
Network Working Group C. Boulton
Internet-Draft NS-Technologies
Intended status: Standards Track L. Miniero
Expires: January 11, 2013 Meetecho
 G. Munson
 AT&T
 July 10, 2012

Media Resource Brokering
draft-ietf-mediactrl-mrb-13

Abstract

 The MediaCtrl work group in the IETF has proposed an architecture for
 controlling media services. The Session Initiation Protocol (SIP) is
 used as the signalling protocol which provides many inherent
 capabilities for message routing. In addition to such signalling
 properties, a need exists for intelligent, application level media
 service selection based on non-static signalling properties. This is
 especially true when considered in conjunction with deployment
 architectures that include 1:M and M:N combinations of Application
 Servers and Media Servers. This document introduces a Media Resource
 Broker (MRB) entity which manages the availability of Media Servers
 and the media resource demands of Application Servers. The document
 includes potential deployment options for an MRB and appropriate
 interfaces to Application Servers and Media Servers.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 11, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the

Boulton, et al. Expires January 11, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Media Resource Brokering July 2012

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Conventions and Terminology 7
3. Problem Discussion . 8
4. Deployment Scenario Options 9
4.1. Query MRB . 9
4.1.1. Hybrid Query MRB 10

4.2. In-Line MRB . 11
5. MRB Interface Definitions 14
5.1. Media Server Resource Publish Interface 14
5.1.1. Control Package Definition 15
5.1.2. Element Definitions 16
5.1.3. <mrbrequest> . 17
5.1.4. <mrbresponse> . 19
5.1.5. <mrbnotification> 20

5.2. Media Service Resource Consumer Interface 31
5.2.1. Query Mode / HTTP Consumer Interface Usage 32
5.2.2. In-Line Aware Mode / SIP Consumer Interface Usage . . 32
5.2.3. Consumer Interface Lease Mechanism 35
5.2.4. <mrbconsumer> . 38
5.2.5. Media Service Resource Request 38
5.2.6. Media Service Resource Response 51

5.3. In-Line Unaware MRB Interface 53
6. MRB acting as a B2BUA . 55
7. Multi-modal MRB Implementations 56
8. Relative Merits of Query Mode, IAMM, and IUMM 57
9. Examples . 59
9.1. Publish Example . 59
9.2. Consumer Example . 65
9.2.1. Query Example . 65
9.2.2. IAMM Example . 68

10. Media Service Resource Publisher Interface XML Schema 83
11. Media Service Resource Consumer Interface XML Schema 106
12. Security Considerations 127

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Boulton, et al. Expires January 11, 2013 [Page 2]

Internet-Draft Media Resource Brokering July 2012

13. IANA Considerations . 130
13.1. Media Control Channel Framework Package Registration . . 130
13.2. application/mrb-publish+xml Media Type 130
13.3. application/mrb-consumer+xml MIME Type 131
13.4. URN Sub-Namespace Registration for mrb-publish 132
13.5. URN Sub-Namespace Registration for mrb-consumer 132
13.6. XML Schema Registration for mrb-publish 132
13.7. XML Schema Registration for mrb-consumer 133

14. Changes . 134
14.1. Changes from 12 Version 134
14.2. Changes from 11 Version 134
14.3. Changes from 10 Version 134
14.4. Changes from 09 Version 135
14.5. Changes from 08 Version 135
14.6. Changes from 07 Version 135
14.7. Changes from 06 Version 136
14.8. Changes from 05 Version 136
14.9. Changes from 04 Version 136
14.10. Changes from 03 Version 136
14.11. Changes from 02 Version 137
14.12. Changes from 01 Version 137
14.13. Changes from 00 Version 137

15. Acknowledgements . 138
16. References . 139
16.1. Normative References 139
16.2. Informative References 140

 Authors' Addresses . 142

Boulton, et al. Expires January 11, 2013 [Page 3]

Internet-Draft Media Resource Brokering July 2012

1. Introduction

 As IP based multimedia infrastructures mature, the complexity and
 demands from deployments increase. Such complexity will result in a
 wide variety of capabilities from a range of vendors that should all
 be interoperable using the architecture and protocols produced by the
 MediaCtrl work group. It should be possible for a controlling entity
 to be assisted in Media Server selection so that the most appropriate
 resource is selected for a particular operation. The importance
 increases when you introduce a flexible level of deployment
 scenarios, as specified in the RFC 5167 [RFC5167] and RFC 5567
 [RFC5567] documents. These documents make statements like "it should
 be possible to have a many-to-many relationship between Application
 Servers and Media Servers that use this protocol". This leads to the
 following deployment architectures being possible when considering
 media resources, to provide what can be effectively described as
 Media Resource Brokering.

 The simplest deployment view is illustrated in Figure 1.

 +---+-----+---+ +---+-----+---+
 | Application | | Media |
 | Server |<-------MS Control------>| Server |
 +-------------+ +-------------+

 Figure 1: Basic Architecture

 This simply involves a single Application Server and Media Server.
 Expanding on this view, it is also possible for an Application Server
 to control multiple (greater that 1) Media Server instances at any
 one time. This deployment view is illustrated in Figure 2.
 Typically, such architectures are associated with application logic
 that requires high demand media services. It is more than possible
 that each media server possesses a different media capability set.
 Media servers may offer different media services as specified in the
 Mediactrl architecture document. A Media server may have similar
 media functionality but may have different capacity or media codec
 support.

https://datatracker.ietf.org/doc/html/rfc5167
https://datatracker.ietf.org/doc/html/rfc5167
https://datatracker.ietf.org/doc/html/rfc5567
https://datatracker.ietf.org/doc/html/rfc5567

Boulton, et al. Expires January 11, 2013 [Page 4]

Internet-Draft Media Resource Brokering July 2012

 +---+-----+---+
 | Media |
 +----->| Server |
 | +-------------+
 |
 +---+-----+---+ | +---+-----+---+
 | Application | | | Media |
 | Server |<--MS Control-----+----->| Server |
 +-------------+ | +-------------+
 |
 | +---+-----+---+
 +----->| Media |
 | Server |
 +-------------+

 Figure 2: Multiple Media Servers

 Figure 3 conveys the opposite view to that in Figure 2. In this
 model there are a number of (greater than 1) application servers,
 possibly supporting dissimilar applications, controlling a single
 media server. Typically, such architectures are associated with
 application logic that requires low demand media services.

 +---+-----+---+
 | Application |
 | Server |<-----+
 +-------------+ |
 |
 +---+-----+---+ | +---+-----+---+
 | Application | | | Media |
 | Server |<-----+-----MS Control-->| Server |
 +-------------+ | +-------------+
 |
 +---+-----+---+ |
 | Application | |
 | Server |<-----+
 +-------------+

 Figure 3: Multiple Application Servers

 The final deployment view is the most complex. In this model (M:N)
 there exists any number of Application Servers and any number of
 Media Servers. It is again possible in this model that media servers
 might not be homogeneous and have different capability sets and

Boulton, et al. Expires January 11, 2013 [Page 5]

Internet-Draft Media Resource Brokering July 2012

 capacity.

 +---+-----+---+ +---+-----+---+
 | Application | | Media |
 | Server |<-----+ +---->| Server |
 +-------------+ | | +-------------+
 | |
 +---+-----+---+ | | +---+-----+---+
 | Application | | | | Media |
 | Server |<-----+-MS Control-+---->| Server |
 +-------------+ | | +-------------+
 | |
 +---+-----+---+ | | +---+-----+---+
 | Application | | +---->| Media |
 | Server |<-----+ | Server |
 +-------------+ +---+-----+---+

 Figure 4: Basic Architecture

 The remaining sections in this specification will focus on a new
 entity called a Media Resource Broker (MRB) which can be utilised in
 the deployment architectures described previously in this section.
 The MRB entity provides the ability to obtain media resource
 information and appropriately allocate(broker) on behalf of client
 applications.

 The high level deployment options discussed in this section rely on
 network architecture and policy to prohibit inappropriate use. Such
 policies are out of the scope of this document.

 This document will take a look at the specific problem areas related
 to such deployment architectures. It is recognised that the
 solutions proposed in this document should be equally adaptable to
 all of the previously described deployment models. It is also
 recognised that the solution is far more relevant to some of the
 previously discussed deployment models and can almost be viewed as
 redundant on others.

Boulton, et al. Expires January 11, 2013 [Page 6]

Internet-Draft Media Resource Brokering July 2012

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This document inherits terminology proposed in RFC 5567 [RFC5567] and
 Media Control Channel Framework [RFC6230] documents. In addition,
 the following terms are defined for use in this document and for use
 in the context of the MediaCtrl Work group in the IETF:

 Media Resource Broker (MRB): A logical entity that is responsible
 for both collection of appropriate published Media Server (MS)
 information and selecting appropriate MS resources on behalf of
 consuming entities.

 Query MRB: An instantiation of an MRB (See previous definition)
 that provides an interface for an Application Server to retrieve
 the address of an appropriate Media Server. The result returned
 to the Application Server can be influenced by information
 contained in the query request.

 In-line MRB: An instantiation of an MRB (See definition) that
 directly receives requests on the signalling path. There is no
 separate query.

 CFW: Media Control Channel Framework, as specified in [RFC6230].

 Within the context of In-line MRBs, additional terms are defined:

 In-line Aware MRB Mode (IAMM): Defined in Section 5.2.2.1.

 In-line Unaware MRB Mode (IUMM): Defined in Section 5.3.

 The document will often specify when a specific identifier in a
 protocol message needs to be unique. Unless differently stated, such
 uniqueness will always need to be intended within the scope of the
 Media Servers controlled by the same Media Resource Broker. The
 interaction among different Media Resource Brokers, as the
 partitioning of a logical Media Resource Broker, is out of scope to
 this document.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5567
https://datatracker.ietf.org/doc/html/rfc5567
https://datatracker.ietf.org/doc/html/rfc6230
https://datatracker.ietf.org/doc/html/rfc6230

Boulton, et al. Expires January 11, 2013 [Page 7]

Internet-Draft Media Resource Brokering July 2012

3. Problem Discussion

 As anticipated in Section 1, the main aim of the MediaCtrl group is
 to produce a solution that must service a wide variety of deployment
 architectures. These range from the simplest 1:1 relationship
 between Media Servers and Application Servers to potentially linearly
 scaling 1:M, M:1 and M:N deployments.

 This still does not seem like a major issue for the proposed solution
 until you add a number of additional factors into the equation that
 increase complexity. As Media Servers evolve it must be taken into
 consideration that, where many can exist in a deployment, they may
 not have been produced by the same vendor and may not have the same
 capability set. It should be possible for an Application Server that
 exists in a deployment to select a Media Service based on a common,
 appropriate capability set. In conjunction with capabilities, it is
 also important to take available resources into consideration. The
 ability to select an appropriate Media Service function is an
 extremely useful feature but becomes even more powerful when
 considered with available resources for servicing a request.

 In conclusion, the intention is to create a tool set that allows
 MediaCtrl deployments to effectively utilize the available media
 resources. It should be noted that in the simplest deployments where
 only a single media server exists, an MRB function is probably not
 required. Only a single capability set exists and resource
 unavailability can be handled using the appropriate underlying
 signalling, e.g., SIP response. This document does not prohibit such
 uses of an MRB, it simply provides the tools for various entities to
 interact where appropriate. It is also worth noting that the tools
 provided in this document aim to provide a 'best effort' view of
 media resources at the time of request for initial Media Server
 routing decisions. Any dramatic change in media capabilities after a
 request has taken place should be handled by the underlying protocol.

 Please note that there may be additional information that it is
 desirable for the MRB to have for purposes of selecting a MS
 resource, such as resource allocation rules across different
 applications, planned or unplanned downtime of Media Server
 resources, the planned addition of future Media Server resources, or
 MS resource capacity models. How the MRB acquires such information
 is outside the scope of this document. The techniques used for
 selecting an appropriate Media Resource by an MRB is outside the
 scope of this document.

Boulton, et al. Expires January 11, 2013 [Page 8]

Internet-Draft Media Resource Brokering July 2012

4. Deployment Scenario Options

 On researching Media Resource Brokering it became clear that a couple
 of high level models exist. The general principles of "in-line" and
 "query" MRB concepts are discussed in the rest of this section. It
 should be noted that while the interfaces are different they both use
 common mechanisms.

4.1. Query MRB

 The "Query" model for MRB interactions provides the ability for a
 client of media services (for example an Application Server) to "ask"
 an MRB for an appropriate Media Server, as illustrated in Figure 5.

 +---+-----+---+
 +------------>| MRB |<----------+----<-----+---+
 | +-------------+ (1)| | | |
 | | | |
 |(2) +---+--+--+---+ | |
 | | Media | | |
 | +---->| Server | | |
 | | +-------------+ | |
 | | (1)| |
 +---+--+--+---+ | +---+-----+---+ | |
 | Application | | | Media | | |
 | Server |<-----+-MS Control-+---->| Server |->-+ |
 +-------------+ (3) | +-------------+ |
 | |
 | +---+-----+---+ (1)|
 +---->| Media | |
 | Server |--->---+
 +---+-----+---+

 Figure 5: Query MRB

 In this deployment, the Media Servers use the "Media Server Resource
 Publish Interface", as discussed in Section 5.1, to convey capability
 sets as well as resource information. This is depicted by (1) in
 Figure 5. It is then the MRB's responsibility to accumulate all
 appropriate information relating to media services in the logical
 deployment cluster. The Application Server (or other media services
 client) is then able to query the MRB for an appropriate resource (as
 identified by (2) in Figure 5). Such a query would carry specific
 information related to the Media Service required and enable the MRB
 to provide an increased accuracy in its response. This particular
 interface is discussed in "Media Resource Consumer Interface" in

Boulton, et al. Expires January 11, 2013 [Page 9]

Internet-Draft Media Resource Brokering July 2012

Section 5.2. The Application Server is then able to direct control
 commands (for example create conference) and Media Dialogs to the
 appropriate Media Server, as shown by (3) in Figure 5. Additionally,
 with Query MRB, the MRB is not in the signaling path between the AS
 and the selected MS resource.

4.1.1. Hybrid Query MRB

 As mentioned previously, it is the intention that a tool kit is
 provided for MRB functionality within a MediaCtrl architecture. It
 is expected that in specific deployment scenarios the role of the MRB
 might be co-hosted as a hybrid logical entity with an Application
 Server, as shown in Figure 6.

 +------------<----------------<---------+----<-----+---+
 | (1) | | | |
 | | | |
 | +---+--+--+---+ | |
 | | Media | | |
 V +---->| Server | | |
 +------+------+ | +-------------+ | |
 | MRB | | | |
 +---+--+--+---+ | +---+-----+---+ | |
 | Application | | | Media | | |
 | Server |<-----+-MS Control-+---->| Server |->-+ |
 +-------------+ | +-------------+ |
 | |
 | +---+-----+---+ |
 +---->| Media | |
 | Server |--->---+
 +---+-----+---+

 Figure 6: Hybrid Query MRB - AS Hosted

 This diagram is identical to that in Figure 5 with the exception that
 the MRB is now hosted on the Application Server. The "Media Server
 Publish Interface" is still being used to accumulate resource
 information at the MRB but as it is co-hosted on the Application
 Server, the "Media Server Consumer Interface" has collapsed. It
 might still exist within the Application Server/MRB interaction but
 this is an implementation issue. This type of deployment suits a
 single Application Server environment but it should be noted that a
 "Media Server Consumer Interface" could then be offered from the
 hybrid if required.

 In a similar manner, the Media Server could also act as a hybrid for

Boulton, et al. Expires January 11, 2013 [Page 10]

Internet-Draft Media Resource Brokering July 2012

 the deployment cluster, as illustrated in Figure 7.

 (1) +---+-----+---+
 +---+---+------------->---------------->----------->| MRB |
 | | | +---+--+--+---+ +---+-----+---+
 | | +-<-| Application | | Media |
 | | | Server |<--+-MS Control-+------->| Server |
 | | +-------------+ | +-------------+
	+---+--+--+---+	
+---<---	Application	
	Server	<--+-MS Control-+--+
+-------------+		
+---+--+--+---+		
 +---<-------| Application | |
 | Server |<--+-MS Control-+--+
 +-------------+

 Figure 7: Hybrid Query MRB - MS Hosted

 This time the MRB has collapsed and is co-hosted by the Media Server.
 The "Media Server Consumer Interface" is still available to the
 Application Servers (1) to query Media Server resources. This time
 the "Media Server Publish Interface" has collapsed onto the Media
 Server. It might still exist within the Media Server/MRB interaction
 but this is an implementation issue. This type of deployment suits a
 single Media Server environment but it should be noted that a "Media
 Server Publish Interface" could then be offered from the hybrid if
 required. A typical use case scenario for such a topology would be a
 single MS representing a pool of MSs in a cluster. In that case, the
 MRB would actually be handling a cluster of MSs, rather than one.

4.2. In-Line MRB

 The "In-line" MRB is architecturally different from the "Query" model
 that was discussed in the previous section. The concept of a
 separate query disappears. The client of the MRB simply uses the
 media resource control and media dialog signalling to involve the
 MRB. This type of deployment is illustrated in Figure 8.

Boulton, et al. Expires January 11, 2013 [Page 11]

Internet-Draft Media Resource Brokering July 2012

 +-------<----------+----<-------+---+
 | | (1) | | |
 | | | |
 | +---+--+--+---+ | |
 | | Media | | |
 | +------>| Server | | |
 | |(3) +-------------+ | |
 | | (1)| |
 +---+--+--+---+ | | +---+-----+---+ | |
 | Application | (2) +---+--V--+---+ (3) | Media | | |
 | Server |----->| MRB |----->| Server |->-+ |
 +-------------+ +---+-----+---+ +-------------+ |
 | |
 | (3) +---+-----+---+ (1)|
 +------>| Media | |
 | Server |--->---+
 +---+-----+---+

 Figure 8: In-line MRB

 The Media Servers still use the 'Media Server Publish Interface' to
 convey capabilities and resources to the MRB - as illustrated by (1).
 The media server Control (and Media dialogs as well, if required) is
 sent to the MRB (2) which then selects an appropriate Media Server
 (3) and would stay in the signaling path between the AS and the MS
 resource for the handled dialogs.

 In-line MRB can be split into two distinct logical roles which can be
 applied on a per request basis. They are:

 In-line Unaware MRB Mode (IUMM): Allows an MRB to act on behalf of
 clients requiring media services who are not aware of an MRB or
 its operation. In this case the AS does not provide explicit
 information on the kind of MS resource it needs (as in

Section 5.2) and the MRB is left to deduce it by potentially
 inspecting other information in the request from the AS; for
 example, SDP content, or address of the requesting AS, or
 additional Request-URI parameters as per RFC 4240 [RFC4240].

 In-line Aware MRB Mode (IAMM): Allows an MRB to act on behalf of
 clients requiring media services who are aware of an MRB and its
 operation. In particular it allows the AS to explicitly the
 convey the same kinds of MS characteristics desired as does the
 Query MRB mode (as in Section 5.2).

 In either role, signalling as specified by the Media Control Channel
 Framework ([RFC6230]) would be involved, and the MRB would deduce

https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc6230

Boulton, et al. Expires January 11, 2013 [Page 12]

Internet-Draft Media Resource Brokering July 2012

 that the selected MS resources are no longer needed when the AS or MS
 terminates the corresponding dialog. The two modes are discussed in
 more detail in Section 5.3.

Boulton, et al. Expires January 11, 2013 [Page 13]

Internet-Draft Media Resource Brokering July 2012

5. MRB Interface Definitions

 The intention is to provide a tool-kit for a variety of deployment
 architectures where media resource brokering can take place. Two
 main interfaces are required to support the differing requirements.
 The two interfaces are described in the remainder of this section and
 have been named the 'Media Server Resource Publish' and 'Media Server
 Resource Consumer' interfaces.

 It is beyond the scope of this document to define exactly how to
 construct an MRB using the interfaces described. It is, however,
 important that the two interfaces are complimentary so that
 development of appropriate MRB functionality is supported.

5.1. Media Server Resource Publish Interface

 The Media Server Resource Publish interface is responsible for
 providing an MRB with appropriate Media Server resource information.
 As such, this interface is assumed to provide both general and
 specific details related to Media Server resources. This information
 needs to be conveyed using an industry standard mechanism to provide
 increased levels of adoption and interoperability. A Control Package
 for the Media Control Channel Framework will be specified to fulfil
 this interface requirement. It provides an establishment and
 monitoring mechanism to enable a Media Server to report appropriate
 statistics to an MRB. The Publish interface is used with both Query
 and In-line modes of MRB operation.

 As already anticipated in the introduction, the MRB view of MS
 resource availability will in practice be approximate - i.e., partial
 and imperfect. The MRB Publish interface does not provide an
 exhaustive view of current MS resource consumption, the MS may in
 some cases provide a best-effort computed view of resource
 consumption parameters conveyed in the Publish interface (e.g., DSP's
 with a fixed number of streams versus GPU's with CPU availability).
 Media Resource information may only be reported periodically over the
 Publish interface to MRB.

 It is also worth noting that, while the scope of the MRB is in
 providing interested Application Servers with the available
 resources, the MRB also allows for the retrieval of information about
 consumed resources. While this is of course a relevant piece of
 information (e.g., for monitoring purposes), such functionality
 inevitably raises security considerations, and implementations should
 take this into account. See Section 12 for more details.

 The MRB Publish interface uses the Media Control Channel Framework
 ([RFC6230]) as the basis for interaction between a Media Server and

https://datatracker.ietf.org/doc/html/rfc6230

Boulton, et al. Expires January 11, 2013 [Page 14]

Internet-Draft Media Resource Brokering July 2012

 an MRB. The Media Control Channel Framework uses an extension
 mechanism to allow specific usages which are known as control
 packages. Section 5.1.1 defines the control package that MUST be
 implemented by any Media Server wanting to interact with an MRB
 entity.

5.1.1. Control Package Definition

 This section fulfils the mandatory requirement for information that
 must be specified during the definition of a Control Framework
 Package, as detailed in Section 8 of [RFC6230].

5.1.1.1. Control Package Name

 The Media Channel Control Framework requires a Control Package
 definition to specify and register a unique name and version.

 The name and version of this Control Package is "mrb-publish/1.0".

5.1.1.2. Framework Message Usage

 The MRB publish interface allows a media server to convey available
 capabilities and resources to an MRB entity.

 This package defines XML elements in Section 5.1.2 and provides an
 XML Schema in Section 10.

 The XML elements in this package are split into requests, responses
 and event notifications. Requests are carried in CONTROL message
 bodies; <mrbrequest> element is defined as a package request. This
 request can be used for creating new subscriptions and updating/
 removing existing subscriptions. Event notifications are also
 carried in CONTROL message bodies; the <mrbnotification> element is
 defined for package event notifications. Responses are carried
 either in REPORT message or Control Framework 200 response bodies;
 the <mrbresponse> element is defined as a package level response.

 Note that package responses are different from framework response
 codes. Framework error response codes (see Section 7 of [RFC6230])
 are used when the request or event notification is invalid; for
 example, a request has invalid XML (400), or is not understood (500).
 Package level responses are carried in framework 200 response or
 REPORT message bodies. This package's response codes are defined in

Section 5.1.4.

https://datatracker.ietf.org/doc/html/rfc6230#section-8
https://datatracker.ietf.org/doc/html/rfc6230#section-7

Boulton, et al. Expires January 11, 2013 [Page 15]

Internet-Draft Media Resource Brokering July 2012

5.1.1.3. Common XML Support

 The Media Control Channel Framework [RFC6230] requires a Control
 Package definition to specify if the attributes for media dialog or
 conference references are required.

 The Publish interface defined in Section 10 does import and make use
 of the common XML schema defined in the Media Control Channel
 Framework.

 The Consumer interface defined in Section 11 does import and make use
 of the common XML schema defined in the Media Control Channel
 Framework.

5.1.1.4. CONTROL Message Body

 A valid CONTROL body message MUST conform to the schema defined in
Section 10 and described in Section 5.1.2. XML messages appearing in

 CONTROL messages MUST contain either a <mrbrequest> or
 <mrbnotification> element.

5.1.1.5. REPORT Message Body

 A valid REPORT body MUST conform to the schema defined in Section 10
 and described in Section 5.1.2. XML messages appearing in REPORT
 messages MUST contain a <mrbresponse> element.

5.1.1.6. Audit

 The 'mrb-publish/1.0' Media Control Channel Framework package does
 not require any additional auditing capability.

5.1.2. Element Definitions

 This section defines the XML elements for the Publish interface Media
 Control Channel package defined in Section 5.1. The formal XML
 schema definition for the Publish interface can be found in

Section 10.

 The root element is <mrbpublish>. All other XML elements (requests,
 responses, notifications) are contained within it. The MRB Publish
 interface request element is detailed in Section 5.1.3. The MRB
 Publish interface notification element is detailed in Section 5.1.5.
 MRB Publish interface response element is contained in Section 5.1.4.

 The <mrbpublish> element has zero or more of the following
 attributes:

https://datatracker.ietf.org/doc/html/rfc6230

Boulton, et al. Expires January 11, 2013 [Page 16]

Internet-Draft Media Resource Brokering July 2012

 version: a token specifying the mrb-publish package version. The
 value is fixed as '1.0' for this version of the package. The
 attribute MUST be present.

 The <mrbpublish> element has the following child elements, only one
 of which is allowed to occur in a request.

 <mrbrequest> for sending an MRB request. See Section 5.1.3.

 <mrbresponse> for sending an MRB response. See Section 5.1.4.

 <mrbnotification> for sending an MRB notification. See
Section 5.1.5.

5.1.3. <mrbrequest>

 This section defines the <mrbrequest> element used to initiate
 requests from an MRB to a Media Server. The element describes
 information relevant for the interrogation of a media server.

 The <mrbrequest> element has no defined attributes.

 The <mrbrequest> element has zero or more of the following child
 elements:

 <subscription> for initiating a subscription to a Media Server
 from an MRB. See Section 5.1.3.1.

5.1.3.1. <subscription>

 The <subscription> element is included in a request from an MRB to a
 Media Server to provide the details relating to the configuration of
 updates. This element can be used either to request a new
 subscription or to update an existing one (e.g., to change the
 frequency of the updates), and to remove ongoing subscriptions as
 well (e.g., to stop an indefinite update). The MRB will inform the
 Media Server how long it wishes to receive updates for and the
 frequency that updates should be sent. Updates related to the
 subscription are sent using the <mrbnotification> element.

 The <subscription> element has the following attributes:

 id: indicates a unique token representing the subscription session
 between the MRB and the Media Server. The attribute MUST be
 present.

Boulton, et al. Expires January 11, 2013 [Page 17]

Internet-Draft Media Resource Brokering July 2012

 seqnumber: indicates a sequence number to be used in conjunction
 with the subscription session id to identify a specific
 subscription command. The first subscription MUST have 1 as
 'seqnumber', and following subscriptions MUST increment by 1 the
 previous 'seqnumber' value. The attribute MUST be present.

 action: provides the operation that should be carried out on the
 subscription:

 * The value of 'create' instructs the MS to attempt to set-up a
 new subscription.

 * The value of 'update' instructs the MS to attempt to update an
 existing subscription.

 * The value of 'remove' instructs the MS to attempt to remove an
 existing subscription and consequently stop any ongoing related
 notification.

 The attribute MUST be present.

 The <subscription> element has zero or more of the following child
 elements:

 <expires>: Provides the amount of time in seconds that a
 subscription should be installed for notifications at the Media
 Server. Once the amount of time has passed, the subscription
 expires and the MRB has to subscribe again in case it is still
 interested in receiving notifications from the MS. The element
 MAY be present.

 <minfrequency>: Provides the minimum frequency in seconds that the
 MRB wishes to receive notifications from the MS. The element MAY
 be present.

 <maxfrequency>: Provides the maximum frequency in seconds that the
 MRB wishes to receive notifications from the MS. The element MAY
 be present.

 Please note that these three optional pieces of information provided
 by the MRB only act as a suggestion: the MS MAY change the proposed
 values if it considers the suggestions unacceptable (e.g., if the MRB
 has requested a too high notification frequency). In such case, the
 request would not fail, but the updated, acceptable values would be
 reported in the <mrbresponse> accordingly.

Boulton, et al. Expires January 11, 2013 [Page 18]

Internet-Draft Media Resource Brokering July 2012

5.1.4. <mrbresponse>

 Responses to requests are indicated by a <mrbresponse> element.

 The <mrbresponse> element has the following attributes:

 status: numeric code indicating the response status. The attribute
 MUST be present.

 reason: string specifying a reason for the response status. The
 attribute MAY be present.

 The <mrbresponse> element has zero or more of the following child
 elements:

 <subscription> for providing details related to a subscription a
 Media Server requested (see below in this section).

 The following status codes are defined for 'status':

 +-----------+---+
 | code | description |
 +-----------+---+
200	OK
400	Syntax error
401	Unable to create Subscription
402	Unable to update Subscription
403	Unable to remove Subscription
404	Subscription does not exist
405	Subscription already exists
420	Unsupported attribute or element
 +-----------+---+

 Table 1: <mrbresponse> status codes

 In case a new subscription request made by an MRB (action='create')
 has been accepted, the MS MUST reply with a <mrbresponse> with status
 code 200. The same rule applies whenever a request to update
 (action='update') or remove (action='remove') an existing transaction
 can be fulfilled by the MS.

Boulton, et al. Expires January 11, 2013 [Page 19]

Internet-Draft Media Resource Brokering July 2012

 A subscription request, nevertheless, may fail for several reasons.
 In such a case, the status codes defined in Table 1 must be used
 instead. Specifically, if the MS fails to handle a request due to a
 syntax error in the request itself (e.g., incorrect XML, violation of
 the schema constraints or invalid values in any of the attributes/
 elements) the MS MUST reply with a <mrbresponse> with status code
 400. If a syntactically correct request fails because the request
 also includes any attribute/element the MS doesn't understand, the MS
 MUST reply with a <mrbresponse> with status code 420. If a
 syntactically correct request fails because the MRB wants to create a
 new subscription, but the provided intended id for the subscription
 already exists, the MS MUST reply with a <mrbresponse> with status
 code 405. If a syntactically correct request fails because the MRB
 wants to update/remove a subscription that doesn't exist, the MS MUST
 reply with a <mrbresponse> with status code 404. If the MS is unable
 to accept a request for any other reason (e.g., the MRB has no more
 resources to fulfil the request), the MS MUST reply with a
 <mrbresponse> with status code 401/402/403, depending on the action
 the MRB provided in its request:

 o action='create' --> 401;

 o action='update' --> 402;

 o action='remove' --> 403;

 A response to a subscription request that has a status of "200"
 indicates that the request is successful. The response MAY also
 contain a <subscription> child that describes the subscription. The
 <subscription> child MAY contain 'expires', 'minfrequency' and
 'maxfrequency' values even if they were not contained in the request.

 The MS MAY change the suggested 'expires', 'minfrequency' and
 'maxfrequency' values provided by the MRB in its <mrbrequest>, if it
 considers them unacceptable (e.g., the requested frequency range is
 too high). In such a case, the response MUST contain a
 <subscription> element describing the subscription as the MS accepted
 it, and the MS MUST include in the <subscription> element all of
 those values that it modified relative to the request, to inform the
 MRB about the change.

5.1.5. <mrbnotification>

 The <mrbnotification> element is included in a request from a Media
 Server to an MRB to provide the details relating current status. The
 Media Server will inform the MRB of its current status as defined by
 the information in the <subscription> element. Updates are sent
 using the <mrbnotification> element.

Boulton, et al. Expires January 11, 2013 [Page 20]

Internet-Draft Media Resource Brokering July 2012

 The <mrbnotification> element has the following attributes:

 id: indicates a unique token representing the session between the
 MRB and the Media Server and is the same as the one appearing in
 the <subscription> element. The attribute MUST be present.

 seqnumber: indicates a sequence number to be used in conjunction
 with the subscription session id to identify a specific
 notification update. The first notification MUST have 1 as
 'seqnumber', and following notifications MUST increment by 1 the
 previous 'seqnumber' value. The attribute MUST be present.

 It's important to point out that the 'seqnumber' that appears in a
 <mrbnotification> is not related to the 'seqnumber' appearing in a
 <mrbsubscription>. In fact, the latter is associated with
 subscriptions and would increase at every command issued by the MRB,
 while the former is associated with the asynchronous notifications
 the MS would trigger according to the subscription, and as such would
 increase at every notification message to let the MRB keep track of
 them.

 The following subsections provide details of the child elements that
 are the content of the <mrbnotification> element.

5.1.5.1. <media-server-id>

 The <media-server-id> element provides a unique system wide
 identifier for a Media Server instance. The element MUST be present,
 and MUST chosen such that it is extremely unlikely that two different
 media servers would present the same id to a given MRB.

5.1.5.2. <supported-packages>

 The <supported-packages> element provides the list of Media Control
 Channel Packages supported by the media server. The element MAY be
 present.

 The <supported-packages> element has no attributes.

 The <supported-packages> element has zero or more of the following
 child elements:

 <package>: The <package> element gives the name of a package
 supported by the media server. The <package> element has a single
 attribute, 'name', which provides the name of the supported Media
 Control Channel Framework package, compliant with the Section

13.1.1 of [RFC6230].

https://datatracker.ietf.org/doc/html/rfc6230#section-13.1.1
https://datatracker.ietf.org/doc/html/rfc6230#section-13.1.1

Boulton, et al. Expires January 11, 2013 [Page 21]

Internet-Draft Media Resource Brokering July 2012

5.1.5.3. <active-rtp-sessions>

 The <active-rtp-sessions> element provides information detailing the
 current active Real-time Transport Protocol(RTP) sessions. The
 element MAY be present.

 The <active-rtp-sessions> element has no attributes.

 The <active-rtp-sessions> element has zero or more of the following
 child elements:

 <rtp-codec>: Describes a supported codec and the number of active
 sessions using that codec. The <rtp-codec> element has one
 attribute. The value of the attribute 'name' is a media type
 (which can include parameters per [RFC6381]). The <rtp-codec>
 element has two child elements. The child element, <decoding>,
 has as content the decimal number of RTP sessions being decoded
 using the specified codec. The child element, <encoding>, has as
 content the decimal number of RTP sessions being encoded using the
 specified codec.

5.1.5.4. <active-mixer-sessions>

 The <active-mixer-sessions> element provides information detailing
 the current active mixed RTP sessions. The element MAY be present.

 The <active-mixer-sessions> element has no attributes.

 The <active-mixer-sessions> element has zero or more of the following
 child elements:

 <active-mix>: Describes a mixed active RTP session. The <active-
 mix> element has one attribute. The value of the attribute
 'conferenceid' is the name of the mix. The <active-mix> element
 has one child element. The child element, <rtp-codec>, contains
 the same information relating to RTP sessions as defined in

Section 5.1.5.3. The element MAY be present.

5.1.5.5. <non-active-rtp-sessions>

 The <non-active-rtp-sessions> element provides information detailing
 the currently available inactive RTP sessions, that is, how many more
 RTP streams this MS can support. The element MAY be present.

 The <non-active-rtp-sessions> element has no attributes.

 The <non-active-rtp-sessions> element has zero or more of the
 following child elements:

https://datatracker.ietf.org/doc/html/rfc6381

Boulton, et al. Expires January 11, 2013 [Page 22]

Internet-Draft Media Resource Brokering July 2012

 <rtp-codec>: Describes a supported codec and the number of non-
 active sessions for that codec. The <rtp-codec> element has one
 attribute. The value of the attribute 'name' is a media type
 (which can include parameters per [RFC6381]). The <rtp-codec>
 element has two child elements. The child element, <decoding>,
 has as content the decimal number of RTP sessions available for
 decoding using the specified codec. The child element,
 <encoding>, has as content the decimal number of RTP sessions
 available for encoding using the specified codec.

5.1.5.6. <non-active-mixer-sessions>

 The <non-active-mixer-sessions> element provides information
 detailing the current inactive mixed RTP sessions, that is, how many
 more mixing sessions this MS can support. The element MAY be
 present.

 The <non-active-mixer-sessions> element has no attributes.

 The <non-active-mixer-sessions> element has zero of more of the
 following child element:

 <non-active-mix>: Describes available mixed RTP sessions. The
 <non-active-mix> element has one attribute. The value of the
 attribute 'available' is the number of mixes that could be used
 using that profile. The <non-active-mix> element has one child
 element. The child element, <rtp-codec>, contains the same
 information relating to RTP sessions as defined in

Section 5.1.5.5. The element MAY be present.

5.1.5.7. <media-server-status>

 The <media-server-status> element provides information detailing the
 current status of the media server. The element MUST be present. It
 can return one of the following values:

 active: Indicating that the Media Server is available for service.

 deactivated: Indicating that the Media Server has been withdrawn
 from service, and as such requests should not be sent to it before
 it becomes 'active' again.

 unavailable: Indicating that the Media Server continues to process
 past requests but cannot accept new requests, and as such should
 not be contacted before it becomes 'active' again.

 The <media-server-status> element has no attributes.

https://datatracker.ietf.org/doc/html/rfc6381

Boulton, et al. Expires January 11, 2013 [Page 23]

Internet-Draft Media Resource Brokering July 2012

 The <media-server-status> element has no child elements.

5.1.5.8. <supported-codecs>

 The <supported-codecs> element provides information detailing the
 current codecs supported by a media server and associated actions.
 The element MAY be present.

 The <supported-codecs> element has no attributes.

 The <supported-codecs> element has zero or more of the following
 child element:

 <supported-codec>: has a single attribute, 'name', which provides
 the name of the codec about which this element provides
 information. A valid value is a media type which, depending on
 its definition, can include additional parameters (e.g.,
 [RFC6381]). The <supported-codec> element then has a further
 child element, <supported-codec-package>. The <supported-codec-
 package> element has a single attribute, 'name', which provides
 the name of the Media Control Channel Framework package, compliant
 with the Section 13.1.1 of [RFC6230], for which the codec support
 applies. The <supported-codec-package> element has zero or more
 <supported-action> children, each one of which describes an action
 that a Media Server can apply to this codec:

 * 'decoding', meaning a decoder for this codec is available;

 * 'encoding', meaning an encoder for this codec is available;

 * 'passthrough', meaning the MS is able to pass a stream encoded
 using that codec through without re-encoding.

5.1.5.9. <application-data>

 The <application-data> element provides an arbitrary string of
 characters as application level data. This data is meant to only
 have meaning at the application level logic and as such is not
 otherwise restricted by this specification. The set of allowed
 characters are the same as those in XML (viz., tab, carriage return,
 line feed, and the legal characters of Unicode and ISO/IEC 10646 [see

http://www.w3.org/TR/xml/ section 2.2]). The element MAY be present.

 The <application-data> element has no attributes.

 The <application-data> element has no child elements.

https://datatracker.ietf.org/doc/html/rfc6381
https://datatracker.ietf.org/doc/html/rfc6230#section-13.1.1
http://www.w3.org/TR/xml/

Boulton, et al. Expires January 11, 2013 [Page 24]

Internet-Draft Media Resource Brokering July 2012

5.1.5.10. <file-formats>

 The <file-formats> element provides a list of file formats supported
 for the purpose of playing media. The element MAY be present.

 The <file-formats> element has no attributes.

 The <file-formats> element has zero of more the following child
 elements:

 <supported-format>: has a single attribute, 'name', which provides
 the type of file format that is supported. A valid value is a
 media type which, depending on its definition, can include
 additional parameters (e.g., [RFC6381]). The <supported-format>
 element then has a further child element, <supported-file-
 package>. The <supported-file-package> element provides the name
 of the Media Control Channel Framework package, compliant with the

Section 13.1.1 of [RFC6230], for which the file format support
 applies.

5.1.5.11. <max-prepared-duration>

 The <max-prepared-duration> element provides the maximum amount of
 time a media dialog will be kept in the preparted state before timing
 out before it is executed (see section 4.4.2.2.6 of RFC

6231[RFC6231]. The element MAY be present.

 The <max-prepared-duration> element has no attributes.

 The <max-prepared-duration> element has zero or more of the following
 child elements:

 <max-time>: has a single attribute, 'max-time-seconds', which
 provides the amount of time in seconds that a media dialog can be
 in the prepared state. The <max-time> element then has a further
 child element, <max-time-package>. The <max-time-package> element
 provides the name of the Media Control Channel Framework package,
 compliant with the Section 13.1.1 of [RFC6230], for which the time
 period applies.

5.1.5.12. <dtmf-support>

 The <dtmf-support> element specifies the supported methods to detect
 DTMF tones and to generate them. The element MAY be present.

 The <dtmf-support> element has no attributes.

 The <dtmf-support> element has zero of more of the following child

https://datatracker.ietf.org/doc/html/rfc6381
https://datatracker.ietf.org/doc/html/rfc6230#section-13.1.1
https://datatracker.ietf.org/doc/html/rfc6231
https://datatracker.ietf.org/doc/html/rfc6231
https://datatracker.ietf.org/doc/html/rfc6231
https://datatracker.ietf.org/doc/html/rfc6230#section-13.1.1

Boulton, et al. Expires January 11, 2013 [Page 25]

Internet-Draft Media Resource Brokering July 2012

 elements:

 <detect>: Indicates the support for DTMF detection. The <detect>
 element has no attributes. The <detect> element then has a
 further child element, <dtmf-type>. The <dtmf-type> element has
 two attributes, 'name' and 'package. The 'name' attribute
 provides the type of DTMF being used, and it can only be a case
 insensitive string containing either 'RFC4733' [RFC4733] or
 'Media' (detecting tones as signals from the audio stream). The
 'package' attribute provides the name of the Media Control Channel
 Framework package, compliant with the specification in the related
 IANA registry (e.g., "msc-ivr/1.0"), for which the DTMF type
 applies.

 <generate>: Indicates the support for DTMF generation. The
 <generate> element has no attributes. The <generate> element then
 has a further child element, <dtmf-type>. The <dtmf-type> element
 has two attributes, 'name' and 'package. The 'name' attribute
 provides the type of DTMF being used, and it can only be a case
 insensitive string containing either 'RFC4733' [RFC4733] or
 'Media' (generating tones as signals in the audio stream). The
 'package' attribute provides the name of the Media Control Channel
 Framework package, compliant with the specification in the related
 IANA registry (e.g., "msc-ivr/1.0"), for which the DTMF type
 applies.

 <passthrough>: Indicates the support for passing DTMF through
 without re-encoding. The <passthrough> element has no attributes.
 The <passthrough> element then has a further child element, <dtmf-
 type>. The <dtmf-type> element has two attributes, 'name' and
 'package. The 'name' attribute provides the type of DTMF being
 used, and it can only be a case insensitive string containing
 either 'RFC4733' [RFC4733] or 'Media' (passing tones as signals
 through the audio stream). The 'package' attribute provides the
 name of the Media Control Channel Framework package, compliant
 with the specification in the related IANA registry (e.g., "msc-
 ivr/1.0"), for which the DTMF type applies.

5.1.5.13. <mixing-modes>

 The <mixing-modes> element provides information about the support for
 audio and video mixing of a Media Server, specifically a list of
 supported algorithms to mix audio and a list of supported video
 presentation layouts. The element MAY be present.

 The <mixing-modes> element has no attributes.

 The <mixing-modes> element has zero or more of the following child

https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733

Boulton, et al. Expires January 11, 2013 [Page 26]

Internet-Draft Media Resource Brokering July 2012

 elements:

 <audio-mixing-modes>: Describes the available algorithms for audio
 mixing. The <audio-mixing-modes> element has no attributes. The
 <audio-mixing-modes> element has one child element. The child
 element, <audio-mixing-mode>, contains a specific available
 algorithm. Valid values for the <audio-mixing-mode> element are
 algorithm names, e.g., 'nbest' and 'controller' as defined in
 [RFC6505]. The element has a single attribute, 'package'. The
 attribute 'package' provides the name of the Media Control Channel
 Framework package, compliant with the Section 13.1.1 of [RFC6230],
 for which the algorithm support applies.

 <video-mixing-modes>: Describes the available video presentation
 layouts and the supported functionality for what concerns video
 mixing. The <video-mixing-modes> element has two attributes,
 'vas' and 'activespeakermix'. The 'vas' attribute is of type
 boolean with a value of 'true' indicating the Media Server
 supports automatic Voice Activated Switching. The
 'activespeakermix' is of type boolean with a value of 'true'
 indicating that the Media Server is able to prepare an additional
 video stream for the loudest speaker participant without its
 contribution. The <video-mixing-modes> element has one child
 element. The child element, <video-mixing-mode>, contains the
 name of a specific video presentation layout. The name may refer
 to one of predefined video layouts defined in the XCON conference
 information data model, or to non-XCON layouts as well, as long as
 they are properly prefixed according to the schema they belong to.
 The <video-mixing-mode> element has a single attribute, 'package'.
 The attribute 'package' provides the name of the Media Control
 Channel Framework package, compliant with the specification in the
 related IANA registry (e.g., "msc-ivr/1.0"), for which the
 algorithm support applies.

5.1.5.14. <supported-tones>

 The <supported-tones> element provides information about which tones
 a media server supports. In particular, the support is reported
 referring to both country codes support (ISO 3166-1 [ISO.3166-1]) and
 supported functionality (ITU-T Recommendation Q.1950 [ITU-T.Q.1950]).
 The element MAY be present.

 The <supported-tones> element has no attributes.

 The <supported-tones> element has zero or more of the following child
 elements:

https://datatracker.ietf.org/doc/html/rfc6505
https://datatracker.ietf.org/doc/html/rfc6230#section-13.1.1

Boulton, et al. Expires January 11, 2013 [Page 27]

Internet-Draft Media Resource Brokering July 2012

 <supported-country-codes>: Describes the supported country codes
 with respect to tones. The <supported-country-codes> element has
 no attributes. The <supported-country-codes> has one child
 element. The child element, <country-code>, reports support for a
 specific country code, compliant with the ISO 3166-1 [ISO.3166-1]
 specification. The <country-code> element has a single attribute,
 'package'. The attribute 'package' provides the name of the Media
 Control Channel Framework package, compliant with the Section

13.1.1 of [RFC6230], in which the tones from the specified country
 code are supported.

 <supported-h248-codes>: Describes the supported H.248 codes with
 respect to tones. The <supported-h248-codes> element has no
 attributes. The <supported-h248-codes> has one child element.
 The child element, <h248-code>, reports support for a specific
 H.248 code, compliant with the ITU-T Recommendation Q.1950
 [ITU-T.Q.1950] specification. The codes can be either specific
 (e.g., cg/dt to only report the Dial Tone from the Call Progress
 Tones package) or generic (e.g., cg/* to report all the tones from
 the Call Progress Tones package) using wild-cards. The <h248-
 code> element has a single attribute, 'package'. The attribute
 'package' provides the name of the Media Control Channel Framework
 package, compliant with the Section 13.1.1 of [RFC6230], in which
 the specified codes are supported.

5.1.5.15. <file-transfer-modes>

 The <file-transfer-modes> element allows the Media Server to specify
 which scheme names are supported for transferring files to a Media
 Server for each Media Control Channel Framework package type. For
 example, whether the Media Server supports fetching resources via
 HTTP, HTTS, NFS, RTSP etc protocols. The element MAY be present.

 The <file-transfer-modes> element has no attributes.

 The <file-transfer-modes> element has zero or more of the following
 child element:

 <file-transfer-mode>: has two attributes, 'name' and 'package'.
 The 'name' attribute provides the scheme name of the protocol that
 can be used for file transfer (e.g., "HTTP", "RTSP", etc.): the
 value of the attribute is case insensitive. The 'package'
 attribute provides the name of the Media Control Channel Framework
 package, compliant with the specification in the related IANA
 registry (e.g., "msc-ivr/1.0"), for which the scheme name applies.

 It is important to point out that this element provides no
 information about whether or not the MS supports any flavour of live

https://datatracker.ietf.org/doc/html/rfc6230#section-13.1.1
https://datatracker.ietf.org/doc/html/rfc6230#section-13.1.1
https://datatracker.ietf.org/doc/html/rfc6230#section-13.1.1

Boulton, et al. Expires January 11, 2013 [Page 28]

Internet-Draft Media Resource Brokering July 2012

 streaming: for instance, a value of "HTTP" for the IVR Package would
 only mean the 'http' scheme makes sense to the MS within the context
 of that package. Whether or not the MS can make use of HTTP to only
 fetch resources, or also to attach an HTTP live stream to a call, is
 to be considered implementation specific to the MS and unrelevant to
 the AS and/or MRB. Besides, the MS supporting a scheme does not
 imply it also supports the related secure versions: for instance, if
 the MS supports both "HTTP" and "HTTPS", both the schemes will appear
 in the element. A lack of the "HTTPS" value would need to be
 interpreted as a lack of support for the 'https' scheme.

5.1.5.16. <asr-tts-support>

 The <asr-tts-support> element provides information about the support
 for Automatic Speech Recognition (ASR) and Text-to-Speech (TTS)
 functionality in a media server. The functionality are reported by
 referring to the supported languages (using ISO-639-1 [ISO.639.1988]
 codes) for what regards both ASR and TTS. The element MAY be
 present.

 The <asr-tts-support> element has no attributes.

 The <asr-tts-support> element has zero or more of the following child
 elements:

 <asr-support>: Describes the available languages for ASR. The
 <asr-support> element has no attributes. The <asr-support> has
 one child element. The child element, <language>, reports the MS
 supports ASR for a specific language. The <language> element has
 a single attribute, 'xml:lang'. The attribute 'xml:lang' contains
 the ISO-639-1 [ISO.639.1988] code of the supported language.

 <tts-support>: Describes the available languages for TTS. The
 <tts-support> element has no attributes. The <tts-support> has
 one child element. The child element, <language>, reports the MS
 supports tts for a specific language. The <language> element has
 a single attribute, 'xml:lang'. The attribute 'xml:lang' contains
 the ISO-639-1 [ISO.639.1988] code of the supported language.

5.1.5.17. <vxml-support>

 The <vxml-support> element specifies if the Media Server supports
 VoiceXML and if it does which protocols the support is exposed
 through (e.g., via the control framework, RFC4240 [RFC4240], or

RFC5552 [RFC5552]). The element MAY be present.

 The <vxml-support> element has no attributes.

https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc5552
https://datatracker.ietf.org/doc/html/rfc5552

Boulton, et al. Expires January 11, 2013 [Page 29]

Internet-Draft Media Resource Brokering July 2012

 The <vxml-support> element has zero or more of the following child
 elements:

 <vxml-mode>: has two attributes, 'package' and 'support'. The
 'package' attribute provides the name of the Media Control Channel
 Framework package, compliant with the specification in the related
 IANA registry (e.g., "msc-ivr/1.0"), for which the VXML support
 applies. The 'support' attribute provides the type of VXML
 support provided by the Media Server (e.g., RFC5552 [RFC5552],

RFC4240 [RFC4240] or IVR Package [RFC6231]), and valid values are
 case insensitive RFC references (e.g., "rfc6231" to specify the MS
 supports VoiceXML as provided by the IVR Package [RFC6231]).

 The presence of at least one <vxml-mode> child element would indicate
 that the Media Server does support VXML as specified by the child
 element itself. An empty <vxml> element would otherwise indicate the
 Media Server does not support VXML at all.

5.1.5.18. <media-server-location>

 The <media-server-location> element provides information about the
 civic location of a media server. Its description makes use of the
 Civic Address Schema standardized in RFC 5139 [RFC5139]. The element
 MAY be present. More precisely, this section is entirely optional,
 and it's implementation specific to fill it with just the details
 each implementor deems necessary for any optimization that may be
 needed.

 The <media-server-location> element has no attributes.

 The <media-server-location> element has zero or more of the following
 child elements:

 <civicAddress>: Describes the civic address location of the media
 server, whose representation refers to the Section 4 of RFC 5139
 [RFC5139].

5.1.5.19. <label>

 The <label> element allows a Media Server to declare a piece of
 information that will be understood by the MRB. For example, the
 Media Server can declare if it's a blue or green one. It's a string
 to allow arbitrary values to be returned to allow arbitrary
 classification. The element MAY be present.

 The <label> element has no attributes.

 The <label> element has no child elements.

https://datatracker.ietf.org/doc/html/rfc5552
https://datatracker.ietf.org/doc/html/rfc5552
https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc6231
https://datatracker.ietf.org/doc/html/rfc6231
https://datatracker.ietf.org/doc/html/rfc6231
https://datatracker.ietf.org/doc/html/rfc5139
https://datatracker.ietf.org/doc/html/rfc5139
https://datatracker.ietf.org/doc/html/rfc5139#section-4
https://datatracker.ietf.org/doc/html/rfc5139

Boulton, et al. Expires January 11, 2013 [Page 30]

Internet-Draft Media Resource Brokering July 2012

5.1.5.20. <media-server-address>

 The <media-server-address> element allows a Media Server to provide a
 direct SIP URI address where it can be reached (e.g., the URI AS
 would call to in order to set-up a Control Channel and relay SIP
 media dialogs). The element MAY be present.

 The <media-server-address> element has a single attribute.

 The <media-server-address> element has no child elements.

5.1.5.21. <encryption>

 The <encryption> element allows a Media Server to declare support for
 encrypting RTP media streams using RFC 3711 [RFC3711]. The element
 MAY be present.

 The <encryption> element has no attributes.

 The <encryption> element has zero or more of the following child
 elements:

 <keying-mechanism>: has no attributes. The element provides the
 name of a keying mechanism the MS supports for encrypting RTP
 media streams.

 The presence of at least one <keying-mechanism> child element would
 indicate that the Media Server does support RTP media stream
 encryption as specified by the child element itself. An empty
 <encryption> element would otherwise indicate the Media Server does
 not support RTP encryption at all.

5.2. Media Service Resource Consumer Interface

 The Media Server Consumer interface provides the ability for clients
 of an MRB, such as Application Servers, to request an appropriate
 Media Server to satisfy specific criteria. The interface allows a
 client to pass detailed meta-information to the MRB to help select an
 appropriate Media Server. The MRB is then able to make an informed
 decision and provide the client with an appropriate media server
 resource. The MRB Consumer interface includes both 1) In-Line Aware
 MRB Mode (IAMM) that uses the Session Initiation Protocol (SIP) and
 2) Query mode that uses the Hypertext Transfer Protocol (HTTP)
 [RFC2616]. The MRB Consumer interface does not include In-Line
 Unaware Mode (IUMM) which is further explained in Section 5.3. The
 following subsections provide guidance on using the Consumer
 interface, which is represented by the 'application/mrb-consumer+xml
 media type in Section 11, with HTTP and SIP.

https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc2616

Boulton, et al. Expires January 11, 2013 [Page 31]

Internet-Draft Media Resource Brokering July 2012

5.2.1. Query Mode / HTTP Consumer Interface Usage

 An appropriate interface for such a 'query' style interface is in
 fact a HTTP usage. Using HTTP and XML combined reduces complexity
 and encourages use of common tools that are widely available in the
 industry today. The following information explains the primary
 operations required to request and then receive information from an
 MRB, by making use of HTTP [RFC2616] and HTTPS [RFC2818] as transport
 for a query for media resource and the appropriate response.

 The media resource query, as defined by the <mediaResourceRequest>
 element from Section 11, MUST be carried in the body of an HTTP/HTTPS
 POST request. The media type contained in the HTTP/HTTPS request/
 response MUST be 'application/mrb-consumer+xml'. This value MUST be
 reflected in the appropriate HTTP headers like 'Content-Type' and
 'Accept'. The body of the HTTP/HTTPS POST request MUST only contain
 a <mrbconsumer> root element with only one child
 <mediaResourceRequest> element as defined in Section 11.

 The media resource response to a query, as defined by the
 <mediaResourceResponse> element from Section 11, MUST be carried in
 the body of an HTTP/HTTPS 200 response to the original HTTP/HTTPS
 POST request. The media type contained in the HTTP/HTTPS request/
 response MUST be 'application/mrb-consumer+xml'. This value MUST be
 reflected in the appropriate HTTP headers like 'Content-Type' and
 'Accept'. The body of the HTTP/HTTPS 200 response MUST only contain
 a <mrbconsumer> root element with only one child
 <mediaResourceResponse> element as defined in Section 11.

 When an application server wants to release previously awarded media
 resources granted through a prior request/response exchange with MRB,
 it will send a new request with an <action> element with value
 'remove' as described in Section 5.2.3 about the use of the Consumer
 interface lease mechanism.

5.2.2. In-Line Aware Mode / SIP Consumer Interface Usage

 This document provides a complete tool-kit for MRB deployment which
 includes the ability to interact with an MRB using SIP for the
 Consumer interface. The following information explains the primary
 operations required to request and then receive information from an
 MRB, by making use of SIP [RFC3261] as transport for a request for
 media resources and the appropriate response when used with IAMM of
 operation (as discussed in Section 5.2.2.1).

 Use of IAMM, besides having the MRB select appropriate media
 resources on behalf of a client application, includes setting up
 either a Control Framework control channel between an application

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc3261

Boulton, et al. Expires January 11, 2013 [Page 32]

Internet-Draft Media Resource Brokering July 2012

 server and one of the media servers (Section 5.2.2.1) or a media
 dialog session between an application server and one of the media
 servers (Section 5.2.2.2). Note that in either case the SIP
 addresses of the selected media servers are made known to the
 requesting application server in the SIP 200 OK response by means of
 one or more <media-server-address> child elements in the <response-
 session-info> element (Section 5.2.6).

5.2.2.1. IAMM and Setting up a Control Framework Control Channel

 The media resource request information, as defined by the
 <mediaResourceRequest> element from Section 11, is carried in a SIP
 INVITE request. The INVITE request will be constructed as it would
 have been to connect to a media server, as defined by the Media
 Control Channel Framework [RFC6230]. The following additional steps
 MUST be followed when using the Consumer interface:

 o The Consumer Client will Include a payload in the SIP INVITE
 request of type 'multipart/mixed' [RFC2046]. One of the parts to
 be included in the 'multipart/mixed' payload MUST be the
 'application/sdp' format which is constructed as specified in the
 Media Control Channel Framework [RFC6230].

 o Another part of the 'multipart/mixed' payload MUST be of type
 'application/mrb-consumer+xml', as specified in this document and
 defined in Section 11. The body part MUST be an XML document
 without prolog and whose root element is <mediaResourceRequest>.

 o The INVITE request will then be dispatched to the MRB, as defined
 by [RFC6230].

 On receiving a SIP INVITE request containing the multipart/mixed
 payload as specified previously, the MRB will complete a number of
 steps to fulfill the request. It will:

 o Extract the multipart MIME payload from the SIP INVITE request.
 It will then use the contextual information provided by the client
 in the 'application/mrb-consumer+xml' part to determine which
 media server (or media servers, if more than one is deemed to be
 needed) should be selected to service the request.

 o Extract the 'application/sdp' part from the payload and use it as
 the body of a new SIP INVITE request for connecting the client to
 one of the selected media servers, as defined in the Media Channel
 Control Framework [RFC6230]. The policy the MRB follows to pick a
 specific MS out of the MSs it selects is implementation specific,
 and out of scope to this document. It is important to configure
 the SIP elements between the MRB and the MS in such a way that

https://datatracker.ietf.org/doc/html/rfc6230
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc6230
https://datatracker.ietf.org/doc/html/rfc6230
https://datatracker.ietf.org/doc/html/rfc6230

Boulton, et al. Expires January 11, 2013 [Page 33]

Internet-Draft Media Resource Brokering July 2012

 that the INVITE will not fork. In case of a failure in reaching
 the chosen MS, the MRB SHOULD proceed to the next one, if
 available.

 If none of the available MS can be reached, the MRB MUST reply with a
 SIP 503 error message including a Retry-After header with a non-zero
 value. The AS MUST NOT attempt to setup a new session before the
 time the MRB asked it to wait has passed.

 In case at least one MS is reachable, the MRB acts as a Back-to-Back
 UA (B2BUA) that extracts the 'application/mrb-consumer+xml'
 information from the SIP INVITE request and then sends a
 corresponding SIP INVITE request to the MS it has selected, to
 negotiate a control channel as defined in the Media Channel Control
 Framework [RFC6230].

 In case of a failure in negotiating the control channel with the MS,
 the MRB SHOULD proceed to the next one, if available, as explained
 above. If none of the available MS can be reached, or the
 negotiation of the control channel with all of them fails, the MRB
 MUST reply with a SIP 503 error message including a Retry-After
 header with a non-zero value. The AS MUST NOT attempt to setup a new
 session before the time the MRB asked it to wait has passed.

 Once the MRB receives the SIP response from the selected media
 resource (i.e., media server), it will in turn respond to the
 requesting client (i.e., application server).

 The media resource response by MRB to a request, as defined by the
 <mediaResourceResponse> element from Section 11, MUST be carried in
 the payload of a SIP 200 response to the original SIP INVITE request.
 The 200 response will be constructed as it would have been to connect
 from a media server, as defined by the Media Control Channel
 Framework [RFC6230]. The following additional steps MUST be followed
 when using the Consumer interface:

 o Include a payload in the SIP 200 response of type 'multipart/
 mixed' as per RFC 2046 [RFC2046]. One of the parts to be included
 in the 'multipart/mixed' payload MUST be the 'application/sdp'
 format which is constructed as specified in the Media Control
 Channel Framework [RFC6230] and based on the incoming response
 from the selected Media Resource.

 o Another part of the 'multipart/mixed' payload MUST be of type
 'application/mrb-consumer+xml', as specified in this document and
 defined in Section 11. Only the <mediaResourceResponse> and its
 child elements can be included in the payload.

https://datatracker.ietf.org/doc/html/rfc6230
https://datatracker.ietf.org/doc/html/rfc6230
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc6230

Boulton, et al. Expires January 11, 2013 [Page 34]

Internet-Draft Media Resource Brokering July 2012

 o The SIP 200 response will then be dispatched from the MRB.

 o A SIP ACK to the 200 response will then be sent back to the MRB.

 Considering that the use of SIP as a transport for Consumer
 transactions may result in a packet loss, the IAMM relies on a
 successful INVITE transaction to address the seq increment mechanism.
 This means that, if the INVITE is unsuccessful for any reason, the AS
 MUST use the same seq value as before for the next Consumer request
 it may want to send to the MRB for the same session.

 An MRB implementation may be programmed to conclude that the
 requested resources are no longer needed when it receives a SIP BYE
 from the application server or media server that concludes the SIP
 dialog that initiated the request, or when the lease interval
 expires.

5.2.2.2. IAMM and Setting up a Media Dialog

 This scenario is identical to the description in the prior section
 for setting up a Control Framework control channel, except for the
 difference that the application/sdp payload conveys content
 appropriate for setting up the media dialog to the media resource, as
 per RFC 3261 [RFC3261], instead of application/sdp payload for
 setting up a control channel.

5.2.3. Consumer Interface Lease Mechanism

 The Consumer interface defined in Section 5.2 and Section 11 allows a
 client to request an appropriate media resource based on information
 included in the request (either a HTTP POST or SIP INVITE message).
 In case of success, the response that is returned to the client MUST
 contain a <response-session-info> element in either the SIP 200 or
 HTTP 200 response. The success response contains the description of
 certain resources that have been reserved to a specific Consumer
 client in a (new or revised) "resource session", which is identified
 in the <response-session-info>. The resource session is a "lease",
 in that the reservation is scheduled to expire at a particular time
 in the future, releasing the resources to be assigned for other uses.
 The lease may be extended or terminated earlier by future Consumer
 client requests that identify and reference a specific resource
 session.

 Before delving into the details of such lease mechanism, though, it's
 worthwhile to first clarify its role within the context of the
 Consumer interface. As explained in Section 5.1, the knowledge the
 MRB has of the resources of all the MSs it handles is imperfect. As
 such, how an MRB actually manages such resources depends on how it is

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Boulton, et al. Expires January 11, 2013 [Page 35]

Internet-Draft Media Resource Brokering July 2012

 implemented: one may choose to have the MRB keeping track and state
 of the allocated resources, or simply depend on the MSs themselves to
 provide the information by means of the publishing interface
 notifications. Further information may be inferred by the
 signalling, in case the MRB is in the path of media dialogs.

 That said, the <mediaResourceResponse> element returned from the MRB
 contains a <response-session-info> element if the request is
 successful. The <response-session-info> element has zero or more of
 the following child elements which provide the appropriate resource
 session information:

 o <session-id> is a unique identifier that enables a Consumer client
 and MRB to correlate future media resource requests related to an
 initial media resource request. The <session-id> MUST be included
 in all future related requests (see <session-id> use later in this
 section when constructing a subsequent request).

 o <seq> is a numeric value returned to the Consumer client. On
 issuing any future requests related to the media resource session
 (as determined by the <session-id> element) the consumer client
 MUST increment the value returned in the <seq> element and include
 in the request (see <seq> use later in this section when
 constructing a subsequent request).

 o <expires> provides a value which provides the number of seconds
 the request for media resources is deemed alive. The Consumer
 client should issue a refresh of the request, as discussed later
 in this section, if the expires timer is due to fire and the media
 resources are still required.

 o <media-server-address> provides information representing an
 assigned MS. More instances of this element may appear, should
 the MRB assign more MSs to a Consumer request.

 The <mediaResourceRequest> element is used in subsequent Consumer
 interface requests if the client wishes to manipulate the session.
 The Consumer client MUST include the <session-info> element which
 enables the receiving MRB to determine an existing media resource
 allocation session. The <session-info> element has the following
 child elements which provide the appropriate resource session
 information to the MRB:

 o <session-id> is a unique identifier that allows a Consumer client
 to indicate the appropriate existing media resource session to be
 manipulated by the MRB for this request. The value was provided
 by the MRB in the initial request for media resources, as
 discussed earlier in this section (<session-id> element included

Boulton, et al. Expires January 11, 2013 [Page 36]

Internet-Draft Media Resource Brokering July 2012

 as part of the <session-info> element in the initial
 <mediaResourceResponse>).

 o <seq> is a numeric value returned to Consumer client in the
 initial request for media resources, as discussed earlier in this
 section (<seq> element included as part of the <session-info>
 element in the initial <mediaResourceResponse>). On issuing any
 future requests related to the specific media resource session (as
 determined by the <session-id> element) the consumer client MUST
 increment the value returned in the <seq> element from the initial
 response (contained in the <mediaResourceResponse>) for every new
 request. The value of the <seq> element in requests acts as a
 counter to and in conjunction with the unique <session-id> allows
 for unique identification of a request. The first numeric value
 for the <seq> element is not meant to be '1', but SHOULD be
 generated randomly by the MRB: this is to reduce the chances a
 malicious MRB disrupts the session created by this MRB, as
 explained in Section 12.

 o <action> element provides the operation to be carried out by the
 MRB on receiving the request:

 * The value of 'update' is a request by the Consumer client to
 update the existing session at the MRB with alternate
 requirements which are contained in the remainder of the
 request. If the requested resource information is identical to
 the existing MRB session, the MRB will attempt a session
 refresh. If the information has changed, the MRB will attempt
 to update the existing session with the new information. If
 the operation is successful, the 200 status code in the
 response is returned in the status attribute of the
 <mediaResourceResponseType> element. If the operation is not
 successful, a 409 status code in the response is returned in
 the status attribute of the <mediaResourceResponseType>
 element.

 * The value of 'remove' is a request by the Consumer client to
 remove the session at the MRB. This provides a mechanism for
 Consumer clients to release unwanted resources before they
 expire. If the operation is successful, a 200 status code in
 the response is returned in the status attribute of the
 <mediaResourceResponseType> element. If the operation is not
 successful, a 410 status code in the response is returned in
 the status attribute of the <mediaResourceResponseType>
 element.

 Omitting the 'action' attribute means requesting a new set of
 resources.

Boulton, et al. Expires January 11, 2013 [Page 37]

Internet-Draft Media Resource Brokering July 2012

 When used with HTTP the <session-info> element MUST be included in a
 HTTP POST message (as defined in [RFC2616]). When used with SIP,
 instead, the <session-info> element MUST be included in either a SIP
 INVITE, or a SIP re-INVITE (as defined in [RFC3261]) or a SIP UPDATE
 (as defined in[RFC3311]) request: in fact, any SIP dialog, be it a
 new or an existing one, can be exploited to carry leasing
 information, and as such new SIP INVITE messages can update other
 leases as well as requesting a new one.

 With IAMM, the application server or media server will eventually
 send a SIP BYE to end the SIP session, whether it was for a control
 channel or a media dialog. That BYE contains no Consumer interface
 lease information.

5.2.4. <mrbconsumer>

 This section defines the XML elements for the Consumer interface.
 The formal XML schema definition for the Consumer interface can be
 found in Section 11.

 The root element is <mrbconsumer>. All other XML elements (requests,
 responses) are contained within it. The MRB Consumer interface
 request element is detailed in Section 5.2.5.1. MRB Consumer
 interface response element is contained in Section 5.2.6.1.

 The <mrbconsumer> element has the following attributes:

 version: a token specifying the mrb-consumer package version. The
 value is fixed as '1.0' for this version of the package. The
 attribute MUST be present.

 The <mrbconsumer> element may have zero or more children of one of
 the following child element types:

 <mediaResourceRequest> for sending a Consumer request. See
Section 5.2.5.1.

 <mediaResourceResponse> for sending a Consumer response. See
Section 5.2.6.1.

5.2.5. Media Service Resource Request

 This section provides the element definitions for use in Consumer
 interface requests. The requests are carried in the
 <mediaResourceRequest> element.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3261

Boulton, et al. Expires January 11, 2013 [Page 38]

Internet-Draft Media Resource Brokering July 2012

5.2.5.1. <mediaResourceRequest> element

 The <mediaResourceRequest> element provides information for clients
 wishing to query an external MRB entity. The <mediaResourceRequest>
 element has a single mandatory attribute, 'id': this attribute
 contains a random identifier, generated by the client, which will be
 included in the response in order to map it to a specific request.
 The <mediaResourceRequest> element has <generalInfo>, <ivrInfo> and
 <mixerInfo> as child elements. These three elements are used to
 describe the requirements of a client requesting a Media Server and
 are covered in the following sub-sections.

5.2.5.1.1. <generalInfo> element

 The <generalInfo> element provides a information for general Consumer
 request information that is neither IVR or Mixer specific. This
 includes session information that can be used for subsequent requests
 as part of the leasing mechanism described in Section 5.2.3. The
 following sub-sections describe the elements of the <generalInfo>
 element, <session-info> and <packages>.

5.2.5.1.1.1. <session-info> element

 The <session-info> element is included in Consumer requests when an
 update is being made to an existing media resource session. The
 ability to change and remove an existing media resource session is
 described in more detail in Section 5.2.3. The element MAY be
 present.

 The <session-info> element has no attributes.

 The <session-info> element has zero or more of the following child
 elements:

 <session-id>: is a unique identifier that explicitly references an
 existing media resource session on the MRB. The identifier is
 included to update the existing session and is described in more
 detail in Section 5.2.3.

 <seq>: is used in association with the <session-id> element in a
 subsequent request to update an existing media resource session on
 an MRB. The <seq> number is incremented from its original value
 returned in response to the initial request for media resources.
 More information about its use is provided in Section 5.2.3.

Boulton, et al. Expires January 11, 2013 [Page 39]

Internet-Draft Media Resource Brokering July 2012

 <action>: provides the operation that should be carried out on an
 existing media resource session on an MRB:

 * The value of 'update' instructs the MRB to attempt to update
 the existing media resource session with the information
 contained in the <ivrInfo> and <mixerInfo> elements.

 * The value of 'remove' instructs the MRB to attempt to remove
 the existing media resource session. More information on its
 use is provided in Section 5.2.3.

5.2.5.1.1.2. <packages> element

 The <packages> element provides a list of Media Control Channel
 Framework compliant packages that are required by the Consumer
 client. The element MAY be present.

 The <packages> element has no attributes.

 The <packages> element has zero or more of the following child
 element:

 <package>: child element contains a string representing the Media
 Control Channel Framework package required by the Consumer client.
 The <package> element can appear multiple times. A valid value is
 a Control Package name as specified in the related IANA registry
 (e.g., "msc-ivr/1.0")

5.2.5.1.2. <ivrInfo> element

 The <ivrInfo> element provides information for general Consumer
 request information that is IVR specific. The following sub-sections
 describe the elements of the <ivrInfo> element, <ivr-sessions>,
 <file-formats>, <dtmf>, <tones>, <asr-tts>, <vxml>, <location>,
 <encryption>, <application-data>, <max-prepared-duration> and
 <stream-mode>.

5.2.5.1.2.1. <ivr-sessions> element

 The <ivr-sessions> element indicates the number of IVR sessions a
 Consumer client requires from a media resource. The element MAY be
 present.

 The <ivr-sessions> element has no attributes.

 The <ivr-sessions> element has zero or more of the following child
 element:

Boulton, et al. Expires January 11, 2013 [Page 40]

Internet-Draft Media Resource Brokering July 2012

 <rtp-codec>: Describes a required codec and the number of sessions
 using that codec. The <rtp-codec> element has one attribute. The
 value of the attribute 'name' is a media type (which can include
 parameters per [RFC6381]). The <rtp-codec> element has two child
 element. The child element, <decoding>, has as content the
 decimal number of RTP sessions required for decoding using the
 specified codec. The child element, <encoding>, has as content
 the decimal number of RTP sessions required for encoding using the
 specified codec.

5.2.5.1.2.2. <file-formats> element

 The <file-formats> element provides a list of file formats required
 for the purpose of playing media. It should be noted that this
 element describes media types, and might better have been named
 "media-format" but the name "file-format" is being used due to
 existing implementations The element MAY be present.

 The <file-formats> element has no attributes.

 The <file-formats> element has zero or more of the following child
 element:

 <required-format>: has a single attribute, 'name', which provides
 the type of file format that is required. A valid value is a
 media type which, depending on its definition, can include
 additional parameters (e.g., [RFC6381]). The <required-format>
 element then has a further child element, <required-file-package>.
 The <required-file-package> element has a single attribute,
 'required-file-package-name', which contains the name of the Media
 Control Channel Framework package, compliant with the Section

13.1.1 of [RFC6230], for which the file format support applies.

5.2.5.1.2.3. <dtmf> element

 The <dtmf> element specifies the required methods to detect DTMF
 tones and to generate them. The element MAY be present.

 The <dtmf> element has no attributes.

 The <dtmf> element has zero or more of the following child elements:

 <detect>: Indicates the required support for DTMF detection. The
 <detect> element has no attributes. The <detect> element then has
 a further child element, <dtmf-type>. The <dtmf-type> element has
 two attributes, 'name' and 'package. The 'name' attribute
 provides the type of DTMF being needed, and it can only be a case
 insensitive string containing either 'RFC4733' [RFC4733] or

https://datatracker.ietf.org/doc/html/rfc6381
https://datatracker.ietf.org/doc/html/rfc6381
https://datatracker.ietf.org/doc/html/rfc6230#section-13.1.1
https://datatracker.ietf.org/doc/html/rfc6230#section-13.1.1
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733

Boulton, et al. Expires January 11, 2013 [Page 41]

Internet-Draft Media Resource Brokering July 2012

 'Media' (detecting tones as signals from the audio stream). The
 'package' attribute provides the name of the Media Control Channel
 Framework package, compliant with the specification in the related
 IANA registry (e.g., "msc-ivr/1.0"), for which the DTMF type
 applies.

 <generate>: Indicates the required support for DTMF generation.
 The <generate> element has no attributes. The <generate> element
 then has a further child element, <dtmf-type>. The <dtmf-type>
 element has two attributes, 'name' and 'package. The 'name'
 attribute provides the type of DTMF being needed, and it can only
 be a case insensitive string containing either 'RFC4733' [RFC4733]
 or 'Media' (generating tones as signals in the audio stream). The
 'package' attribute provides the name of the Media Control Channel
 Framework package, compliant with the specification in the related
 IANA registry (e.g., "msc-ivr/1.0"), for which the DTMF type
 applies.

 <passthrough>: Indicates the required support for passing DTMF
 through without re-encoding. The <passthrough> element has no
 attributes. The <passthrough> element then has a further child
 element, <dtmf-type>. The <dtmf-type> element has two attributes,
 'name' and 'package. The 'name' attribute provides the type of
 DTMF being needed, and it can only be a case insensitive string
 containing either 'RFC4733' [RFC4733] or 'Media' (passing tones as
 signals through the audio stream). The 'package' attribute
 provides the name of the Media Control Channel Framework package,
 compliant with the specification in the related IANA registry
 (e.g., "msc-ivr/1.0"), for which the DTMF type applies.

5.2.5.1.2.4. <tones>

 The <tones> element provides requested tones a media server must
 support for IVR. In particular, the request refers to both country
 codes support (ISO 3166-1 [ISO.3166-1]) and requested functionality
 (ITU-T Recommendation Q.1950 [ITU-T.Q.1950]). The element MAY be
 present.

 The <tones> element has no attributes.

 The <tones> element has zero or more of the following child elements:

 <country-codes>: Describes the requested country codes with respect
 to tones. The <country-codes> element has no attributes. The
 <country-codes> has one child element. The child element,
 <country-code>, requests a specific country code, compliant with
 the ISO 3166-1 [ISO.3166-1] specification. The <country-code>
 element has a single attribute, 'package'. The attribute

https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733

Boulton, et al. Expires January 11, 2013 [Page 42]

Internet-Draft Media Resource Brokering July 2012

 'package' provides the name of the Media Control Channel Framework
 package, compliant with the specification in the related IANA
 registry (e.g., "msc-ivr/1.0"), in which the tones from the
 specified country code are requested.

 <h248-codes>: Describes the requested H.248 codes with respect to
 tones. The <h248-codes> element has no attributes. The <h248-
 codes> has one child element. The child element, <h248-code>,
 requests a specific H.248 code, compliant with the ITU-T
 Recommendation Q.1950 [ITU-T.Q.1950] specification. The codes can
 be either specific (e.g., cg/dt to only report the Dial Tone from
 the Call Progress Tones package) or generic (e.g., cg/* to report
 all the tones from the Call Progress Tones package) using wild-
 cards. The <h248-code> element has a single attribute, 'package'.
 The attribute 'package' provides the name of the Media Control
 Channel Framework package, compliant with the specification in the
 related IANA registry (e.g., "msc-ivr/1.0"), in which the
 specified codes are requested.

5.2.5.1.2.5. <asr-tts>

 The <asr-tts> element requests information about the support for
 Automatic Speech Recognition (ASR) and Text-to-Speech (TTS)
 functionality in a media server. The functionality is requested by
 referring to the supported languages (using ISO-639-1 [ISO.639.1988]
 codes) for what regards both ASR and TTS. The <asr-tts> element has
 no attributes. The <asr-tts> element has zero or more of the
 following child elements:

 <asr-support>: Describes the available languages for ASR. The
 <asr-support> element has no attributes. The <asr-support> has
 one child element. The child element, <language>, requests the MS
 supports ASR for a specific language. The <language> element has
 a single attribute, 'xml:lang'. The attribute 'xml:lang' contains
 the ISO-639-1 [ISO.639.1988] code of the supported language.

 <tts-support>: Describes the available languages for TTS. The
 <tts-support> element has no attributes. The <tts-support> has
 one child element. The child element, <language>, requests the MS
 supports tts for a specific language. The <language> element has
 a single attribute, 'xml:lang'. The attribute 'xml:lang' contains
 the ISO-639-1 [ISO.639.1988] code of the supported language.

5.2.5.1.2.6. <vxml> element

 The <vxml> element specifies if the Consumer client required VoiceXML
 and if it does which protocols the support is exposed through (e.g.,
 via the control framework, RFC4240 [RFC4240], or RFC5552 [RFC5552]).

https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc5552
https://datatracker.ietf.org/doc/html/rfc5552

Boulton, et al. Expires January 11, 2013 [Page 43]

Internet-Draft Media Resource Brokering July 2012

 The element MAY be present.

 The <vxml> element has zero or more of the following child elements:

 <vxml-mode>: has two attributes, 'package' and 'require'. The
 'package' attribute provides the name of the Media Control Channel
 Framework package, compliant with the Section 13.1.1 of [RFC6230],
 for which the VXML support applies. The 'require' attribute
 specifies the type of VXML support required by the Consumer client
 (e.g., RFC5552 [RFC5552], RFC4240 [RFC4240] or IVR Package
 [RFC6231]), and valid values are case insensitive RFC references
 (e.g., "rfc6231" to specify the Client requests support for
 VoiceXML as provided by the IVR Package [RFC6231]).

 The presence of at least one <vxml> child element would indicate that
 the Consumer client requires VXML support as specified by the child
 element itself. An empty <vxml> element would otherwise indicate the
 Consumer client does not require VXML support.

5.2.5.1.2.7. <location>

 The <location> element requests a civic location for an IVR media
 server. The request makes use of the Civic Address Schema
 standardized in RFC 5139 [RFC5139]. The element MAY be present.
 More precisely, this section is entirely optional, and it's
 implementation specific to fill it with just the details each
 implementor deems necessary for any optimization that may be needed.

 The <location> element has no attributes.

 The <location> element has a single child element:

 <civicAddress>: Describes the civic address location of the
 requested media server, whose representation refers to Section 4
 of RFC 5139 [RFC5139].

5.2.5.1.2.8. <encryption>

 The <encryption> element allows a Consumer client to request support
 for encrypting RTP media streams using RFC 3711 [RFC3711]. The
 element MAY be present.

 The <encryption> element has no attributes.

 The <encryption> element has zero or more of the following child
 elements:

https://datatracker.ietf.org/doc/html/rfc6230#section-13.1.1
https://datatracker.ietf.org/doc/html/rfc5552
https://datatracker.ietf.org/doc/html/rfc5552
https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc6231
https://datatracker.ietf.org/doc/html/rfc6231
https://datatracker.ietf.org/doc/html/rfc6231
https://datatracker.ietf.org/doc/html/rfc5139
https://datatracker.ietf.org/doc/html/rfc5139
https://datatracker.ietf.org/doc/html/rfc5139#section-4
https://datatracker.ietf.org/doc/html/rfc5139#section-4
https://datatracker.ietf.org/doc/html/rfc5139
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3711

Boulton, et al. Expires January 11, 2013 [Page 44]

Internet-Draft Media Resource Brokering July 2012

 <keying-mechanism>: has no attributes. The element provides the
 name of a keying mechanism the Client requires for encrypting RTP
 media streams.

 The presence of at least one <keying-mechanism> child element would
 indicate that the Consumer client does request RTP media stream
 encryption as specified by the child element itself. An empty
 <encryption> element would otherwise indicate the Consumer client
 does not require RTP encryption at all.

5.2.5.1.2.9. <application-data>

 The <application-data> element provides an arbitrary string of
 characters as IVR application level data. This data is meant to only
 have meaning at the application level logic and as such is not
 otherwise restricted by this specification. The set of allowed
 characters are the same as those in XML (viz., tab, carriage return,
 line feed, and the legal characters of Unicode and ISO/IEC 10646 [see

http://www.w3.org/TR/xml/ section 2.2]). The element MAY be present.

 The <application-data> element has no attributes.

 The <application-data> element has no child elements.

5.2.5.1.2.10. <max-prepared-duration>

 The <max-prepared-duration> element provides the amount of time
 required by the Consumer client that a media dialog can be prepared
 in the system before it is executed. The element MAY be present.

 The <max-prepared-duration> element has no attributes.

 The <max-prepared-duration> element has a single child element:

 <max-time>: has a single attribute, 'max-time-seconds', which
 provides the amount of time in seconds that a media dialog can be
 in the prepared state. The <max-time> element then has a further
 child element, <max-time-package>. The <max-time-package> element
 provides the name of the Media Control Channel Framework package,
 compliant with the Section 13.1.1 of [RFC6230], for which the time
 period applies.

5.2.5.1.2.11. <file-transfer-modes>

 The <file-transfer-modes> element allows the Consumer client to
 specify which scheme names are required for file transfer to a Media
 Server for each Media Control Channel Framework package type. For
 example does the Media Server supports fetching media resources via

http://www.w3.org/TR/xml/
https://datatracker.ietf.org/doc/html/rfc6230#section-13.1.1

Boulton, et al. Expires January 11, 2013 [Page 45]

Internet-Draft Media Resource Brokering July 2012

 RTSP, HTTP, NFS, etc protocols. The element MAY be present.

 The <file-transfer-modes> element has no attributes.

 The <file-transfer-modes> element has a single child element:

 <file-transfer-mode>: has two attributes, 'name' and 'package'.
 The 'name' attribute provides the scheme name of the protocol
 required for fetching resources: valid values are case insensitive
 scheme names (e.g., RTSP, HTTP, HTTPS, NFS, etc.). The 'package'
 attribute provides the name of the Media Control Channel Framework
 package, compliant with the Section 13.1.1 of [RFC6230], for which
 the scheme name applies.

 The same considerations about file transfer and live streaming
 explained in Section 5.1.5.15 apply here as well.

5.2.5.1.3. <mixerInfo> element

 The <mixerInfo> element provides information for general Consumer
 request information that is Mixer specific. The following sub-
 sections describe the elements of the <mixerInfo> element, <mixers>,
 <file-formats>, <dtmf-type>, <tones>, <mixing-mode>, <application-
 data>, <location> and <encryption>.

5.2.5.1.3.1. <mixers>

 The <mixers> element provides information detailing the required
 mixed RTP sessions. The element MAY be present.

 The <mixers> element has no attributes.

 The <mixers> element has a single child element:

 <mix>: Describes required mixed RTP sessions. The <mix> element
 has one attribute. The value of the attribute 'users' is the
 number of participants required in the mix. The <mix> element has
 one child element. The child element, <rtp-codec>, contains the
 same information relating to RTP sessions as defined in

Section 5.1.5.3. The element MAY be present.

5.2.5.1.3.2. <file-formats>

 The <file-formats> element provides a list of file formats required
 by the Consumer client for the purpose of playing media to a mix.
 The element MAY be present.

 The <file-formats> element has no attributes.

https://datatracker.ietf.org/doc/html/rfc6230#section-13.1.1

Boulton, et al. Expires January 11, 2013 [Page 46]

Internet-Draft Media Resource Brokering July 2012

 The <file-formats> element has a single child element:

 <required-format>: has a single attribute, 'name', which provides
 the type of file format that is supported. A valid value is a
 media type which, depending on its definition, can include
 additional parameters (e.g., [RFC6381]). The <required-format>
 element then has a further child element, <required-file-package>.
 The <required-file-package> element contains a single attribute,
 'required-file-package-name', which contains the name of the Media
 Control Channel Framework package, compliant with the Section

13.1.1 of [RFC6230], for which the file format support applies.

5.2.5.1.3.3. <dtmf> element

 The <dtmf> element specifies the required methods to detect DTMF
 tones and to generate them in a mix. The element MAY be present.

 The <dtmf> element has no attributes.

 The <dtmf> element has zero or more of the following child elements:

 <detect>: Indicates the required support for DTMF detection. The
 <detect> element has no attributes. The <detect> element then has
 a further child element, <dtmf-type>. The <dtmf-type> element has
 two attributes, 'name' and 'package. The 'name' attribute
 provides the type of DTMF being used, and it can only be a case
 insensitive string containing either 'RFC4733' [RFC4733] or
 'Media' (detecting tones as signals from the audio stream). The
 'package' attribute provides the name of the Media Control Channel
 Framework package, compliant with the specification in the related
 IANA registry (e.g., "msc-ivr/1.0"), for which the DTMF type
 applies.

 <generate>: Indicates the required support for DTMF generation.
 The <generate> element has no attributes. The <generate> element
 then has a further child element, <dtmf-type>. The <dtmf-type>
 element has two attributes, 'name' and 'package. The 'name'
 attribute provides the type of DTMF being used, and it can only be
 a case insensitive string containing either 'RFC4733' [RFC4733] or
 'Media' (generating tones as signals in the audio stream). The
 'package' attribute provides the name of the Media Control Channel
 Framework package, compliant with the specification in the related
 IANA registry (e.g., "msc-ivr/1.0"), for which the DTMF type
 applies.

https://datatracker.ietf.org/doc/html/rfc6381
https://datatracker.ietf.org/doc/html/rfc6230#section-13.1.1
https://datatracker.ietf.org/doc/html/rfc6230#section-13.1.1
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733

Boulton, et al. Expires January 11, 2013 [Page 47]

Internet-Draft Media Resource Brokering July 2012

 <passthrough>: Indicates the required support for passing DTMF
 through without re-encoding. The <passthrough> element has no
 attributes. The <passthrough> element then has a further child
 element, <dtmf-type>. The <dtmf-type> element has two attributes,
 'name' and 'package. The 'name' attribute provides the type of
 DTMF being used, and it can only be a case insensitive string
 containing either 'RFC4733' [RFC4733] or 'Media' (passing tones as
 signals through the audio stream). The 'package' attribute
 provides the name of the Media Control Channel Framework package,
 compliant with the specification in the related IANA registry
 (e.g., "msc-ivr/1.0"), for which the DTMF type applies.

5.2.5.1.3.4. <tones>

 The <tones> element provides requested tones a media server must
 support for a mix. In particular, the request refers to both country
 codes support (ISO 3166-1 [ISO.3166-1]) and requested functionality
 (ITU-T Recommendation Q.1950 [ITU-T.Q.1950]). The element MAY be
 present.

 The <tones> element has no attributes.

 The <tones> element has zero or more of the following child elements:

 <country-codes>: Describes the requested country codes with respect
 to tones. The <country-codes> element has no attributes. The
 <country-codes> has one child element. The child element,
 <country-code>, requests a specific country code, compliant with
 the ISO 3166-1 [ISO.3166-1] specification. The <country-code>
 element has a single attribute, 'package'. The attribute
 'package' provides the name of the Media Control Channel Framework
 package, compliant with the specification in the related IANA
 registry (e.g., "msc-ivr/1.0"), in which the tones from the
 specified country code are requested.

 <h248-codes>: Describes the requested H.248 codes with respect to
 tones. The <h248-codes> element has no attributes. The <h248-
 codes> has one child element. The child element, <h248-code>,
 requests a specific H.248 code, compliant with the ITU-T
 Recommendation Q.1950 [ITU-T.Q.1950] specification. The codes can
 be either specific (e.g., cg/dt to only report the Dial Tone from
 the Call Progress Tones package) or generic (e.g., cg/* to report
 all the tones from the Call Progress Tones package) using wild-
 cards. The <h248-code> element has a single attribute, 'package'.
 The attribute 'package' provides the name of the Media Control
 Channel Framework package, compliant with the specification in the
 related IANA registry (e.g., "msc-ivr/1.0"), in which the
 specified codes are requested.

https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733

Boulton, et al. Expires January 11, 2013 [Page 48]

Internet-Draft Media Resource Brokering July 2012

5.2.5.1.3.5. <mixing-modes>

 The <mixing-modes> element requests information about the support for
 audio and video mixing of a Media Server, specifically a list of
 supported algorithms to mix audio and a list of supported video
 presentation layouts. The element MAY be present.

 The <mixing-modes> element has no attributes.

 The <mixing-modes> element has zero or more of the following child
 elements:

 <audio-mixing-modes>: Describes the requested algorithms for audio
 mixing. The <audio-mixing-modes> element has no attributes. The
 <audio-mixing-modes> element has one child element. The child
 element, <audio-mixing-mode>, contains a specific requested
 algorithm. Valid values for the <audio-mixing-mode> element are
 are algorithm names, e.g., 'nbest' and 'controller' as defined in
 [RFC6505]. The element has a single attribute, 'package'. The
 attribute 'package' provides the name of the Media Control Channel
 Framework package, compliant with the specification in the related
 IANA registry (e.g., "msc-ivr/1.0"), for which the algorithm
 support is requested.

 <video-mixing-modes>: Describes the requested video presentation
 layouts for video mixing. The <video-mixing-modes> element has
 two attributes, 'vas' and 'activespeakermix'. The 'vas' attribute
 is of type boolean with a value of 'true' indicating that the
 Consumer Client requires automatic Voice Activated Switching. The
 'activespeakermix' attribute is of type boolean with a value of
 'true' indicating that the Consumer Client requires an additional
 video stream for the loudest speaker participant without its
 contribution. The <video-mixing-modes> element has one child
 element. The child element, <video-mixing-mode>, contains the
 name of a specific video presentation layout. The name may refer
 to one of predefined video layouts defined in the XCON conference
 information data model, or to non-XCON layouts as well, as long as
 they are properly prefixed. The <video-mixing-mode> element has a
 single attribute, 'package'. The attribute 'package' provides the
 name of the Media Control Channel Framework package, compliant
 with the specification in the related IANA registry (e.g., "msc-
 ivr/1.0"), for which the algorithm support is requested.

5.2.5.1.3.6. <application-data>

 The <application-data> element provides an arbitrary string of
 characters as Mixer application level data. This data is meant to
 only have meaning at the application level logic and as such is not

https://datatracker.ietf.org/doc/html/rfc6505

Boulton, et al. Expires January 11, 2013 [Page 49]

Internet-Draft Media Resource Brokering July 2012

 otherwise restricted by this specification. The set of allowed
 characters are the same as those in XML (viz., tab, carriage return,
 line feed, and the legal characters of Unicode and ISO/IEC 10646 [see

http://www.w3.org/TR/xml/ section 2.2]). The element MAY be present.

 The <application-data> element has no attributes.

 The <application-data> element has no child elements.

5.2.5.1.3.7. <location>

 The <location> element requests a civic location for a mixer media
 server. The request makes use of the Civic Address Schema
 standardized in RFC 5139 [RFC5139]. The element MAY be present.
 More precisely, this section is entirely optional, and it's
 implementation specific to fill it with just the details each
 implementor deems necessary for any optimization that may be needed.

 The contents of a <location> element has no attributes.

 The contents of a <location> element has a single child element:

 <civicAddress>: Describes the civic address location of the
 requested media server, whose representation refers to Section 4
 of RFC 5139 [RFC5139].

5.2.5.1.3.8. <encryption>

 The <encryption> element allows a Consumer client to request support
 for encrypting mixed RTP media streams using RFC 3711 [RFC3711]. The
 element MAY be present.

 The <encryption> element has no attributes.

 The <encryption> element has zero or more of the following child
 elements:

 <keying-mechanism>: has no attributes. The element provides the
 name of a keying mechanism the Cosumer client requires for
 encrypting mixed RTP media streams.

 The presence of at least one <keying-mechanism> child element would
 indicate that the Consumer client does require mixed RTP media stream
 encryption as specified by the child element itself. An empty
 <encryption> element would otherwise indicate the client does not
 require RTP encryption at all.

http://www.w3.org/TR/xml/
https://datatracker.ietf.org/doc/html/rfc5139
https://datatracker.ietf.org/doc/html/rfc5139
https://datatracker.ietf.org/doc/html/rfc5139#section-4
https://datatracker.ietf.org/doc/html/rfc5139#section-4
https://datatracker.ietf.org/doc/html/rfc5139
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3711

Boulton, et al. Expires January 11, 2013 [Page 50]

Internet-Draft Media Resource Brokering July 2012

5.2.6. Media Service Resource Response

 This section provides the element definitions for use in Consumer
 interface responses. The responses are carried in the
 <mediaResourceResponse> element.

5.2.6.1. <mediaResourceResponse> element

 The <mediaResourceResponse> element provides a information for
 clients receiving response information from an external MRB entity.

 The <mediaResourceResponse> element has two mandatory attributes,
 'id' and 'status'. The 'id' attribute must contain the same value
 the client provided in the 'id' attribute in the
 <mediaResourceRequest> the response is for. The 'status' attribute
 indicates the status code of the operation. The following status
 codes are defined for 'status':

 +-----------+---+
 | code | description |
 +-----------+---+
200	OK
400	Syntax error
405	Wrong sequence number
408	Unable to find Resource
409	Unable to update Resource
410	Unable to remove Resource
420	Unsupported attribute or element
 +-----------+---+

 Table 2: <response> status codes

 In case a new media resource request made by an AS has been accepted,
 the MRB MUST reply with a <mediaResourceResponse> with status code
 200. The same rule applies whenever a request to update
 (action='update') or remove (action='remove') an existing transaction
 can be fulfilled by the MRB.

 A media resource request, nevertheless, may fail for several reasons.
 In such a case, the status codes defined in Table 2 must be used
 instead. Specifically, if the MRB fails to handle a request due to a
 syntax error in the request itself (e.g., incorrect XML, violation of

Boulton, et al. Expires January 11, 2013 [Page 51]

Internet-Draft Media Resource Brokering July 2012

 the schema constraints or invalid values in any of the attributes/
 elements) the MRB MUST reply with a <mediaResourceResponse> with
 status code 400. If a syntactically correct request fails because
 the request also includes any attribute/element the MRB doesn't
 understand, the MRB MUST reply with a <mediaResourceResponse> with
 status code 420. If a syntactically correct request fails because it
 contains a wrong sequence number, that is, a 'seq' value not
 consistent with the increment the MRB expects according to

Section 5.2.3, the MRB MUST reply with a <mediaResourceResponse> with
 status code 405. If a syntactically correct request fails because
 the MRB couldn't find any MS able to fulfil the requirements
 presented by the AS in its request, the MRB MUST reply with a
 <mediaResourceResponse> with status code 408. If a syntactically
 correct request fails because the MRB couldn't update an existing
 request according to the new requirements presented by the AS in its
 request, the MRB MUST reply with a <mediaResourceResponse> with
 status code 409. If a syntactically correct request fails because
 the MRB couldn't remove an existing request and release the related
 resources as requested by the AS, the MRB MUST reply with a
 <mediaResourceResponse> with status code 410.

 Further details on status codes 409 and 410 are presented in
Section 5.2.3, where the leasing mechanism, together with its related

 scenarios, is described.

 The <mediaResourceResponse> element only has <response-session-info>
 as a child element. This element is used to describe the response of
 a Consumer interface query and is covered in the following sub-
 section.

5.2.6.1.1. <response-session-info> element

 The <response-session-info> element is included in Consumer
 responses. This applies to responses to both requests for new
 resources and requests to update an existing media resource session.
 The ability to change and remove an existing media resource session
 is described in more detail in Section 5.2.3. If the request was
 successful, the <mediaResourceResponse> MUST have one <response-
 session-info> child, which describes the media resource session which
 was addressed by the request. If the request was not successful, the
 <mediaResourceResponse> MUST NOT have a <response-session-info>
 child.

 The contents of a <response-session-info> element has no attributes.

 The contents of a <response-session-info> element has zero or more of
 the following child elements:

Boulton, et al. Expires January 11, 2013 [Page 52]

Internet-Draft Media Resource Brokering July 2012

 <session-id>: is a unique identifier that explicitly references an
 existing media resource session on the MRB. The identifier is
 included to update the existing session and is described in more
 detail in Section 5.2.3.

 <seq>: is used in association with the <session-id> element in a
 subsequent request to update an existing media resource session on
 an MRB. The <seq> number is incremented from its original value
 returned in response to the initial request for media resources.
 More information its use is provided in Section 5.2.3.

 <expires>: includes the number of seconds that the media resources
 are reserved as part of this interaction. If the lease is not
 refreshed before expiry, the MRB will re-claim the resources and
 they will no longer be guaranteed. It is RECOMMENDED that a
 minimum value of 300 seconds be used for the value of the
 'expires' attribute. It is also RECOMMENDED that a Consumer
 client refresh the lease at an interval that is not too close to
 the expiry time. A value of 80% of the time-out period could be
 used. For example, if the time-out period is 300 seconds, the
 Consumer Client would refresh the transaction at 240 seconds.
 More information on its use is provided in Section 5.2.3.

 <media-server-address>: provides information to reach the MS
 handling the requested media resource. One or more instances of
 these element may appear. The <media-server-address> element has
 a single attribute named 'uri' which supplies a SIP URI that
 reaches the specified media server. It also has three optional
 elements <connection-id>, <ivr-sessions>, and <mixers>. The <ivr-
 sessions> and <mixers> are defined in Section 5.2.5.1.2.1 and

Section 5.2.5.1.3.1 and have the same meaning but are applied to
 individual media server instances as a subset of the overall
 resources reported in the <connection-id> element. If multiple
 MSs are assigned in an IAMM operation, exactly one <media-server-
 address> element, the one describing the one that provided the
 media dialog or CFW response, will have a <connection-id> element.
 For more information on the use of the <connection-id> element for
 media dialogs, instead, see Section 6.

5.3. In-Line Unaware MRB Interface

 An entity acting as an In-Line MRB can act in one of two roles for a
 request, as introduced in Section 4.2. In-Line Unaware MRB Mode
 (IUMM) of operation and In-Line Aware MRB Mode (IAMM) of operation.
 This section further describes IUMM.

 It should be noted that the introduction of an MRB entity into the
 network, as specified in this document, requires interfaces to be

Boulton, et al. Expires January 11, 2013 [Page 53]

Internet-Draft Media Resource Brokering July 2012

 implemented by those requesting media server resources (for example
 an application server). This applies when using the Consumer
 interface as discussed in Section 5.2.1(Query mode) and

Section 5.2.2(IAMM). Nevertheless, an MRB is conceived to also be
 able to act in a client unaware mode when it is deployed into the
 network. This allows any SIP compliant client entity, as defined by

RFC 3261 [RFC3261] and its extensions, to send requests to an MRB
 which in turn will select an appropriate media server based on
 knowledge of media server resources it currently has available
 transparently to the client entity. Using an MRB in this mode allows
 for easy migration of current applications and services that are
 unaware of the MRB concept and would simply require a configuration
 change resulting in the MRB being set as a SIP outbound proxy for
 clients requiring media services.

 With IUMM, the MRB may conclude that an assigned media resource is no
 longer needed when it receives a SIP BYE from the application server
 or media server that ends that SIP dialog that initiated the request.

 As with IAMM, in IUMM the SIP INVITE from the application server
 could convey application/sdp payload to either set up a media dialog
 or a Control Framework control channel. In either case, in order to
 permit the AS to associate a media dialog with a control channel to
 the same media server using the procedures of [RFC6230] section 6,
 the MRB should be acting as a SIP proxy (and not a B2BUA) so that the
 SIP address of the targeted media server can be transparently passed
 back to the application server in the SIP response and so that the
 SIP dialog is between the application server and the media server.

 While IUMM has the least impact on legacy application servers, it
 also provides the least versatility. See Section 8.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc6230#section-6

Boulton, et al. Expires January 11, 2013 [Page 54]

Internet-Draft Media Resource Brokering July 2012

6. MRB acting as a B2BUA

 An MRB entity can potentially act as a SIP Back-2-Back-User-Agent
 (B2BUA) or a SIP Proxy Server as defined in RFC 3261 [RFC3261]. When
 acting as a B2BUA issues can arise when using Media Control Channel
 packages such as the IVR[RFC6231] and Mixer[RFC6505] Packages.
 Specifically the Framework attribute 'connectionid' provided in the
 appendix titled 'Appendix: Common Package Components' of Media
 Control Channel Framework[RFC6230] uses a concatenation of the SIP
 dialog identifiers to be used for referencing SIP dialogs within the
 media control channel. When a request traverses an MRB acting as a
 B2BUA, the SIP dialog identifiers change and so the 'connectionid'
 can not be used as intended due to the SIP dialog identifiers
 changing. For this reason when a MRB wishes to act as a SIP B2BUA
 when handling a request from an AS to set up a media dialog to a MS
 it MUST include the optional <connection-id> element in a Consumer
 interface response with a value that provides the equivalent for the
 'connectionid' ('Local Dialog Tag' + 'Remote Dialog Tag') for the far
 side of the B2BUA. If present, this value MUST be used as the value
 for the 'connectionid' in packages where the Common Package
 Components are used. The <connection-id> element MUST NOT be
 included in a HTTP Consumer interface response.

 It is important to point out that, although more MSs instances may be
 returned in a Consumer response (i.e., the MRB has assigned more than
 one MS to a Consumer request to fulfill the AS requirements), in IAMM
 the MRB will only act as a B2BUA with a single MS: in this case,
 exactly one <media-server-address> element, the one describing the
 one that provided the media dialog or CFW response, will have a
 <connection-id> element, which will instead be missing in the other
 <media-server-address> elements.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Boulton, et al. Expires January 11, 2013 [Page 55]

Internet-Draft Media Resource Brokering July 2012

7. Multi-modal MRB Implementations

 An MRB implementation may operate multi-modally with a collection of
 application server clients all sharing the same pool of media
 resources. I.e., an MRB may be simultaneously operating in Query
 mode, IAMM and IUMM. It knows in which mode to act on any particular
 request from a client depending on the nature of the request:

 o If the received quest is HTTP Post with application/
 mrb-consumer+xml content, then MRB processes it in Query mode.

 o If the received request is a SIP INVITE with application/
 mrb-consumer+xml content and application/sdp content, then MRB
 processes it in IAMM.

 o If the received request is a SIP INVITE without application/
 mrb-consumer+xml content but with application/sdp content then MRB
 processes it in IUMM.

Boulton, et al. Expires January 11, 2013 [Page 56]

Internet-Draft Media Resource Brokering July 2012

8. Relative Merits of Query Mode, IAMM, and IUMM

 At a high level, the possible application server MRB interactions can
 be distinguished among the following basic types:

 a. Query mode, in which the client is requesting the assignment by
 MRB of suitable MSs resources;

 b. IAMM in which the client is requesting the assignment by MRB of
 suitable MSs resources and the establishment of a media dialog to
 one of the MSs;

 c. IAMM in which the client is requesting the assignment by MRB of
 suitable MSs resources and the establishment of a CFW control
 channel to one of the MSs;

 d. IUMM where the client is requesting the establishment of a media
 dialog to MS resources;

 e. IUMM where the client is requesting the establishment of a CFW
 control channel to MS resources.

 Each type of interaction has advantages and disadvantages compared to
 the others, where such considerations may have to do with the
 versatility of what MRB can provide, technical aspects such as
 efficiency in different application scenarios, complexity, delay, use
 with legacy application servers, or use with the Media Control
 Channel Framework. Depending on the characteristics of a particular
 setting that an MRB is intended to support, some of the above
 interaction types may be more appropriate than others. This section
 makes a few observations on relative merits, but is not intended to
 be exhaustive. Some constraints of a given interaction type may be
 subtle.

 o About operation with other types of media control: Any of the
 types of interactions work with the use RFC 4240 [RFC4240] and RFC

5552 [RFC5552] where initial control instructions are conveyed in
 the SIP INVITE from the application server for the media dialog to
 the media server and subsequent instructions may be fetched using
 HTTP. Query mode (a), IAMM/media dialog (b) and IUMM/media dialog
 (d) work with MSML as per RFC 5707 [RFC5707] or MSCML as per RFC

5022 [RFC5022].

 o As stated previously, IUMM has no interface impacts on an
 application server. On the other hand, with IUMM the application
 server does not specify the characteristics of the type of media
 resource it needs because the <mediaResourceRequest> element is
 not passed to the MRB. For IUMM media dialog (d) the best the MRB

https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc5552
https://datatracker.ietf.org/doc/html/rfc5552
https://datatracker.ietf.org/doc/html/rfc5552
https://datatracker.ietf.org/doc/html/rfc5707
https://datatracker.ietf.org/doc/html/rfc5707
https://datatracker.ietf.org/doc/html/rfc5022
https://datatracker.ietf.org/doc/html/rfc5022
https://datatracker.ietf.org/doc/html/rfc5022

Boulton, et al. Expires January 11, 2013 [Page 57]

Internet-Draft Media Resource Brokering July 2012

 can do to deduce an appropriate media resource gleaned from
 examining other information in the SIP INVITE, such as the SDP
 information for the media dialog, or initial control information
 in the SIP Request URI as per RFC 4240 [RFC4240]. With IUMM/
 control channel (e) there is even less information for the MRB to
 use.

 o If using IUMM/control channel (e), the subsequent sending of the
 media dialog to the media server should not be done using IUMM/
 media dialog. I.e., the SIP signaling to send the media dialog to
 the selected media server must be directly between the application
 server and that media server, and not through the MRB. Otherwise,
 MRB might send the media dialog to a different media server.
 Likewise, if using IUMM/media dialog (d), the subsequent
 establishment of a control channel should not be done with IUMM/
 control channel (e).

 o Query mode (a) and IAMM/control channel (c) lend themselves to
 requesting a pool of media resources (e.g., a number of IVR or
 conferencing ports) in advance of use and retaining their use over
 a period of time, independent of whether there are media dialogs
 to those resources at any given moment, whereas the other types of
 interactions do not. Likewise for making a subsequent request to
 increase or decrease the amount of resources previously awarded.

 o While Query mode (a) and IAMM/control channel (c) are the most
 versatile interaction types, the former is completely decoupled
 from the use or not of a control channel, whereas the latter
 requires the use of a control channel.

 o When Media Control Channel Framework control channels are to be
 used in conjunction with the use of MRB, Query mode (a) would
 typically result in fewer such channels being established over
 time as compared to IAMM/control channel (c). That is because the
 latter would involve setting up an additional control channel
 every time an AS has a new request for MBR for media resources.

https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc4240

Boulton, et al. Expires January 11, 2013 [Page 58]

Internet-Draft Media Resource Brokering July 2012

9. Examples

 This section provides examples of both the Publish and Consumer
 interfaces. For what concerns the Consumer interface, both Query and
 Inline modes are addressed.

 Note that due to RFC formatting conventions, this section often
 splits HTTP, SIP/SDP and CFW across lines whose content would exceed
 72 characters. A backslash character marks where this line folding
 has taken place. This backslash and its trailing CRLF and whitespace
 would not appear in the actual protocol contents. Besides, also note
 that the indentation of the XML content is only provided for
 readability: actual messages will follow strict XML syntax, which
 allows for, but does not require, indentation.

9.1. Publish Example

 The following example assumes a control channel has been established
 and synced as described in the Media Control Channel Framework
 ([RFC6230]).

 Figure 9 shows the subscription/notification mechanism the Publish
 interface is based on, as defined in Section 5.1. The MRB subscribes
 for information at the MS (message A1.), and the MS accepts the
 subscription (A2). Notifications are triggered by the MS (A3.) and
 acknowledged by the MRB (A4.).

https://datatracker.ietf.org/doc/html/rfc6230

Boulton, et al. Expires January 11, 2013 [Page 59]

Internet-Draft Media Resource Brokering July 2012

 MRB MS
 | |
 | A1. CONTROL (MRB subscription) |
 |--->|
 | A2. 200 OK |
 |<---|
 | |
 . .
 . .
 | |
 | |--+ collect
 | | | up-to-date
 | |<-+ info
 | B1. CONTROL (MRB notification) |
 |<---|
 | B2. 200 OK |
 |--->|
 | |
 . .
 . .

 Figure 9: Publish Example: Sequence Diagram

 The rest of this section includes a full dump of the messages
 associated with the previous sequence diagram, specifically:

 1. the subscription (A1), in an <mrbrequest> (CFW CONTROL);

 2. the MS accepting the subscription (A2), in an <mrbresponse> (CFW
 200);

 3. a notification (A3), in a <mrbnotification> (CFW CONTROL event);

 4. the ack to the notification (A4), in a framework level 200
 message (CFW 200);

A1. MRB -> MS (CONTROL, publish request)
--
CFW lidc30BZObiC CONTROL
Control-Package: mrb-publish/1.0
Content-Type: application/mrb-publish+xml
Content-Length: 337

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<mrbpublish version="1.0" xmlns="urn:ietf:params:xml:ns:mrb-publish">

Boulton, et al. Expires January 11, 2013 [Page 60]

Internet-Draft Media Resource Brokering July 2012

 <mrbrequest>
 <subscription action="create" seqnumber="1" id="p0T65U">
 <expires>600</expires>
 <minfrequency>20</minfrequency>
 <maxfrequency>20</maxfrequency>
 </subscription>
 </mrbrequest>
</mrbpublish>

A2. MRB <- MS (200 to CONTROL, request accepted)
--
CFW lidc30BZObiC 200
Timeout: 10
Content-Type: application/mrb-publish+xml
Content-Length: 139

<mrbpublish version="1.0" xmlns="urn:ietf:params:xml:ns:mrb-publish">
 <mrbresponse status="200" reason="OK: Request accepted"/>
</mrbpublish>

B1. MRB <- MS (CONTROL, event notification from MS)

CFW 03fff52e7b7a CONTROL
Control-Package: mrb-publish/1.0
Content-Type: application/mrb-publish+xml
Content-Length: 4234

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <mrbpublish version="1.0"
 xmlns="urn:ietf:params:xml:ns:mrb-publish">
 <mrbnotification seqnumber="1" id="QQ6J3c">
 <media-server-id>a1b2c3d4</media-server-id>
 <supported-packages>
 <package name="msc-ivr/1.0"/>
 <package name="msc-mixer/1.0"/>
 <package name="mrb-publish/1.0"/>
 <package name="msc-example-pkg/1.0"/>
 </supported-packages>
 <active-rtp-sessions>
 <rtp-codec name="audio/basic">
 <decoding>10</decoding>
 <encoding>20</encoding>
 </rtp-codec>
 </active-rtp-sessions>

Boulton, et al. Expires January 11, 2013 [Page 61]

Internet-Draft Media Resource Brokering July 2012

 <active-mixer-sessions>
 <active-mix conferenceid="7cfgs43">
 <rtp-codec name="audio/basic">
 <decoding>3</decoding>
 <encoding>3</encoding>
 </rtp-codec>
 </active-mix>
 </active-mixer-sessions>
 <non-active-rtp-sessions>
 <rtp-codec name="audio/basic">
 <decoding>50</decoding>
 <encoding>40</encoding>
 </rtp-codec>
 </non-active-rtp-sessions>
 <non-active-mixer-sessions>
 <non-active-mix available="15">
 <rtp-codec name="audio/basic">
 <decoding>15</decoding>
 <encoding>15</encoding>
 </rtp-codec>
 </non-active-mix>
 </non-active-mixer-sessions>
 <media-server-status>active</media-server-status>
 <supported-codecs>
 <supported-codec name="audio/basic">
 <supported-codec-package name="msc-ivr/1.0">
 <supported-action>encoding</supported-action>
 <supported-action>decoding</supported-action>
 </supported-codec-package>
 <supported-codec-package name="msc-mixer/1.0">
 <supported-action>encoding</supported-action>
 <supported-action>decoding</supported-action>
 </supported-codec-package>
 </supported-codec>
 </supported-codecs>
 <application-data>TestbedPrototype</application-data>
 <file-formats>
 <supported-format name="audio/x-wav">
 <supported-file-package>
 msc-ivr/1.0
 </supported-file-package>
 </supported-format>
 </file-formats>
 <max-prepared-duration>
 <max-time max-time-seconds="3600">
 <max-time-package>msc-ivr/1.0</max-time-package>
 </max-time>
 </max-prepared-duration>

Boulton, et al. Expires January 11, 2013 [Page 62]

Internet-Draft Media Resource Brokering July 2012

 <dtmf-support>
 <detect>
 <dtmf-type package="msc-ivr/1.0" name="RFC4733"/>
 <dtmf-type package="msc-mixer/1.0" name="RFC4733"/>
 </detect>
 <generate>
 <dtmf-type package="msc-ivr/1.0" name="RFC4733"/>
 <dtmf-type package="msc-mixer/1.0" name="RFC4733"/>
 </generate>
 <passthrough>
 <dtmf-type package="msc-ivr/1.0" name="RFC4733"/>
 <dtmf-type package="msc-mixer/1.0" name="RFC4733"/>
 </passthrough>
 </dtmf-support>
 <mixing-modes>
 <audio-mixing-modes>
 <audio-mixing-mode package="msc-ivr/1.0">
 nbest
 </audio-mixing-mode>
 </audio-mixing-modes>
 <video-mixing-modes activespeakermix="true" vas="true">
 <video-mixing-mode package="msc-mixer/1.0">
 single-view
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0">
 dual-view
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0">
 dual-view-crop
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0">
 dual-view-2x1
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0">
 dual-view-2x1-crop
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0">
 quad-view
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0">
 multiple-5x1
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0">
 multiple-3x3
 </video-mixing-mode>
 <video-mixing-mode package="msc-mixer/1.0">
 multiple-4x4
 </video-mixing-mode>

https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733

Boulton, et al. Expires January 11, 2013 [Page 63]

Internet-Draft Media Resource Brokering July 2012

 </video-mixing-modes>
 </mixing-modes>
 <supported-tones>
 <supported-country-codes>
 <country-code package="msc-ivr/1.0">GB</country-code>
 <country-code package="msc-ivr/1.0">IT</country-code>
 <country-code package="msc-ivr/1.0">US</country-code>
 </supported-country-codes>
 <supported-h248-codes>
 <h248-code package="msc-ivr/1.0">cg/*</h248-code>
 <h248-code package="msc-ivr/1.0">biztn/ofque</h248-code>
 <h248-code package="msc-ivr/1.0">biztn/erwt</h248-code>
 <h248-code package="msc-mixer/1.0">conftn/*</h248-code>
 </supported-h248-codes>
 </supported-tones>
 <file-transfer-modes>
 <file-transfer-mode package="msc-ivr/1.0" name="HTTP"/>
 </file-transfer-modes>
 <asr-tts-support>
 <asr-support>
 <language xml:lang="en"/>
 </asr-support>
 <tts-support>
 <language xml:lang="en"/>
 </tts-support>
 </asr-tts-support>
 <vxml-support>
 <vxml-mode package="msc-ivr/1.0" support="RFC6231"/>
 </vxml-support>
 <media-server-location>
 <civicAddress xml:lang="it">
 <country>IT</country>
 <A1>Campania</A1>
 <A3>Napoli</A3>
 <A6>Via Claudio</A6>
 <HNO>21</HNO>
 <LMK>University of Napoli Federico II</LMK>
 <NAM>Dipartimento di Informatica e Sistemistica</NAM>
 <PC>80210</PC>
 </civicAddress>
 </media-server-location>
 <label>TestbedPrototype-01</label>
 <media-server-address>
 sip:MediaServer@ms.example.net
 </media-server-address>
 <encryption>
 <keying-mechanism>SDES-SRTP</keying-mechanism>
 </encryption>

https://datatracker.ietf.org/doc/html/rfc6231

Boulton, et al. Expires January 11, 2013 [Page 64]

Internet-Draft Media Resource Brokering July 2012

 </mrbnotification>
 </mrbpublish>

B2. MRB -> MS (200 to CONTROL)

CFW 03fff52e7b7a 200

9.2. Consumer Example

 As specified in Section 5.2, the Consumer interface can be involved
 in two different modes: Query and Inline-aware. When in Query mode,
 Consumer messages are transported in HTTP messages: an example of
 such an approach is presented in Section 9.2.1. When in Inline-aware
 mode, instead, messages are transported as part of SIP negotiations:
 considering that SIP negotiations may be related to either the
 creation of a control channel or to a UAC media dialog, two separate
 examples of such an approach are presented in Section 9.2.2.

9.2.1. Query Example

 The following example assumes the interested AS already knows the
 HTTP URL where an MRB is listening for Consumer messages.

 Figure 10 shows the HTTP-based transaction between the AS and the
 MRB. The AS sends a consumer request as payload of an HTTP POST
 message (1.), and the MRB provides an answer in an HTTP 200 OK
 message (2.). Specifically, as it will be shown in the dumps, the AS
 is interested in 100 IVR ports: the MRB finds two MSs that can
 satisfy the request (one providing 60 ports, the other 40 ports) and
 reports them to the AS.

Boulton, et al. Expires January 11, 2013 [Page 65]

Internet-Draft Media Resource Brokering July 2012

 AS MRB
 | |
 | 1. HTTP POST (Consumer request) |
 |--->|
 | |
 | |
 | |--+ Parse request
 | | | and see if any
 | |<-+ MS applies
 | |
 | 2. 200 OK (Consumer response) |
 |<---|
 | |
 |--+ Parse response and |
 | | start session (SIP/COMEDIA/CFW) |
 |<-+ with first MS reported by MRB |
 | |
 . .
 . .

 Figure 10: Consumer Example (Query): Sequence Diagram

 The rest of this section includes a full dump of the messages
 associated with the previous sequence diagram, specifically:

 1. the Consumer request (1), in a <mediaResourceRequest> (HTTP POST,
 Content-Type 'application/mrb-consumer+xml');

 2. the Consumer response (2), in an <mediaResourceResponse> (HTTP
 200 OK, Content-Type 'application/mrb-consumer+xml').

1. AS -> MRB (HTTP POST, Consumer request)
--
POST /Mrb/Consumer HTTP/1.1
Content-Length: 893
Content-Type: application/mrb-consumer+xml
Host: mrb.example.net:8080
Connection: Keep-Alive
User-Agent: Apache-HttpClient/4.0.1 (java 1.5)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<mrbconsumer version="1.0" xmlns="urn:ietf:params:xml:ns:mrb-consumer">
 <mediaResourceRequest id="gh11x23v">
 <generalInfo>
 <packages>

Boulton, et al. Expires January 11, 2013 [Page 66]

Internet-Draft Media Resource Brokering July 2012

 <package>msc-ivr/1.0</package>
 <package>msc-mixer/1.0</package>
 </packages>
 </generalInfo>
 <ivrInfo>
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>100</decoding>
 <encoding>100</encoding>
 </rtp-codec>
 </ivr-sessions>
 <file-formats>
 <required-format name="audio/x-wav"/>
 </file-formats>
 <file-transfer-modes>
 <file-transfer-mode package="msc-ivr/1.0" name="HTTP"/>
 </file-transfer-modes>
 </ivrInfo>
 </mediaResourceRequest>
</mrbconsumer>

2. AS <- MRB (200 to POST, Consumer response)

HTTP/1.1 200 OK
X-Powered-By: Servlet/2.5
Server: Sun GlassFish Communications Server 1.5
Content-Type: application/mrb-consumer+xml;charset=ISO-8859-1
Content-Length: 1133
Date: Mon, 12 Apr 2011 14:59:26 GMT

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<mrbconsumer version="1.0" xmlns="urn:ietf:params:xml:ns:mrb-consumer" >
 <mediaResourceResponse reason="Resource found" status="200"
 id="gh11x23v">
 <response-session-info>
 <session-id>5t3Y4IQ84gY1</session-id>
 <seq>9</seq>
 <expires>3600</expires>
 <media-server-address
 uri="sip:MediaServer@ms.example.com:5080">
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>60</decoding>
 <encoding>60</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>

Boulton, et al. Expires January 11, 2013 [Page 67]

Internet-Draft Media Resource Brokering July 2012

 <media-server-address
 uri="sip:OtherMediaServer@pool.example.net:5080">
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>40</decoding>
 <encoding>40</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>
 </response-session-info>
 </mediaResourceResponse>
</mrbconsumer>

 As the dumps evince, the request and response are associated by means
 of the 'id' attribute (id="gh11x23v"). Besides, the MRB has picked
 '9' as the random sequence number that needs to be incremented by the
 AS for the following request associated with the same session.

 The rest of the scenario is omitted for brevity. After having
 received the 'mediaResourceResponse', the AS has the address of two
 MSs able to fulfil its media requirements, and can start a Control
 Dialog with one or both of them.

9.2.2. IAMM Example

 As anticipated, two separate examples are presented for the IAMM
 case: in fact, IAMM-mode can take advantage of two different
 approaches with respect to the SIP dialogs to be exploited to carry
 consumer messages, i.e.: i) a SIP control dialog to create a control
 channel, and, ii) a UAC media dialog to attach to a MS. To make
 things clearer for the reader, the same consumer request as the one
 presented in the Query mode will be sent, in order to clarify how the
 behaviour of the involved parties may differ.

9.2.2.1. IAMM Example: CFW-based approach

 The following example assumes the interested AS already knows the SIP
 URI where an MRB is listening as an UAS.

 Figure 11 shows the first approach, i.e. SIP-based transactions
 between the AS, the MRB and one MS that the MRB chooses from the two
 that are allocated to fulfill the request. The diagram is more
 complex than before. This is basically a scenario envisaging the MRB
 as a B2BUA. The AS sends a SIP INVITE (1.), containing both a CFW-
 related SDP and a Consumer request (multipart body). The MRB sends a
 provisional response to the AS (2.) and starts working on the
 request. First of all, it makes use of the Consumer request from the

Boulton, et al. Expires January 11, 2013 [Page 68]

Internet-Draft Media Resource Brokering July 2012

 AS to determine which MSs should be exploited. Once the right MSs
 have been chosen (MS1 and MS2 in the example), the MRB sends a new
 SIP INVITE to one of the MSs (MS1 in the example) by just including
 the SDP part of the original request (3.). That MS negotiates this
 INVITE as specified in [RFC6230] (4., 5., 6.), providing the MRB with
 its own CFW-related SDP. The MRB replies to the original AS INVITE
 preparing a SIP 200 OK with another multipart body (7.): this
 multipart body includes the Consumer response used by the MRB to
 determine the right MSs and the SDP returned by the MS (MS1) in 5.
 The AS finally acknowledges the 200 OK (8.), and can start a CFW
 connection towards that MS (MS1). Since the MRB provided the AS with
 two MSs instances to fulfill its requirements, the AS can use the URI
 in the <media-server-address> element in the <mediaResourceResponse>
 that describes the other MS to establish a CFW channel with that MS
 (MS2) as well.

 Please note that, to ease the reading of the protocol contents, a
 simple '=_Part' is used whenever a boundary for a 'multipart/mixed'
 payload is provided, instead of the actual boundary that would be
 inserted in the SIP messages.

 AS MRB MS1 MS2
1. INVITE			
(multipart/mixed)			
---------------------->			
2. 100 (Trying)			
<----------------------			
	--+ Extract SDP and		
		MRB payloads; handle	
	<-+ Consumer request to		
	pick MSs (MS1 and MS2)		
	3. INVITE		
	(only copy SDP from 1.)		
	-------------------------->		
	4. 100 (Trying)		
	<--------------------------		
		--+ Negotiate	
			CFW Control
		<-+ Channel	
	5. 200 OK		
	<--------------------------		
	6. ACK		
	-------------------------->		
Prepare new +--			

https://datatracker.ietf.org/doc/html/rfc6230

Boulton, et al. Expires January 11, 2013 [Page 69]

Internet-Draft Media Resource Brokering July 2012

payload with			
SDP from MS and +->			
Consumer reply			
7. 200 OK			
(multipart/mixed)			
<----------------------			
8. ACK			
---------------------->			
--+ Read Cons. reply			
	and use SDP to		
<-+ create CFW Chn.			
Create TCP CFW channel towards MS1 (if needed)			
-->			
<<############## TCP CONNECTION #################>>			
CFW SYNC			
++>			
. . . .			
. . . .			
Negotiate SIP Control Dialog with MS2			
<-->			
Create TCP CFW channel towards MS2 as well (if needed)			
--->			
<<######################## TCP CONNECTION ########################>>			
CFW SYNC			
+++>			

 Figure 11: Consumer Example (IAMM-CFW): Sequence Diagram

 The rest of this section includes an almost full dump of the messages
 associated with the previous sequence diagram. Only the relevant SIP
 messages are shown (both the INVITEs and the 200 OKs), and only the
 relevant headers are preserved for brevity (Content-Type and
 multipart-related information). Specifically:

Boulton, et al. Expires January 11, 2013 [Page 70]

Internet-Draft Media Resource Brokering July 2012

 1. the original INVITE (1), containing both a CFW-related SDP
 (COMEDIA information to negotiate a new Control Channel) and a
 Consumer <mediaResourceRequest>;

 2. the INVITE sent by the MRB to the MS as a B2BUA (3.), containing
 only the CFW-related SDP from the original INVITE;.

 3. the 200 OK sent by the MS back to the MRB (5.), to complete the
 CFW-related negotiation (SDP only);

 4. the 200 OK sent by the MRB back to the AS in response to the
 original INVITE (7.), containing both the CFW-related information
 sent by the MS and a Consumer <mediaResourceRequest> documenting
 the MRB's decision to use that MS.

1. AS -> MRB (INVITE multipart/mixed)

 [..]
 Content-Type: multipart/mixed;boundary="=_Part"

 =_Part
 Content-Type: application/sdp

 v=0
 o=- 2890844526 2890842807 IN IP4 as.example.com
 s=MediaCtrl
 c=IN IP4 as.example.com
 t=0 0
 m=application 48035 TCP cfw
 a=connection:new
 a=setup:active
 a=cfw-id:vF0zD4xzUAW9
 a=ctrl-package:msc-mixer/1.0
 a=ctrl-package:msc-ivr/1.0

 =_Part
 Content-Type: application/mrb-consumer+xml

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <mrbconsumer version="1.0"
 xmlns="urn:ietf:params:xml:ns:mrb-consumer">
 <mediaResourceRequest id="pz78hnq1">
 <generalInfo>
 <packages>
 <package>msc-ivr/1.0</package>
 <package>msc-mixer/1.0</package>

Boulton, et al. Expires January 11, 2013 [Page 71]

Internet-Draft Media Resource Brokering July 2012

 </packages>
 </generalInfo>
 <ivrInfo>
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>100</decoding>
 <encoding>100</encoding>
 </rtp-codec>
 </ivr-sessions>
 <file-formats>
 <required-format name="audio/x-wav"/>
 </file-formats>
 <file-transfer-modes>
 <file-transfer-mode package="msc-ivr/1.0" name="HTTP"/>
 </file-transfer-modes>
 </ivrInfo>
 </mediaResourceRequest>
 </mrbconsumer>

 =_Part

3. MRB -> MS (INVITE sdp only)

 [..]
 Content-Type: application/sdp

 v=0
 o=- 2890844526 2890842807 IN IP4 as.example.com
 s=MediaCtrl
 c=IN IP4 as.example.com
 t=0 0
 m=application 48035 TCP cfw
 a=connection:new
 a=setup:active
 a=cfw-id:vF0zD4xzUAW9
 a=ctrl-package:msc-mixer/1.0
 a=ctrl-package:msc-ivr/1.0

5. MRB <- MS (200 OK sdp)

 [..]
 Content-Type: application/sdp

 v=0

Boulton, et al. Expires January 11, 2013 [Page 72]

Internet-Draft Media Resource Brokering July 2012

 o=lminiero 2890844526 2890842808 IN IP4 ms.example.net
 s=MediaCtrl
 c=IN IP4 ms.example.net
 t=0 0
 m=application 7575 TCP cfw
 a=connection:new
 a=setup:passive
 a=cfw-id:vF0zD4xzUAW9
 a=ctrl-package:msc-mixer/1.0
 a=ctrl-package:msc-ivr/1.0
 a=ctrl-package:mrb-publish/1.0
 a=ctrl-package:msc-example-pkg/1.0

7. AS <- MRB (200 OK multipart/mixed)

 [..]
 Content-Type: multipart/mixed;boundary="=_Part"

 =_Part
 Content-Type: application/sdp

 v=0
 o=lminiero 2890844526 2890842808 IN IP4 ms.example.net
 s=MediaCtrl
 c=IN IP4 ms.example.net
 t=0 0
 m=application 7575 TCP cfw
 a=connection:new
 a=setup:passive
 a=cfw-id:vF0zD4xzUAW9
 a=ctrl-package:msc-mixer/1.0
 a=ctrl-package:msc-ivr/1.0
 a=ctrl-package:mrb-publish/1.0
 a=ctrl-package:msc-example-pkg/1.0

 =_Part
 Content-Type: application/mrb-consumer+xml

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <mrbconsumer version="1.0"
 xmlns="urn:ietf:params:xml:ns:mrb-consumer" >
 <mediaResourceResponse reason="Resource found" status="200"
 id="pz78hnq1">
 <response-session-info>
 <session-id>z1skKYZQ3eFu</session-id>
 <seq>9</seq>

Boulton, et al. Expires January 11, 2013 [Page 73]

Internet-Draft Media Resource Brokering July 2012

 <expires>3600</expires>
 <media-server-address
 uri="sip:MediaServer@ms.example.com:5080">
 <connection-id>32pbdxZ8:KQw677BF</connection-id>
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>60</decoding>
 <encoding>60</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>
 <media-server-address
 uri="sip:OtherMediaServer@pool.example.net:5080">
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>40</decoding>
 <encoding>40</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>
 </response-session-info>
 </mediaResourceResponse>
 </mrbconsumer>

 =_Part

 As the dumps evince, the only difference in the response the MRB
 provides the AS with is in the 'connection-id' attribute that is
 added to the first allocated MS instance: this allows the AS to
 understand the MRB has sent the CFW channel negotiation to that
 specific MS, and that the connection-id to be used (should the SIP
 control dialog also include media-related SDP later on) is the one
 provided. This will be more carefully described in the next section,
 for the media dialog-based approach.

 The continuation of the scenario (the AS connecting to MS1 to start
 the Control Channel and the related SYNC message, the AS connecting
 to MS2 as well later on, all the media dialogs being attached to
 either MS) are omitted for brevity.

9.2.2.2. IAMM Example: Media dialog-based approach

 The following example assumes the interested AS already knows the SIP
 URI where an MRB is listening as an UAS.

 Figure 12 shows the second approach, i.e. SIP-based transactions
 between a SIP client, the AS, the MRB and the MS that the MRB

Boulton, et al. Expires January 11, 2013 [Page 74]

Internet-Draft Media Resource Brokering July 2012

 chooses. The interaction is basically the same as before (e.g. for
 what concerns the multipart body) but considering a new party is
 involved in the communication, the diagram is slightly more complex
 than before. As before, the MRB acts as a B2BUA. A UAC sends a SIP
 INVITE to a SIP URI handled by the AS, since it is interested to its
 services (1.). The AS sends a provisional response (2.) and, since
 it doesn't have the resources yet, sends to the MRB a new SIP INVITE
 (3.), containing both the UAC media-related SDP and a Consumer
 request (multipart body). The MRB sends a provisional response to
 the AS (4.) and starts working on the request. First of all, it
 makes use of the Consumer request from the AS to determine which MSs
 should be chosen. Once the right MSs have been chosen, the MRB sends
 a new SIP INVITE to one of the MSs by just including the SDP part of
 the original request (5.). The MS negotiates this INVITE as
 specified in [RFC6230] (6., 7., 8.) to allocate the needed media
 resources to handle the new media dialog, eventually providing the
 MRB with its own media-related SDP. The MRB replies to the original
 AS INVITE preparing a SIP 200 OK with another multipart body (9.):
 this multipart body includes the Consumer response from the MRB
 indicating the chosen MSs and the SDP returned by the MS in 7. The
 AS finally acknowledges the 200 OK (10.), and ends the scenario by
 eventually providing the UAC with the SDP it needs to set-up the RTP
 channels with the chosen MS: a separate direct SIP control dialog may
 be initiated by the AS to the same MS in order to set up a control
 channel to manipulate the media dialog media.

 As with the IAMM - CFW example in the prior section, this example has
 the MRB selecting MS resources across two MS instances. And here
 again the convention can be that the MRB sent the SIP INVITE to the
 first MS in the list provided to the AS in the Consumer response
 information. For the sake of brevity, the considerations about
 connecting to the other MS as well are omitted, since they have
 already been addressed in the previous section.

 Please note that, to ease the reading of the protocol contents, a
 simple '=_Part' is used whenever a boundary for a 'multipart/mixed'
 payload is provided, instead of the actual boundary that would be
 inserted in the SIP messages.

 UAC AS MRB MS
1. INVITE		
(media SDP)		
-------------->		
2. 100 Trying		
<--------------		

https://datatracker.ietf.org/doc/html/rfc6230

Boulton, et al. Expires January 11, 2013 [Page 75]

Internet-Draft Media Resource Brokering July 2012

	3. INVITE		
	(multipart/mixed)		
	---------------------->		
	4. 100 (Trying)		
	<----------------------		
		--+ Extract SDP and	
			MRB payloads; handle
		<-+ Consumer request to	
		pick Media Servers	
		5. INVITE	
		(only copy SDP from 3.)	
		-------------------------->	
		6. 100 (Trying)	
		<--------------------------	
		+--	
		Handle media dialog	
		(connection-id) +->	
		7. 200 OK	
		<--------------------------	
		8. ACK	
		-------------------------->	
	Prepare new +--		
	payload with		
	SDP from MS and +->		
	Consumer reply		
	9. 200 OK		
	(multipart/mixed)		
	<----------------------		
	10. ACK		
	---------------------->		
	--+ Read Cons. reply		
		and send SDP	
	<-+ back to UAC		
11. 200 OK			
<--------------			
12. ACK			
-------------->			
<<*************************** RTP *******************************>>			
	--+ Negotiate		
		CFW channel	
	<-+ towards MS		
	(if needed)		

Boulton, et al. Expires January 11, 2013 [Page 76]

Internet-Draft Media Resource Brokering July 2012

	Create TCP CFW channel towards MS (if needed)	
	-->	
	<<############## TCP CONNECTION #################>>	
	CFW SYNC	
	++>	

 Figure 12: Consumer Example (IAMM-MediaDialog): Sequence Diagram

 The rest of this section includes an almost full dump of the messages
 associated with the previous sequence diagram. Only the relevant SIP
 messages are shown (both the INVITEs and the 200 OKs), and only the
 relevant headers are preserved for brevity (Content-Type, From/To and
 multipart-related information). Specifically:

 1. the original INVITE (1), containing the media-related SDP sent by
 a UAC;

 2. the original INVITE (3), containing both the media-related SDP
 and a Consumer <mediaResourceRequest>;

 3. the INVITE sent by the MRB to the MS as a B2BUA (5.), containing
 only the media-related SDP from the original INVITE;

 4. the 200 OK sent by the MS back to the MRB (7.), to complete the
 media-related negotiation (SDP only);

 5. the 200 OK sent by the MRB back to the AS in response to the
 original INVITE (9.), containing both the media-related
 information sent by the MS and a Consumer <mediaResourceRequest>
 documenting the MRB's decision to use that MS;

 6. the 200 OK sent by the AS back to the UAC to have it set-up the
 RTP channel(s) with the MS (11.).

1. UAC -> AS (INVITE with media SDP)

Boulton, et al. Expires January 11, 2013 [Page 77]

Internet-Draft Media Resource Brokering July 2012

 [..]
 From: <sip:lminiero@users.example.com>;tag=1153573888
 To: <sip:mediactrlDemo@as.example.com>
 [..]
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654321 IN IP4 203.0.113.2
 s=A conversation
 c=IN IP4 203.0.113.2
 t=0 0
 m=audio 7078 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000/1
 a=rtpmap:3 GSM/8000/1
 a=rtpmap:8 PCMA/8000/1
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-11
 m=video 9078 RTP/AVP 98

3. AS -> MRB (INVITE multipart/mixed)

 [..]
 From: <sip:ApplicationServer@as.example.com>;tag=fd4fush5
 To: <sip:Mrb@mrb.example.org>
 [..]
 Content-Type: multipart/mixed;boundary="=_Part"

 =_Part
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654321 IN IP4 203.0.113.2
 s=A conversation
 c=IN IP4 203.0.113.2
 t=0 0
 m=audio 7078 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000/1
 a=rtpmap:3 GSM/8000/1
 a=rtpmap:8 PCMA/8000/1
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-11
 m=video 9078 RTP/AVP 98

 =_Part
 Content-Type: application/mrb-consumer+xml

Boulton, et al. Expires January 11, 2013 [Page 78]

Internet-Draft Media Resource Brokering July 2012

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <mrbconsumer version="1.0"
 xmlns="urn:ietf:params:xml:ns:mrb-consumer">
 <mediaResourceRequest id="ns56g1x0">
 <generalInfo>
 <packages>
 <package>msc-ivr/1.0</package>
 <package>msc-mixer/1.0</package>
 </packages>
 </generalInfo>
 <ivrInfo>
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>100</decoding>
 <encoding>100</encoding>
 </rtp-codec>
 </ivr-sessions>
 <file-formats>
 <required-format name="audio/x-wav"/>
 </file-formats>
 <file-transfer-modes>
 <file-transfer-mode package="msc-ivr/1.0" name="HTTP"/>
 </file-transfer-modes>
 </ivrInfo>
 </mediaResourceRequest>
 </mrbconsumer>

 =_Part

5. MRB -> MS (INVITE sdp only)

 [..]
 From: <sip:Mrb@mrb.example.org:5060>;tag=32pbdxZ8
 To: <sip:MediaServer@ms.example.com:5080>
 [..]
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654321 IN IP4 203.0.113.2
 s=A conversation
 c=IN IP4 203.0.113.2
 t=0 0
 m=audio 7078 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000/1
 a=rtpmap:3 GSM/8000/1
 a=rtpmap:8 PCMA/8000/1

Boulton, et al. Expires January 11, 2013 [Page 79]

Internet-Draft Media Resource Brokering July 2012

 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-11
 m=video 9078 RTP/AVP 98

7. MRB <- MS (200 OK sdp)

 [..]
 From: <sip:Mrb@mrb.example.org:5060>;tag=32pbdxZ8
 To: <sip:MediaServer@ms.example.com:5080>;tag=KQw677BF
 [..]
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654322 IN IP4 203.0.113.1
 s=MediaCtrl
 c=IN IP4 203.0.113.1
 t=0 0
 m=audio 63442 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000
 a=rtpmap:3 GSM/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-15
 a=ptime:20
 a=label:7eda834
 m=video 33468 RTP/AVP 98
 a=rtpmap:98 H263-1998/90000
 a=fmtp:98 CIF=2
 a=label:0132ca2

9. AS <- MRB (200 OK multipart/mixed)

 [..]
 From: <sip:ApplicationServer@as.example.com>;tag=fd4fush5
 To: <sip:Mrb@mrb.example.org>;tag=117652221
 [..]
 Content-Type: multipart/mixed;boundary="=_Part"

 =_Part
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654322 IN IP4 203.0.113.1
 s=MediaCtrl

Boulton, et al. Expires January 11, 2013 [Page 80]

Internet-Draft Media Resource Brokering July 2012

 c=IN IP4 203.0.113.1
 t=0 0
 m=audio 63442 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000
 a=rtpmap:3 GSM/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-15
 a=ptime:20
 a=label:7eda834
 m=video 33468 RTP/AVP 98
 a=rtpmap:98 H263-1998/90000
 a=fmtp:98 CIF=2
 a=label:0132ca2

 =_Part
 Content-Type: application/mrb-consumer+xml

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <mrbconsumer version="1.0"
 xmlns="urn:ietf:params:xml:ns:mrb-consumer" >
 <mediaResourceResponse reason="Resource found" status="200"
 id="ns56g1x0">
 <response-session-info>
 <session-id>z1skKYZQ3eFu</session-id>
 <seq>9</seq>
 <expires>3600</expires>
 <media-server-address
 uri="sip:MediaServer@ms.example.com:5080">
 <connection-id>32pbdxZ8:KQw677BF</connection-id>
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>60</decoding>
 <encoding>60</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>
 <media-server-address
 uri="sip:OtherMediaServer@pool.example.net:5080">
 <ivr-sessions>
 <rtp-codec name="audio/basic">
 <decoding>40</decoding>
 <encoding>40</encoding>
 </rtp-codec>
 </ivr-sessions>
 </media-server-address>
 </response-session-info>
 </mediaResourceResponse>

Boulton, et al. Expires January 11, 2013 [Page 81]

Internet-Draft Media Resource Brokering July 2012

 </mrbconsumer>

 =_Part

11. UAC <- AS (200 OK sdp)

 [..]
 From: <sip:lminiero@users.example.com>;tag=1153573888
 To: <sip:mediactrlDemo@as.example.com>;tag=bcd47c32
 [..]
 Content-Type: application/sdp

 v=0
 o=lminiero 123456 654322 IN IP4 203.0.113.1
 s=MediaCtrl
 c=IN IP4 203.0.113.1
 t=0 0
 m=audio 63442 RTP/AVP 0 3 8 101
 a=rtpmap:0 PCMU/8000
 a=rtpmap:3 GSM/8000
 a=rtpmap:8 PCMA/8000
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-15
 a=ptime:20
 a=label:7eda834
 m=video 33468 RTP/AVP 98
 a=rtpmap:98 H263-1998/90000
 a=fmtp:98 CIF=2
 a=label:0132ca2

 As the dumps evinced, as in the IAMM-CFW example, the MRB provides
 the AS with a 'media-server-address' element in the consumer
 response: the 'uri' attribute identifies the specific MS to which the
 MRB has sent the SDP media negotiation, and the 'connection-id'
 enables the AS to identify to the MS the dialog between the MRB and
 MS. This attribute is needed, since, according to the framework
 specification, the connection-id is built out of the From/To tags of
 the dialog between the MRB and MS; since the MRB acts as a B2BUA in
 this scenario, without that attribute the AS does not know the
 relevant tags, thus preventing the CFW protocol to work as expected.

 The continuation of the scenario (the AS connecting to the MS to
 start the Control Channel, the SYNC message, etc.) are omitted for
 brevity.

Boulton, et al. Expires January 11, 2013 [Page 82]

Internet-Draft Media Resource Brokering July 2012

10. Media Service Resource Publisher Interface XML Schema

 This section gives the XML Schema Definition [W3C.REC-xmlschema-1-
 20041028], [W3C.REC-xmlschema-2-20041028] of the "application/
 mrb-publish+xml" format.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="urn:ietf:params:xml:ns:mrb-publish"
 elementFormDefault="qualified" blockDefault="#all"
 xmlns="urn:ietf:params:xml:ns:mrb-publish"
 xmlns:fw="urn:ietf:params:xml:ns:control:framework-attributes"
 xmlns:ca="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:annotation>
 <xsd:documentation>
 IETF MediaCtrl MRB 1.0

 This is the schema of the IETF MediaCtrl MRB package.

 The schema namespace is urn:ietf:params:xml:ns:mrb-publish

 </xsd:documentation>
 </xsd:annotation>

 <!--
 ###

 SCHEMA IMPORTS

 ###
 -->

 <xsd:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd">
 <xsd:annotation>
 <xsd:documentation>
 This import brings in the XML attributes for
 xml:base, xml:lang, etc
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

<xsd:import
 namespace="urn:ietf:params:xml:ns:control:framework-attributes"
 schemaLocation="framework.xsd">

Boulton, et al. Expires January 11, 2013 [Page 83]

Internet-Draft Media Resource Brokering July 2012

 <xsd:annotation>
 <xsd:documentation>
 This import brings in the framework attributes for
 conferenceid and connectionid.
 </xsd:documentation>
 </xsd:annotation>
</xsd:import>

<xsd:import
 namespace="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr"
 schemaLocation="civicAddress.xsd">
 <xsd:annotation>
 <xsd:documentation>
 This import brings in the civicAddress specification
 from RFC5139.
 </xsd:documentation>
 </xsd:annotation>
</xsd:import>

<!--
 ###

 Extensible core type

 ###
 -->

 <xsd:complexType name="Tcore">
 <xsd:annotation>
 <xsd:documentation>
 This type is extended by other (non-mixed) component types to
 allow attributes from other namespaces.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence/>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

<!--
 ###

 TOP LEVEL ELEMENT: mrbpublish

 ###
 -->

https://datatracker.ietf.org/doc/html/rfc5139

Boulton, et al. Expires January 11, 2013 [Page 84]

Internet-Draft Media Resource Brokering July 2012

<xsd:complexType name="mrbpublishType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element ref="mrbrequest" />
 <xsd:element ref="mrbresponse" />
 <xsd:element ref="mrbnotification" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="version" type="version.datatype"
 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="mrbpublish" type="mrbpublishType" />

<!--
 ###

 mrbrequest TYPE

 ###
 -->

<!-- mrbrequest -->

 <xsd:complexType name="mrbrequestType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="subscription" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="mrbrequest" type="mrbrequestType" />

<!-- subscription -->

Boulton, et al. Expires January 11, 2013 [Page 85]

Internet-Draft Media Resource Brokering July 2012

<xsd:complexType name="subscriptionType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="expires" type="xsd:nonNegativeInteger"
 minOccurs="0" maxOccurs="1" />
 <xsd:element name="minfrequency" type="xsd:nonNegativeInteger"
 minOccurs="0" maxOccurs="1" />
 <xsd:element name="maxfrequency" type="xsd:nonNegativeInteger"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="id" type="id.datatype" use="required" />
 <xsd:attribute name="seqnumber" type="xsd:nonNegativeInteger"
 use="required" />
 <xsd:attribute name="action" type="action.datatype"
 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="subscription" type="subscriptionType" />

<!--
 ###

 mrbresponse TYPE

 ###
 -->

<!-- mrbresponse -->

 <xsd:complexType name="mrbresponseType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="subscription" minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="status" type="status.datatype"
 use="required" />
 <xsd:attribute name="reason" type="xsd:string" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />

Boulton, et al. Expires January 11, 2013 [Page 86]

Internet-Draft Media Resource Brokering July 2012

 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="mrbresponse" type="mrbresponseType" />

<!--
 ###

 mrbnotification TYPE

 ###
 -->

<!-- mrbnotification -->

<xsd:complexType name="mrbnotificationType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="media-server-id"
 type="subscriptionid.datatype"/>
 <xsd:element ref="supported-packages" minOccurs="0" />
 <xsd:element ref="active-rtp-sessions" minOccurs="0" />
 <xsd:element ref="active-mixer-sessions" minOccurs="0" />
 <xsd:element ref="non-active-rtp-sessions" minOccurs="0" />
 <xsd:element ref="non-active-mixer-sessions" minOccurs="0" />
 <xsd:element ref="media-server-status" minOccurs="0" />
 <xsd:element ref="supported-codecs" minOccurs="0" />
 <xsd:element ref="application-data" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:element ref="file-formats" minOccurs="0" />
 <xsd:element ref="max-prepared-duration" minOccurs="0" />
 <xsd:element ref="dtmf-support" minOccurs="0" />
 <xsd:element ref="mixing-modes" minOccurs="0" />
 <xsd:element ref="supported-tones" minOccurs="0" />
 <xsd:element ref="file-transfer-modes" minOccurs="0" />
 <xsd:element ref="asr-tts-support" minOccurs="0" />
 <xsd:element ref="vxml-support" minOccurs="0" />
 <xsd:element ref="media-server-location" minOccurs="0" />
 <xsd:element ref="label" minOccurs="0" />
 <xsd:element ref="media-server-address" minOccurs="0" />
 <xsd:element ref="encryption" minOccurs="0" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="id" type="subscriptionid.datatype"

Boulton, et al. Expires January 11, 2013 [Page 87]

Internet-Draft Media Resource Brokering July 2012

 use="required" />
 <xsd:attribute name="seqnumber" type="xsd:nonNegativeInteger"
 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="mrbnotification" type="mrbnotificationType" />

<!-- supported-packages -->

 <xsd:complexType name="supported-packagesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="package" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="supported-packages" type="supported-packagesType"/>

 <xsd:complexType name="packageType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="package" type="packageType" />

<!-- active-rtp-sessions -->

Boulton, et al. Expires January 11, 2013 [Page 88]

Internet-Draft Media Resource Brokering July 2012

 <xsd:complexType name="active-rtp-sessionsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="rtp-codec" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="active-rtp-sessions" type="active-rtp-sessionsType"/>

 <xsd:complexType name="rtp-codecType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="decoding" type="xsd:nonNegativeInteger" />
 <xsd:element name="encoding" type="xsd:nonNegativeInteger" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="rtp-codec" type="rtp-codecType" />

<!-- active-mixer-sessions -->

<xsd:complexType name="active-mixer-sessionsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="active-mix" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>

Boulton, et al. Expires January 11, 2013 [Page 89]

Internet-Draft Media Resource Brokering July 2012

 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="active-mixer-sessions"
 type="active-mixer-sessionsType" />

<xsd:complexType name="active-mixType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="rtp-codec" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attributeGroup ref="fw:framework-attributes" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="active-mix" type="active-mixType" />

<!-- non-active-rtp-sessions -->

<xsd:complexType name="non-active-rtp-sessionsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="rtp-codec" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="non-active-rtp-sessions"
 type="non-active-rtp-sessionsType" />

<!-- non-active-mixer-sessions -->

<xsd:complexType name="non-active-mixer-sessionsType">
 <xsd:complexContent>

Boulton, et al. Expires January 11, 2013 [Page 90]

Internet-Draft Media Resource Brokering July 2012

 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="non-active-mix" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="non-active-mixer-sessions"
 type="non-active-mixer-sessionsType" />

 <xsd:complexType name="non-active-mixType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="rtp-codec" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="available" type="xsd:nonNegativeInteger"
 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="non-active-mix" type="non-active-mixType" />

<!-- media-server-status -->

 <xsd:element name="media-server-status" type="msstatus.datatype" />

<!-- supported-codecs -->

<xsd:complexType name="supported-codecsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="supported-codec"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />

Boulton, et al. Expires January 11, 2013 [Page 91]

Internet-Draft Media Resource Brokering July 2012

 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="supported-codecs" type="supported-codecsType" />

 <xsd:complexType name="supported-codecType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="supported-codec-package"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="supported-codec" type="supported-codecType" />

 <xsd:complexType name="supported-codec-packageType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="supported-action" type="actions.datatype"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="supported-codec-package"
 type="supported-codec-packageType" />

<!-- application-data -->

<xsd:element name="application-data" type="appdata.datatype" />

<!-- file-formats -->

Boulton, et al. Expires January 11, 2013 [Page 92]

Internet-Draft Media Resource Brokering July 2012

<xsd:complexType name="file-formatsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="supported-format"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="file-formats" type="file-formatsType" />

 <xsd:complexType name="supported-formatType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="supported-file-package"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="supported-format" type="supported-formatType" />

 <xsd:element name="supported-file-package"
 type="xsd:string" />

<!-- max-prepared-duration -->

<xsd:complexType name="max-prepared-durationType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="max-time" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>

Boulton, et al. Expires January 11, 2013 [Page 93]

Internet-Draft Media Resource Brokering July 2012

 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="max-prepared-duration"
 type="max-prepared-durationType" />

 <xsd:complexType name="max-timeType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="max-time-package" type="xsd:string" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="max-time-seconds" type="xsd:nonNegativeInteger"
 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="max-time" type="max-timeType" />

<!-- dtmf-support -->

<xsd:complexType name="dtmf-supportType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="detect" />
 <xsd:element ref="generate" />
 <xsd:element ref="passthrough" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="dtmf-support" type="dtmf-supportType" />

 <xsd:complexType name="detectType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="dtmf-type"

Boulton, et al. Expires January 11, 2013 [Page 94]

Internet-Draft Media Resource Brokering July 2012

 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="detect" type="detectType" />

 <xsd:complexType name="generateType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="dtmf-type"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="generate" type="generateType" />

 <xsd:complexType name="passthroughType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="dtmf-type"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="passthrough" type="passthroughType" />

 <xsd:complexType name="dtmf-typeType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>

Boulton, et al. Expires January 11, 2013 [Page 95]

Internet-Draft Media Resource Brokering July 2012

 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="dtmf.datatype" use="required" />
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="dtmf-type" type="dtmf-typeType" />

<!-- mixing-modes -->

<xsd:complexType name="mixing-modesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="audio-mixing-modes"
 minOccurs="0" maxOccurs="1" />
 <xsd:element ref="video-mixing-modes"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="mixing-modes" type="mixing-modesType" />

<xsd:complexType name="audio-mixing-modesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="audio-mixing-mode"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="audio-mixing-modes" type="audio-mixing-modesType" />

Boulton, et al. Expires January 11, 2013 [Page 96]

Internet-Draft Media Resource Brokering July 2012

<xsd:complexType name="audio-mixing-modeType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>

<xsd:element name="audio-mixing-mode" type="audio-mixing-modeType" />

<xsd:complexType name="video-mixing-modesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="video-mixing-mode"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="vas" type="boolean.datatype"
 default="false" />
 <xsd:attribute name="activespeakermix" type="boolean.datatype"
 default="false" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="video-mixing-modes" type="video-mixing-modesType" />

<xsd:complexType name="video-mixing-modeType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>

<xsd:element name="video-mixing-mode" type="video-mixing-modeType" />

<!-- supported-tones -->

<xsd:complexType name="supported-tonesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">

Boulton, et al. Expires January 11, 2013 [Page 97]

Internet-Draft Media Resource Brokering July 2012

 <xsd:sequence>
 <xsd:element ref="supported-country-codes"
 minOccurs="0" maxOccurs="1" />
 <xsd:element ref="supported-h248-codes"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="supported-tones" type="supported-tonesType" />

<xsd:complexType name="supported-country-codesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="country-code"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="supported-country-codes"
 type="supported-country-codesType" />

<xsd:complexType name="country-codeType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>

<xsd:element name="country-code" type="country-codeType" />

<xsd:complexType name="supported-h248-codesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="h248-code"

Boulton, et al. Expires January 11, 2013 [Page 98]

Internet-Draft Media Resource Brokering July 2012

 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="supported-h248-codes"
 type="supported-h248-codesType" />

<xsd:complexType name="h248-codeType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>

<xsd:element name="h248-code" type="h248-codeType" />

<!-- file-transfer-modes -->

 <xsd:complexType name="file-transfer-modesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="file-transfer-mode"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="file-transfer-modes"
 type="file-transfer-modesType" />

 <xsd:complexType name="file-transfer-modeType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"

Boulton, et al. Expires January 11, 2013 [Page 99]

Internet-Draft Media Resource Brokering July 2012

 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="transfermode.datatype"
 use="required" />
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="file-transfer-mode" type="file-transfer-modeType" />

<!-- asr-tts-support -->

<xsd:complexType name="asr-tts-supportType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="asr-support"
 minOccurs="0" maxOccurs="1" />
 <xsd:element ref="tts-support"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="asr-tts-support" type="asr-tts-supportType" />

<xsd:complexType name="asr-supportType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="language"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="asr-support" type="asr-supportType" />

Boulton, et al. Expires January 11, 2013 [Page 100]

Internet-Draft Media Resource Brokering July 2012

<xsd:complexType name="tts-supportType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="language"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="tts-support" type="tts-supportType" />

<xsd:complexType name="languageType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute ref="xml:lang" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="language" type="languageType" />

<!-- media-server-location -->

<xsd:complexType name="media-server-locationType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="civicAddress" type="ca:civicAddress"
 minOccurs="1" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

Boulton, et al. Expires January 11, 2013 [Page 101]

Internet-Draft Media Resource Brokering July 2012

<xsd:element name="media-server-location"
 type="media-server-locationType" />

<!-- vxml-support -->

 <xsd:complexType name="vxml-supportType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="vxml-mode"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="vxml-support" type="vxml-supportType" />

 <xsd:complexType name="vxml-modeType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:attribute name="support" type="vxml.datatype" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="vxml-mode" type="vxml-modeType" />

<!-- label -->

 <xsd:element name="label" type="label.datatype" />

<!-- media-server-address -->

 <xsd:element name="media-server-address" type="xsd:anyURI" />

Boulton, et al. Expires January 11, 2013 [Page 102]

Internet-Draft Media Resource Brokering July 2012

<!-- encryption -->

 <xsd:complexType name="encryptionType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="keying-mechanism"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="encryption" type="encryptionType" />

 <xsd:element name="keying-mechanism" type="keying.datatype" />

<!--
 ##

 DATATYPES

 ##
 -->

 <xsd:simpleType name="version.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="1.0" />
 </xsd:restriction>
 </xsd:simpleType>

<xsd:simpleType name="id.datatype">
 <xsd:restriction base="xsd:NMTOKEN" />
 </xsd:simpleType>

 <xsd:simpleType name="status.datatype">
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:pattern value="[0-9][0-9][0-9]" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="msstatus.datatype">
 <xsd:restriction base="xsd:NMTOKEN">

Boulton, et al. Expires January 11, 2013 [Page 103]

Internet-Draft Media Resource Brokering July 2012

 <xsd:enumeration value="active" />
 <xsd:enumeration value="deactivated" />
 <xsd:enumeration value="unavailable" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="action.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="create" />
 <xsd:enumeration value="update" />
 <xsd:enumeration value="remove" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="actions.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="encoding" />
 <xsd:enumeration value="decoding" />
 <xsd:enumeration value="passthrough" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="appdata.datatype">
 <xsd:restriction base="xsd:string" />
 </xsd:simpleType>

 <xsd:simpleType name="dtmf.datatype">
 <xsd:restriction base="xsd:NMTOKEN"/>
 </xsd:simpleType>

 <xsd:simpleType name="transfermode.datatype">
 <xsd:restriction base="xsd:NMTOKEN" />
 </xsd:simpleType>

 <xsd:simpleType name="boolean.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="true" />
 <xsd:enumeration value="false" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="vxml.datatype">
 <xsd:restriction base="xsd:NMTOKEN"/>
 </xsd:simpleType>

 <xsd:simpleType name="label.datatype">
 <xsd:restriction base="xsd:NMTOKEN" />
 </xsd:simpleType>

Boulton, et al. Expires January 11, 2013 [Page 104]

Internet-Draft Media Resource Brokering July 2012

 <xsd:simpleType name="subscriptionid.datatype">
 <xsd:restriction base="xsd:NMTOKEN" />
 </xsd:simpleType>

 <xsd:simpleType name="keying.datatype">
 <xsd:restriction base="xsd:NMTOKEN" />
 </xsd:simpleType>

</xsd:schema>

 Figure 13

Boulton, et al. Expires January 11, 2013 [Page 105]

Internet-Draft Media Resource Brokering July 2012

11. Media Service Resource Consumer Interface XML Schema

 This section gives the XML Schema Definition [W3C.REC-xmlschema-1-
 20041028], [W3C.REC-xmlschema-2-20041028] of the "application/
 mrb-consumer+xml" format.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="urn:ietf:params:xml:ns:mrb-consumer"
 elementFormDefault="qualified" blockDefault="#all"
 xmlns="urn:ietf:params:xml:ns:mrb-consumer"
 xmlns:ca="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:annotation>
 <xsd:documentation>
 IETF MediaCtrl MRB 1.0

 This is the schema of the IETF MediaCtrl MRB Consumer interface.

 The schema namespace is urn:ietf:params:xml:ns:mrb-consumer

 </xsd:documentation>
 </xsd:annotation>

 <!--
 ###

 SCHEMA IMPORTS

 ###
 -->

 <xsd:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd">
 <xsd:annotation>
 <xsd:documentation>
 This import brings in the XML attributes for
 xml:base, xml:lang, etc
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

<xsd:import
 namespace="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr"
 schemaLocation="civicAddress.xsd">
 <xsd:annotation>

Boulton, et al. Expires January 11, 2013 [Page 106]

Internet-Draft Media Resource Brokering July 2012

 <xsd:documentation>
 This import brings in the civicAddress specification
 from RFC5139.
 </xsd:documentation>
 </xsd:annotation>
</xsd:import>

<!--
 ###

 Extensible core type

 ###
 -->

 <xsd:complexType name="Tcore">
 <xsd:annotation>
 <xsd:documentation>
 This type is extended by other (non-mixed) component types to
 allow attributes from other namespaces.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence/>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

<!--
 ###

 TOP LEVEL ELEMENT: mrbconsumer

 ###
 -->

<xsd:complexType name="mrbconsumerType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element ref="mediaResourceRequest" />
 <xsd:element ref="mediaResourceResponse" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="version" type="version.datatype"

https://datatracker.ietf.org/doc/html/rfc5139

Boulton, et al. Expires January 11, 2013 [Page 107]

Internet-Draft Media Resource Brokering July 2012

 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

 <xsd:element name="mrbconsumer" type="mrbconsumerType" />

<!--
 ###

 mediaResourceRequest TYPE

 ###
 -->

<!-- mediaResourceRequst -->

 <xsd:complexType name="mediaResourceRequestType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="generalInfo" minOccurs="0" />
 <xsd:element ref="ivrInfo" minOccurs="0" />
 <xsd:element ref="mixerInfo" minOccurs="0" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string"
 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="mediaResourceRequest"
 type="mediaResourceRequestType" />

<!--
 ###

 generalInfo TYPE

 ###
-->

<!-- generalInfo -->

Boulton, et al. Expires January 11, 2013 [Page 108]

Internet-Draft Media Resource Brokering July 2012

<xsd:complexType name="generalInfoType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="session-info" minOccurs="0" />
 <xsd:element ref="packages" minOccurs="0" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="generalInfo" type="generalInfoType" />

<!-- session-info -->

<xsd:complexType name="session-infoType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="session-id" type="id.datatype"/>
 <xsd:element name="seq" type="xsd:nonNegativeInteger"/>
 <xsd:element name="action" type="action.datatype"/>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="session-info" type="session-infoType" />

<!-- packages -->

<xsd:complexType name="packagesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="package" type="xsd:string" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />

Boulton, et al. Expires January 11, 2013 [Page 109]

Internet-Draft Media Resource Brokering July 2012

 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="packages" type="packagesType"/>

<!--
 ###

 ivrInfo TYPE

 ###
-->

<!-- ivrInfo -->

<xsd:complexType name="ivrInfoType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="ivr-sessions" minOccurs="0" />
 <xsd:element ref="file-formats" minOccurs="0" />
 <xsd:element ref="dtmf-type" minOccurs="0" />
 <xsd:element ref="tones" minOccurs="0" />
 <xsd:element ref="asr-tts" minOccurs="0" />
 <xsd:element ref="vxml" minOccurs="0" />
 <xsd:element ref="location" minOccurs="0" />
 <xsd:element ref="encryption" minOccurs="0" />
 <xsd:element ref="application-data" minOccurs="0" />
 <xsd:element ref="max-prepared-duration" minOccurs="0" />
 <xsd:element ref="file-transfer-modes" minOccurs="0" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="ivrInfo" type="ivrInfoType" />

<!--
 ###

 mixerInfo TYPE

Boulton, et al. Expires January 11, 2013 [Page 110]

Internet-Draft Media Resource Brokering July 2012

 ###
-->

<!-- mixerInfo -->

<xsd:complexType name="mixerInfoType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="mixers" minOccurs="0"/>
 <xsd:element ref="file-formats" minOccurs="0"/>
 <xsd:element ref="dtmf-type" minOccurs="0"/>
 <xsd:element ref="tones" minOccurs="0"/>
 <xsd:element ref="mixing-modes" minOccurs="0"/>
 <xsd:element ref="application-data" minOccurs="0"/>
 <xsd:element ref="location" minOccurs="0"/>
 <xsd:element ref="encryption" minOccurs="0"/>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="mixerInfo" type="mixerInfoType" />

<!--
 ###

 mediaResourceResponse TYPE

 ###
 -->

<!-- mediaResourceResponse -->

 <xsd:complexType name="mediaResourceResponseType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="response-session-info" minOccurs="0" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string"
 use="required" />

Boulton, et al. Expires January 11, 2013 [Page 111]

Internet-Draft Media Resource Brokering July 2012

 <xsd:attribute name="status" type="status.datatype"
 use="required" />
 <xsd:attribute name="reason" type="xsd:string" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="mediaResourceResponse"
 type="mediaResourceResponseType" />

<!--
 ##

 ELEMENTS

 ##
 -->

<!-- response-session-info -->

<xsd:complexType name="response-session-infoType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="session-id" type="id.datatype"/>
 <xsd:element name="seq" type="xsd:nonNegativeInteger"/>
 <xsd:element name="expires" type="xsd:nonNegativeInteger"/>
 <xsd:element ref="media-server-address"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="response-session-info"
 type="response-session-infoType" />

<!-- media-server-address -->

<xsd:complexType name="media-server-addressTYPE">
 <xsd:complexContent>
 <xsd:extension base="Tcore">

Boulton, et al. Expires January 11, 2013 [Page 112]

Internet-Draft Media Resource Brokering July 2012

 <xsd:sequence>
 <xsd:element name="connection-id" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:element ref="ivr-sessions" minOccurs="0"/>
 <xsd:element ref="mixers" minOccurs="0"/>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="uri" type="xsd:anyURI" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="media-server-address"
 type="media-server-addressTYPE" />

<!-- ivr-sessions -->

<xsd:complexType name="ivr-sessionsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="rtp-codec" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="ivr-sessions" type="ivr-sessionsType" />

<xsd:complexType name="rtp-codecType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="decoding" type="xsd:nonNegativeInteger" />
 <xsd:element name="encoding" type="xsd:nonNegativeInteger" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>

Boulton, et al. Expires January 11, 2013 [Page 113]

Internet-Draft Media Resource Brokering July 2012

 </xsd:complexType>

<xsd:element name="rtp-codec" type="rtp-codecType" />

<!-- file-formats -->

<xsd:complexType name="file-formatsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="required-format"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="file-formats" type="file-formatsType" />

<xsd:complexType name="required-formatType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="required-file-package"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="required-format" type="required-formatType" />

<xsd:complexType name="required-file-packageType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="required-file-package-name" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />

Boulton, et al. Expires January 11, 2013 [Page 114]

Internet-Draft Media Resource Brokering July 2012

 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="required-file-package"
 type="required-file-packageType" />

<!-- dtmf-type -->

<xsd:complexType name="dtmfType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="detect" />
 <xsd:element ref="generate" />
 <xsd:element ref="passthrough" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="dtmf" type="dtmfType" />

<xsd:complexType name="detectType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="dtmf-type"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="detect" type="detectType" />

<xsd:complexType name="generateType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>

Boulton, et al. Expires January 11, 2013 [Page 115]

Internet-Draft Media Resource Brokering July 2012

 <xsd:element ref="dtmf-type"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="generate" type="generateType" />

<xsd:complexType name="passthroughType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="dtmf-type"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="passthrough" type="passthroughType" />

<xsd:complexType name="dtmf-typeType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="dtmf.datatype" use="required" />
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="dtmf-type" type="dtmf-typeType" />

<!-- tones -->

<xsd:complexType name="required-tonesType">
 <xsd:complexContent>

Boulton, et al. Expires January 11, 2013 [Page 116]

Internet-Draft Media Resource Brokering July 2012

 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="country-codes"
 minOccurs="0" maxOccurs="1" />
 <xsd:element ref="h248-codes"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="tones" type="required-tonesType" />

<xsd:complexType name="required-country-codesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="country-code"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="country-codes"
 type="required-country-codesType" />

<xsd:complexType name="country-codeType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>

<xsd:element name="country-code" type="country-codeType" />

<xsd:complexType name="required-h248-codesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>

Boulton, et al. Expires January 11, 2013 [Page 117]

Internet-Draft Media Resource Brokering July 2012

 <xsd:element ref="h248-code"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="h248-codes"
 type="required-h248-codesType" />

<xsd:complexType name="h248-codeType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>

<xsd:element name="h248-code" type="h248-codeType" />

<!-- asr-tts -->

<xsd:complexType name="asr-ttsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="asr-support"
 minOccurs="0" maxOccurs="1" />
 <xsd:element ref="tts-support"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="asr-tts" type="asr-ttsType" />

<xsd:complexType name="asr-supportType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>

Boulton, et al. Expires January 11, 2013 [Page 118]

Internet-Draft Media Resource Brokering July 2012

 <xsd:element ref="language"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="asr-support" type="asr-supportType" />

<xsd:complexType name="tts-supportType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="language"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="tts-support" type="tts-supportType" />

<xsd:complexType name="languageType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute ref="xml:lang" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="language" type="languageType" />

<!-- vxml -->

<xsd:complexType name="vxmlType">
 <xsd:complexContent>

Boulton, et al. Expires January 11, 2013 [Page 119]

Internet-Draft Media Resource Brokering July 2012

 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="vxml-mode"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="vxml" type="vxmlType" />

<xsd:complexType name="vxml-modeType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:attribute name="require" type="vxml.datatype" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="vxml-mode" type="vxml-modeType" />

<!-- location -->

<xsd:complexType name="locationType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="ca:civicAddress"
 minOccurs="1" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<xsd:element name="location" type="locationType" />

Boulton, et al. Expires January 11, 2013 [Page 120]

Internet-Draft Media Resource Brokering July 2012

<!-- encryption -->

 <xsd:complexType name="encryptionType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="keying-mechanism"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="encryption" type="encryptionType" />

 <xsd:element name="keying-mechanism" type="keying.datatype" />

<!-- application-data -->

<xsd:element name="application-data" type="appdata.datatype" />

<!-- max-prepared-duration -->

<xsd:complexType name="max-prepared-durationType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="max-time" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="max-prepared-duration"
 type="max-prepared-durationType" />

<xsd:complexType name="max-timeType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element name="max-time-package" type="xsd:string" />

Boulton, et al. Expires January 11, 2013 [Page 121]

Internet-Draft Media Resource Brokering July 2012

 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="max-time-seconds" type="xsd:nonNegativeInteger"
 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="max-time" type="max-timeType" />

<!-- stream-mode -->

<xsd:complexType name="file-transfer-modesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="file-transfer-mode"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="file-transfer-modes"
 type="file-transfer-modesType" />

<xsd:complexType name="file-transfer-modeType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="transfermode.datatype"
 use="required" />
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="file-transfer-mode" type="file-transfer-modeType" />

Boulton, et al. Expires January 11, 2013 [Page 122]

Internet-Draft Media Resource Brokering July 2012

<!-- mixers -->

<xsd:complexType name="mixerssessionsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="mix" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="mixers" type="mixerssessionsType" />

<xsd:complexType name="mixType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="rtp-codec" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="users" type="xsd:nonNegativeInteger"
 use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="mix" type="mixType" />

<!-- mixing-modes -->

<xsd:complexType name="mixing-modesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="audio-mixing-modes"
 minOccurs="0" maxOccurs="1" />
 <xsd:element ref="video-mixing-modes"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"

Boulton, et al. Expires January 11, 2013 [Page 123]

Internet-Draft Media Resource Brokering July 2012

 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="mixing-modes" type="mixing-modesType" />

<xsd:complexType name="audio-mixing-modesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="audio-mixing-mode"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="audio-mixing-modes" type="audio-mixing-modesType" />

<xsd:complexType name="audio-mixing-modeType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>

<xsd:element name="audio-mixing-mode" type="audio-mixing-modeType" />

<xsd:complexType name="video-mixing-modesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="video-mixing-mode"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="vas" type="boolean.datatype"
 default="false" />
 <xsd:attribute name="activespeakermix" type="boolean.datatype"

Boulton, et al. Expires January 11, 2013 [Page 124]

Internet-Draft Media Resource Brokering July 2012

 default="false" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="video-mixing-modes" type="video-mixing-modesType" />

<xsd:complexType name="video-mixing-modeType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="package" type="xsd:string" use="required" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>

<xsd:element name="video-mixing-mode" type="video-mixing-modeType" />

<!--
 ##

 DATATYPES

 ##
 -->

<xsd:simpleType name="version.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="1.0" />
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="id.datatype">
 <xsd:restriction base="xsd:NMTOKEN" />
</xsd:simpleType>

<xsd:simpleType name="status.datatype">
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:pattern value="[0-9][0-9][0-9]" />
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="transfermode.datatype">
 <xsd:restriction base="xsd:NMTOKEN"/>
</xsd:simpleType>

Boulton, et al. Expires January 11, 2013 [Page 125]

Internet-Draft Media Resource Brokering July 2012

<xsd:simpleType name="action.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="remove" />
 <xsd:enumeration value="update" />
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="dtmf.datatype">
 <xsd:restriction base="xsd:NMTOKEN"/>
</xsd:simpleType>

<xsd:simpleType name="boolean.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="true" />
 <xsd:enumeration value="false" />
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="vxml.datatype">
 <xsd:restriction base="xsd:NMTOKEN"/>
</xsd:simpleType>

<xsd:simpleType name="appdata.datatype">
 <xsd:restriction base="xsd:string" />
 </xsd:simpleType>

 <xsd:simpleType name="keying.datatype">
 <xsd:restriction base="xsd:NMTOKEN" />
 </xsd:simpleType>

</xsd:schema>

 Figure 14

Boulton, et al. Expires January 11, 2013 [Page 126]

Internet-Draft Media Resource Brokering July 2012

12. Security Considerations

 The MRB network entity has two primary interfaces, Publish and
 Consumer, that carry sensitive information and must therefore be
 appropriately protected and secured.

 The Publish interface, as defined in and described in Section 5.1,
 uses the Media Control Channel Framework [RFC6230] as a mechanism to
 connect an MRB to a media server. It is very important that the
 communication between the MRB and the MS is secured: a malicious
 entity, in fact, may change or even delete subscriptions to a MS,
 thus affecting the view the MRB has of the resources actually
 available on a MS, leading it to wrong choices when media resources
 are being requested by an AS. A malicious entity may even lie about
 the resources being available on a MS, for instance to make the MRB
 think no resources are available at all. Considering the Publish
 interface is a CFW Control Package, the same Security Considerations
 included in the Media Control Channel Framework specification apply
 here to protect interactions between an MRB and a media server.

 The Consumer interface, as defined in and described in Section 5.2,
 conceives transactions based on a session ID. These transactions may
 be transported either by means of HTTP messages, or SIP dialogs.
 This means that malicious users could be able to disrupt or
 manipulate a MRB session should they have access to the above
 mentioned session ID or replicate it somehow: for instance, a
 malicious entity could modify an existing session between an AS and
 the MRB, e.g., requesting less resources than originally requested to
 cause media dialogs to be rejected by the AS, or requesting many more
 resources instead to try and lock as many of (if not all) the
 resources a MRB can provide, thus making them unavailable to other
 legitimate AS in subsequent requests. In order to prevent this, it
 is strongly adviced for MRB implementations to generate very hard to
 replicate session identifiers, in order to minimize the chances
 malicious users could gain access to valid ones just guessing or by
 means of brute force attacks. It is very important, of course, to
 also secure the way these identifiers are transported by the involved
 parties, both in requests and responses, in order to prevent network
 attackers from intercepting Consumer messages and have access to
 session IDs. The Consumer interface uses either the Hypertext
 Transfer Protocol (HTTP) or Session Initiation Protocol (SIP) as the
 mechanism for clients to connect to an MRB to request media
 resources. In the case of the HTTP use, any binding using the
 Consumer interface MUST be capable of being transacted over TLS, as
 described in RFC 2818 [RFC2818]. In the case of the SIP use, the
 same security considerations included in the Media Control Channel
 Framework specification apply here to protect interactions between a
 client requesting media resources and an MRB.

https://datatracker.ietf.org/doc/html/rfc6230
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2818

Boulton, et al. Expires January 11, 2013 [Page 127]

Internet-Draft Media Resource Brokering July 2012

 Should a valid session ID be compromised somehow (that is,
 intercepted or just guessed by a malicious user), as a further means
 to prevent disruption, the Consumer interface also envisages the use
 of a sequence number in its transactions. This sequence number is to
 be increased after each successful transaction, starting from a first
 value randomly generated by the MRB when the session is first
 created, and must match in every request/response. While this adds
 complexity to the protocol (implementations must pay attention to
 those sequence numbers, since wrong values will cause "Wrong sequence
 number" errors and the failure of the related requests), it is an
 important added value for security. In fact, considering different
 transaction related to the same session could be transported in
 different, unrelated HTTP messages (or SIP INVITEs in case the Inline
 mode is being used), this sequence number protection prevents the
 chances of session replication or disruption, especially in cases
 where the session ID has been compromised: that is, it should make it
 harder to malicious users to manipulate or remove a session they
 guessed the ID of. As such, it is strongly adviced that MRB don't
 choose 1 as the first sequence number for a new session, but rather
 pick a random value to start from. The reaction to out of sequence
 transactions is left to MRB implementations: a related error code is
 available, but implementations may decide to enforce further
 limitations or actions upon the receival of too many failed attempts
 in a row, or of what looks like blatant attempts to guess what the
 current, valid sequence number is.

 It is also worth noting that in In-line mode (both IAMM and IUMM) the
 MRB may act as a Back-to-Back User Agent (B2BUA). This means that,
 as a B2BUA, the MRB may happen to modify SIP bodies: it is the case,
 for instance, of the IAMM handling multipart/mixed payloads. This
 impacts the ability to use any SIP security feature that protects the
 body (e.g., RFC4474, s/mime, etc.) unless the MRB intermediates the
 security association. This should be taken into account when
 implementing an MRB compliant with this specification.

 Both the Publishing and Consumer interface may address the location
 of a MS: the Publishing interface may be used to make the MRB know
 where a MS is located (approximately or precisely), and the Consumer
 interface to ask for a MS located somewhere in particular (e.g., a
 conference bridge close to San Francisco). ThisAs such, both MS and
 MRB implementors need to take this into account when deciding whether
 or not make this location information available, and if so how much
 bits of information really need to be made available for brokering
 purposes.

 Finally, it is worthwhile to also discuss authorization issues
 related to the specification. Neither the Publishing nor the
 Consumer interface provide an explicit means for implementing

https://datatracker.ietf.org/doc/html/rfc4474

Boulton, et al. Expires January 11, 2013 [Page 128]

Internet-Draft Media Resource Brokering July 2012

 authentication, i.e., they do not envisage protocol messages to make
 sure, for instance, that only authorized Application Servers can make
 use of the services provided by a MRB. Nevertheless, considering
 both the interfaces are transported in well-established protocols
 (HTTP, SIP, CFW), support for such an functionality can be expressed
 by means of the authentication mechanisms provided by the protocol
 themselves. Therefore, any MRB-aware entity (Application Servers,
 Media Servers, Media Resource Brokers themselves) MUST support the
 HTTP and SIP Digest access authentication. That said, the usage of
 such Digest access authentications is recommended and not mandatory,
 which means MRB-aware entities MAY exploit it in deployment.

 A MRB may want to enforce further constraints on the interactions
 between an AS/MS and a MRB. For instance, it may choose to only
 accept requests associated with a specific session ID from the IP
 address that originated the first request, or just make use of pre-
 shared certificates to assess the identity of legitimate AS and/or
 MS.

Boulton, et al. Expires January 11, 2013 [Page 129]

Internet-Draft Media Resource Brokering July 2012

13. IANA Considerations

 There are several IANA considerations associated with this
 specification.

13.1. Media Control Channel Framework Package Registration

 This section registers a new Media Control Channel Framework package,
 per the instructions in Section 13.1 of [RFC6230].

 Package Name: mrb-publish/1.0

 Published Specification(s): RFCXXXX

 Person and email address to contact for further information: IETF,
 MEDIACTRL working group, (mediactrl@ietf.org), Chris Boulton
 (chris@ns-technologies.com). [NOTE TO IANA/RFC-EDITOR: Please
 replace XXXX with the RFC number for this specification.]

13.2. application/mrb-publish+xml Media Type

 To: application

 Subject: Registration of media type application/mrb-publish+xml

 Type name: application

 Subtype name: mrb-publish+xml

 Required parameters: none

 Optional parameters: Same as charset parameter of application/xml
 as specified in RFC 3023 [RFC3023].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [RFC3023].

 Security considerations: See Section 10 of RFC 3023 [RFC3023] and
Section 12 of RFCXXXX [[NOTE TO RFC-EDITOR/IANA: Please replace

 XXXX with the RFC number of this specification.]].

 Interoperability considerations: none.

 Published specification: Section 10 of RFCXXXX [[NOTE TO RFC-
 EDITOR/IANA: Please replace XXXX with the RFC number of this
 specification.]].

https://datatracker.ietf.org/doc/html/rfc6230#section-13.1
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023#section-10
https://datatracker.ietf.org/doc/html/rfc3023

Boulton, et al. Expires January 11, 2013 [Page 130]

Internet-Draft Media Resource Brokering July 2012

 Applications which use this media type: This document type has been
 used to support a Media Resource Broker (MRB) entity.

 Additional Information:

 Magic Number: None

 File Extension: .xdf

 Macintosh file type code: "TEXT"

 Personal and email address for further information: Chris Boulton
 <chris at ns-technologies.com>

 Intended usage: COMMON

 Author/Change controller: The IETF.

13.3. application/mrb-consumer+xml MIME Type

 To: application

 Subject: Registration of media type application/mrb-consumer+xml

 Type name: application

 Subtype name: mrb-consumer+xml

 Mandatory parameters: none

 Optional parameters: Same as charset parameter of application/xml
 as specified in RFC 3023 [RFC3023].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [RFC3023].

 Security considerations: See Section 10 of RFC 3023 [RFC3023] and
Section 12 of RFCXXXX [[NOTE TO RFC-EDITOR/IANA: Please replace

 XXXX with the RFC number of this specification.]].

 Interoperability considerations: none.

 Published specification: Section 11 of RFCXXXX [[NOTE TO RFC-
 EDITOR/IANA: Please replace XXXX with the RFC number of this
 specification.]].

https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023#section-10
https://datatracker.ietf.org/doc/html/rfc3023

Boulton, et al. Expires January 11, 2013 [Page 131]

Internet-Draft Media Resource Brokering July 2012

 Applications which use this media type: This document type has been
 used to support a Media Resource Broker (MRB) entity.

 Additional Information:

 Magic Number: None

 File Extension: .xdf

 Macintosh file type code: "TEXT"

 Personal and email address for further information: Chris Boulton
 <chris at ns-technologies.com>

 Intended usage: COMMON

 Author/Change controller: The IETF.

13.4. URN Sub-Namespace Registration for mrb-publish

 Please register the URN name space
 "urn:ietf:params:xml:ns:mrb-publish", with the ID of "mrb-publish".
 The schema of the XML namespace named
 urn:ietf:params:xml:ns:mrb-publish" is Section 10.

13.5. URN Sub-Namespace Registration for mrb-consumer

 Please register the URN name space
 "urn:ietf:params:xml:ns:mrb-consumer", with the ID of "mrb-consumer".
 The schema of the XML namespace named
 urn:ietf:params:xml:ns:mrb-consumer" is in Section 11.

13.6. XML Schema Registration for mrb-publish

 Please register the schema for mrb-publish:

 URI: urn:ietf:params:xml:schema:mrb-publish

 ID: mrb-publish

 Filename: mrb-publish

 Registrant Contact: IETF, MEDIACTRL working group
 (mediactrl@ietf.org)

Boulton, et al. Expires January 11, 2013 [Page 132]

Internet-Draft Media Resource Brokering July 2012

 Schema: The XML for the schema is in Section 10 of this document.

13.7. XML Schema Registration for mrb-consumer

 Please register the schema for mrb-consumer:

 URI: urn:ietf:params:xml:schema:mrb-consumer

 ID: mrb-consumer

 Filename: mrb-consumer

 Registrant Contact: IETF, MEDIACTRL working group
 (mediactrl@ietf.org)

 Schema: The XML for the schema is in Section 11 of this document.

Boulton, et al. Expires January 11, 2013 [Page 133]

Internet-Draft Media Resource Brokering July 2012

14. Changes

 Note to RFC Editor: Please remove this whole section.

14.1. Changes from 12 Version

 o Several changes and clarifications according to the AD review by
 Robert Sparks.

 o Updated reference for mixer draft (RFC6505).

14.2. Changes from 11 Version

 o Fixed a wrong reference to RFC5707 (because of a typo this was
RFC5705).

 o Changed the registration in 13.1 to match the template required by
RFC6230.

 o Fixed the incorrect URIs for registering the schemas in Sections
 13.6 and 13.7.

 o Removed enumeration types for 'dtmf-type', 'vxml-mode' and
 'stream-mode' from both the schemas to allow for better
 extensibility, and clarified values are case insensitive where
 needed.

 o Clarified that the use of the civic location of a media server is
 entirely optional, and it's implementation specific to fill it
 with just the details each implementor deems necessary for any
 optimization that may be needed.

14.3. Changes from 10 Version

 o Editorial changes as a result of Shepherd review.

 o Added new attribute 'id' to both <mediaResourceRequest> and
 <mediaResourceResponse> elements in the consumer schema, in order
 to map a response to a specific request.

 o Renamed 'supported-actions' to 'supported-action' in the Publisher
 schema.

 o Removed 'support' attribute from both the <vxml-support> element
 (Publisher schema) and the <vxml> element (Consumer schema): now
 an empty element means no VXML support is provided/requested.

https://datatracker.ietf.org/doc/html/rfc6505
https://datatracker.ietf.org/doc/html/rfc5707
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc6230

Boulton, et al. Expires January 11, 2013 [Page 134]

Internet-Draft Media Resource Brokering July 2012

 o Clarified the scope of the 'application-data' element, and changed
 its type from xsd:NMTOKEN to xsd:string in the schema.

 o Clarified the use of the <subscription> element in an
 <mrbresponse.

 o Clarified the meaning of TCP CONNECTION in sequence diagrams.

 o Removed useless backslashes from XML examples.

 o Updated references for Framework and IVR drafts (RFC6230,
RFC6231).

14.4. Changes from 09 Version

 o Language changes as a result of Shepherd review.

14.5. Changes from 08 Version

 o Fixed Nits.

 o Added range for reporting period - as per mailing list.

14.6. Changes from 07 Version

 o Corrected some errors in the Consumer schema: a few elements were
 not declared optional as they should have been, and some were
 incorrectly defined as choices instead of sequences;

 o Corrected examples after validation tests;

 o Fixed a few typos in the text.

 o Clarified language in various places.

 o Added 'Multi-modal MRB Implementations' section.

 o Added 'Relative Merits of Query Mode, IAMM, and IUMM' section.

 o Clarifying text related to IAMM and IUMM.

 o Expanded media-server-address for extra information and to allow
 multiples.

 o New B2BUA section.

 o Updated Examples.

https://datatracker.ietf.org/doc/html/rfc6230
https://datatracker.ietf.org/doc/html/rfc6231

Boulton, et al. Expires January 11, 2013 [Page 135]

Internet-Draft Media Resource Brokering July 2012

14.7. Changes from 06 Version

 o Added the missing <encoding> and <decoding> elements to the <rtp-
 codec> instances, where needed.

 o Fixed a few typos in the text.

14.8. Changes from 05 Version

 o Clarifier that video layouts may refer to either XCON-defined
 layouts or others.

 o Added RFC4240 as an option for VXML support.

 o Fixed a few typos in the text and in the schemas.

14.9. Changes from 04 Version

 o Corrected some typos and leftovers in both 'session-info' and
 'response-session-info' definitions.

 o Clarified that 'response-session-info' is not only included in
 reply to updates, but also to new requests; besides, clarified
 that it is an optional element, in the sense that it is mandatory
 in successful responses (200), while not needed otherwise (any
 error).

 o Corrected the Query example flow which included a 'session'info'
 in a new request.

14.10. Changes from 03 Version

 o Addressed comments per the Expert RAI Review by Ben Campbell.

 o Several editorial changes (fixes, typos, nits).

 o Removed the 3xx class responses for the IAMM, per discussion in
 Anaheim (feature had been added in the -02 version).

 o Clarified that backslashes and XML indentation in the Examples are
 only provided for readability.

 o Clarified the distinction between 'deactivated' and 'unavailable'.

 o Added text to the status codes in both Publish and Consumer
 responses, in order to clarify when they are involved.

https://datatracker.ietf.org/doc/html/rfc4240

Boulton, et al. Expires January 11, 2013 [Page 136]

Internet-Draft Media Resource Brokering July 2012

 o Added some text to better clarify the role of leasing in the
 Consumer interface.

 o Added additional IANA considerations, that were missing in the
 previous versions of the document.

 o Added text to the security considerations.

14.11. Changes from 02 Version

 o Added examples in Section 9.

 o Fixed some nits in the schemas (encryption and required mixed=true
 elements).

 o Completed review nit review comments from Gary Munson.

14.12. Changes from 01 Version

 o Added description of lease mechanism.

 o Added specific HTTP and SIP usage of Consumer interface.

 o Completed Publish interface schema + associated text.

 o Included Consumer interface schema + associated text.

 o Included supported-packages element.

 o Removed announce-var element from doc.

 o Expanded Abstract.

 o General scrub of text - input from Simon Romano.

 o Added IANA Considerations section.

 o Added Security Considerations section.

14.13. Changes from 00 Version

 o Included In-line text based on strawman proposal.

 o Included first attempt at publish interface based on design team
 work.

Boulton, et al. Expires January 11, 2013 [Page 137]

Internet-Draft Media Resource Brokering July 2012

15. Acknowledgements

 The authors would like to thank the members of the Publish Interface
 design team who provided valuable input into this document. The
 design team consisted of Adnan Saleem, Michael Trank, Victor
 Paulsamy, Martin Dolly, and Scott McGlashan. The authors would also
 like to thank John Dally, Bob Epley, Simon Romano, Henry Lum,
 Christian Groves and Jonathan Lennox for input into this
 specification.

 Ben Campbell carried out the RAI expert review on the -03
 specification and provided a great deal of invaluable input.

Boulton, et al. Expires January 11, 2013 [Page 138]

Internet-Draft Media Resource Brokering July 2012

16. References

16.1. Normative References

 [ISO.3166-1]
 International Organization for Standardization, "Codes for
 the representation of names of countries and their
 subdivisions - Part 1: Country codes", ISO Standard 3166-
 1:1997, 1997.

 [ISO.639.1988]
 International Organization for Standardization, "Code for
 the representation of names of languages, 1st edition",
 ISO Standard 639, 1988.

 [ITU-T.Q.1950]
 International Telecommunication Union - Telecommunication
 Standardization Bureau, "Call Bearer Control (CBC)
 Protocol", ITU-T Recommendation Q.1950.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media
 Types", RFC 3023, January 2001.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3311] Rosenberg, J., "The Session Initiation Protocol (SIP)
 UPDATE Method", RFC 3311, October 2002.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",

RFC 3711, March 2004.

 [RFC5139] Thomson, M. and J. Winterbottom, "Revised Civic Location
 Format for Presence Information Data Format Location

https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3311
https://datatracker.ietf.org/doc/html/rfc3711

Boulton, et al. Expires January 11, 2013 [Page 139]

Internet-Draft Media Resource Brokering July 2012

 Object (PIDF-LO)", RFC 5139, February 2008.

 [W3C.CR-wsdl20-20051215]
 Chinnici, R., Moreau, J., Ryman, A., and S. Weerawarana,
 "Web Services Description Language (WSDL) Version 2.0 Part
 1: Core Language", W3C CR CR-wsdl20-20051215,
 December 2005.

 [W3C.REC-soap12-part1-20030624]
 Gudgin, M., Mendelsohn, N., Hadley, M., Nielsen, H., and
 J. Moreau, "SOAP Version 1.2 Part 1: Messaging Framework",
 World Wide Web Consortium FirstEdition REC-soap12-part1-
 20030624, June 2003,
 <http://www.w3.org/TR/2003/REC-soap12-part1-20030624>.

 [W3C.REC-soap12-part2-20030624]
 Hadley, M., Mendelsohn, N., Gudgin, M., Moreau, J., and H.
 Nielsen, "SOAP Version 1.2 Part 2: Adjuncts", World Wide
 Web Consortium FirstEdition REC-soap12-part2-20030624,
 June 2003,
 <http://www.w3.org/TR/2003/REC-soap12-part2-20030624>.

16.2. Informative References

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC4240] Burger, E., Van Dyke, J., and A. Spitzer, "Basic Network
 Media Services with SIP", RFC 4240, December 2005.

 [RFC4733] Schulzrinne, H. and T. Taylor, "RTP Payload for DTMF
 Digits, Telephony Tones, and Telephony Signals", RFC 4733,
 December 2006.

 [RFC5022] Van Dyke, J., Burger, E., and A. Spitzer, "Media Server
 Control Markup Language (MSCML) and Protocol", RFC 5022,
 September 2007.

 [RFC5167] Dolly, M. and R. Even, "Media Server Control Protocol
 Requirements", RFC 5167, March 2008.

 [RFC5552] Burke, D. and M. Scott, "SIP Interface to VoiceXML Media
 Services", RFC 5552, May 2009.

 [RFC5567] Melanchuk, T., "An Architectural Framework for Media
 Server Control", RFC 5567, June 2009.

 [RFC5707] Saleem, A., Xin, Y., and G. Sharratt, "Media Server Markup
 Language (MSML)", RFC 5707, February 2010.

https://datatracker.ietf.org/doc/html/rfc5139
http://www.w3.org/TR/2003/REC-soap12-part1-20030624
http://www.w3.org/TR/2003/REC-soap12-part2-20030624
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc5022
https://datatracker.ietf.org/doc/html/rfc5167
https://datatracker.ietf.org/doc/html/rfc5552
https://datatracker.ietf.org/doc/html/rfc5567
https://datatracker.ietf.org/doc/html/rfc5707

Boulton, et al. Expires January 11, 2013 [Page 140]

Internet-Draft Media Resource Brokering July 2012

 [RFC6230] Boulton, C., Melanchuk, T., and S. McGlashan, "Media
 Control Channel Framework", RFC 6230, May 2011.

 [RFC6231] McGlashan, S., Melanchuk, T., and C. Boulton, "An
 Interactive Voice Response (IVR) Control Package for the
 Media Control Channel Framework", RFC 6231, May 2011.

 [RFC6381] Gellens, R., Singer, D., and P. Frojdh, "The 'Codecs' and
 'Profiles' Parameters for "Bucket" Media Types", RFC 6381,
 August 2011.

 [RFC6505] McGlashan, S., Melanchuk, T., and C. Boulton, "A Mixer
 Control Package for the Media Control Channel Framework",

RFC 6505, March 2012.

https://datatracker.ietf.org/doc/html/rfc6230
https://datatracker.ietf.org/doc/html/rfc6231
https://datatracker.ietf.org/doc/html/rfc6381
https://datatracker.ietf.org/doc/html/rfc6505

Boulton, et al. Expires January 11, 2013 [Page 141]

Internet-Draft Media Resource Brokering July 2012

Authors' Addresses

 Chris Boulton
 NS-Technologies

 Email: chris@ns-technologies.com

 Lorenzo Miniero
 Meetecho
 Via Carlo Poerio 89
 Napoli 80100
 Italy

 Email: lorenzo@meetecho.com

 Gary Munson
 AT&T
 200 Laurel Avenue South
 Middletown
 New Jersey 07748
 USA

 Email: gamunson@att.com

Boulton, et al. Expires January 11, 2013 [Page 142]

