHA-1 thumbprint (a.k.a. digest) of the DER
encoding of the X.509 certificate [RFC5280] corresponding to the key
used to encrypt the JWE; this can be used to determine the private
key needed to decrypt the JWE. This header parameter is OPTIONAL.

If, in the future, certificate thumbprints need to be computed using

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5280

Jones, et al. Expires January 31, 2013 [Page 13]

Internet-Draft JWE July 2012

hash functions other than SHA-1, it is suggested that additional
related header parameters be defined for that purpose. For example,
it is suggested that a new "x5t#S256" (X.509 Certificate Thumbprint
using SHA-256) header parameter could be defined by registering it in
the IANA JSON Web Signature and Encryption Header Parameters registry
[JwS].

4.1.12. "x5c" (X.509 Certificate Chain) Header Parameter

The "x5c" (X.509 Certificate Chain) header parameter contains the
X.509 public key certificate or certificate chain [RFC5280]
corresponding to the key used to encrypt the JWE; this can be used to
determine the private key needed to decrypt the JWE. The certificate
or certificate chain is represented as an array of certificate
values. Each value is a base64 encoded ([RFC4648] Section 4 - not
base64url encoded) DER [ITU.X690.1994] PKIX certificate value. The
certificate containing the public key of the entity that encrypted
the JWE MUST be the first certificate. This MAY be followed by
additional certificates, with each subsequent certificate being the
one used to certify the previous one. The recipient MUST verify the
certificate chain according to [REC5280] and reject the JWE if any
validation failure occurs. This header parameter is OPTIONAL.

See Appendix B of [JWS] for an example "x5c" value.
4.1.13. "kid" (Key ID) Header Parameter

The "kid" (key ID) header parameter is a hint indicating which key
was used to encrypt the JWE; this can be used to determine the
private key needed to decrypt the JWE. This parameter allows
originators to explicitly signal a change of key to recipients.
Should the recipient be unable to locate a key corresponding to the
"kid" value, they SHOULD treat that condition as an error. The
interpretation of the "kid" value is unspecified. 1Its value MUST be
a string. This header parameter is OPTIONAL.

When used with a JwWK, the "kid" value MAY be used to match a JwK
"kid" parameter value.

4.1.14. "typ" (Type) Header Parameter

The "typ" (type) header parameter is used to declare the type of this
object. The type value "JWE" MAY be used to indicate that this
object is a JWE. The "typ" value is a case sensitive string. This
header parameter is OPTIONAL.

MIME Media Type [RFC2046] values MAY be used as "typ" values.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc2046

Jones, et al. Expires January 31, 2013 [Page 14]

Internet-Draft JWE July 2012

"typ" values SHOULD either be registered in the IANA JSON Web
Signature and Encryption Type Values registry [JWS] or be a URI that
contains a Collision Resistant Namespace.

4.1.15. "cty" (Content Type) Header Parameter

The "cty" (content type) header parameter is used to declare the type
of the encrypted content (the Plaintext). The "cty" value is a case
sensitive string. This header parameter is OPTIONAL.

The values used for the "cty" header parameter come from the same
value space as the "typ" header parameter, with the same rules
applying.

.2. Public Header Parameter Names

Additional header parameter names can be defined by those using JWEs.
However, in order to prevent collisions, any new header parameter
name SHOULD either be registered in the IANA JSON Web Signature and
Encryption Header Parameters registry [JWS] or be a URI that contains
a Collision Resistant Namespace. 1In each case, the definer of the
name or value needs to take reasonable precautions to make sure they
are in control of the part of the namespace they use to define the
header parameter name.

New header parameters should be introduced sparingly, as they can
result in non-interoperable JWEs.

4.3. Private Header Parameter Names

(S}

A producer and consumer of a JWE may agree to any header parameter
name that is not a Reserved Name Section 4.1 or a Public Name

Section 4.2. Unlike Public Names, these private names are subject to
collision and should be used with caution.

Message Encryption

The message encryption process is as follows. The order of the steps
is not significant in cases where there are no dependencies between
the inputs and outputs of the steps.

1. When key agreement is employed, use the key agreement algorithm
to compute the value of the agreed upon key. When key agreement
without key wrapping is employed, let the Content Master Key
(CMK) be the agreed upon key. When key agreement with key

wrapping is employed, the agreed upon key will be used to wrap
the CMK.

Jones, et al. Expires January 31, 2013 [Page 15]

Internet-Draft JWE July 2012

10.

11.

12.

When key wrapping, key encryption, or key agreement with key
wrapping are employed, generate a random Content Master Key
(CMK). See RFC 4086 [REC4086] for considerations on generating
random values. The CMK MUST have a length equal to that of the
larger of the required encryption and integrity keys.

When key wrapping, key encryption, or key agreement with key
wrapping are employed, encrypt the CMK for the recipient (see
Section 7) and let the result be the JWE Encrypted Key.
Otherwise, when direct encryption with a shared or agreed upon
symmetric key is employed, let the JWE Encrypted Key be the
empty byte array.

When direct encryption with a shared symmetric key is employed,
let the Content Master Key (CMK) be the shared key.

Base64url encode the JWE Encrypted Key to create the Encoded JWE
Encrypted Key.

Generate a random Initialization Vector (IV) of the correct size
for the algorithm (if required for the algorithm).

If not using an AEAD algorithm, run the key derivation algorithm
specified by the "kdf" header parameter to generate the Content
Encryption Key (CEK) and the Content Integrity Key (CIK);
otherwise (when using an AEAD algorithm), set the CEK to be the
CMK.

Compress the Plaintext if a "zip" parameter was included.
Serialize the (compressed) Plaintext into a byte sequence M.

Create a JWE Header containing the encryption parameters used.
Note that white space is explicitly allowed in the
representation and no canonicalization need be performed before
encoding.

Base64url encode the bytes of the UTF-8 representation of the
JWE Header to create the Encoded JWE Header.

Encrypt M using the CEK and IV to form the byte sequence C. If
an AEAD algorithm is used, use the bytes of the ASCII
representation of the concatenation of the Encoded JWE Header, a
period ('.') character, and the Encoded JWE Encrypted Key as the
"additional authenticated data" parameter value for the
encryption.

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4086

Jones, et al. Expires January 31, 2013 [Page 16]

Internet-Draft JWE July 2012

o

13. Base64url encode C to create the Encoded JWE Ciphertext.

14. If not using an AEAD algorithm, run the integrity algorithm (see
Section 8) using the CIK to compute the JWE Integrity Value;
otherwise (when using an AEAD algorithm), set the JWE Integrity
Value to be the "authentication tag" value produced by the AEAD
algorithm.

15. Base64url encode the JWE Integrity Value to create the Encoded
JWE Integrity Value.

16. The four encoded parts, taken together, are the result.

17. The Compact Serialization of this result is the concatenation of
the Encoded JWE Header, the Encoded JWE Encrypted Key, the
Encoded JWE Ciphertext, and the Encoded JWE Integrity Value in
that order, with the four strings being separated by period
('.") characters.

Message Decryption

The message decryption process is the reverse of the encryption
process. The order of the steps is not significant in cases where
there are no dependencies between the inputs and outputs of the
steps. If any of these steps fails, the JWE MUST be rejected.

1. Determine the Encoded JWE Header, the Encoded JWE Encrypted Key,
the Encoded JWE Ciphertext, and the Encoded JWE Integrity Value
values contained in the JWE. When using the Compact
Serialization, these four values are represented in that order,
separated by period characters.

2. The Encoded JWE Header, the Encoded JWE Encrypted Key, the
Encoded JWE Ciphertext, and the Encoded JWE Integrity Value MUST
be successfully base64url decoded following the restriction that
no padding characters have been used.

3. The resulting JWE Header MUST be completely valid JSON syntax
conforming to RFC 4627 [REC4627].

4, The resulting JWE Header MUST be validated to only include
parameters and values whose syntax and semantics are both
understood and supported.

5. Verify that the JWE uses a key known to the recipient.

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627

Jones, et al. Expires January 31, 2013 [Page 17]

Internet-Draft JWE July 2012

I~

6. When key agreement is employed, use the key agreement algorithm
to compute the value of the agreed upon key. When key agreement
without key wrapping is employed, let the Content Master Key
(CMK) be the agreed upon key. When key agreement with key
wrapping is employed, the agreed upon key will be used to
decrypt the JWE Encrypted Key.

7. When key wrapping, key encryption, or key agreement with key
wrapping are employed, decrypt the JWE Encrypted Key to produce
the Content Master Key (CMK). The CMK MUST have a length equal
to that of the larger of the required encryption and integrity
keys.

8. When direct encryption with a shared symmetric key is employed,
let the Content Master Key (CMK) be the shared key.

9. If not using an AEAD algorithm, run the key derivation algorithm
specified by the "kdf'" header parameter to generate the Content
Encryption Key (CEK) and the Content Integrity Key (CIK);
otherwise (when using an AEAD algorithm), set the CEK to be the
CMK.

10. Decrypt the binary representation of the JWE Ciphertext using
the CEK and IV. If an AEAD algorithm is used, use the bytes of
the ASCII representation of the concatenation of the Encoded JWE
Header, a period ('.') character, and the Encoded JWE Encrypted
Key as the "additional authenticated data" parameter value for
the decryption.

11. If not using an AEAD algorithm, run the integrity algorithm (see
Section 8) using the CIK to compute an integrity value for the
input received. This computed value MUST match the received JWE
Integrity Value; otherwise (when using an AEAD algorithm), the
received JWE Integrity Value MUST match the "authentication tag"
value produced by the AEAD algorithm.

12. Uncompress the result of the previous step, if a "zip" parameter
was included.

13. Output the resulting Plaintext.

CMK Encryption
JWE supports three forms of Content Master Key (CMK) encryption:

o Asymmetric encryption under the recipient's public key.

Jones, et al. Expires January 31, 2013 [Page 18]

Internet-Draft JWE July 2012

=]

[©

o Symmetric encryption under a key shared between the sender and
receiver.

o Symmetric encryption under a key agreed upon between the sender
and receiver.

See the algorithms registered for "enc" usage in the IANA JSON Web
Signature and Encryption Algorithms registry [JWA] and Section 4.1 of
the JSON Web Algorithms (JWA) [JWA] specification for lists of
encryption algorithms that can be used for CMK encryption.

Integrity Value Calculation

When a non-AEAD algorithm is used (an algorithm without an integrated
content check), JWE adds an explicit integrity check value to the
representation. This value is computed in the manner described in
the JSON Web Signature (JWS) [JWS] specification, with these
modifications:

o The algorithm used is taken from the "int" (integrity algorithm)
header parameter rather than the "alg" header parameter.

0 The algorithm MUST be a MAC algorithm (such as HMAC SHA-256).

0 The JWS Secured Input used is the bytes of the ASCII
representation of the concatenation of the Encoded JWE Header, a
period ('.') character, the Encoded JWE Encrypted Key, a period
('."') character, and the Encoded JWE Ciphertext.

0 The CIK is used as the MAC key.

The computed JWS Signature value is the resulting integrity value.

Encrypting JWEs with Cryptographic Algorithms

JWE uses cryptographic algorithms to encrypt the Plaintext and the
Content Encryption Key (CMK) and to provide integrity protection for
the JWE Header, JWE Encrypted Key, and JWE Ciphertext. The JSON Web
Algorithms (JWA) [JWA] specification specifies a set of cryptographic
algorithms and identifiers to be used with this specification and
defines registries for additional such algorithms. Specifically,
Section 4.1 specifies a set of "alg" (algorithm) header parameter
values, Section 4.2 specifies a set of "enc" (encryption method)
header parameter values, Section 4.3 specifies a set of "int"
(integrity algorithm) header parameter values, and Section 4.4
specifies a set of "kdf" (key derivation function) header parameter

Jones, et al. Expires January 31, 2013 [Page 19]

Internet-Draft JWE July 2012

values intended for use this specification. It also describes the
semantics and operations that are specific to these algorithms and
algorithm families.

Public keys employed for encryption can be identified using the
Header Parameter methods described in Section 4.1 or can be
distributed using methods that are outside the scope of this
specification.

10. TIANA Considerations

10.1. Registration of JWE Header Parameter Names
This specification registers the Header Parameter Names defined in
Section 4.1 in the IANA JSON Web Signature and Encryption Header
Parameters registry [JWS].

10.1.1. Registry Contents
0 Header Parameter Name: "alg"

o Change Controller: IETF

0 Specification Document(s): Section 4.1.1 of [[this document]]

0 Header Parameter Name: "enc"
o Change Controller: IETF

0 Specification Document(s): Section 4.1.2 of [[this document]]

0 Header Parameter Name: "int"
o Change Controller: IETF

0 Specification Document(s): Section 4.1.3 of [[this document]]

0 Header Parameter Name: "kdf"
o Change Controller: IETF

0 Specification Document(s): Section 4.1.4 of [[this document]]

0 Header Parameter Name: "iv"

0o Change Controller: IETF

Jones, et al. Expires January 31, 2013 [Page 20]

Internet-Draft JWE July 2012

0o Specification Document(s): Section 4.1.5 of [[this document]]

0 Header Parameter Name: "epk"

o Change Controller: IETF

0o Specification Document(s): Section 4.1.6 of [[this document]]
0 Header Parameter Name: "zip"
o Change Controller: IETF

0o Specification Document(s): Section 4.1.7 of [[this document]]

0 Header Parameter Name: "jku"
o Change Controller: IETF

0 Specification Document(s): Section 4.1.8 of [[this document]]

0 Header Parameter Name: "jwk"
o Change Controller: IETF

0o Specification document(s): Section 4.1.9 of [[this document]]

0 Header Parameter Name: "x5u"
o Change Controller: IETF

0 Specification Document(s): Section 4.1.10 of [[this document]]

0 Header Parameter Name: "x5t"

o Change Controller: IETF

0 Specification Document(s): Section 4.1.11 of [[this document]]
0 Header Parameter Name: '"x5c"
o Change Controller: IETF

0 Specification Document(s): Section 4.1.12 of [[this document]]

0 Header Parameter Name: "kid"

o Change Controller: IETF

Jones, et al. Expires January 31, 2013 [Page 21]

Internet-Draft JWE July 2012

0 Specification Document(s): Section 4.1.13 of [[this document]]

0 Header Parameter Name: "typ"

o Change Controller: IETF

o Specification Document(s): Section 4.1.14 of [[this document]]
0 Header Parameter Name: "cty"
o Change Controller: IETF

0 Specification Document(s): Section 4.1.15 of [[this document]]

10.2. JSON Web Signature and Encryption Type Values Registration
10.2.1. Registry Contents

This specification registers the "JWE" type value in the IANA JSON
Web Signature and Encryption Type Values registry [JWS]:

o "typ" Header Parameter Value: "JWE"
o Abbreviation for MIME Type: application/jwe
0o Change Controller: IETF

0 Specification Document(s): Section 4.1.14 of [[this document]]

10.3. Media Type Registration

10.3.1. Registry Contents
This specification registers the "application/jwe" Media Type
[REC2046] in the MIME Media Type registry [RFC4288] to indicate that
the content is a JWE using the Compact Serialization.
o Type Name: application
0 Subtype Name: jwe
0 Required Parameters: n/a

0 Optional Parameters: n/a

o Encoding considerations: JWE values are encoded as a series of
base64url encoded values (some of which may be the empty string)
separated by period ('.') characters

https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc4288

Jones, et al. Expires January 31, 2013 [Page 22]

Internet-Draft JWE July 2012

0 Security Considerations: See the Security Considerations section
of this document

o Interoperability Considerations: n/a
0 Published Specification: [[this document 1]

o Applications that use this media type: OpenID Connect and other
applications using encrypted JWTs

0 Additional Information: Magic number(s): n/a, File extension(s):
n/a, Macintosh file type code(s): n/a

0 Person & email address to contact for further information: Michael
B. Jones, mbj@microsoft.com

o Intended Usage: COMMON
0 Restrictions on Usage: none
0 Author: Michael B. Jones, mbj@microsoft.com

o Change Controller: IETF

Security Considerations

All of the security issues faced by any cryptographic application
must be faced by a JWS/JWE/JWK agent. Among these issues are
protecting the user's private key, preventing various attacks, and
helping the user avoid mistakes such as inadvertently encrypting a
message for the wrong recipient. The entire list of security
considerations is beyond the scope of this document, but some
significant concerns are listed here.

All the security considerations in the JWS specification also apply
to this specification. Likewise, all the security considerations in
XML Encryption 1.1 [W3C.CR-xmlenc-corel-20120313] also apply to JWE,
other than those that are XML specific.

Open Issues
[[to be removed by the RFC editor before publication as an RFC]]

The following items remain to be considered or done in this draft:

Jones, et al. Expires January 31, 2013 [Page 23]

Internet-Draft JWE July 2012

13.

13.

o Should we define an optional nonce and/or timestamp header
parameter? (Use of a nonce is an effective countermeasure to some
kinds of attacks.)

o Do we want to consolidate the combination of the "enc", "int", and
"kdf" parameters into a single new "enc" parameter defining
composite AEAD algorithms? For instance, we might define a
composite algorithm A128CBC with HS256 and CS256 and another
composite algorithm A256CBC with HS512 and CS512. A symmetry
argument for doing this is that the "int" and "kdf" parameters are
not used with AEAD algorithms. An argument against it is that in
some cases, integrity is not needed because it's provided by other
means, and so having the flexibility to not use an "int" algorithm
or key derivation with a non-AEAD "enc" algorithm could be useful.

o Do we want to represent the JWE IV as a separate dot-separated
element or continue to have it be in the header? An IV is always
required in practice for the block encryption algorithms we've
specified. This would save 15 and 17 characters, respectively,
for the current AES GCM and AES CBC examples.

References
1. Normative References

[ITU.X690.1994]
International Telecommunications Union, "Information
Technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)", ITU-T Recommendation

X.690, 1994.
[JWA] Jones, M., "JSON Web Algorithms (JWA)", July 2012.
[JWK] Jones, M., "JSON Web Key (JwK)", July 2012.
[JwS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JwS)", July 2012.
[RFC1421] Linn, J., "Privacy Enhancement for Internet Electronic
Mail: Part I: Message Encryption and Authentication

Procedures", REC 1421, February 1993.

[RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
version 1.3", RFC 1951, May 1996.

[RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail

https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc1951

Jones, et al. Expires January 31, 2013 [Page 24]

Internet-Draft JWE July 2012
Extensions (MIME) Part Two: Media Types", RFC 2046,
November 1996.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, RFC 3629, November 2003.

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
REC 3986, January 2005.

[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
Requirements for Security", BCP 106, RFC 4086, June 2005.

[RFC4288] Freed, N. and J. Klensin, "Media Type Specifications and
Registration Procedures", BCP 13, RFC 4288, December 2005.

[RFC4627] Crockford, D., "The application/json Media Type for
JavaScript Object Notation (JSON)", REC 4627, July 2006.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodings", RFC 4648, October 2006.

[RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
Encryption", RFC 5116, January 2008.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, May 2008.

[W3C.CR-xmlenc-corel-20120313]
Eastlake, D., Reagle, J., Hirsch, F., and T. Roessler,
"XML Encryption Syntax and Processing Version 1.1", World
Wide Web Consortium CR CR-xmlenc-corel-20120313,
March 2012,
<http://www.w3.0rg/TR/2012/CR-xmlenc-corel-20120313>.

https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc4288
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
http://www.w3.org/TR/2012/CR-xmlenc-core1-20120313

Jones, et al. Expires January 31, 2013 [Page 25]

Internet-Draft JWE July 2012

13.2. Informative References

[I-D.rescorla-jsms]
Rescorla, E. and J. Hildebrand, "JavaScript Message
Security Format", draft-rescorla-jsms-00 (work in
progress), March 2011.

[JSE] Bradley, J. and N. Sakimura (editor), "JSON Simple
Encryption", September 2010.

[JWE-JS] Jones, M., "JSON Web Encryption JSON Serialization
(JWE-JS)", July 2012.

[RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
Unique IDentifier (UUID) URN Namespace'", REC 4122,
July 2005.
[RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
REC 5652, September 2009.
Appendix A. JWE Examples
This section provides examples of JWE computations.

A.1. Example JWE using RSAES OAEP and AES GCM

This example encrypts the plaintext "Live long and prosper." to the
recipient using RSAES OAEP and AES GCM. The AES GCM algorithm has an
integrated integrity check. The representation of this plaintext is:

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32,
112, 114, 111, 115, 112, 101, 114, 46]

A.1.1. JWE Header
The following example JWE Header declares that:

o the Content Master Key is encrypted to the recipient using the
RSAES OAEP algorithm to produce the JWE Encrypted Key,

o the Plaintext is encrypted using the AES GCM algorithm with a 256
bit key to produce the Ciphertext, and

o the 96 bit Initialization Vector (IV) [227, 197, 117, 252, 2, 219,
233, 68, 180, 225, 77, 219] with the base64url encoding
"48V1_ALb6USO4U3b" was used.

https://datatracker.ietf.org/doc/html/draft-rescorla-jsms-00
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc5652

Jones, et al. Expires January 31, 2013 [Page 26]

Internet-Draft JWE July 2012

{"alg":"RSA-OAEP", "enc":"A256GCM", "iv":"48V1_ALb6US04U3b"}
A.1.2. Encoded JWE Header

Base64url encoding the bytes of the UTF-8 representation of the JWE
Header yields this Encoded JWE Header value (with line breaks for
display purposes only):

eyJhbGci0iJSUGEtTOFFUCISIMVUYYI6IKEYNTZHQOOiLCIpdiI6IjQ4aViFfQuxi
N1VTMDRVM2IifQ

A.1.3. Content Master Key (CMK)

Generate a random Content Master Key (CMK). 1In this example, the key
value is:

[177, 161, 244, 128, 84, 143, 225, 115, 63, 180, 3, 255, 107, 154,
212, 246, 138, 7, 110, 91, 112, 46, 34, 105, 47, 130, 203, 46, 122,
234, 64, 252]

A.1.4. Key Encryption
Encrypt the CMK with the recipient's public key using the RSAES OAEP

algorithm to produce the JWE Encrypted Key. In this example, the RSA
key parameters are:

Jones, et al. Expires January 31, 2013 [Page 27]

Internet-Draft

| Parameter |

Name

Exponent

JWE July 2012

[161, 168, 84, 34, 133, 176, 208, 173, 46, 176, 163,
110, 57, 30, 135, 227, 9, 31, 226, 128, 84, 92, 116,
241, 70, 248, 27, 227, 193, 62, 5, 91, 241, 145, 224,
205, 141, 176, 184, 133, 239, 43, 81, 103, 9, 161,
153, 157, 179, 104, 123, 51, 189, 34, 152, 69, 97,
69, 78, 93, 140, 131, 87, 182, 169, 101, 92, 142, 3,
22, 167, 8, 212, 56, 35, 79, 210, 222, 192, 208, 252,
49, 109, 138, 173, 253, 210, 166, 201, 63, 102, 74,
5, 158, 41, 90, 144, 108, 160, 79, 10, 89, 222, 231,
172, 31, 227, 197, @, 19, 72, 81, 138, 78, 136, 221,
121, 118, 196, 17, 146, 10, 244, 188, 72, 113, 55,
221, 162, 217, 171, 27, 57, 233, 210, 101, 236, 154,
199, 56, 138, 239, 101, 48, 198, 186, 202, 160, 76,
111, 234, 71, 57, 183, 5, 211, 171, 136, 126, 64, 40,
75, 58, 89, 244, 254, 107, 84, 103, 7, 236, 69, 163,
18, 180, 251, 58, 153, 46, 151, 174, 12, 103, 197,
181, 161, 162, 55, 250, 235, 123, 110, 17, 11, 158,
24, 47, 133, 8, 199, 235, 107, 126, 130, 246, 73,
195, 20, 108, 202, 176, 214, 187, 45, 146, 182, 118,
54, 32, 200, 61, 201, 71, 243, 1, 255, 131, 84, 37,
111, 211, 168, 228, 45, 192, 118, 27, 197, 235, 232,
36, 10, 230, 248, 190, 82, 182, 140, 35, 204, 108,
190, 253, 186, 186, 27]

[1, 0, 1]

Jones, et al. Expires January 31, 2013 [Page 28]

Internet-Draft JWE July 2012

Private
Exponent

| [144, 183, 109, 34, 62, 134, 108, 57, 44, 252, 10,

| 66, 73, 54, 16, 181, 233, 92, 54, 219, 101, 42, 35,
| 178, 63, 51, 43, 92, 119, 136, 251, 41, 53, 23, 191,
| 164, 164, 60, 88, 227, 229, 152, 228, 213, 149, 228,
| 169, 237, 104, 71, 151, 75, 88, 252, 216, 77, 251,

| 231, 28, 97, 88, 193, 215, 202, 248, 216, 121, 195,
| 211, 245, 250, 112, 71, 243, 61, 129, 95, 39, 244,

| 122, 225, 217, 169, 211, 165, 48, 253, 220, 59, 122,
| 219, 42, 86, 223, 32, 236, 39, 48, 103, 78, 122, 216,
| 187, 88, 176, 89, 24, 1, 42, 177, 24, 99, 142, 170,
| 1, 146, 43, 3, 108, 64, 194, 121, 182, 95, 187, 134,
| 71, 88, 96, 134, 74, 131, 167, 69, 106, 143, 121, 27,
| 72, 44, 245, 95, 39, 194, 179, 175, 203, 122, 16,

| 112, 183, 17, 200, 202, 31, 17, 138, 156, 184, 210,
| 157, 184, 154, 131, 128, 110, 12, 85, 195, 122, 241,
| 79, 251, 229, 183, 117, 21, 123, 133, 142, 220, 153,
| 9, 59, 57, 105, 81, 255, 138, 77, 82, 54, 62, 216,

| 38, 249, 208, 17, 197, 49, 45, 19, 232, 157, 251,

| 131, 137, 175, 72, 126, 43, 229, 69, 179, 117, 82,

| 157, 213, 83, 35, 57, 210, 197, 252, 171, 143, 194,
| 11, 47, 163, 6, 253, 75, 252, 96, 11, 187, 84, 130,
| 210, 7, 121, 78, 91, 79, 57, 251, 138, 132, 220, 60,
| 224, 173, 56, 224, 201]

The resulting JWE Encrypted Key value is:

[142, 252, 40, 202, 21, 177, 56, 198, 232, 7, 151, 49, 95, 169, 220,
2, 46, 214, 167, 116, 57, 20, 164, 109, 150, 98, 49, 223, 154, 95,
71, 209, 233, 17, 174, 142, 203, 232, 132, 167, 17, 42, 51, 125, 22,
221, 135, 17, 67, 197, 148, 246, 139, 145, 160, 238, 99, 119, 171,
95, 117, 202, 87, 251, 101, 254, 58, 215, 135, 195, 135, 103, 49,
119, 76, 46, 49, 198, 27, 31, 58, 44, 192, 222, 21, 16, 13, 216, 161,
179, 236, 65, 143, 38, 43, 218, 195, 76, 140, 243, 71, 243, 79, 124,
216, 208, 242, 171, 34, 245, 57, 154, 93, 76, 230, 204, 234, 82, 117,
248, 39, 13, 62, 60, 215, 8, 51, 248, 254, 47, 150, 36, 46, 27, 247,
98, 77, 56, 92, 44, 19, 39, 12, 77, 54, 101, 194, 126, 86, 0, 64,
239, 95, 211, 64, 26, 219, 93, 211, 36, 154, 250, 117, 177, 213, 232,
142, 184, 216, 92, 20, 248, 69, 175, 180, 71, 205, 221, 235, 224, 95,
113, 5, 33, 86, 18, 157, 61, 199, 8, 121, 0, 0, 135, 65, 67, 220,
164, 15, 230, 155, 71, 53, 64, 253, 209, 169, 255, 34, 64, 101, 7,
43, 102, 227, 83, 171, 52, 225, 119, 253, 182, 96, 195, 225, 34, 156,
211, 202, 7, 194, 255, 137, 59, 170, 172, 72, 234, 222, 203, 123,
249, 121, 254, 143, 173, 105, 65, 187, 189, 163, 64, 151, 145, 99,
17]

Jones, et al. Expires January 31, 2013 [Page 29]

Internet-Draft JWE July 2012

A.1.5. Encoded JWE Encrypted Key

Base64url encode the JWE Encrypted Key to produce the Encoded JWE
Encrypted Key. This result (with line breaks for display purposes
only) is:

JjvwoyhWxOMboB5cxX6NncA17Wp3Q5FKRt1ImIx35pfROHpEa6Oy - iIEpXEqQM3OW3YCR
Q8WU90uR005jd6tfdcpX-2X-0teHw4dnMXdML JHGGX86LMDeFRAN2KGz7EGPJiva
wOyM80fzT3zYOPKrIvU5m11M5szquUnX4JIwO-PNCIM_j-L5YKLhv3Yk04XCwTJIwxN
NmXCflYAQO9f00Aa213TJJIr6dbHV6I642FwU-EWVtEfN3evgX3EFIVYSNT3HCHKA
AIdBQ9ykD-abRzVA_dGp_yJAZQcrZuNTqzThd_22YMPhIpzTygfC_4k7qqxI6t7L
e_15_o-taUG7vaNAl5FjEQ

A.1.6. "Additional Authenticated Data" Parameter

Concatenate the Encoded JWE Header value, a period character ('.'),
and the Encoded JWE Encrypted Key to create the "additional
authenticated data" parameter for the AES GCM algorithm. This result
(with line breaks for display purposes only) is:

eyJhbGci0iJSUGELTOFFUCISIMVUYYI6IKEYNTZHQOOiLCIpdiI6IjQ4VjFfQUxi
N1VTMDRVM2IifQ.
JjvwoyhWxOMboB5cxX6ncA17Wp3Q5FKRtImIXx35pfROHpEa6Oy - iIEpXEqQM3OW3YCR
Q8WU90uR005jd6tfdcpX-2X-0teHw4dnMXdML JHGGX86LMDeFRAN2KGz7EGPJiva
wOyM80fzT3zYOPKrIvUSm11M5szqUnX4JwO-PNCIM_j-L5YkLhv3YkO4XCwTJIwxN
NmXCflYAQO9Tf00Aa213TIJIr6dbHV6I642FwU-EWVtETfN3evgX3EFIVYSNT3HCHKA
AIdBQ9ykD-abRzVA_dGp_yJAZQcrZuNTqzThd_22YMPhIpzTygfC_4k7qqxI6t7L
e_15_o-taUG7vaNAl5FjEQ

The representation of this value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69,
116, 84, 48, 70, 70, 85, 67, 73, 115, 73, 109, 86, 117, 89, 121, 73,
54, 73, 107, 69, 121, 78, 84, 90, 72, 81, 48, 48, 105, 76, 67, 74,
112, 100, 105, 73, 54, 73, 106, 81, 52, 86, 106, 70, 102, 81, 85,
120, 105, 78, 108, 86, 84, 77, 68, 82, 86, 77, 50, 73, 105, 102, 81,
46, 106, 118, 119, 111, 121, 104, 87, 120, 79, 77, 98, 111, 66, 53,
99, 120, 88, 54, 110, 99, 65, 105, 55, 87, 112, 51, 81, 53, 70, 75,
82, 116, 108, 109, 73, 120, 51, 53, 112, 102, 82, 57, 72, 112, 69,
97, 54, 79, 121, 45, 105, 69, 112, 120, 69, 113, 77, 51, 48, 87, 51,
89, 99, 82, 81, 56, 87, 85, 57, 111, 117, 82, 111, 79, 53, 106, 100,
54, 116, 102, 100, 99, 112, 88, 45, 50, 88, 45, 79, 116, 101, 72,
119, 52, 100, 110, 77, 88, 100, 77, 76, 106, 72, 71, 71, 120, 56, 54,
76, 77, 68, 101, 70, 82, 65, 78, 50, 75, 71, 122, 55, 69, 71, 80, 74,
105, 118, 97, 119, 48, 121, 77, 56, 48, 102, 122, 84, 51, 122, 89,
48, 80, 75, 114, 73, 118, 85, 53, 109, 108, 49, 77, 53, 115, 122,
113, 85, 110, 88, 52, 74, 119, 48, 45, 80, 78, 99, 73, 77, 95, 106,
45, 76, 53, 89, 107, 76, 104, 118, 51, 89, 107, 48, 52, 88, 67, 119,

Jones, et al. Expires January 31, 2013 [Page 30]

Internet-Draft JWE July 2012

84, 74, 119, 120, 78, 78, 109, 88, 67, 102, 108, 89, 65, 81, 79, 57,
102, 48, 48, 65, 97, 50, 49, 51, 84, 74, 74, 114, 54, 100, 98, 72,
86, 54, 73, 54, 52, 50, 70, 119, 85, 45, 69, 87, 118, 116, 69, 102,
78, 51, 101, 118, 103, 88, 51, 69, 70, 73, 86, 89, 83, 110, 84, 51,
72, 67, 72, 107, 65, 65, 73, 100, 66, 81, 57, 121, 107, 68, 45, 97,
98, 82, 122, 86, 65, 95, 100, 71, 112, 95, 121, 74, 65, 90, 81, 99,
114, 90, 117, 78, 84, 113, 122, 84, 104, 100, 95, 50, 50, 89, 77, 80,
104, 73, 112, 122, 84, 121, 103, 102, 67, 95, 52, 107, 55, 113, 113,
120, 73, 54, 116, 55, 76, 101, 95, 108, 53, 95, 111, 45, 116, 97, 85,
71, 55, 118, 97, 78, 65, 108, 53, 70, 106, 69, 81]

A.1.7. Plaintext Encryption

Encrypt the Plaintext with AES GCM, using the IV, the CMK as the
encryption key, and the "additional authenticated data" value above,
requesting a 128 bit "authentication tag" output. The resulting
Ciphertext is:

[253, 237, 181, 180, 97, 161, 105, 207, 233, 120, 65, 100, 45, 122,
246, 116, 195, 212, 102, 37, 36, 175]

The resulting "authentication tag" value is:

[97, 182, 82, 120, 112, 141, 13, 144, 106, 1, 220, 233, 68, 233, 114,
139]

A.1.8. Encoded JWE Ciphertext

Base64url encode the resulting Ciphertext to create the Encoded JWE
Ciphertext. This result is:

_e21tGGhac_peEFKLXr2dMPUZiUkrw
A.1.9. Encoded JWE Integrity Value

Base64url encode the resulting "authentication tag" to create the
Encoded JWE Integrity Value. This result is:

YbZSeHCNDZBqAdzpROlyiw
A.1.10. Complete Representation

Assemble the final representation: The Compact Serialization of this
result is the concatenation of the Encoded JWE Header, the Encoded
JWE Encrypted Key, the Encoded JWE Ciphertext, and the Encoded JWE
Integrity Value in that order, with the four strings being separated
by three period ('.') characters.

Jones, et al. Expires January 31, 2013 [Page 31]

Internet-Draft JWE July 2012

The final result in this example (with line breaks for display
purposes only) is:

eyJhbGci0iJSUGELTOFFUCISIMVUYYI6IKEYNTZHQOO1LCIpdiI6IjQ4VjFfQUxi
N1VTMDRVM2IifQ.
jvwoyhWxOMboB5cxX6ncA17Wp3Q5FKRt1mIx35pfROHpEa6Oy - iIEpXEqQM3OW3YCR
Q8WU90uR005jd6tfdcpX-2X-0teHw4dnMXdML JHGGXx86LMDeFRAN2KGz7EGPJiva
wOyM80fzT3zYOPKrIvUSm11M5szqUnX4JwO-PNCIM_j-L5YkLhv3YKkO4XCwTJIwxN
NmXCflYAQO9f00Aa213TJIJIr6dbHV6I642FwU-EWVtEfN3evgX3EFIVYSNT3HCHKA
AIdBQ9ykD-abRzVA_dGp_yJAZQcrZuNTqzThd_22YMPhIpzTygfC_4k7qgqxI6t7L
e_15_o-taUG7vaNAl5FjEQ.

_e21tGGhac_peEFKLXr2dMPUZiUKrw.

YbZSeHCNDZBgAdzpROlyiw

A.1.11. Validation

This example illustrates the process of creating a JWE with an AEAD
algorithm. These results can be used to validate JWE decryption
implementations for these algorithms. However, note that since the
RSAES OAEP computation includes random values, the results above will
not be repeatable.

A.2. Example JWE using RSAES-PKCS1-V1_5 and AES CBC

This example encrypts the plaintext "Now is the time for all good men
to come to the aid of their country." to the recipient using RSAES-
PKCS1-V1_5 and AES CBC. AES CBC does not have an integrated
integrity check, so a separate integrity check calculation is
performed using HMAC SHA-256, with separate encryption and integrity
keys being derived from a master key using the Concat KDF with the
SHA-256 digest function. The representation of this plaintext is:

[78, 111, 119, 32, 105, 115, 32, 116, 104, 101, 32, 116, 105, 109,
101, 32, 102, 111, 114, 32, 97, 108, 108, 32, 103, 111, 111, 100, 32,
109, 101, 110, 32, 116, 111, 32, 99, 111, 109, 101, 32, 116, 111, 32,
116, 104, 101, 32, 97, 105, 100, 32, 111, 102, 32, 116, 104, 101,
105, 114, 32, 99, 111, 117, 110, 116, 114, 121, 46]

A.2.1. JWE Header

The following example JWE Header (with line breaks for display
purposes only) declares that:

o the Content Master Key is encrypted to the recipient using the
RSAES-PKCS1-V1_5 algorithm to produce the JWE Encrypted Key,

o the Plaintext is encrypted using the AES CBC algorithm with a 128
bit key to produce the Ciphertext,

Jones, et al. Expires January 31, 2013 [Page 32]

Internet-Draft JWE July 2012

o the JWE Integrity Value safeguarding the integrity of the
Ciphertext and the parameters used to create it was computed with
the HMAC SHA-256 algorithm, and

o the 128 bit Initialization Vector (IV) [3, 22, 60, 12, 43, 67,
104, 105, 108, 108, 105, 99, 111, 116, 104, 101] with the
base64url encoding "AxY8DCtDaGlsbGljb3RozQ" was used.

{"alg":"RSA1_5", "enc":"A128CBC", "int":"HS256", "iv": "AxY8DCtDaGls
bG1ljb3R0ozQ"}
A.2.2. Encoded JWE Header

Base64url encoding the bytes of the UTF-8 representation of the JWE
Header yields this Encoded JWE Header value (with line breaks for
display purposes only):

eyJhbGci01JSUGEXXzUiLCJ1bmMiOiJIBMTI4Q0JIDIiwiaW50IjoiSFMyNTYiLCJIp
diI6IKF4WThEQ3REYUdsc2JHbGpiM1JVWIEifQ

A.2.3. Content Master Key (CMK)

Generate a random Content Master Key (CMK). 1In this example, the key
value is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106,
206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156,
44, 207]

A.2.4. Key Encryption
Encrypt the CMK with the recipient's public key using the RSAES-

PKCS1-V1_5 algorithm to produce the JWE Encrypted Key. In this
example, the RSA key parameters are:

Jones, et al. Expires January 31, 2013 [Page 33]

Internet-Draft

| Parameter |

Name

Exponent

JWE July 2012

[177, 119, 33, 13, 164, 30, 108, 121, 207, 136, 107,
242, 12, 224, 19, 226, 198, 134, 17, 71, 173, 75, 42,
61, 48, 162, 206, 161, 97, 108, 185, 234, 226, 219,
118, 206, 118, 5, 169, 224, 60, 181, 90, 85, 51, 123,
6, 224, 4, 122, 29, 230, 151, 12, 244, 127, 121, 25,
4, 85, 220, 144, 215, 110, 130, 17, 68, 228, 129,
138, 7, 130, 231, 40, 212, 214, 17, 179, 28, 124,
151, 178, 207, 20, 14, 154, 222, 113, 176, 24, 198,
73, 211, 113, 9, 33, 178, 80, 13, 25, 21, 25, 153,
212, 206, 67, 154, 147, 70, 194, 192, 183, 160, 83,
98, 236, 175, 85, 23, 97, 75, 199, 177, 73, 145, 50,
253, 206, 32, 179, 254, 236, 190, 82, 73, 67, 129,
253, 252, 220, 108, 136, 138, 11, 192, 1, 36, 239,
228, 55, 81, 113, 17, 25, 140, 63, 239, 146, 3, 172,
96, 60, 227, 233, 64, 255, 224, 173, 225, 228, 229,
92, 112, 72, 99, 97, 26, 87, 187, 123, 46, 50, 90,
202, 117, 73, 10, 153, 47, 224, 178, 163, 77, 48, 46,
154, 33, 148, 34, 228, 33, 172, 216, 89, 46, 225,
127, 68, 146, 234, 30, 147, 54, 146, 5, 133, 45, 78,
254, 85, 55, 75, 213, 86, 194, 218, 215, 163, 189,
194, 54, 6, 83, 36, 18, 153, 53, 7, 48, 89, 35, 66,
144, 7, 65, 154, 13, 97, 75, 55, 230, 132, 3, 13,
239, 71]

[1, 0, 1]

Jones, et al. Expires January 31, 2013 [Page 34]

Internet-Draft JWE July 2012

Private
Exponent

| [84, 80, 150, 58, 165, 235, 242, 123, 217, 55, 38, |
| 154, 36, 181, 221, 156, 211, 215, 100, 164, 90, 88, |
| 40, 228, 83, 148, 54, 122, 4, 16, 165, 48, 76, 194, |
| 26, 107, 51, 53, 179, 165, 31, 18, 198, 173, 78, 61, |
| 56, 97, 252, 158, 140, 80, 63, 25, 223, 156, 36, 203, |
| 214, 252, 120, 67, 180, 167, 3, 82, 243, 25, 97, 214, |
| 83, 133, 69, 16, 104, 54, 160, 200, 41, 83, 164, 187, |
| 70, 153, 111, 234, 242, 158, 175, 28, 198, 48, 211, |
| 45, 148, 58, 23, 62, 227, 74, 52, 117, 42, 90, 41, |
| 249, 130, 154, 80, 119, 61, 26, 193, 40, 125, 10, |
| 152, 174, 227, 225, 205, 32, 62, 66, 6, 163, 100, 99, |
| 219, 19, 253, 25, 105, 80, 201, 29, 252, 157, 237, |
| 69, 1, 80, 171, 167, 20, 196, 156, 109, 249, 88, 0, |
| 3, 152, 38, 165, 72, 87, 6, 152, 71, 156, 214, 16, |
| 71, 30, 82, 51, 103, 76, 218, 63, 9, 84, 163, 249, |
| 91, 215, 44, 238, 85, 101, 240, 148, 1, 82, 224, 91, |
| 135, 105, 127, 84, 171, 181, 152, 210, 183, 126, 24, |
| 46, 196, 90, 173, 38, 245, 219, 186, 222, 27, 240, |
| 212, 194, 15, 66, 135, 226, 178, 190, 52, 245, 74, |
| 65, 224, 81, 100, 85, 25, 204, 165, 203, 187, 175, |
| 84, 100, 82, 15, 11, 23, 202, 151, 107, 54, 41, 207, |
| 3, 136, 229, 134, 131, 93, 139, 50, 182, 204, 93, |
| 130, 89]

The resulting JWE Encrypted Key value is:

[32, 242, 63, 207, 94, 246, 133, 37, 135, 48, 88, 4, 15, 193, 6, 244,
51, 58, 132, 133, 212, 255, 163, 90, 59, 80, 200, 152, 41, 244, 188,
215, 174, 160, 26, 188, 227, 180, 165, 234, 172, 63, 24, 116, 152,
28, 149, 16, 94, 213, 201, 171, 180, 191, 11, 21, 149, 172, 143, 54,
194, 58, 206, 201, 164, 28, 107, 155, 75, 101, 22, 92, 227, 144, 95,
40, 119, 170, 7, 36, 225, 40, 141, 186, 213, 7, 175, 16, 174, 122,
75, 32, 48, 193, 119, 202, 41, 152, 210, 190, 68, 57, 119, 4, 197,
74, 7, 242, 239, 170, 204, 73, 75, 213, 202, 113, 216, 18, 23, 66,
106, 208, 69, 244, 117, 147, 2, 37, 207, 199, 184, 96, 102, 44, 70,
212, 87, 143, 253, 0, 166, 59, 41, 115, 217, 80, 165, 87, 38, 5, 9,
184, 202, 68, 67, 176, 4, 87, 254, 166, 227, 88, 124, 238, 249, 75,
114, 205, 148, 149, 45, 78, 193, 134, 64, 189, 168, 76, 170, 76, 176,
72, 148, 77, 215, 159, 146, 55, 189, 213, 85, 253, 135, 200, 59, 247,
79, 37, 22, 200, 32, 110, 53, 123, 54, 39, 9, 178, 231, 238, 95, 25,
211, 143, 87, 220, 88, 138, 209, 13, 227, 72, 58, 102, 164, 136, 241,
14, 14, 45, 32, 77, 44, 244, 162, 239, 150, 248, 181, 138, 251, 116,
245, 205, 137, 78, 34, 34, 10, 6, 59, 4, 197, 2, 153, 251]

Jones, et al. Expires January 31, 2013 [Page 35]

Internet-Draft JWE July 2012

A.2.5. Encoded JWE Encrypted Key

Base64url encode the JWE Encrypted Key to produce the Encoded JWE
Encrypted Key. This result (with line breaks for display purposes
only) is:

IPI_z172hSWHMFgEDS8EGI9DM6hIXU_6Na0l1DImCnOvNeuoBq847S16qw_GHSYHJUQ
XtXJQq7S_CxWVrI82wjrOyaQca5tLZRZc45BfKHeqByThKI261QeVEK56SyAwwX K
KZjSvkQ5dwTFSgfy76rMSUvVynHYEhdCatBFOHWTALIXPXx7hgZixG1lFeP_QCmOylz
2VC1VyYFCbjKREOWBFf - puNYf075S3LN1JUtTSGGQL20TKpMsSEiUTdefkje91VX9
h89g79081FsggbjV7NicJsufuXxnTjl1fcWIrRDeNIOmakiPEODiOgTSz0Oou-W-LWK
-3T1zY10IiIKBjSEXQKZ-w

A.2.6. Key Derivation

Use the Concat key derivation function to derive Content Encryption

Key (CEK) and Content Integrity Key (CIK) values from the CMK. The

details of this derivation are shown in Appendix A.3. The resulting
CEK value is:

[249, 255, 87, 218, 224, 223, 221, 53, 204, 121, 166, 130, 195, 184,
50, 69]

The resulting CIK value is:

[218, 209, 130, 50, 169, 45, 70, 214, 29, 187, 123, 20, 3, 158, 111,
122, 182, 94, 57, 133, 245, 76, 97, 44, 193, 80, 81, 246, 115, 177,
225, 159]

A.2.7. Plaintext Encryption

Encrypt the Plaintext with AES CBC using the CEK and IV to produce
the Ciphertext. The resulting Ciphertext is:

[253, 159, 221, 142, 82, 40, 11, 131, 3, 72, 34, 162, 173, 229, 146,
217, 183, 173, 139, 132, 58, 137, 33, 182, 82, 49, 110, 141, 11, 221,
207, 239, 207, 65, 213, 28, 20, 217, 14, 186, 87, 160, 15, 160, 96,
142, 7, 69, 46, 55, 129, 224, 113, 206, 59, 181, 7, 188, 255, 15, 16,
59, 180, 107, 75, ©, 217, 175, 254, 8, 141, 48, 217, 132, 16, 217, 4,
30, 223, 147]

A.2.8. Encoded JWE Ciphertext
Base64url encode the resulting Ciphertext to create the Encoded JWE
Ciphertext. This result (with line breaks for display purposes only)

1s:

_Z _djlIoC4MDSCKirewS2beti4Q6iSG2UjFujQvdz-_PQdUcFNkOulegD6BgjgdF

Jones, et al. Expires January 31, 2013 [Page 36]

Internet-Draft JWE July 2012

LjeB4HHOO7UHVP8PEDuURadsA2a_-CIOw2YQQ2QQe35M
A.2.9. Secured Input Value

Concatenate the Encoded JWE Header value, a period character ('.'),
the Encoded JWE Encrypted Key, a second period character, and the
Encoded JWE Ciphertext to create the value to integrity protect.
This result (with line breaks for display purposes only) is:

eyJhbGci0iJSUOEXXzUiLCJ1bmMi0iJBMTI4Q0JDIiwiaW50IjoiSFMyNTYiLCJp
diI6IkFAWThEQ3REYUdsc2JHbGpiM1JVWIEifQ.
IPI_z172hSWHMFgEDS8EGI9DM6hIXU_6Na0l1DImCnOvNeuoBq847S16qw_GHSYHJUQ
XtXJq7S_CxWVrI82wjroyaQca5tLZRZc45BfKHeqByThKI261QeVEKS56SyAwwXTK
KZjSvkQ5dwTFSgfy76rMSUVVYnHYEhdCatBFOHWTAiXPx7hgZixG1FeP_QCmOylz
2VC1VYyYFCbjKREOWBFf - puNYfO075S3LN1JUtTSGGQL20TKpMsSEiLiUTdefkje91VvX9
h8g79081FsggbjV7NicJIsufuXxnTj1fcWIrRDeNIOmakiPEODiOgTSz0ou-W-LWK
-3T1zY10IiIKBjSEXQKZ-w.

_Z dj1IoC4MDSCKirewS2beti4Q6iSG2UjFujQvdz-_PQdUcFNkOulegD6BgjgdF
LjeB4HHOO7UHVP8PEDuURadsA2a_-CIOw2YQQ2QQe35M

The representation of this value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69,
120, 88, 122, 85, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105,
74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 73, 105, 119, 105, 97, 87,
53, 48, 73, 106, 111, 105, 83, 70, 77, 121, 78, 84, 89, 105, 76, 67,
74, 112, 100, 105, 73, 54, 73, 107, 70, 52, 87, 84, 104, 69, 81, 51,
82, 69, 89, 85, 100, 115, 99, 50, 74, 72, 98, 71, 112, 105, 77, 49,
74, 118, 87, 108, 69, 105, 102, 81, 46, 73, 80, 73, 95, 122, 49, 55,
50, 104, 83, 87, 72, 77, 70, 103, 69, 68, 56, 69, 71, 57, 68, 77, 54,
104, 73, 88, 85, 95, 54, 78, 97, 79, 49, 68, 73, 109, 67, 110, 48,
118, 78, 101, 117, 111, 66, 113, 56, 52, 55, 83, 108, 54, 113, 119,
95, 71, 72, 83, 89, 72, 74, 85, 81, 88, 116, 88, 74, 113, 55, 83, 95,
67, 120, 87, 86, 114, 73, 56, 50, 119, 106, 114, 79, 121, 97, 81, 99,
97, 53, 116, 76, 90, 82, 90, 99, 52, 53, 66, 102, 75, 72, 101, 113,
66, 121, 84, 104, 75, 73, 50, 54, 49, 81, 101, 118, 69, 75, 53, 54,
83, 121, 65, 119, 119, 88, 102, 75, 75, 90, 106, 83, 118, 107, 81,
53, 100, 119, 84, 70, 83, 103, 102, 121, 55, 54, 114, 77, 83, 85,
118, 86, 121, 110, 72, 89, 69, 104, 100, 67, 97, 116, 66, 70, 57, 72,
87, 84, 65, 105, 88, 80, 120, 55, 104, 103, 90, 105, 120, 71, 49, 70,
101, 80, 95, 81, 67, 109, 79, 121, 108, 122, 50, 86, 67, 108, 86,
121, 89, 70, 67, 98, 106, 75, 82, 69, 79, 119, 66, 70, 102, 45, 112,
117, 78, 89, 102, 79, 55, 53, 83, 51, 76, 78, 108, 74, 85, 116, 84,
115, 71, 71, 81, 76, 50, 111, 84, 75, 112, 77, 115, 69, 105, 85, 84,
100, 101, 102, 107, 106, 101, 57, 49, 86, 88, 57, 104, 56, 103, 55,
57, 48, 56, 108, 70, 115, 103, 103, 98, 106, 86, 55, 78, 105, 99, 74,
115, 117, 102, 117, 88, 120, 110, 84, 106, 49, 102, 99, 87, 73, 114,
82, 68, 101, 78, 73, 79, 109, 97, 107, 105, 80, 69, 79, 68, 105, 48,

Jones, et al. Expires January 31, 2013 [Page 37]

Internet-Draft JWE July 2012

103, 84, 83, 122, 48, 111, 117, 45, 87, 45, 76, 87, 75, 45, 51, 84,
49, 122, 89, 108, 79, 73, 105, 73, 75, 66, 106, 115, 69, 120, 81, 75,
90, 45, 119, 46, 95, 90, 95, 100, 106, 108, 73, 111, 67, 52, 77, 68,
83, 67, 75, 105, 114, 101, 87, 83, 50, 98, 101, 116, 105, 52, 81, 54,
105, 83, 71, 50, 85, 106, 70, 117, 106, 81, 118, 100, 122, 45, 95,
80, 81, 100, 85, 99, 70, 78, 107, 79, 117, 108, 101, 103, 68, 54, 66,
103, 106, 103, 100, 70, 76, 106, 101, 66, 52, 72, 72, 79, 79, 55, 85,
72, 118, 80, 56, 80, 69, 68, 117, 48, 97, 48, 115, 65, 50, 97, 95,
45, 67, 73, 48, 119, 50, 89, 81, 81, 50, 81, 81, 101, 51, 53, 77]

A.2.10. JWE Integrity Value

Compute the HMAC SHA-256 of this value using the CIK to create the
JWE Integrity Value. This result is:

[115, 141, 100, 225, 62, 30, 2, 0, 130, 183, 173, 230, 241, 147, 102,
136, 232, 167, 49, 200, 133, 23, 42, 78, 22, 155, 226, 119, 184, 186,
15, 73]

A.2.11. Encoded JWE Integrity Value

Base64url encode the resulting JWE Integrity Value to create the
Encoded JWE Integrity Value. This result is:

c41k4T4eAgCCt63m8ZNmi0inMciFFypOFpvid7i6Dok
A.2.12. Complete Representation

Assemble the final representation: The Compact Serialization of this
result is the concatenation of the Encoded JWE Header, the Encoded
JWE Encrypted Key, the Encoded JWE Ciphertext, and the Encoded JWE
Integrity Value in that order, with the four strings being separated
by three period ('.') characters.

The final result in this example (with line breaks for display
purposes only) is:

eyJhbGci0iJSUGEXXzUiLCJ1bmMi0iJBMTI4Q0JDIiwiaW50IjoiSFMyNTYiLCJp
diI6IkFAWThEQ3REYUdsc2JHbGpiM1JVWIEifQ.
IPI_z172hSWHMFgED8EGI9DM6hIXU_6Na01DImCnOvNeuoBq847S16qw_GHSYHJUQ
XtXJQq7S_CxWVrI82wjrOyaQca5tLZRZc45BfKHeqByThKI261QeVEK56SyAwwXfK
KZjSvkQ5dwTFSgfy76rMSUvVynHYEhdCatBFOHWTAiIXPXx7hgZixG1lFeP_QCmOylz
2VC1VyYFCbjKREOWBFf-puNYf075S3LN1JUtTSGGQL20TKpMsEiUTdefkje91VvX9
h8g79081FsggbjV7NicJsufuXxnTj1fcWIrRDeNIOmakiPEODiOgTSz0ou-W-LWK
-3T1zY10IiIKBjSEXQKZ-w.

_Z dj1lIoC4MDSCKirewWS2beti4Q6iSG2UjFujQvdz-_PQdUcFNkOulegD6BgjgdF
LjeB4HHOO7UHVP8PEDuURadsA2a_-CIOw2YQQ2QQe35M.
c41k4T4eAgCCt63m8ZNmMi0inMciFFypOFpvid7i6D0Ok

Jones, et al. Expires January 31, 2013 [Page 38]

Internet-Draft JWE July 2012

A.2.13. Validation

This example illustrates the process of creating a JWE with a non-
AEAD algorithm. These results can be used to validate JWE decryption
implementations for these algorithms. Since all the algorithms used
in this example produce deterministic results, the results above
should be repeatable.

A.3. Example Key Derivation with Outputs <= Hash Size

This example uses the Concat KDF to derive the Content Encryption Key
(CEK) and Content Integrity Key (CIK) from the Content Master Key
(CMK) in the manner described in Section 4.12 of [JWA]. In this
example, a 256 bit CMK is used to derive a 128 bit CEK and a 256 bit
CIK.

The CMK value 1is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106,
206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156,
44, 207]

A.3.1. CEK Generation

When deriving the CEK from the CMK, the ASCII label "Encryption"
([69, 110, 99, 114, 121, 112, 116, 105, 111, 110]) is used. The
input to the first hash round is the concatenation of the big endian

number 1 ([0, 0, O, 1]), the CMK, and the label. Thus the round 1
hash input is:

[0, ©, 0, 1, 4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250,
63, 170, 106, 206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, O,
240, 143, 156, 44, 207, 69, 110, 99, 114, 121, 112, 116, 105, 111,
110]

The SHA-256 hash of this value, which is the round 1 hash output, is:
[249, 255, 87, 218, 224, 223, 221, 53, 204, 121, 166, 130, 195, 184,
50, 69, 11, 237, 202, 71, 10, 96, 59, 199, 140, 88, 126, 147, 146,

113, 222, 41]

Given that 128 bits are needed for the CEK and the hash has produced
256 bits, the CEK value is the first 128 bits of that value:

[249, 255, 87, 218, 224, 223, 221, 53, 204, 121, 166, 130, 195, 184,
50, 69]

Jones, et al. Expires January 31, 2013 [Page 39]

Internet-Draft JWE July 2012

A.3.2. CIK Generation

When deriving the CIK from the CMK, the ASCII label "Integrity" ([73,
110, 116, 101, 103, 114, 105, 116, 121]) is used. The input to the
first hash round is the concatenation of the big endian number 1 ([0,
0, 0, 1]), the CMK, and the label. Thus the round 1 hash input is:

[0, 0, 0, 1, 4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250,
63, 170, 106, 206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, O,
240, 143, 156, 44, 207, 73, 110, 116, 101, 103, 114, 105, 116, 121]

The SHA-256 hash of this value, which is the round 1 hash output, is:

[218, 209, 130, 50, 169, 45, 70, 214, 29, 187, 123, 20, 3, 158, 111,
122, 182, 94, 57, 133, 245, 76, 97, 44, 193, 80, 81, 246, 115, 177,
225, 159]

Given that 256 bits are needed for the CIK and the hash has produced
256 bits, the CIK value is that same value:

[218, 209, 130, 50, 169, 45, 70, 214, 29, 187, 123, 20, 3, 158, 111,
122, 182, 94, 57, 133, 245, 76, 97, 44, 193, 80, 81, 246, 115, 177,
225, 159]

A.4. Example Key Derivation with Outputs >= Hash Size

This example uses the Concat KDF to derive the Content Encryption Key
(CEK) and Content Integrity Key (CIK) from the Content Master Key
(CMK) in the manner described in Section 4.12 of [JWA]. In this
example, a 512 bit CMK is used to derive a 256 bit CEK and a 512 bit
CIK.

The CMK value 1is:

[148, 116, 199, 126, 2, 117, 233, 76, 150, 149, 89, 193, 61, 34, 239,
226, 109, 71, 59, 160, 192, 140, 150, 235, 106, 204, 49, 176, 68,
119, 13, 34, 49, 19, 41, 69, 5, 20, 252, 145, 104, 129, 137, 138, 67,
23, 153, 83, 81, 234, 82, 247, 48, 211, 41, 130, 35, 124, 45, 156,
249, 7, 225, 168]

A.4.1. CEK Generation

When deriving the CEK from the CMK, the ASCII label "Encryption"
([69, 110, 99, 114, 121, 112, 116, 105, 111, 110]) is used. The
input to the first hash round is the concatenation of the big endian
number 1 ([0, O, O, 1]), the CMK, and the label. Thus the round 1
hash input is:

Jones, et al. Expires January 31, 2013 [Page 40]

Internet-Draft JWE July 2012

[0, ©, 0, 1, 148, 116, 199, 126, 2, 117, 233, 76, 150, 149, 89, 193,
61, 34, 239, 226, 109, 71, 59, 160, 192, 140, 150, 235, 106, 204, 49,
176, 68, 119, 13, 34, 49, 19, 41, 69, 5, 20, 252, 145, 104, 129, 137,
138, 67, 23, 153, 83, 81, 234, 82, 247, 48, 211, 41, 130, 35, 124,
45, 156, 249, 7, 225, 168, 69, 110, 99, 114, 121, 112, 116, 105, 111,
110]

The SHA-256 hash of this value, which is the round 1 hash output, is:

[137, 5, 92, 9, 17, 47, 17, 86, 253, 235, 34, 247, 121, 78, 11, 144,
10, 172, 38, 247, 108, 243, 201, 237, 95, 80, 49, 150, 116, 240, 159,
64]

Given that 256 bits are needed for the CEK and the hash has produced
256 bits, the CEK value is that same value:

[137, 5, 92, 9, 17, 47, 17, 86, 253, 235, 34, 247, 121, 78, 11, 144,
10, 172, 38, 247, 108, 243, 201, 237, 95, 80, 49, 150, 116, 240, 159,
64]

A.4.2. CIK Generation

When deriving the CIK from the CMK, the ASCII label "Integrity" ([73,
110, 116, 101, 103, 114, 105, 116, 121]) is used. The input to the
first hash round is the concatenation of the big endian number 1 ([0,
0, 0, 1]), the CMK, and the label. Thus the round 1 hash input is:

[0, 0, 0, 1, 148, 116, 199, 126, 2, 117, 233, 76, 150, 149, 89, 193,
61, 34, 239, 226, 109, 71, 59, 160, 192, 140, 150, 235, 106, 204, 49,
176, 68, 119, 13, 34, 49, 19, 41, 69, 5, 20, 252, 145, 104, 129, 137,
138, 67, 23, 153, 83, 81, 234, 82, 247, 48, 211, 41, 130, 35, 124,
45, 156, 249, 7, 225, 168, 73, 110, 116, 101, 103, 114, 105, 116,
121]

The SHA-256 hash of this value, which is the round 1 hash output, is:

[11, 179, 132, 177, 171, 24, 126, 19, 113, 1, 200, 102, 100, 74, 88,
149, 31, 41, 71, 57, 51, 179, 106, 242, 113, 211, 56, 56, 37, 198,
57, 17]

Given that 512 bits are needed for the CIK and the hash has produced
only 256 bits, another round is needed. The input to the second hash
round is the concatenation of the big endian number 2 ([0, 0, 0, 2]),
the CMK, and the label. Thus the round 2 hash input is:

[0, 0, 0, 2, 148, 116, 199, 126, 2, 117, 233, 76, 150, 149, 89, 193,
61, 34, 239, 226, 109, 71, 59, 160, 192, 140, 150, 235, 106, 204, 49,
176, 68, 119, 13, 34, 49, 19, 41, 69, 5, 20, 252, 145, 104, 129, 137,

Jones, et al. Expires January 31, 2013 [Page 41]

Internet-Draft JWE July 2012

138, 67, 23, 153, 83, 81, 234, 82, 247, 48, 211, 41, 130, 35, 124,
45, 156, 249, 7, 225, 168, 73, 110, 116, 101, 103, 114, 105, 116,
121]

The SHA-256 hash of this value, which is the round 2 hash output, is:

[149, 209, 221, 113, 40, 191, 95, 252, 142, 254, 141, 230, 39, 113,
139, 84, 44, 156, 247, 47, 223, 101, 229, 180, 82, 231, 38, 96, 170,
119, 236, 81]

Given that 512 bits are needed for the CIK and the two rounds have
collectively produced 512 bits of output, the CIK is the
concatenation of the round 1 and round 2 hash outputs, which is:

[11, 179, 132, 177, 171, 24, 126, 19, 113, 1, 200, 102, 100, 74, 88,
149, 31, 41, 71, 57, 51, 179, 106, 242, 113, 211, 56, 56, 37, 198,
57, 17, 149, 209, 221, 113, 40, 191, 95, 252, 142, 254, 141, 230, 39,
113, 139, 84, 44, 156, 247, 47, 223, 101, 229, 180, 82, 231, 38, 96,
170, 119, 236, 81]

Appendix B. Acknowledgements

Solutions for encrypting JSON content were also explored by JSON
Simple Encryption [JSE] and JavaScript Message Security Format
[I-D.rescorla-jsms], both of which significantly influenced this
draft. This draft attempts to explicitly reuse as many of the
relevant concepts from XML Encryption 1.1
[W3C.CR-xmlenc-corel-20120313] and RFC 5652 [RFC5652] as possible,
while utilizing simple compact JSON-based data structures.

Special thanks are due to John Bradley and Nat Sakimura for the
discussions that helped inform the content of this specification and
to Eric Rescorla and Joe Hildebrand for allowing the reuse of text
from [I-D.rescorla-jsms] in this document.

Thanks to Axel Nennker, Emmanuel Raviart, Brian Campbell, and Edmund
Jay for validating the examples in this specification.

Appendix C. Document History
[[to be removed by the RFC editor before publication as an RFC]]
-05

0 Support both direct encryption using a shared or agreed upon
symmetric key, and the use of a shared or agreed upon symmetric

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5652

Jones, et al. Expires January 31, 2013 [Page 42]

Internet-Draft JWE July 2012

(0]

key to key wrap the CMK.

-04

-03

Added statement that "StringOrURI values are compared as case-
sensitive strings with no transformations or canonicalizations
applied".

Updated open issues.

Indented artwork elements to better distinguish them from the body
text.

Refer to the registries as the primary sources of defined values
and then secondarily reference the sections defining the initial
contents of the registries.

Normatively reference XML Encryption 1.1
[W3C.CR-xmlenc-corel-20120313] for its security considerations.
Reference draft-jones-jose-jwe-json-serialization instead of
draft-jones-json-web-encryption-json-serialization.

Described additional open issues.

Applied editorial suggestions.

Added the "kdf" (key derivation function) header parameter to
provide crypto agility for key derivation. The default KDF
remains the Concat KDF with the SHA-256 digest function.
Reordered encryption steps so that the Encoded JWE Header is
always created before it is needed as an input to the AEAD
"additional authenticated data" parameter.

Added the "cty" (content type) header parameter for declaring type
information about the secured content, as opposed to the "typ"
(type) header parameter, which declares type information about
this object.

Moved description of how to determine whether a header is for a
JWS or a JWE from the JWT spec to the JWE spec.

Added complete encryption examples for both AEAD and non-AEAD

algorithms.

https://datatracker.ietf.org/doc/html/draft-jones-jose-jwe-json-serialization
https://datatracker.ietf.org/doc/html/draft-jones-json-web-encryption-json-serialization

Jones, et al. Expires January 31, 2013 [Page 43]

Internet-Draft JWE July 2012

o Added complete key derivation examples.

0 Added "Collision Resistant Namespace" to the terminology section.
0 Reference ITU.X690.1994 for DER encoding.

0o Added Registry Contents sections to populate registry values.

0 Numerous editorial improvements.

-02

0 When using AEAD algorithms (such as AES GCM), use the "additional
authenticated data" parameter to provide integrity for the header,
encrypted key, and ciphertext and use the resulting
"authentication tag" value as the JWE Integrity Value.

o Defined KDF output key sizes.

0 Generalized text to allow key agreement to be employed as an
alternative to key wrapping or key encryption.

0o Changed compression algorithm from gzip to DEFLATE.

0 Clarified that it is an error when a "kid" value is included and
no matching key is found.

o Clarified that JWEs with duplicate Header Parameter Names MUST be
rejected.

o Clarified the relationship between "typ" header parameter values
and MIME types.

0 Registered application/jwe MIME type and "JWE" typ header
parameter value.

o Simplified JWK terminology to get replace the "JWK Key Object" and
"JWK Container Object" terms with simply "JSON Web Key (JWK)" and
"JSON Web Key Set (JWK Set)" and to eliminate potential confusion
between single keys and sets of keys. As part of this change, the
header parameter name for a public key value was changed from
"jpk"™ (JSON Public Key) to "jwk" (JSON Web Key).

0 Added suggestion on defining additional header parameters such as
"x5t#S256" in the future for certificate thumbprints using hash
algorithms other than SHA-1.

Jones, et al. Expires January 31, 2013 [Page 44]

Internet-Draft JWE July 2012

0 Specify RFC 2818 server identity validation, rather than REC 6125
(paralleling the same decision in the OAuth specs).

0 Generalized language to refer to Message Authentication Codes
(MACs) rather than Hash-based Message Authentication Codes (HMACs)
unless in a context specific to HMAC algorithms.

o Reformatted to give each header parameter its own section heading.
-01
0 Added an integrity check for non-AEAD algorithms.

o Added "jpk" and "x5c" header parameters for including JWK public
keys and X.509 certificate chains directly in the header.

0 Clarified that this specification is defining the JWE Compact
Serialization. Referenced the new JWE-JS spec, which defines the
JWE JSON Serialization.

0 Added text "New header parameters should be introduced sparingly
since an implementation that does not understand a parameter MUST
reject the JwWE".

o Clarified that the order of the encryption and decryption steps is
not significant in cases where there are no dependencies between
the inputs and outputs of the steps.

0 Made other editorial improvements suggested by JOSE working group
participants.

-00

o Created the initial IETF draft based upon
draft-jones-json-web-encryption-02 with no normative changes.

o Changed terminology to no longer call both digital signatures and
HMACs "signatures".
Authors' Addresses

Michael B. Jones
Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/draft-jones-json-web-encryption-02
http://self-issued.info/

Jones, et al. Expires January 31, 2013 [Page 45]

Internet-Draft JWE July 2012

Eric Rescorla

RTFM, Inc.

Email: ekr@rtfm.com
Joe Hildebrand

Cisco Systems, Inc.

Email: jhildebr@cisco.com

Jones, et al. Expires January 31, 2013 [Page 46]

