
Web Authorization Protocol (oauth) T. Lodderstedt, Ed.
Internet-Draft Deutsche Telekom AG
Intended status: Informational M. McGloin
Expires: November 26, 2012 IBM
 P. Hunt
 Oracle Corporation
 May 25, 2012

OAuth 2.0 Threat Model and Security Considerations
draft-ietf-oauth-v2-threatmodel-03

Abstract

 This document gives security considerations based on a comprehensive
 threat model for the OAuth 2.0 Protocol.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 26, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Lodderstedt, et al. Expires November 26, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft OAuth 2.0 Security May 2012

Table of Contents

1. Introduction . 6
2. Overview . 6
2.1. Scope . 6
2.2. Attack Assumptions . 7
2.3. Architectural assumptions 7
2.3.1. Authorization Servers 8
2.3.2. Resource Server 8
2.3.3. Client . 8

3. Security Features . 9
3.1. Tokens . 9
3.1.1. Scope . 10
3.1.2. Expires_In . 10

3.2. Access Token . 11
3.3. Refresh Token . 11
3.4. Authorization Code . 12
3.5. Redirection URI . 12
3.6. State parameter . 12
3.7. Client Identity . 12

4. Security Threat Model . 14
4.1. Clients . 15
4.1.1. Threat: Obtain Client Secrets 15
4.1.2. Threat: Obtain Refresh Tokens 16
4.1.3. Threat: Obtain Access Tokens 18

 4.1.4. Threat: End-user credentials phished using
 compromised or embedded browser 18

4.1.5. Threat: Open Redirectors on client 19
4.2. Authorization Endpoint 19

 4.2.1. Threat: Password phishing by counterfeit
 authorization server 20
 4.2.2. Threat: User unintentionally grants too much
 access scope . 20
 4.2.3. Threat: Malicious client obtains existing
 authorization by fraud 21

4.2.4. Threat: Open redirector 21
4.3. Token endpoint . 21
4.3.1. Threat: Eavesdropping access tokens 22

 4.3.2. Threat: Obtain access tokens from authorization
 server database 22
 4.3.3. Threat: Obtain client credentials over non secure
 transport . 22
 4.3.4. Threat: Obtain client secret from authorization
 server database 23

4.3.5. Threat: Obtain client secret by online guessing . . . 23
4.3.6. Threat: DoS on dynamic client secret creation 23

4.4. Obtaining Authorization 23
4.4.1. Authorization Code 24

Lodderstedt, et al. Expires November 26, 2012 [Page 2]

Internet-Draft OAuth 2.0 Security May 2012

 4.4.1.1. Threat: Eavesdropping or leaking authorization
 codes . 24
 4.4.1.2. Threat: Obtain authorization codes from
 authorization server database 25

4.4.1.3. Threat: Online guessing of authorization codes . . 25
4.4.1.4. Threat: Malicious client obtains authorization . . 26
4.4.1.5. Threat: Authorization code phishing 27
4.4.1.6. Threat: User session impersonation 28

 4.4.1.7. Threat: Authorization code leakage through
 counterfeit client 28

4.4.1.8. Threat: CSRF attack against redirect-uri 30
 4.4.1.9. Threat: Clickjacking attack against
 authorization 31

4.4.1.10. Threat: Resource Owner Impersonation 31
4.4.1.11. Threat: DoS, Exhaustion of resources attacks . . . 33

 4.4.1.12. Threat: DoS using manufactured authorization
 codes . 33

4.4.2. Implicit Grant . 35
 4.4.2.1. Threat: Access token leak in
 transport/end-points 35

4.4.2.2. Threat: Access token leak in browser history . . . 35
4.4.2.3. Threat: Malicious client obtains authorization . . 35
4.4.2.4. Threat: Manipulation of scripts 36
4.4.2.5. Threat: CSRF attack against redirect-uri 36

4.4.3. Resource Owner Password Credentials 37
 4.4.3.1. Threat: Accidental exposure of passwords at
 client site 38
 4.4.3.2. Threat: Client obtains scopes without end-user
 authorization 38
 4.4.3.3. Threat: Client obtains refresh token through
 automatic authorization 38

4.4.3.4. Threat: Obtain user passwords on transport 39
 4.4.3.5. Threat: Obtain user passwords from
 authorization server database 39

4.4.3.6. Threat: Online guessing 40
4.4.4. Client Credentials 40

4.5. Refreshing an Access Token 40
 4.5.1. Threat: Eavesdropping refresh tokens from
 authorization server 40
 4.5.2. Threat: Obtaining refresh token from authorization
 server database 41

4.5.3. Threat: Obtain refresh token by online guessing . . . 41
 4.5.4. Threat: Obtain refresh token phishing by
 counterfeit authorization server 41

4.6. Accessing Protected Resources 42
4.6.1. Threat: Eavesdropping access tokens on transport . . . 42
4.6.2. Threat: Replay authorized resource server requests . . 42
4.6.3. Threat: Guessing access tokens 42

Lodderstedt, et al. Expires November 26, 2012 [Page 3]

Internet-Draft OAuth 2.0 Security May 2012

 4.6.4. Threat: Access token phishing by counterfeit
 resource server 43
 4.6.5. Threat: Abuse of token by legitimate resource
 server or client 44

4.6.6. Threat: Leak of confidential data in HTTP-Proxies . . 44
 4.6.7. Threat: Token leakage via logfiles and HTTP
 referrers . 44

5. Security Considerations 45
5.1. General . 45
5.1.1. Confidentiality of Requests 45
5.1.2. Server authentication 46
5.1.3. Always keep the resource owner informed 46
5.1.4. Credentials . 46
5.1.4.1. Credential Storage Protection 47
5.1.4.2. Online attacks on secrets 48

5.1.5. Tokens (access, refresh, code) 49
5.1.5.1. Limit token scope 49
5.1.5.2. Expiration time 49
5.1.5.3. Short expiration time 49
5.1.5.4. Limit number of usages/ One time usage 50

 5.1.5.5. Bind tokens to a particular resource server
 (Audience) . 50

5.1.5.6. Use endpoint address as token audience 51
5.1.5.7. Audience and Token scopes 51
5.1.5.8. Bind token to client id 51
5.1.5.9. Signed tokens 51
5.1.5.10. Encryption of token content 51
5.1.5.11. Random token value with high entropy 51
5.1.5.12. Assertion formats 52

5.1.6. Access tokens . 52
5.2. Authorization Server 52
5.2.1. Authorization Codes 52

 5.2.1.1. Automatic revocation of derived tokens if
 abuse is detected 52

5.2.2. Refresh tokens . 52
5.2.2.1. Restricted issuance of refresh tokens 52
5.2.2.2. Binding of refresh token to client_id 53
5.2.2.3. Refresh Token Rotation 53
5.2.2.4. Refresh Token Revocation 53
5.2.2.5. Device identification 54
5.2.2.6. X-FRAME-OPTION header 54

5.2.3. Client authentication and authorization 54
 5.2.3.1. Don't issue secrets to public clients or
 clients with inappropriate security policy 55
 5.2.3.2. Public clients without secret require user
 consent . 55
 5.2.3.3. Client_id only in combination with redirect_uri . 55

5.2.3.4. Deployment-specific client secrets 56

Lodderstedt, et al. Expires November 26, 2012 [Page 4]

Internet-Draft OAuth 2.0 Security May 2012

5.2.3.5. Validation of pre-registered redirect_uri 56
5.2.3.6. Client secret revocation 57

 5.2.3.7. Use strong client authentication (e.g.
 client_assertion / client_token) 57

5.2.4. End-user authorization 58
 5.2.4.1. Automatic processing of repeated
 authorizations requires client validation 58

5.2.4.2. Informed decisions based on transparency 58
5.2.4.3. Validation of client properties by end-user . . . 58
5.2.4.4. Binding of authorization code to client_id 59
5.2.4.5. Binding of authorization code to redirect_uri . . 59

5.3. Client App Security 59
 5.3.1. Don't store credentials in code or resources
 bundled with software packages 59
 5.3.2. Standard web server protection measures (for
 config files and databases) 60

5.3.3. Store secrets in a secure storage 60
 5.3.4. Utilize device lock to prevent unauthorized device
 access . 60

5.3.5. Platform security measures 60
5.3.6. Link state parameter to user agent session 60

5.4. Resource Servers . 61
5.4.1. Authorization headers 61
5.4.2. Authenticated requests 61
5.4.3. Signed requests 62

5.5. A Word on User Interaction and User-Installed Apps 62
6. IANA Considerations . 63
7. Acknowledgements . 63
8. References . 63
8.1. Normative References 63
8.2. Informative References 64

Appendix A. Document History 64
 Authors' Addresses . 66

Lodderstedt, et al. Expires November 26, 2012 [Page 5]

Internet-Draft OAuth 2.0 Security May 2012

1. Introduction

 This document gives additional security considerations for OAuth,
 beyond those in the OAuth specification, based on a comprehensive
 threat model for the OAuth 2.0 Protocol

 [I-D.ietf-oauth-v2]. It contains the following content:

 o Documents any assumptions and scope considered when creating the
 threat model.

 o Describes the security features in-built into the OAuth protocol
 and how they are intended to thwart attacks.

 o Gives a comprehensive threat model for OAuth and describes the
 respective counter measures to thwart those threats.

 Threats include any intentional attacks on OAuth tokens and resources
 protected by OAuth tokens as well as security risks introduced if the
 proper security measures are not put in place. Threats are
 structured along the lines of the protocol structure to aid
 development teams implement each part of the protocol securely. For
 example all threats for granting access or all threats for a
 particular grant type or all threats for protecting the resource
 server.

2. Overview

2.1. Scope

 The security considerations document only considers clients bound to
 a particular deployment as supported by [I-D.ietf-oauth-v2]. Such
 deployments have the following characteristics:

 o Resource server URLs are static and well-known at development
 time, authorization server URLs can be static or discovered.

 o Token scope values (e.g. applicable URLs and methods) are well-
 known at development time.

 o Client registration: Since registration of clients is out of scope
 of the current core spec, this document assumes a broad variety of
 options from static registration during development time to
 dynamic registration at runtime.

 The following are considered out of scope :

Lodderstedt, et al. Expires November 26, 2012 [Page 6]

Internet-Draft OAuth 2.0 Security May 2012

 o Communication between authorization server and resource server

 o Token formats

 o Except for "Resource Owner Password Credentials" (see
 [I-D.ietf-oauth-v2], section 4.3), the mechanism used by
 authorization servers to authenticate the user

 o Mechanism by which a user obtained an assertion and any resulting
 attacks mounted as a result of the assertion being false.

 o Clients not bound to a specific deployment: An example could be a
 mail client with support for contact list access via the portable
 contacts API (see [portable-contacts]). Such clients cannot be
 registered upfront with a particular deployment and should
 dynamically discover the URLs relevant for the OAuth protocol.

2.2. Attack Assumptions

 The following assumptions relate to an attacker and resources
 available to an attacker:

 o It is assumed the attacker has full access to the network between
 the client and authorization servers and the client and the
 resource server, respectively. The attacker may eavesdrop on any
 communications between those parties. He is not assumed to have
 access to communication between authorization and resource server.

 o It is assumed an attacker has unlimited resources to mount an
 attack.

 o It is assumed that 2 of the 3 parties involved in the OAuth
 protocol may collude to mount an attack against the 3rd party.
 For example, the client and authorization server may be under
 control of an attacker and collude to trick a user to gain access
 to resources.

2.3. Architectural assumptions

 This section documents the assumptions about the features,
 limitations, and design options of the different entities of a OAuth
 deployment along with the security-sensitive data-elements managed by
 those entity. These assumptions are the foundation of the threat
 analysis.

 The OAuth protocol leaves deployments with a certain degree of
 freedom how to implement and apply the standard. The core
 specification defines the core concepts of an authorization server

Lodderstedt, et al. Expires November 26, 2012 [Page 7]

Internet-Draft OAuth 2.0 Security May 2012

 and a resource server. Both servers can be implemented in the same
 server entity, or they may also be different entities. The later is
 typically the case for multi-service providers with a single
 authentication and authorization system, and are more typical in
 middleware architectures.

2.3.1. Authorization Servers

 The following data elements are stored or accessible on the
 authorization server:

 o user names and passwords

 o client ids and secrets

 o client-specific refresh tokens

 o client-specific access tokens (in case of handle-based design)

 o HTTPS certificate/key

 o per-authorization process (in case of handle-based design):
 redirect_uri, client_id, authorization code

2.3.2. Resource Server

 The following data elements are stored or accessible on the resource
 server:

 o user data (out of scope)

 o HTTPS certificate/key

 o authorization server credentials (handle-based design), or

 o authorization server shared secret/public key (assertion-based
 design)

 o access tokens (per request)

 It is assumed that a resource server has no knowledge of refresh
 tokens, user passwords, or client secrets.

2.3.3. Client

 A full definition of different client types and profiles is given in
 [I-D.ietf-oauth-v2], Section 2.1.

Lodderstedt, et al. Expires November 26, 2012 [Page 8]

Internet-Draft OAuth 2.0 Security May 2012

 The following data elements are stored or accessible on the client:

 o client id (and client secret or corresponding client credential)

 o one or more refresh tokens (persistent) and access tokens
 (transient) per end-user or other security-context or delegation
 context

 o trusted CA certificates (HTTPS)

 o per-authorization process: redirect_uri, authorization code

3. Security Features

 These are some of the security features which have been built into
 the OAuth 2.0 protocol to mitigate attacks and security issues.

3.1. Tokens

 OAuth makes extensive use many kinds of tokens (access tokens,
 refresh tokens, authorization codes). The information content of a
 token can be represented in two ways as follows:

 Handle (or artifact) a reference to some internal data structure
 within the authorization server; the internal data structure
 contains the attributes of the token, such as user id, scope, etc.
 Handles enable simple revocation and do not require cryptographic
 mechanisms to protect token content from being modified. On the
 other hand, handles require communication between issuing and
 consuming entity (e.g. authorization and resource server) in order
 to validate the token and obtain token-bound data. This
 communication might have an negative impact on performance and
 scalability if both entities reside on different systems. Handles
 are therefore typically used if the issuing and consuming entity
 are the same. A 'handle' token is often referred to as an
 'opaque' token because the resource server does not need to be
 able to interpret the token directly, it simply uses the token.

 Assertions (aka self-contained token) a parseable token. An
 assertion typically has a duration, has an audience, and is
 digitally signed. It contains information about the user and the
 client. Examples of assertion formats are SAML assertions and
 Kerberos tickets. Assertions can typically directly be validated
 and used by a resource server without interactions with the
 authorization server. This results in better performance and
 scalability in deployment where issuing and consuming entity
 reside on different systems. Implementing token revocation is

Lodderstedt, et al. Expires November 26, 2012 [Page 9]

Internet-Draft OAuth 2.0 Security May 2012

 more difficult with assertions than with handles.

 Tokens can be used in two ways to invoke requests on resource servers
 as follows:

 bearer token A 'bearer token' is a token that can be used by any
 client who has received the token (e.g.
 [I-D.ietf-oauth-v2-bearer]). Because mere possession is enough to
 use the token it is important that communication between end-
 points be secured to ensure that only authorized end-points may
 capture the token. The bearer token is convenient to client
 applications as it does not require them to do anything to use
 them (such as a proof of identity). Bearer tokens have similar
 characteristics to web single-sign-on (SSO) cookies used in
 browsers.

 proof token A 'proof token' is a token that can only be used by a
 specific client. Each use of the token, requires the client to
 perform some action that proves that it is the authorized user of
 the token. Examples of this are MAC tokens, which require the
 client to digitally sign the resource request with a secret
 corresponding to the particular token send with the request
 (e.g.[I-D.ietf-oauth-v2-http-mac]).

3.1.1. Scope

 A Scope represents the access authorization associated with a
 particular token with respect to resource servers, resources and
 methods on those resources. Scopes are the OAuth way to explicitly
 manage the power associated with an access token. A scope can be
 controlled by the authorization server and/or the end-user in order
 to limit access to resources for OAuth clients these parties deem
 less secure or trustworthy. Optionally, the client can request the
 scope to apply to the token but only for lesser scope than would
 otherwise be granted, e.g. to reduce the potential impact if this
 token is sent over non secure channels. A scope is typically
 complemented by a restriction on a token's lifetime.

3.1.2. Expires_In

 Expires_In allows an authorization server (based on its policies or
 on behalf of the end-user) to limit the lifetime of the access token.
 This mechanisms can be used to issue short-living tokens to OAuth
 clients the authorization server deems less secure or where sending
 tokens over non secure channels.

Lodderstedt, et al. Expires November 26, 2012 [Page 10]

Internet-Draft OAuth 2.0 Security May 2012

3.2. Access Token

 An access token is used by a client to access a resource. Access
 tokens typically have short life-spans (minutes or hours) that cover
 typical session lifetimes. An access token may be refreshed through
 the use of a refresh token. The short lifespan of an access token in
 combination with the usage of refresh tokens enables the possibility
 of passive revocation of access authorization on the expiry of the
 current access token.

3.3. Refresh Token

 A refresh token represents a long-lasting authorization of a certain
 client to access resources on behalf of a resource owner. Such
 tokens are exchanged between client and authorization server, only.
 Clients use this kind of token to obtain ("refresh") new access
 tokens used for resource server invocations.

 A refresh token, coupled with a short access token lifetime, can be
 used to grant longer access to resources without involving end user
 authorization. This offers an advantage where resource servers and
 authorization servers are not the same entity, e.g. in a distributed
 environment, as the refresh token is always exchanged at the
 authorization server. The authorization server can revoke the
 refresh token at any time causing the granted access to be revoked
 once the current access token expires. Because of this, a short
 access token lifetime is important if timely revocation is a high
 priority.

 The refresh token is also a secret bound to the client identifier and
 client instance which originally requested the authorization and
 representing the original resource owner grant. This is ensured by
 the authorization process as follows:

 1. The resource owner and user-agent safely deliver the
 authorization code to the client instance in first place.

 2. The client uses it immediately in secure transport-level
 communications to the authorization server and then securely
 stores the long-lived refresh token.

 3. The client always uses the refresh token in secure transport-
 level communications to the authorization server to get an access
 token (and optionally rollover the refresh token).

 So as long as the confidentiality of the particular token can be
 ensured by the client, a refresh token can also be used as an
 alternative means to authenticate the client instance itself..

Lodderstedt, et al. Expires November 26, 2012 [Page 11]

Internet-Draft OAuth 2.0 Security May 2012

3.4. Authorization Code

 An Authorization Code represents the intermediate result of a
 successful end-user authorization process and is used by the client
 to obtain access and refresh token. Authorization codes are sent to
 the client's redirection URI instead of tokens for two purposes.

 1. Instead of (longer-lasting) tokens, the short-lived authorization
 code is exposed to potential attackers via URI query parameters
 (HTTP referrer), browser cache, or log file entries.

 2. It is much simpler to authenticate clients during the direct
 request between client and authorization server than in the
 context of the indirect authorization request. The later would
 require digital signatures.

3.5. Redirection URI

 A redirection URI helps to detect malicious clients and prevents
 phishing attacks from clients attempting to trick the user into
 believing the phisher is the client. The value of the actual
 redirection URI used in the authorization request has to be presented
 and is verified when an authorization code is exchanged for tokens.
 This helps to prevent attacks, where the authorization code is
 revealed through redirectors and counterfeit web application clients.
 The authorization server should require public clients and
 confidential clients using implicit grant type to pre-register their
 redirect URIs and validate against the registered redirection URI in
 the authorization request.

3.6. State parameter

 The state parameter is used to link requests and callbacks to prevent
 CSRF attacks where an attacker authorizes access to his own resources
 and then tricks a users into following a redirect with the attacker's
 token. This parameter should bind to the authenticated state in a
 user agent and, as per the core OAuth spec, the user agent must be
 capable of keeping it in a location accessible only by the client and
 user agent, i.e. protected by same-origin policy

3.7. Client Identity

 Authentication protocols have typically not taken into account the
 identity of the software component acting on behalf of the end-user.
 OAuth does this in order to increase the security level in delegated
 authorization scenarios and because the client will be able to act
 without the user being present.

Lodderstedt, et al. Expires November 26, 2012 [Page 12]

Internet-Draft OAuth 2.0 Security May 2012

 OAuth uses the client identifier to collate associated request to the
 same originator, such as

 o a particular end-user authorization process and the corresponding
 request on the token's endpoint to exchange the authorization code
 for tokens or

 o the initial authorization and issuance of a token by an end-user
 to a particular client, and subsequent requests by this client to
 obtain tokens without user consent (automatic processing of
 repeated authorization)

 The client identity may also be used by the authorization server to
 display relevant registration information to a user when requesting
 consent for scope requested by a particular client. The client
 identity may be used to limit the number of request for a particular
 client or to charge the client per request. Client Identity may
 furthermore be useful to differentiate access by different clients,
 e.g. in server log files.

 OAuth defines two client types, confidential and public, based on
 their ability to authenticate with the authorization server (i.e.
 ability to maintain the confidentiality of their client credentials).
 Confidential clients are capable of maintaining the confidentiality
 of client credentials (i.e. a client secret associated with the
 client identifier) or capable of secure client authentication using
 other means, such as a client assertion (e.g. SAML) or key
 cryptography. The latter is considered more secure.

 The authorization server should determine whether the client is
 capable of keeping its secret confidential or using secure
 authentication. Alternatively, the end-user can verify the identity
 of the client, e.g. by only installing trusted applications.The
 redicrection URI can be used to prevent delivering credentials to a
 counterfeit client after obtaining end-user authorization in some
 cases, but can't be used to verify the client identity.

 Clients can be categorized as follows based on the client type,
 profile (e.g. native vs web application) and deployment model:

 Deployment-independent client_id with pre-registered redirect_uri and
 without client_secret Such an identity is used by multiple
 installations of the same software package. The identity of such
 a client can only be validated with the help of the end-user.
 This is a viable option for native applications in order to
 identify the client for the purpose of displaying meta information
 about the client to the user and to differentiate clients in log
 files. Revocation of such an identity will affect ALL deployments

Lodderstedt, et al. Expires November 26, 2012 [Page 13]

Internet-Draft OAuth 2.0 Security May 2012

 of the respective software.

 Deployment-independent client_id with pre-registered redirect_uri and
 with client_secret This is an option for native applications only,
 since web application would require different redirect URIs. This
 category is not advisable because the client secret cannot be
 protected appropriately (see Section 4.1.1). Due to its security
 weaknesses, such client identities have the same trust level as
 deployment-independent clients without secret. Revocation will
 affect ALL deployments.

 Deployment-specific client_id with pre-registered redirect_uri and
 with client_secret The client registration process ensures the
 validation of the client's properties, such as redirection URI,
 website address, web site name, contacts. Such a client identity
 can be utilized for all relevant use cases cited above. This
 level can be achieved for web applications in combination with a
 manual or user-bound registration process. Achieving this level
 for native applications is much more difficult. Either the
 installation of the application is conducted by an administrator,
 who validates the client's authenticity, or the process from
 validating the application to the installation of the application
 on the device and the creation of the client credentials is
 controlled end-to-end by a single entity (e.g. application market
 provider). Revocation will affect a single deployment only.

 Deployment-specific client_id with client_secret without validated
 properties Such a client can be recognized by the authorization
 server in transactions with subsequent requests (e.g.
 authorization and token issuance, refresh token issuance and
 access token refreshment). The authorization server cannot assure
 any property of the client to end-users. Automatic processing of
 re-authorizations could be allowed as well. Such client
 credentials can be generated automatically without any validation
 of client properties, which makes it another option especially for
 native applications. Revocation will affect a single deployment
 only.

4. Security Threat Model

 This section gives a comprehensive threat model of OAuth 2.0.
 Threats are grouped first by attacks directed against an OAuth
 component, which are client, authorization server, and resource
 server. Subsequently, they are grouped by flow, e.g. obtain token or
 access protected resources. Every countermeasure description refers
 to a detailed description in Section 5.

Lodderstedt, et al. Expires November 26, 2012 [Page 14]

Internet-Draft OAuth 2.0 Security May 2012

4.1. Clients

 This section describes possible threats directed to OAuth clients.

4.1.1. Threat: Obtain Client Secrets

 The attacker could try to get access to the secret of a particular
 client in order to:

 o replay its refresh tokens and authorization codes, or

 o obtain tokens on behalf of the attacked client with the privileges
 of that client.

 The resulting impact would be:

 o Client authentication of access to authorization server can be
 bypassed

 o Stolen refresh tokens or authorization codes can be replayed

 Depending on the client category, the following attacks could be
 utilized to obtain the client secret.

 Attack: Obtain Secret From Source Code or Binary:

 This applies for all client types. For open source projects, secrets
 can be extracted directly from source code in their public
 repositories. Secrets can be extracted from application binaries
 just as easily when published source is not available to the
 attacker. Even if an application takes significant measures to
 obfuscate secrets in their application distribution one should
 consider that the secret can still be reverse-engineered by anyone
 with access to a complete functioning application bundle or binary.

 Countermeasures:

 o Don't issue secrets to public clients or clients with
 inappropriate security policy - Section 5.2.3.1

 o Public clients require user consent - Section 5.2.3.2

 o Use deployment-specific client secrets - Section 5.2.3.4

 o Client secret revocation - Section 5.2.3.6

Lodderstedt, et al. Expires November 26, 2012 [Page 15]

Internet-Draft OAuth 2.0 Security May 2012

 Attack: Obtain a Deployment-Specific Secret:

 An attacker may try to obtain the secret from a client installation,
 either from a web site (web server) or a particular devices (native
 application).

 Countermeasures:

 o Web server: apply standard web server protection measures (for
 config files and databases) - Section 5.3.2

 o Native applications: Store secrets in a secure local storage -
Section 5.3.3

 o Client secret revocation - Section 5.2.3.6

4.1.2. Threat: Obtain Refresh Tokens

 Depending on the client type, there are different ways refresh tokens
 may be revealed to an attacker. The following sub-sections give a
 more detailed description of the different attacks with respect to
 different client types and further specialized countermeasures.
 Before detailing those threats, here are some generally applicable
 countermeasures:

 o The authorization server should validate the client id associated
 with the particular refresh token with every refresh request-

Section 5.2.2.2

 o Limited scope tokens - Section 5.1.5.1

 o Refresh token revocation - Section 5.2.2.4

 o Client secret revocation - Section 5.2.3.6

 o Refresh tokens can automatically be replaced in order to detect
 unauthorized token usage by another party (Refresh Token Rotation)
 - Section 5.2.2.3

 Attack: Obtain Refresh Token from Web application:

 An attacker may obtain the refresh tokens issued to a web application
 by way of overcoming the web server's security controls. Impact:
 Since a web application manages the user accounts of a certain site,
 such an attack would result in an exposure of all refresh tokens on
 that side to the attacker.

Lodderstedt, et al. Expires November 26, 2012 [Page 16]

Internet-Draft OAuth 2.0 Security May 2012

 Countermeasures:

 o Standard web server protection measures - Section 5.3.2

 o Use strong client authentication (e.g. client_assertion /
 client_token), so the attacker cannot obtain the client secret
 required to exchange the tokens - Section 5.2.3.7

 Attack: Obtain Refresh Token from Native clients:

 On native clients, leakage of a refresh token typically affects a
 single user, only.

 Read from local file system: The attacker could try get file system
 access on the device and read the refresh tokens. The attacker could
 utilize a malicious application for that purpose.

 Countermeasures:

 o Store secrets in a secure storage - Section 5.3.3

 o Utilize device lock to prevent unauthorized device access -
Section 5.3.4

 Attack: Steal device:

 The host device (e.g. mobile phone) may be stolen. In that case, the
 attacker gets access to all applications under the identity of the
 legitimate user.

 Countermeasures:

 o Utilize device lock to prevent unauthorized device access -
Section 5.3.4

 o Where a user knows the device has been stolen, they can revoke the
 affected tokens - Section 5.2.2.4

 Attack: Clone Device:

 All device data and applications are copied to another device.
 Applications are used as-is on the target device.

 Countermeasures:

Lodderstedt, et al. Expires November 26, 2012 [Page 17]

Internet-Draft OAuth 2.0 Security May 2012

 o Utilize device lock to prevent unauthorized device access -
Section 5.3.4

 o Combine refresh token request with device identification -
Section 5.2.2.5

 o Refresh Token Rotation - Section 5.2.2.3

 o Where a user knows the device has been cloned, they can use this
 countermeasure - Refresh Token Revocation - Section 5.2.2.4

4.1.3. Threat: Obtain Access Tokens

 Depending on the client type, there are different ways access tokens
 may be revealed to an attacker. Access tokens could be stolen from
 the device if the application stores them in a storage, which is
 accessible to other applications.

 Impact: Where the token is a bearer token and no additional mechanism
 is used to identify the client, the attacker can access all resources
 associated with the token and its scope.

 Countermeasures:

 o Keep access tokens in transient memory and limit grants:
Section 5.1.6

 o Limited scope tokens - Section 5.1.5.1

 o Keep access tokens in private memory or apply same protection
 means as for refresh tokens - Section 5.2.2

 o Keep access token lifetime short - Section 5.1.5.3

4.1.4. Threat: End-user credentials phished using compromised or
 embedded browser

 A malicious application could attempt to phish end-user passwords by
 misusing an embedded browser in the end-user authorization process,
 or by presenting its own user-interface instead of allowing trusted
 system browser to render the authorization user interface. By doing
 so, the usual visual trust mechanisms may be bypassed (e.g. TLS
 confirmation, web site mechanisms). By using an embedded or internal
 client application user interface, the client application has access
 to additional information it should not have access to (e.g. uid/
 password).

 Impact: If the client application or the communication is

Lodderstedt, et al. Expires November 26, 2012 [Page 18]

Internet-Draft OAuth 2.0 Security May 2012

 compromised, the user would not be aware and all information in the
 authorization exchange could be captured such as username and
 password.

 Countermeasures:

 o The OAuth flow is designed so that client applications never need
 to know user passwords. Client applications should avoid directly
 asking users for the their credentials. In addition, end users
 could be educated about phishing attacks and best practices, such
 as only accessing trusted clients, as OAuth does not provide any
 protection against malicious applications and the end user is
 solely responsible for the trustworthiness of any native
 application installed.

 o Client applications could be validated prior to publication in an
 application market for users to access. That validation is out of
 scope for OAuth but could include validating that the client
 application handles user authentication in an appropriate way.

 o Client developers should not write client applications that
 collect authentication information directly from users and should
 instead delegate this task to a trusted system component, e.g. the
 system-browser.

4.1.5. Threat: Open Redirectors on client

 An open redirector is an endpoint using a parameter to automatically
 redirect a user-agent to the location specified by the parameter
 value without any validation. If the authorization server allows the
 client to register only part of the redirection URI, an attacker can
 use an open redirector operated by the client to construct a
 redirection URI that will pass the authorization server validation
 but will send the authorization code or access token to an endpoint
 under the control of the attacker.

 Impact: An attacker could gain access to authorization codes or
 access tokens

 Countermeasure

 o require clients to register full redirection URI Section 5.2.3.5

4.2. Authorization Endpoint

Lodderstedt, et al. Expires November 26, 2012 [Page 19]

Internet-Draft OAuth 2.0 Security May 2012

4.2.1. Threat: Password phishing by counterfeit authorization server

 OAuth makes no attempt to verify the authenticity of the
 Authorization Server. A hostile party could take advantage of this
 by intercepting the Client's requests and returning misleading or
 otherwise incorrect responses. This could be achieved using DNS or
 ARP spoofing. Wide deployment of OAuth and similar protocols may
 cause Users to become inured to the practice of being redirected to
 websites where they are asked to enter their passwords. If Users are
 not careful to verify the authenticity of these websites before
 entering their credentials, it will be possible for attackers to
 exploit this practice to steal Users' passwords.

 Countermeasures:

 o Authorization servers should consider such attacks when developing
 services based on OAuth, and should require transport-layer
 security for any requests where the authenticity of the
 authorization server or of request responses is an issue (see

Section 5.1.2).

 o Authorization servers should attempt to educate Users about the
 risks phishing attacks pose, and should provide mechanisms that
 make it easy for users to confirm the authenticity of their sites.

4.2.2. Threat: User unintentionally grants too much access scope

 When obtaining end user authorization, the end-user may not
 understand the scope of the access being granted and to whom or they
 may end up providing a client with access to resources which should
 not be permitted.

 Countermeasures:

 o Explain the scope (resources and the permissions) the user is
 about to grant in a understandable way - Section 5.2.4.2

 o Narrow scope based on client - When obtaining end user
 authorization and where the client requests scope, the
 authorization server may want to consider whether to honour that
 scope based on who the client is. That decision is between the
 client and authorization server and is outside the scope of this
 spec. The authorization server may also want to consider what
 scope to grant based on the client type, e.g. providing lower
 scope to public clients. - Section 5.1.5.1

Lodderstedt, et al. Expires November 26, 2012 [Page 20]

Internet-Draft OAuth 2.0 Security May 2012

4.2.3. Threat: Malicious client obtains existing authorization by fraud

 Authorization servers may wish to automatically process authorization
 requests from clients which have been previously authorized by the
 user. When the user is redirected to the authorization server's end-
 user authorization endpoint to grant access, the authorization server
 detects that the user has already granted access to that particular
 client. Instead of prompting the user for approval, the
 authorization server automatically redirects the user back to the
 client.

 A malicious client may exploit that feature and try to obtain such an
 authorization code instead of the legitimate client.

 Countermeasures:

 o Authorization servers should not automatically process repeat
 authorizations to public clients or unless the client is validated
 using a pre-registered redirect URI (Section 5.2.3.5)

 o Authorization servers can mitigate the risks associated with
 automatic processing by limiting the scope of Access Tokens
 obtained through automated approvals - Section 5.1.5.1

4.2.4. Threat: Open redirector

 An attacker could use the end-user authorization endpoint and the
 redirection URI parameter to abuse the authorization server as an
 open redirector. An open redirector is an endpoint using a parameter
 to automatically redirect a user-agent to the location specified by
 the parameter value without any validation.

 Impact: An attacker could utilize a user's trust in your
 authorization server to launch a phishing attack.

 Countermeasure

 o require clients to register full redirection URI Section 5.2.3.5

 o don't redirect to redirection URI, if client identity or
 redirection URI can't be verified Section 5.2.3.5

4.3. Token endpoint

Lodderstedt, et al. Expires November 26, 2012 [Page 21]

Internet-Draft OAuth 2.0 Security May 2012

4.3.1. Threat: Eavesdropping access tokens

 Attackers may attempts to eavesdrop access token on transit from the
 authorization server to the client.

 Impact: The attacker is able to access all resources with the
 permissions covered by the scope of the particular access token.

 Countermeasures:

 o As per the core OAuth spec, the authorization servers must ensure
 that these transmissions are protected using transport-layer
 mechanisms such as TLS or SSL (see Section 5.1.1).

 o If end-to-end confidentiality cannot be guaranteed, reducing scope
 (see Section 5.1.5.1) and expiry time (Section 5.1.5.3) for access
 tokens can be used to reduce the damage in case of leaks.

4.3.2. Threat: Obtain access tokens from authorization server database

 This threat is applicable if the authorization server stores access
 tokens as handles in a database. An attacker may obtain access
 tokens from the authorization server's database by gaining access to
 the database or launching a SQL injection attack. Impact: disclosure
 of all access tokens

 Countermeasures:

 o System security measures - Section 5.1.4.1.1

 o Store access token hashes only - Section 5.1.4.1.3

 o Standard SQL injection Countermeasures - Section 5.1.4.1.2

4.3.3. Threat: Obtain client credentials over non secure transport

 An attacker could attempt to eavesdrop the transmission of client
 credentials between client and server during the client
 authentication process or during OAuth token requests. Impact:
 Revelation of a client credential enabling the possibility for
 phishing or imitation of a client service.

 Countermeasures:

 o Implement transport security through - Section 5.1.1

 o Alternative authentication means, which do not require to send
 plaintext credentials over the wire (Examples: Digest

Lodderstedt, et al. Expires November 26, 2012 [Page 22]

Internet-Draft OAuth 2.0 Security May 2012

 authentication)

4.3.4. Threat: Obtain client secret from authorization server database

 An attacker may obtain valid client_id/secret combinations from the
 authorization server's database by gaining access to the database or
 launching a SQL injection attack. Impact: disclosure of all
 client_id/secret combinations. This allows the attacker to act on
 behalf of legitimate clients.

 Countermeasures:

 o Ensure proper handling of credentials as per Credential Storage
 Protection.

4.3.5. Threat: Obtain client secret by online guessing

 An attacker may try to guess valid client_id/secret pairs. Impact:
 disclosure of single client_id/secret pair.

 Countermeasures:

 o High entropy of secrets - Section 5.1.4.2.2

 o Lock accounts - Section 5.1.4.2.3

 o Use Strong Client Authentication - Section 5.2.3.7

4.3.6. Threat: DoS on dynamic client secret creation

 If an authorization servers includes a nontrivial amount of entropy
 in client secrets and if the authorization server automatically
 grants them, an attacker could exhaust the pool by repeatedly
 applying for them.

 Countermeasures:

 o The authorization server should consider some verification step
 for new clients. The authorization server should include a
 nontrivial amount of entropy in client secrets.

4.4. Obtaining Authorization

 This section covers threats which are specific to certain flows
 utilized to obtain access tokens. Each flow is characterized by
 response types and/or grant types on the end-user authorization and
 tokens endpoint, respectively.

Lodderstedt, et al. Expires November 26, 2012 [Page 23]

Internet-Draft OAuth 2.0 Security May 2012

4.4.1. Authorization Code

4.4.1.1. Threat: Eavesdropping or leaking authorization codes

 An attacker could try to eavesdrop transmission of the authorization
 code between authorization server and client. Furthermore,
 authorization codes are passed via the browser which may
 unintentionally leak those codes to untrusted web sites and attackers
 by different ways:

 o Referrer headers: browsers frequently pass a "referrer" header
 when a web page embeds content, or when a user travels from one
 web page to another web page. These referrer headers may be sent
 even when the origin site does not trust the destination site.
 The referrer header is commonly logged for traffic analysis
 purposes.

 o Request logs: web server request logs commonly include query
 parameters on requests.

 o Open redirectors: web sites sometimes need to send users to
 another destination via a redirector. Open redirectors pose a
 particular risk to web-based delegation protocols because the
 redirector can leak verification codes to untrusted destination
 sites.

 o Browser history: web browsers commonly record visited URLs in the
 browser history. Another user of the same web browser may be able
 to view URLs that were visited by previous users.

 Note: A description of a similar attacks on the SAML protocol can be
 found at http://www.oasis-open.org/committees/download.php/3405/

oasis-sstc-saml-bindings-1.1.pdf (S.4.1.1.9.1), http://
www.thomasgross.net/publications/papers/

 GroPfi2006-SAML2_Analysis_Janus.WSSS_06.pdf and http://
www.oasis-open.org/committees/download.php/11191/

 sstc-gross-sec-analysis-response-01.pdf.

 Countermeasures:

 o As per the core OAuth spec, the authorization server as well as
 the client must ensure that these transmissions are protected
 using transport-layer mechanisms such as TLS or SSL (see

Section 5.1.1).

 o The authorization server will require the client to authenticate
 wherever possible, so the binding of the authorization code to a
 certain client can be validated in a reliable way (see

http://www.oasis-open.org/committees/download.php/3405/oasis-sstc-saml-bindings-1.1.pdf
http://www.oasis-open.org/committees/download.php/3405/oasis-sstc-saml-bindings-1.1.pdf
http://www.thomasgross.net/publications/papers/
http://www.thomasgross.net/publications/papers/
http://www.oasis-open.org/committees/download.php/11191/
http://www.oasis-open.org/committees/download.php/11191/

Lodderstedt, et al. Expires November 26, 2012 [Page 24]

Internet-Draft OAuth 2.0 Security May 2012

Section 5.2.4.4).

 o Limited duration of authorization codes - Section 5.1.5.3

 o The authorization server should enforce a one time usage
 restriction (see Section 5.1.5.4).

 o If an Authorization Server observes multiple attempts to redeem a
 authorization code, the Authorization Server may want to revoke
 all tokens granted based on the authorization code (see

Section 5.2.1.1).

 o In the absence of these countermeasures, reducing scope
 (Section 5.1.5.1) and expiry time (Section 5.1.5.3) for access
 tokens can be used to reduce the damage in case of leaks.

 o The client server may reload the target page of the redirection
 URI in order to automatically cleanup the browser cache.

4.4.1.2. Threat: Obtain authorization codes from authorization server
 database

 This threat is applicable if the authorization server stores
 authorization codes as handles in a database. An attacker may obtain
 authorization codes from the authorization server's database by
 gaining access to the database or launching a SQL injection attack.
 Impact: disclosure of all authorization codes, most likely along with
 the respective redirect_uri and client_id values.

 Countermeasures:

 o Best practices for credential storage protection should be
 employed - Section 5.1.4.1

 o System security measures - Section 5.1.4.1.1

 o Store access token hashes only - Section 5.1.4.1.3

 o Standard SQL injection countermeasures - Section 5.1.4.1.2

4.4.1.3. Threat: Online guessing of authorization codes

 An attacker may try to guess valid authorization code values and send
 it using the grant type "code" in order to obtain a valid access
 token.

 Impact: disclosure of single access token, probably also associated
 refresh token.

Lodderstedt, et al. Expires November 26, 2012 [Page 25]

Internet-Draft OAuth 2.0 Security May 2012

 Countermeasures:

 o Handle-based tokens must use high entropy: Section 5.1.5.11

 o Assertion-based tokens should be signed: Section 5.1.5.9

 o Authenticate the client, adds another value the attacker has to
 guess - Section 5.2.3.4

 o Binding of authorization code to redirection URI, adds another
 value the attacker has to guess - Section 5.2.4.5

 o Short expiration time - Section 5.1.5.3

4.4.1.4. Threat: Malicious client obtains authorization

 A malicious client could counterfeit a valid client and obtain an
 access authorization that way. The malicious client could even
 utilize screen scraping techniques in order to simulate the user
 consent in the authorization flow.

 Assumption: It is not the task of the authorization server to protect
 the end-user's device from malicious software. This is the
 responsibility of the platform running on the particular device
 probably in cooperation with other components of the respective
 ecosystem (e.g. an application management infrastructure). The sole
 responsibility of the authorization server is to control access to
 the end-user's resources living in resource servers and to prevent
 unauthorized access to them. Based on this assumption, the following
 countermeasures are available to cope with the threat.

 Countermeasures:

 o The authorization server should authenticate the client, if
 possible (see Section 5.2.3.4). Note: the authentication takes
 place after the end-user has authorized the access.

 o The authorization server should validate the client's redirection
 URI against the pre-registered redirection URI, if one exists (see

Section 5.2.3.5). Note: An invalid redirect URI indicates an
 invalid client whereas a valid redirect URI not neccesserily
 indicates a valid client. The level of confidence depends on the
 client type. For web applications, the confidence is high since
 the redirect URI refers to the globally unique network endpoint of
 this application whose address is also validated using HTTPS
 server authentication by the user agent. In contrast for native
 clients, the redirect URI typically refers to device local
 resources, e.g. a custom scheme. So a malicious client on a

Lodderstedt, et al. Expires November 26, 2012 [Page 26]

Internet-Draft OAuth 2.0 Security May 2012

 particular device can use the valid redirect URI the legitimate
 client uses on all other devices.

 o After authenticating the end-user, the authorization server should
 ask him/her for consent. In this context, the user should be
 explained the purpose, scope, and duration of the authorization.
 Moreover, the authorization server should show the user any
 identity information it has for that client. It is up to the user
 to validate the binding of this data to the particular application
 (e.g. Name) and to approve the authorization request. (see

Section 5.2.4.3).

 o The authorization server should not perform automatic re-
 authorizations for clients it is unable to reliably authenticate
 or validate (see Section 5.2.4.1).

 o If the authorization server automatically authenticates the end-
 user, it may nevertheless require some user input in order to
 prevent screen scraping. Examples are CAPTCHAs or user-specific
 secrets like PIN codes.

 o The authorization server may also limit the scope of tokens it
 issues to clients it cannot reliably authenticate (see

Section 5.1.5.1).

4.4.1.5. Threat: Authorization code phishing

 A hostile party could impersonate the client site and get access to
 the authorization code. This could be achieved using DNS or ARP
 spoofing. This applies to clients, which are web applications, thus
 the redirect URI is not local to the host where the user's browser is
 running.

 Impact: This affects web applications and may lead to a disclosure of
 authorization codes and, potentially, the corresponding access and
 refresh tokens.

 Countermeasures:

 It is strongly recommended that one of the following countermeasures
 is utilized in order to prevent this attack:

 o The redirection URI of the client should point to a HTTPS
 protected endpoint and the browser should be utilized to
 authenticate this redirection URI using server authentication (see

Section 5.1.2).

Lodderstedt, et al. Expires November 26, 2012 [Page 27]

Internet-Draft OAuth 2.0 Security May 2012

 o The authorization server should require the client to be
 authenticated, i.e. confidential client, so the binding of the
 authorization code to a certain client can be validated in a
 reliable way (see Section 5.2.4.4).

4.4.1.6. Threat: User session impersonation

 A hostile party could impersonate the client site and impersonate the
 user's session on this client. This could be achieved using DNS or
 ARP spoofing. This applies to clients, which are web applications,
 thus the redirect URI is not local to the host where the user's
 browser is running.

 Impact: An attacker who intercepts the authorization code as it is
 sent by the browser to the callback endpoint can gain access to
 protected resources by submitting the authorization code to the
 client. The client will exchange the authorization code for an
 access token and use the access token to access protected resources
 for the benefit of the attacker, delivering protected resources to
 the attacker, or modifying protected resources as directed by the
 attacker. If OAuth is used by the client to delegate authentication
 to a social site (e.g. as in the implementation of the "Facebook
 Login" button), the attacker can use the intercepted authorization
 code to log in to the client as the user.

 Note: Authenticating the client during authorization code exchange
 will not help to detect such an attack as it is the legitimate client
 that obtains the tokens.

 Countermeasures:

 o In order to prevent an attacker from impersonating the end-users
 session, the redirection URI of the client should point to a HTTPS
 protected endpoint and the browser should be utilized to
 authenticate this redirection URI using server authentication (see

Section 5.1.2)

4.4.1.7. Threat: Authorization code leakage through counterfeit client

 The attack leverages the authorization code grant type in an attempt
 to get another user (victim) to log-in, authorize access to his/her
 resources, and subsequently obtain the authorization code and inject
 it into a client application using the attacker's account. The goal
 is to associate an access authorization for resources of the victim
 with the user account of the attacker on a client site.

 The attacker abuses an existing client application and combines it
 with his own counterfeit client web site. The attack depends on the

Lodderstedt, et al. Expires November 26, 2012 [Page 28]

Internet-Draft OAuth 2.0 Security May 2012

 victim expecting the client application to request access to a
 certain resource server. The victim, seeing only a normal request
 from an expected application, approves the request. The attacker
 then uses the victim's authorization to gain access to the
 information unknowingly authorized by the victim.

 The attacker conducts the following flow:

 1. The attacker accesses the client web site (or application) and
 initiates data access to a particular resource server. The
 client web site in turn initiates an authorization request to the
 resource server's authorization server. Instead of proceeding
 with the authorization process, the attacker modifies the
 authorization server end-user authorization URL as constructed by
 the client to include a redirection URI parameter referring to a
 web site under his control (attacker's web site).

 2. The attacker tricks another user (the victim) to open that
 modified end-user authorization URI and to authorize access (e.g.
 an email link, or blog link). The way the attacker achieve that
 goal is out of scope.

 3. Having clicked the link, the victim is requested to authenticate
 and authorize the client site to have access.

 4. After completion of the authorization process, the authorization
 server redirects the user agent to the attacker's web site
 instead of the original client web site.

 5. The attacker obtains the authorization code from his web site by
 means out of scope of this document.

 6. He then constructs a redirection URI to the target web site (or
 application) based on the original authorization request's
 redirection URI and the newly obtained authorization code and
 directs his user agent to this URL. The authorization code is
 injected into the original client site (or application).

 7. The client site uses the authorization code to fetch a token from
 the authorization server and associates this token with the
 attacker's user account on this site.

 8. The attacker may now access the victims resources using the
 client site.

 Impact: The attackers gains access to the victim's resources as
 associated with his account on the client site.

Lodderstedt, et al. Expires November 26, 2012 [Page 29]

Internet-Draft OAuth 2.0 Security May 2012

 Countermeasures:

 o The attacker will need to use another redirection URI for its
 authorization process than the target web site because it needs to
 intercept the flow. So if the authorization server associates the
 authorization code with the redirection URI of a particular end-
 user authorization and validates this redirection URI with the
 redirection URI passed to the token's endpoint, such an attack is
 detected (see Section 5.2.4.5).

 o The authorization server may also enforce the usage and validation
 of pre-registered redirect URIs (see Section 5.2.3.5). This will
 allow for an early recognition of session fixation attempts.

 o For native applications, one could also consider to use
 deployment-specific client ids and secrets (see Section 5.2.3.4,
 along with the binding of authorization code to client_id (see

Section 5.2.4.4), to detect such an attack because the attacker
 does not have access the deployment-specific secret. Thus he will
 not be able to exchange the authorization code.

 o The client may consider using other flows, which are not
 vulnerable to this kind of attacks such as "Implicit Grant" or
 "Resource Owner Password Credentials" (see Section 4.4.2 or

Section 4.4.3).

4.4.1.8. Threat: CSRF attack against redirect-uri

 Cross-Site Request Forgery (CSRF) is a web-based attack whereby HTTP
 requests are transmitted from a user that the website trusts or has
 authenticated (e.g., via HTTP redirects or HTML forms). CSRF attacks
 on OAuth approvals can allow an attacker to obtain authorization to
 OAuth protected resources without the consent of the User.

 This attack works against the redirection URI used in the
 authorization code flow. An attacker could authorize an
 authorization code to their own protected resources on an
 authorization server. He then aborts the redirect flow back to the
 client on his device and tricks the victim into executing the
 redirect back to the client. The client receives the redirect,
 fetches the token(s) from the authorization server and associates the
 victim's client session with the resources accessible using the
 token.

 Impact: The user accesses resources on behalf of the attacker. The
 effective impact depends on the type of resource accessed. For
 example, the user may upload private items to an attacker's
 resources. Or when using OAuth in 3rd party login scenarios, the

Lodderstedt, et al. Expires November 26, 2012 [Page 30]

Internet-Draft OAuth 2.0 Security May 2012

 user may associate his client account with the attacker's identity at
 the external identity provider. This way the attacker could easily
 access the victim's data at the client by logging in from another
 device with his credentials at the external identity provider.

 Countermeasures:

 o The state parameter should be used to link the authorization
 request with the redirection URI used to deliver the access token.

Section 5.3.6

 o Client developers and end-user can be educated not follow
 untrusted URLs.

4.4.1.9. Threat: Clickjacking attack against authorization

 With Clickjacking, a malicious site loads the target site in a
 transparent iframe overlaid on top of a set of dummy buttons which
 are carefully constructed to be placed directly under important
 buttons on the target site. When a user clicks a visible button,
 they are actually clicking a button (such as an "Authorize" button)
 on the hidden page.

 Impact: An attacker can steal a user's authentication credentials and
 access their resources

 Countermeasure

 o Native applications should use external browsers instead of
 embedding browsers in a web view when requesting end-user
 authorization

 o For newer browsers, avoidance of iFrames can be enforced server
 side by using the X-FRAME-OPTION header - Section 5.2.2.6

 o For older browsers, javascript framebusting techniques can be used
 but may not be effective in all browsers.

4.4.1.10. Threat: Resource Owner Impersonation

 When a client requests access to protected resources, the
 authorization flow normally involves the resource owner's explicit
 response to the access request, either granting or denying access to
 the protected resources. A malicious client can exploit knowledge of
 the structure of this flow in order to gain authorization without the
 resource owner's consent, by transmitting the necessary requests
 programmatically, and simulating the flow against the authorization
 server. That way, the client may gain access to the victims

Lodderstedt, et al. Expires November 26, 2012 [Page 31]

Internet-Draft OAuth 2.0 Security May 2012

 resources without her approval. An authorization server will be
 vulnerable to this threat, if it uses non-interactive authentication
 mechanisms or split the authorization flow across multiple pages.

 The malicious client might embed a hidden HTML user agent, interpret
 the HTML forms sent by the authorization server, and automatically
 answer with the corresponding form post requests. As a pre-
 requisite, the attacker must be able to execute the authorization
 process in the context of an already authenticated session of the
 resource owner with the authorization server. There are different
 ways to achieve this:

 o The malicious client could abuse an existing session in an
 external browser or cross-browser cookies on the particular
 device.

 o It could also request authorization for a particular scope and
 silently abuse the resulting session in his browser instance to
 "silently" request another scope.

 o Alternatively, the attacker might exploit an authorization
 server's ability to authenticate the resource owner automatically
 and without user interactions, e.g. based on certificates.

 In all cases, such an attack is limited to clients running on the
 victim's device, within the user agent or as native app.

 Please note: Such attacks cannot be prevented using CSRF
 countermeasures, since the attacker just "executes" the URLs as
 prepared by the authorization server including any nonce etc.

 Countermeasures:

 Authorization servers should decide, based on an analysis of the risk
 associated with this threat, whether to assume, detect, or to prevent
 this threat.

 In order to prevent such an attack, the authorization server may
 force an user interaction based on non-predictable input values as
 part of the user consent approval. The authorization server could

 o combine password authentication and user consent in a single form,

 o make use of CAPTCHAs, or

 o or use one-time secrets send out of bound to the resource owner
 (e.g. via text or instance message).

Lodderstedt, et al. Expires November 26, 2012 [Page 32]

Internet-Draft OAuth 2.0 Security May 2012

 Alternatively in order to allow the resource owner to detect abuse,
 the authorization server could notify the resource owner of any
 approval by appropriate means, e.g. text or instant message or
 e-Mail.

4.4.1.11. Threat: DoS, Exhaustion of resources attacks

 If an authorization server includes a nontrivial amount of entropy in
 authorization codes or access tokens (limiting the number of possible
 codes/tokens) and automatically grants either without user
 intervention and has no limit on code or access tokens per user, an
 attacker could exhaust the pool by repeatedly directing user(s)
 browser to request code or access tokens. This is because more
 entropy means a larger number of tokens can be issued.

 Countermeasures:

 o The authorization server should consider limiting the number of
 access tokens granted per user. The authorization server should
 include a nontrivial amount of entropy in authorization codes.

4.4.1.12. Threat: DoS using manufactured authorization codes

 An attacker who owns a botnet can locate the redirect URIs of clients
 that listen on HTTP, access them with random authorization codes, and
 cause a large number of HTTPS connections to be concentrated onto the
 authorization server. This can result in a DoS attack on the
 authorization server.

 This attack can still be effective even when CSRF defense/the 'state'
 parameter are deployed on the client side. With such a defense, the
 attacker might need to incur an additional HTTP request to obtain a
 valid CSRF code/ state parameter. This apparently cuts down the
 effectiveness of the attack by a factor of 2. However, if the HTTPS/
 HTTP cost ratio is higher than 2 (the cost factor is estimated to be
 around 3.5x at
 <http://www.semicomplete.com/blog/geekery/ssl-latency.html>) the
 attacker still achieves a magnification of resource utilization at
 the expense of the authorization server.

 Impact: There are a few effects that the attacker can accomplish with
 this OAuth flow that they cannot easily achieve otherwise.

 1. Connection laundering: With the clients as the relay between the
 attacker and the authorization server, the authorization server
 learns little or no information about the identity of the
 attacker. Defenses such rate limiting on the offending attacker
 machines are less effective due to the difficulty to identify the

http://www.semicomplete.com/blog/geekery/ssl-latency.html

Lodderstedt, et al. Expires November 26, 2012 [Page 33]

Internet-Draft OAuth 2.0 Security May 2012

 attacking machines. Although an attacker could also launder its
 connections through an anonymizing systems such as Tor, the
 effectiveness of that approach depends on the capacity of the
 annoying system. On the other hand, a potentially large number
 of OAuth clients could be utilized for this attack.

 2. Asymmetric resource utilization: The attacker incurs the cost of
 an HTTP connection and causes an HTTPS connection to be made on
 the authorization server; and the attacker can co-ordinate the
 timing of such HTTPS connections across multiple clients
 relatively easily. Although the attacker could achieve something
 similar, say, by including an iframe pointing to the HTTPS URL of
 the authorization server in an HTTP web page and lure web users
 to visit that page, timing attacks using such a scheme may be
 more difficult as it seems nontrivial to synchronize a large
 number of users to simultaneously visit a particular site under
 the attacker's control.

 Countermeasures

 o Though not a complete countermeasure by themselves, CSRF defense
 and the 'state' parameter created with secure random codes should
 be deployed on the client side. The client should forward the
 authorization code to the authorization server only after both the
 CSRF token and the 'state' parameter are validated.

 o If the client authenticates the user, either through a single sign
 on protocol (such as OpenID / Facebook Connect) or through local
 authentication, the client should suspend the access by a user
 account if the number of invalid authorization codes submitted by
 this user exceeds a certain threshold.

 o The authorization server should send an error response to the
 client reporting an invalid authorization code and rate limit or
 disallow connections from clients whose number of invalid requests
 exceeds a threshold.

 o The authorization server may in addition sign the authorization
 code using the public key from its SSL certificate, and require
 the client to validate the signature. To enhance interoperability
 between multiple clients and authorization servers, a standard
 procedure to create and validate the signature (including what
 attributes to sign) may be developed and agreed between the
 clients and the servers.

Lodderstedt, et al. Expires November 26, 2012 [Page 34]

Internet-Draft OAuth 2.0 Security May 2012

4.4.2. Implicit Grant

 In the implicit grant type flow, the access token is directly
 returned to the client as a fragment part of the redirection URI. It
 is assumed that the token is not sent to the redirection URI target
 as HTTP user agents do not send the fragment part of URIs to HTTP
 servers. Thus an attacker cannot eavesdrop the access token on this
 communication path and It cannot leak through HTTP referee headers.

4.4.2.1. Threat: Access token leak in transport/end-points

 This token might be eavesdropped by an attacker. The token is sent
 from server to client via a URI fragment of the redirection URI. If
 the communication is not secured or the end-point is not secured, the
 token could be leaked by parsing the returned URI.

 Impact: the attacker would be able to assume the same rights granted
 by the token.

 Countermeasures:

 o The authorization server should ensure confidentiality of the
 response from the authorization server to the client (see

Section 5.1.1).

4.4.2.2. Threat: Access token leak in browser history

 An attacker could obtain the token from the browser's history. Note
 this means the attacker needs access to the particular device.

 Countermeasures:

 o Shorten token duration (see Section 5.1.5.3) and reduced scope of
 the token may reduce the impact of that attack (see

Section 5.1.5.1).

 o Make these requests non-cachable

 o Native applications can directly embed a browser widget and
 therewith gain full control of the cache. So the application can
 cleanup browser history after authorization process.

4.4.2.3. Threat: Malicious client obtains authorization

 An malicious client could attempt to obtain a token by fraud.

 The same countermeasures as for Section 4.4.1.4 are applicable,
 except client authentication.

Lodderstedt, et al. Expires November 26, 2012 [Page 35]

Internet-Draft OAuth 2.0 Security May 2012

4.4.2.4. Threat: Manipulation of scripts

 A hostile party could act as the client web server and replace or
 modify the actual implementation of the client (script). This could
 be achieved using DNS or ARP spoofing. This applies to clients
 implemented within the Web Browser in a scripting language.

 Impact: The attacker could obtain user credential information and
 assume the full identity of the user.

 Countermeasures:

 o The authorization server should authenticate the server from which
 scripts are obtained (see Section 5.1.2).

 o The client should ensure that scripts obtained have not been
 altered in transport (see Section 5.1.1).

 o Introduce one time per-use secrets (e.g. client_secret) values
 that can only be used by scripts in a small time window once
 loaded from a server. The intention would be to reduce the
 effectiveness of copying client-side scripts for re-use in an
 attackers modified code.

4.4.2.5. Threat: CSRF attack against redirect-uri

 Cross-Site Request Forgery (CSRF) is a web-based attack whereby HTTP
 requests are transmitted from a user that the website trusts or has
 authenticated (e.g., via HTTP redirects or HTML forms). CSRF attacks
 on OAuth approvals can allow an attacker to obtain authorization to
 OAuth protected resources without the consent of the User.

 This attack works against the redirection URI used in the implicit
 grant flow. An attacker could acquire an access token to their own
 protected resources. He could then construct a redirection URI and
 embed their access token in that URI. If he can trick the user into
 following the redirection URI and the client does not have protection
 against this attack, the user may have the attacker's access token
 authorized within their client.

 Impact: The user accesses resources on behalf of the attacker. The
 effective impact depends on the type of resource accessed. For
 example, the user may upload private items to an attacker's
 resources. Or when using OAuth in 3rd party login scenarios, the
 user may associate his client account with the attacker's identity at
 the external identity provider. This way the attacker could easily
 access the victim's data at the client by logging in from another
 device with his credentials at the external identity provider.

Lodderstedt, et al. Expires November 26, 2012 [Page 36]

Internet-Draft OAuth 2.0 Security May 2012

 Countermeasures:

 o The state parameter should be used to link the authorization
 request with the redirection URI used deliver the access token.
 This will ensure the client is not tricked into completing any
 redirect callback unless it is linked to an authorization request
 the client initiated. The state parameter should be unguessable
 and the client should be capable of keeping the state parameter
 secret.

 o Client developers and end-user can be educated not follow
 untrusted URLs.

4.4.3. Resource Owner Password Credentials

 The "Resource Owner Password Credentials" grant type (see
 [I-D.ietf-oauth-v2], Section 4.3), often used for legacy/migration
 reasons, allows a client to request an access token using an end-
 users user-id and password along with its own credential. This grant
 type has higher risk because it maintains the uid/password anti-
 pattern. Additionally, because the user does not have control over
 the authorization process, clients using this grant type are not
 limited by scope, but instead have potentially the same capabilities
 as the user themselves. As there is no authorization step, the
 ability to offer token revocation is bypassed.

 Impact: The resource server can only differentiate scope based on the
 access token being associated with a particular client. The client
 could also acquire long-living tokens and pass them up to a attacker
 web service for further abuse. The client, eavesdroppers, or end-
 points could eavesdrop user id and password.

 Countermeasures:

 o Except for migration reasons, minimize use of this grant type

 o The authorization server should validate the client id associated
 with the particular refresh token with every refresh request -

Section 5.2.2.2

 o As per the core Oauth spec, the authorization server must ensure
 that these transmissions are protected using transport-layer
 mechanisms such as TLS or SSL (see Section 5.1.1).

Lodderstedt, et al. Expires November 26, 2012 [Page 37]

Internet-Draft OAuth 2.0 Security May 2012

4.4.3.1. Threat: Accidental exposure of passwords at client site

 If the client does not provide enough protection, an attacker or
 disgruntled employee could retrieve the passwords for a user.

 Countermeasures:

 o Use other flows, which do not rely on the client's cooperation for
 secure resource owner credential handling

 o Use digest authentication instead of plaintext credential
 processing

 o Obfuscation of passwords in logs

4.4.3.2. Threat: Client obtains scopes without end-user authorization

 All interaction with the resource owner is performed by the client.
 Thus it might, intentionally or unintentionally, happen that the
 client obtains a token with scope unknown for or unintended by the
 resource owner. For example, the resource owner might think the
 client needs and acquires read-only access to its media storage only
 but the client tries to acquire an access token with full access
 permissions.

 Countermeasures:

 o Use other flows, which do not rely on the client's cooperation for
 resource owner interaction

 o The authorization server may generally restrict the scope of
 access tokens (Section 5.1.5.1) issued by this flow. If the
 particular client is trustworthy and can be authenticated in a
 reliable way, the authorization server could relax that
 restriction. Resource owners may prescribe (e.g. in their
 preferences) what the maximum scope is for clients using this
 flow.

 o The authorization server could notify the resource owner by an
 appropriate media, e.g. e-Mail, of the grant issued (see

Section 5.1.3).

4.4.3.3. Threat: Client obtains refresh token through automatic
 authorization

 All interaction with the resource owner is performed by the client.
 Thus it might, intentionally or unintentionally, happen that the
 client obtains a long-term authorization represented by a refresh

Lodderstedt, et al. Expires November 26, 2012 [Page 38]

Internet-Draft OAuth 2.0 Security May 2012

 token even if the resource owner did not intend so.

 Countermeasures:

 o Use other flows, which do not rely on the client's cooperation for
 resource owner interaction

 o The authorization server may generally refuse to issue refresh
 tokens in this flow (see Section 5.2.2.1). If the particular
 client is trustworthy and can be authenticated in a reliable way
 (see client authentication), the authorization server could relax
 that restriction. Resource owners may allow or deny (e.g. in
 their preferences) to issue refresh tokens using this flow as
 well.

 o The authorization server could notify the resource owner by an
 appropriate media, e.g. e-Mail, of the refresh token issued (see

Section 5.1.3).

4.4.3.4. Threat: Obtain user passwords on transport

 An attacker could attempt to eavesdrop the transmission of end-user
 credentials with the grant type "password" between client and server.

 Impact: disclosure of a single end-users password.

 Countermeasures:

 o Confidentiality of Requests - Section 5.1.1

 o alternative authentication means, which do not require to send
 plaintext credentials over the wire (Examples: Digest
 authentication)

4.4.3.5. Threat: Obtain user passwords from authorization server
 database

 An attacker may obtain valid username/password combinations from the
 authorization server's database by gaining access to the database or
 launching a SQL injection attack.

 Impact: disclosure of all username/password combinations. The impact
 may exceed the domain of the authorization server since many users
 tend to use the same credentials on different services.

 Countermeasures:

Lodderstedt, et al. Expires November 26, 2012 [Page 39]

Internet-Draft OAuth 2.0 Security May 2012

 o Credential storage protection can be employed - Section 5.1.4.1

4.4.3.6. Threat: Online guessing

 An attacker may try to guess valid username/password combinations
 using the grant type "password".

 Impact: Revelation of a single username/password combination.

 Countermeasures:

 o Password policy - Section 5.1.4.2.1

 o Lock accounts - Section 5.1.4.2.3

 o Tar pit - Section 5.1.4.2.4

 o CAPTCHA - Section 5.1.4.2.5

 o Abandon on grant type "password"

 o Client authentication (see Section 5.2.3) will provide another
 authentication factor and thus hinder the attack.

4.4.4. Client Credentials

 Client credentials (see [I-D.ietf-oauth-v2], Section 3) consist of an
 identifier (not secret) combined with an additional means (such as a
 matching client secret) of authenticating a client. The threats to
 this grant type are similar to Section 4.4.3.

4.5. Refreshing an Access Token

4.5.1. Threat: Eavesdropping refresh tokens from authorization server

 An attacker may eavesdrop refresh tokens when they are transmitted
 from the authorization server to the client.

 Countermeasures:

 o As per the core OAuth spec, the Authorization servers must ensure
 that these transmissions are protected using transport-layer
 mechanisms such as TLS or SSL (see Section 5.1.1).

 o If end-to-end confidentiality cannot be guaranteed, reducing scope
 (see Section 5.1.5.1) and expiry time (see Section 5.1.5.3) for
 issued access tokens can be used to reduce the damage in case of
 leaks.

Lodderstedt, et al. Expires November 26, 2012 [Page 40]

Internet-Draft OAuth 2.0 Security May 2012

4.5.2. Threat: Obtaining refresh token from authorization server
 database

 This threat is applicable if the authorization server stores refresh
 tokens as handles in a database. An attacker may obtain refresh
 tokens from the authorization server's database by gaining access to
 the database or launching a SQL injection attack.

 Impact: disclosure of all refresh tokens

 Countermeasures:

 o Credential storage protection - Section 5.1.4.1

 o Bind token to client id, if the attacker cannot obtain the
 required id and secret - Section 5.1.5.8

4.5.3. Threat: Obtain refresh token by online guessing

 An attacker may try to guess valid refresh token values and send it
 using the grant type "refresh_token" in order to obtain a valid
 access token.

 Impact: exposure of single refresh token and derivable access tokens.

 Countermeasures:

 o For handle-based designs - Section 5.1.5.11

 o For assertion-based designs - Section 5.1.5.9

 o Bind token to client id, because the attacker would guess the
 matching client id, too (see Section 5.1.5.8)

 o Authenticate the client, adds another element the attacker has to
 guess (see Section 5.2.3.4)

4.5.4. Threat: Obtain refresh token phishing by counterfeit
 authorization server

 An attacker could try to obtain valid refresh tokens by proxying
 requests to the authorization server. Given the assumption that the
 authorization server URL is well-known at development time or can at
 least be obtained from a well-known resource server, the attacker
 must utilize some kind of spoofing in order to succeed.

 Countermeasures:

Lodderstedt, et al. Expires November 26, 2012 [Page 41]

Internet-Draft OAuth 2.0 Security May 2012

 o Server authentication (as described in Section 5.1.2)

4.6. Accessing Protected Resources

4.6.1. Threat: Eavesdropping access tokens on transport

 An attacker could try to obtain a valid access token on transport
 between client and resource server. As access tokens are shared
 secrets between authorization and resource server, they should be
 treated with the same care as other credentials (e.g. end-user
 passwords).

 Countermeasures:

 o Access tokens sent as bearer tokens, should not be sent in the
 clear over an insecure channel. As per the core OAuth spec,
 transmission of access tokens must be protected using transport-
 layer mechanisms such as TLS or SSL (see Section 5.1.1).

 o A short lifetime reduces impact in case tokens are compromised
 (see Section 5.1.5.3).

 o The access token can be bound to a client's identity and require
 the client to prove legitimate ownership of the token to the
 resource server (see Section 5.4.2).

4.6.2. Threat: Replay authorized resource server requests

 An attacker could attempt to replay valid requests in order to obtain
 or to modify/destroy user data.

 Countermeasures:

 o The resource server should utilize transport security measure in
 order to prevent such attacks (see Section 5.1.1). This would
 prevent the attacker from capturing valid requests.

 o Alternatively, the resource server could employ signed requests
 (see Section 5.4.3) along with nounces and timestamps in order to
 uniquely identify requests. The resource server should detect and
 refuse every replayed request.

4.6.3. Threat: Guessing access tokens

 Where the token is a handle, the attacker may use attempt to guess
 the access token values based on knowledge they have from other
 access tokens.

Lodderstedt, et al. Expires November 26, 2012 [Page 42]

Internet-Draft OAuth 2.0 Security May 2012

 Impact: Access to a single user's data.

 Countermeasures:

 o Handle Tokens should have a reasonable entropy (see
Section 5.1.5.11) in order to make guessing a valid token value

 difficult.

 o Assertion (or self-contained token) tokens contents should be
 protected by a digital signature (see Section 5.1.5.9).

 o Security can be further strengthened by using a short access token
 duration (see Section 5.1.5.2 and Section 5.1.5.3).

4.6.4. Threat: Access token phishing by counterfeit resource server

 An attacker may pretend to be a particular resource server and to
 accept tokens from a particular authorization server. If the client
 sends a valid access tokens to this counterfeit resource server, the
 server in turn may use that token to access other services on behalf
 of the resource owner.

 Countermeasures:

 o Clients should not make authenticated requests with an access
 token to unfamiliar resource servers, regardless of the presence
 of a secure channel. If the resource server address is well-known
 to the client, it may authenticate the resource servers (see

Section 5.1.2).

 o Associate the endpoint address of the resource server the client
 talked to with the access token (e.g. in an audience field) and
 validate association at legitimate resource server. The endpoint
 address validation policy may be strict (exact match) or more
 relaxed (e.g. same host). This would require to tell the
 authorization server the resource server endpoint address in the
 authorization process.

 o Associate an access token with a client and authenticate the
 client with resource server requests (typically via signature in
 order to not disclose secret to a potential attacker). This
 prevents the attack because the counterfeit server is assumed to
 miss the capabilities to correctly authenticate on behalf of the
 legitimate client to the resource server (Section 5.4.2).

 o Restrict the token scope (see Section 5.1.5.1) and or limit the
 token to a certain resource server (Section 5.1.5.5).

Lodderstedt, et al. Expires November 26, 2012 [Page 43]

Internet-Draft OAuth 2.0 Security May 2012

4.6.5. Threat: Abuse of token by legitimate resource server or client

 A legitimate resource server could attempt to use an access token to
 access another resource servers. Similarly, a client could try to
 use a token obtained for one server on another resource server.

 Countermeasures:

 o Tokens should be restricted to particular resource servers (see
Section 5.1.5.5).

4.6.6. Threat: Leak of confidential data in HTTP-Proxies

 The HTTP Authorization scheme (OAuth HTTP Authorization Scheme) is
 optional. However, [RFC2616](Fielding, R., Gettys, J., Mogul, J.,
 Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1," .) relies on the Authorization and
 WWW-Authenticate headers to distinguish authenticated content so that
 it can be protected. Proxies and caches, in particular, may fail to
 adequately protect requests not using these headers. For example,
 private authenticated content may be stored in (and thus retrievable
 from) publicly-accessible caches.

 Countermeasures:

 o Resource servers not using the HTTP Authorization scheme (OAuth
 HTTP Authorization Scheme - see Section 5.4.1) should take care to
 use other mechanisms, such as the Cache-Control header, to
 minimize the risk that authenticated content is not protected.

 o Reducing scope (see Section 5.1.5.1) and expiry time
 (Section 5.1.5.3) for access tokens can be used to reduce the
 damage in case of leaks.

4.6.7. Threat: Token leakage via logfiles and HTTP referrers

 If access tokens are sent via URI query parameters, such tokens may
 leak to log files and HTTP referrers.

 Countermeasures:

 o Use authorization headers or POST parameters instead of URI
 request parameters (see Section 5.4.1).

 o Set logging configuration appropriately

 o Prevent unauthorized persons from access to system log files (see
Section 5.1.4.1.1)

https://datatracker.ietf.org/doc/html/rfc2616

Lodderstedt, et al. Expires November 26, 2012 [Page 44]

Internet-Draft OAuth 2.0 Security May 2012

 o HTTP referrers can be prevented by reloading the target page again
 without URI parameters

 o Abuse of leaked access tokens can be prevented by enforcing
 authenticated requests (see Section 5.4.2).

 o The impact of token leakage may be reduced by limiting scope (see
Section 5.1.5.1) and duration (see Section 5.1.5.3) and enforcing

 one time token usage (see Section 5.1.5.4).

5. Security Considerations

 This section describes the countermeasures as recommended to mitigate
 the threats as described in Section 4.

5.1. General

 The general section covers consideratios that apply generally across
 all OAuth components (client, resource server, token server, and
 user-agents).

5.1.1. Confidentiality of Requests

 This is applicable to all requests sent from client to authorization
 server or resource server. While OAuth provides a mechanism for
 verifying the integrity of requests, it provides no guarantee of
 request confidentiality. Unless further precautions are taken,
 eavesdroppers will have full access to request content and may be
 able to mount interception or replay attacks through using content of
 request, e.g. secrets or tokens.

 Attacks can be mitigated by using transport-layer mechanisms such as
 TLS or SSL. VPN may considered as well.

 This is a countermeasure against the following threats:

 o Replay of access tokens obtained on tokens endpoint or resource
 server's endpoint

 o Replay of refresh tokens obtained on tokens endpoint

 o Replay of authorization codes obtained on tokens endpoint
 (redirect?)

 o Replay of user passwords and client secrets

Lodderstedt, et al. Expires November 26, 2012 [Page 45]

Internet-Draft OAuth 2.0 Security May 2012

5.1.2. Server authentication

 HTTPS server authentication or similar means can be used to
 authenticate the identity of a server. The goal is to reliably bind
 the DNS name of the server to the public key presented by the server
 during connection establishment.

 The client should validate the binding of the server to its domain
 name. If the server fails to prove that binding, it is considered a
 man-in-the-middle attack. The security measure depends on the
 certification authorities the client trusts for that purpose.
 Clients should carefully select those trusted CAs and protect the
 storage for trusted CA certificates from modifications.

 This is a countermeasure against the following threats:

 o Spoofing

 o Proxying

 o Phishing by counterfeit servers

5.1.3. Always keep the resource owner informed

 Transparency to the resource owner is a key element of the OAuth
 protocol. The user should always be in control of the authorization
 processes and get the necessary information to meet informed
 decisions. Moreover, user involvement is a further security
 countermeasure. The user can probably recognize certain kinds of
 attacks better than the authorization server. Information can be
 presented/exchanged during the authorization process, after the
 authorization process, and every time the user wishes to get informed
 by using techniques such as:

 o User consent forms

 o Notification messages (e-Mail, SMS, ...)

 o Activity/Event logs

 o User self-care applications or portals

5.1.4. Credentials

 This sections describes countermeasures used to protect all kinds of
 credentials from unauthorized access and abuse. Credentials are long
 term secrets, such as client secrets and user passwords as well as
 all kinds of tokens (refresh and access token) or authorization

Lodderstedt, et al. Expires November 26, 2012 [Page 46]

Internet-Draft OAuth 2.0 Security May 2012

 codes.

5.1.4.1. Credential Storage Protection

 Administrators should undertake industry best practices to protect
 the storage of credentials. Such practices may include but are not
 limited to the following sub-sections.

5.1.4.1.1. Standard System Security Means

 A server system may be locked down so that no attacker may get access
 to sensible configuration files and databases.

5.1.4.1.2. Standard SQL Injection Countermeasures

 If a client identifier or other authentication component is queried
 or compared against a SQL Database it may become possible for an
 injection attack to occur if parameters received are not validated
 before submission to the database.

 o Ensure that server code is using the minimum database privileges
 possible to reduce the "surface" of possible attacks.

 o Avoid dynamic SQL using concatenated input. If possible, use
 static SQL.

 o When using dynamic SQL, parameterize queries using bind arguments.
 Bind arguments eliminate possibility of SQL injections.

 o Filter and sanitize the input. For example, if an identifier has
 a known format, ensure that the supplied value matches the
 identifier syntax rules.

5.1.4.1.3. No cleartext storage of credentials

 The authorization server should not store credential in clear text.
 Typical approaches are to store hashes instead. If the credential
 lacks a reasonable entropy level (because it is a user password) an
 additional salt will harden the storage to prevent offline dictionary
 attacks. Note: Some authentication protocols require the
 authorization server to have access to the secret in the clear.
 Those protocols cannot be implemented if the server only has access
 to hashes.

5.1.4.1.4. Encryption of credentials

 For client applications, insecurely persisted client credentials are
 easy targets for attackers to obtain. Store client credentials using

Lodderstedt, et al. Expires November 26, 2012 [Page 47]

Internet-Draft OAuth 2.0 Security May 2012

 an encrypted persistence mechanism such as a keystore or database.
 Note that compiling client credentials directly into client code
 makes client applications vulnerable to scanning as well as difficult
 to administer should client credentials change over time.

5.1.4.1.5. Use of asymmetric cryptography

 Usage of asymmetric cryptography will free the authorization server
 of the obligation to manage credentials.

5.1.4.2. Online attacks on secrets

5.1.4.2.1. Password policy

 The authorization server may decide to enforce a complex user
 password policy in order to increase the user passwords' entropy.
 This will hinder online password attacks.

5.1.4.2.2. High entropy of secrets

 When creating token handles or other secrets not intended for usage
 by human users, the authorization server should include a reasonable
 level of entropy in order to mitigate the risk of guessing attacks.

 The token value should be constructed from a cryptographically strong
 random or pseudo-random number sequence [RFC1750] generated by the
 Authorization Server. The probability of any two Authorization Code
 values being identical should be less than or equal to 2^(-128) and
 should be less than or equal to 2^(-160).

5.1.4.2.3. Lock accounts

 Online attacks on passwords can be mitigated by locking the
 respective accounts after a certain number of failed attempts.

 Note: This measure can be abused to lock down legitimate service
 users.

5.1.4.2.4. Tar pit

 The authorization server may react on failed attempts to authenticate
 by username/password by temporarily locking the respective account
 and delaying the response for a certain duration. This duration may
 increase with the number of failed attempts. The objective is to
 slow the attackers attempts on a certain username down.

 Note: this may require a more complex and stateful design of the
 authorization server.

https://datatracker.ietf.org/doc/html/rfc1750

Lodderstedt, et al. Expires November 26, 2012 [Page 48]

Internet-Draft OAuth 2.0 Security May 2012

5.1.4.2.5. Usage of CAPTCHAs

 The idea is to prevent programs from automatically checking huge
 number of passwords by requiring human interaction.

 Note: this has a negative impact on user experience.

5.1.5. Tokens (access, refresh, code)

5.1.5.1. Limit token scope

 The authorization server may decide to reduce or limit the scope
 associated with a token. Basis of this decision is out of scope,
 examples are:

 o a client-specific policy, e.g. issue only less powerful tokens to
 public clients,

 o a service-specific policy, e.g. it a very sensible service,

 o a resource-owner specific setting, or

 o combinations of such policies and preferences.

 The authorization server may allow different scopes dependent on the
 grant type. For example, end-user authorization via direct
 interaction with the end-user (authorization code) might be
 considered more reliable than direct authorization via grant type
 username/password. This means will reduce the impact of the
 following threats:

 o token leakage

 o token issuance to malicious software

 o unintended issuance of to powerful tokens with resource owner
 credentials flow

5.1.5.2. Expiration time

 Tokens should generally expire after a reasonable duration. This
 complements and strengthens other security measures (such as
 signatures) and reduces the impact of all kinds of token leaks.

5.1.5.3. Short expiration time

 A short expiration time for tokens is a protection means against the
 following threats:

Lodderstedt, et al. Expires November 26, 2012 [Page 49]

Internet-Draft OAuth 2.0 Security May 2012

 o replay

 o reduce impact of token leak

 o reduce likelihood of successful online guessing

 Note: Short token duration requires preciser clock synchronisation
 between authorization server and resource server. Furthermore,
 shorter duration may require more token refreshments (access token)
 or repeated end-user authorization processes (authorization code and
 refresh token).

5.1.5.4. Limit number of usages/ One time usage

 The authorization server may restrict the number of requests or
 operations which can be performed with a certain token. This
 mechanism can be used to mitigate the following threats:

 o replay of tokens

 o reduce likelihood of successful online guessing

 For example, if an Authorization Server observes more than one
 attempt to redeem a authorization code, the Authorization Server may
 want to revoke all access tokens granted based on the authorization
 code as well as reject the current request.

 As with the authorization code, access tokens may also have a limited
 number of operations. This forces client applications to either re-
 authenticate and use a refresh token to obtain a fresh access token,
 or it forces the client to re-authorize the access token by involving
 the user.

5.1.5.5. Bind tokens to a particular resource server (Audience)

 Authorization servers in multi-service environments may consider
 issuing tokens with different content to different resource servers
 and to explicitly indicate in the token the target server a token is
 intended to be sent to (see Audience in SAML Assertions). This
 countermeasure can be used in the following situations:

 o It reduces the impact of a successful replay attempt, since the
 token is applicable to a single resource server, only.

 o It prevents abuse of a token by a rough resource server or client,
 since the token can only be used on that server. It is rejected
 by other servers.

Lodderstedt, et al. Expires November 26, 2012 [Page 50]

Internet-Draft OAuth 2.0 Security May 2012

 o It reduces the impact of a leakage of a valid token to a
 counterfeit resource server.

5.1.5.6. Use endpoint address as token audience

 This may be used to indicate to a resource server, which endpoint
 address has been used to obtain the token. This measure will allow
 to detect requests from a counterfeit resource server, since such
 token will contain the endpoint address of that server.

5.1.5.7. Audience and Token scopes

 Deployments may consider only using tokens with explicitly defined
 scope, where every scope is associated with a particular resource
 server. This approach can be used to mitigate attacks, where a
 resource server or client uses a token for a different then the
 intended purpose.

5.1.5.8. Bind token to client id

 An authorization server may bind a token to a certain client
 identity. This identity should be validated for every request with
 that token. This means can be used, to

 o detect token leakage and

 o prevent token abuse.

 Note: Validating the client identity may require the target server to
 authenticate the client's identity. This authentication can be based
 on secrets managed independent of the token (e.g. pre-registered
 client id/secret on authorization server) or sent with the token
 itself (e.g. as part of the encrypted token content).

5.1.5.9. Signed tokens

 Self-contained tokens should be signed in order to detect any attempt
 to modify or produce faked tokens.

5.1.5.10. Encryption of token content

 Self-contained may be encrypted for privacy reasons or to protect
 system internal data.

5.1.5.11. Random token value with high entropy

 When creating token handles, the authorization server should include
 a reasonable level of entropy in order to mitigate the risk of

Lodderstedt, et al. Expires November 26, 2012 [Page 51]

Internet-Draft OAuth 2.0 Security May 2012

 guessing attacks. The token value should be constructed from a
 cryptographically strong random or pseudo-random number sequence
 [RFC1750] generated by the Authorization Server. The probability of
 any two token values being identical should be less than or equal to
 2^(-128) and should be less than or equal to 2^(-160).

5.1.5.12. Assertion formats

 For service providers intending to implement an assertion-based token
 design it is highly recommended to adopt a standard assertion format
 (such as SAML or JWT) that implements [draft-ietf-oauth-assertions].

5.1.6. Access tokens

 The following measures should be used to protect access tokens

 o keep them in transient memory (accessible by the client
 application only)

 o protect from exposure to 3rd parties (malicious application)

 o limit number of access tokens granted to a user

5.2. Authorization Server

 This section describes considerations related to the OAuth
 Authorization Server end-point.

5.2.1. Authorization Codes

5.2.1.1. Automatic revocation of derived tokens if abuse is detected

 If an Authorization Server observes multiple attempts to redeem an
 authorization grant (e.g. such as an authorization code), the
 Authorization Server may want to revoke all tokens granted based on
 the authorization grant.

5.2.2. Refresh tokens

5.2.2.1. Restricted issuance of refresh tokens

 The authorization server may decide based on an appropriate policy
 not to issue refresh tokens. Since refresh tokens are long term
 credentials, they may be subject theft. For example, if the
 authorization server does not trust a client to securely store such
 tokens, it may refuse to issue such a client a refresh token.

https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-assertions

Lodderstedt, et al. Expires November 26, 2012 [Page 52]

Internet-Draft OAuth 2.0 Security May 2012

5.2.2.2. Binding of refresh token to client_id

 The authorization server should bind every refresh token to the id of
 the client such a token was originally issued to and validate this
 binding for every request to refresh that token. If possible (e.g.
 confidential clients), the authorization server should authenticate
 the respective client.

 This is a countermeasure against refresh token theft or leakage.

 Note: This binding should be protected from unauthorized
 modifications.

5.2.2.3. Refresh Token Rotation

 Refresh token rotation is intended to automatically detect and
 prevent attempts to use the same refresh token in parallel from
 different apps/devices. This happens if a token gets stolen from the
 client and is subsequently used by the attacker and the legitimate
 client. The basic idea is to change the refresh token value with
 every refresh request in order to detect attempts to obtain access
 tokens using old refresh tokens. Since the authorization server
 cannot determine whether the attacker or the legitimate client is
 trying to access, in case of such an access attempt the valid refresh
 token and the access authorization associated with it are both
 revoked.

 The OAuth specification supports this measure in that the tokens
 response allows the authorization server to return a new refresh
 token even for requests with grant type "refresh_token".

 Note: this measure may cause problems in clustered environments since
 usage of the currently valid refresh token must be ensured. In such
 an environment, other measures might be more appropriate.

5.2.2.4. Refresh Token Revocation

 The authorization server may allow clients or end-users to explicitly
 request the invalidation of refresh tokens.

 This is a countermeasure against:

 o device theft,

 o impersonation of resource owner, or

 o suspected compromised client applications.

Lodderstedt, et al. Expires November 26, 2012 [Page 53]

Internet-Draft OAuth 2.0 Security May 2012

5.2.2.5. Device identification

 The authorization server may require to bind authentication
 credentials to a device identifier. The IMEI is one example of such
 an identifier, there are also operating system specific identifiers.
 The authorization server could include such an identifier when
 authenticating user credentials in order to detect token theft from a
 particular device.

5.2.2.6. X-FRAME-OPTION header

 For newer browsers, avoidance of iFrames can be enforced server side
 by using the X-FRAME-OPTION header. This header can have two values,
 deny and same origin, which will block any framing or framing by
 sites with a different origin, respectively.

 This is a countermeasure against the following threats:

 o Clickjacking attacks

5.2.3. Client authentication and authorization

 As described in Section 3 (Security Features), clients are
 identified, authenticated and authorized for several purposes, such
 as a

 o Collate sub-sequent requests to the same client,

 o Indicate the trustworthiness of a particular client to the end-
 user,

 o Authorize access of clients to certain features on the
 authorization or resource server, and

 o Log a client identity to log files for analysis or statics.

 Due to the different capabilities and characteristics of the
 different client types, there are different ways to support achieve
 objectives, which will be described in this section. Authorization
 server providers should be aware of the security policy and
 deployment of a particular clients and adapt its treatment
 accordingly. For example, one approach could be to treat all clients
 as less trustworthy and unsecure. On the other extreme, a service
 provider could activate every client installation by hand of an
 administrator and that way gain confidence in the identity of the
 software package and the security of the environment the client is
 installed in. And there are several approaches in between.

Lodderstedt, et al. Expires November 26, 2012 [Page 54]

Internet-Draft OAuth 2.0 Security May 2012

5.2.3.1. Don't issue secrets to public clients or clients with
 inappropriate security policy

 Authorization servers should not issue secrets to "public" clients
 that cannot protect secrets. This prevents the server from
 overestimating the value of a successful authentication of the
 client.

 For example, it is of limited benefit to create a single client id
 and secret which is shared by all installations of a native
 application. Such a scenario requires that this secret must be
 transmitted from the developer via the respective distribution
 channel, e.g. an application market, to all installations of the
 application on end-user devices. A secret, burned into the source
 code of the application or a associated resource bundle, cannot be
 entirely protected from reverse engineering. Secondly, such secrets
 cannot be revoked since this would immediately put all installations
 out of work. Moreover, since the authorization server cannot really
 trust on the client's identity, it would be dangerous to indicate to
 end-users the trustworthiness of the client.

 There are other ways to achieve a reasonable security level, as
 described in the following sections.

5.2.3.2. Public clients without secret require user consent

 Authorization servers should not allow automatic authorization for
 public clients. The authorization may issue a client id, but should
 require that all authorizations are approved by the end-user. This
 is a countermeasure for clients without secret against the following
 threats:

 o Impersonation of public client applications

5.2.3.3. Client_id only in combination with redirect_uri

 The authorization may issue a client_id and bind the client_id to a
 certain pre-configured redirect_uri. Any authorization request with
 another redirection URI is refused automatically. Alternatively, the
 authorization server should not accept any dynamic redirection URI
 for such a client_id and instead always redirect to the well-known
 pre-configured redirection URI. This is a countermeasure for clients
 without secrets against the following threats:

 o Cross-site scripting attacks

 o Impersonation of public client applications

Lodderstedt, et al. Expires November 26, 2012 [Page 55]

Internet-Draft OAuth 2.0 Security May 2012

5.2.3.4. Deployment-specific client secrets

 A authorization server may issue separate client identifiers and
 corresponding secrets to the different deployments of a client. The
 effect of such an approach would be to turn otherwise "public"
 clients back into "confidential" clients.

 For web applications, this could mean to create one client_id and
 client_secret per web site a software package is installed on. So
 the provider of that particular site could request client id and
 secret from the authorization server during setup of the web site.
 This would also allow to validate some of the properties of that web
 site, such as redirection URI, address, and whatever proofs useful.
 The web site provider has to ensure the security of the client secret
 on the site.

 For native applications, things are more complicated because every
 installation of the application on any device is another deployment.
 Deployment specific secrets will require

 1. Either to obtain a client_id and client_secret during download
 process from the application market, or

 2. During installation on the device.

 Either approach will require an automated mechanism for issuing
 client ids and secrets, which is currently not defined by OAuth.

 The first approach would allow to achieve a level where the client is
 authenticated and identified, whereas the second option only allows
 to authenticate the client but not to validate properties of the
 client. But this would at least help to prevent several replay
 attacks. Moreover, deployment-specific client_id and secret allow to
 selectively revoke all refresh tokens of a specific deployment at
 once.

5.2.3.5. Validation of pre-registered redirect_uri

 An authorization server should require all clients to register their
 redirect_uri and the redirect_uri should be the full URI as defined
 in [I-D.ietf-oauth-v2]. The way this registration is performed is
 out of scope of this document. As per the core spec, every actual
 redirection URI sent with the respective client_id to the end-user
 authorization endpoint must match the registered redirection URI.
 Where it does not match, the authorization server should assume the
 inbound GET request has been sent by an attacker and refuse it.
 Note: the authorization server should not redirect the user agent
 back to the redirection URI of such an authorization request.

Lodderstedt, et al. Expires November 26, 2012 [Page 56]

Internet-Draft OAuth 2.0 Security May 2012

 o Authorization code leakage through counterfeit web site: allows to
 detect attack attempts already after first redirect to end-user
 authorization endpoint (Section 4.4.1.7).

 o For clients with validated properties, this measure also helps to
 detect malicious applications early in the end-user authorization
 process. This reduces the need for a interactive validation by
 the user (Section 4.4.1.4, Section 4.4.2.3).

 o Open Redirector attack via client redirection endpoint. (
Section 4.1.5.)

 o Open Redirector phishing attack via authorization server
 redirection endpoint (Section 4.2.4)

 The underlying assumption of this measure is that an attacker will
 need to use another redirection URI in order to get access to the
 authorization code. Deployments might consider the possibility of an
 attacker using spoofing attacks to a victims device to circumvent
 this security measure.

 Note: Pre-registering clients might not scale in some deployments
 (manual process) or require dynamic client registration (not
 specified yet). With the lack of dynamic client registration, it
 only works for clients bound to certain deployments at development/
 configuration time. As soon as dynamic resource server discovery
 gets involved, that's no longer feasible.

5.2.3.6. Client secret revocation

 An authorization server may revoke a client's secret in order to
 prevent abuse of a revealed secret.

 Note: This measure will immediately invalidate any authorization code
 or refresh token issued to the respective client. This might be
 unintentionally for client identifiers and secrets used across
 multiple deployments of a particular native or web application.

 This a countermeasure against:

 o Abuse of revealed client secrets for private clients

5.2.3.7. Use strong client authentication (e.g. client_assertion /
 client_token)

 By using an alternative form of authentication such as client
 assertion [draft-ietf-oauth-assertions], the need to distribute
 client_secret is eliminated. This may require the use of a secure

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-assertions

Lodderstedt, et al. Expires November 26, 2012 [Page 57]

Internet-Draft OAuth 2.0 Security May 2012

 private key store or other supplemental authentication system as
 specified by the client assertion issuer in its authentication
 process.

5.2.4. End-user authorization

 This secion involves considerations for authorization flows involving
 the end-user.

5.2.4.1. Automatic processing of repeated authorizations requires
 client validation

 Authorization servers should NOT automatically process repeat
 authorizations where the client is not authenticated through a client
 secret or some other authentication mechanism such as signing with
 security certificates (5.7.2.7. Use strong client authentication
 (e.g. client_assertion / client_token)) or validation of a pre-
 registered redirect URI (5.7.2.5. Validation of pre-registered
 redirection URI).

5.2.4.2. Informed decisions based on transparency

 The authorization server should clearly explain to the end-user what
 happens in the authorization process and what the consequences are.
 For example, the user should understand what access he is about to
 grant to which client for what duration. It should also be obvious
 to the user, whether the server is able to reliably certify certain
 client properties (web site address, security policy).

5.2.4.3. Validation of client properties by end-user

 In the authorization process, the user is typically asked to approve
 a client's request for authorization. This is an important security
 mechanism by itself because the end-user can be involved in the
 validation of client properties, such as whether the client name
 known to the authorization server fits the name of the web site or
 the application the end-user is using. This measure is especially
 helpful in all situation where the authorization server is unable to
 authenticate the client. It is a countermeasure against:

 o Malicious application

 o A client application masquerading as another client

Lodderstedt, et al. Expires November 26, 2012 [Page 58]

Internet-Draft OAuth 2.0 Security May 2012

5.2.4.4. Binding of authorization code to client_id

 The authorization server should bind every authorization code to the
 id of the respective client which initiated the end-user
 authorization process. This measure is a countermeasure against:

 o replay of authorization codes with different client credentials
 since an attacker cannot use another client_id to exchange an
 authorization code into a token

 o Online guessing of authorization codes

 Note: This binding should be protected from unauthorized
 modifications.

5.2.4.5. Binding of authorization code to redirect_uri

 The authorization server should bind every authorization code to the
 actual redirection URI used as redirect target of the client in the
 end-user authorization process. This binding should be validated
 when the client attempts to exchange the respective authorization
 code for an access token. This measure is a countermeasure against
 authorization code leakage through counterfeit web sites since an
 attacker cannot use another redirection URI to exchange an
 authorization code into a token.

5.3. Client App Security

 This section deals with considerations for client applications.

5.3.1. Don't store credentials in code or resources bundled with
 software packages

 Because of the numbers of copies of client software, there is limited
 benefit to create a single client id and secret which is shared by
 all installations of an application. Such an application by itself
 would be considered a "public" client as it cannot be presumed to be
 able to keep client secrets. A secret, burned into the source code
 of the application or a associated resource bundle, cannot be
 entirely protected from reverse engineering. Secondly, such secrets
 cannot be revoked since this would immediately put all installations
 out of work. Moreover, since the authorization server cannot really
 trust on the client's identity, it would be dangerous to indicate to
 end-users the trustworthiness of the client.

Lodderstedt, et al. Expires November 26, 2012 [Page 59]

Internet-Draft OAuth 2.0 Security May 2012

5.3.2. Standard web server protection measures (for config files and
 databases)

 Use standard web server protection measures - Section 5.3.2

5.3.3. Store secrets in a secure storage

 The are different way to store secrets of all kinds (tokens, client
 secrets) securely on a device or server.

 Most multi-user operation systems segregate the personal storage of
 the different system users. Moreover, most modern smartphone
 operating systems even support to store app-specific data in separate
 areas of the file systems and protect it from access by other
 applications. Additionally, applications can implements confidential
 data itself using a user-supplied secret, such as PIN or password.

 Another option is to swap refresh token storage to a trusted backend
 server. This mean in turn requires a resilient authentication
 mechanisms between client and backend server. Note: Applications
 should ensure that confidential data is kept confidential even after
 reading from secure storage, which typically means to keep this data
 in the local memory of the application.

5.3.4. Utilize device lock to prevent unauthorized device access

 On a typical modern phone, there are many "device lock" options which
 can be utilized to provide additional protection where a device is
 stolen or misplaced. These include PINs, passwords and other
 biomtric featres such as "face recognition". These are not equal in
 their level of security they provide.

5.3.5. Platform security measures

 o Validation process

 o software package signatures

 o Remote removal

5.3.6. Link state parameter to user agent session

 The state parameter is used to link client requests and prevent CSRF
 attacks, for example against the redirection URI. An attacker could
 inject their own authorization code or access token, which can result
 in the client using an access token associated with the attacker's
 protected resources rather than the victim's (e.g. save the victim's
 bank account information to a protected resource controlled by the

Lodderstedt, et al. Expires November 26, 2012 [Page 60]

Internet-Draft OAuth 2.0 Security May 2012

 attacker).

 The client should utilize the "state" request parameter to send the
 authorization server a value that binds the request to the user-
 agent's authenticated state (e.g. a hash of the session cookie used
 to authenticate the user-agent) when making an authorization request.
 Once authorization has been obtained from the end-user, the
 authorization server redirects the end-user's user-agent back to the
 client with the required binding value contained in the "state"
 parameter.

 The binding value enables the client to verify the validity of the
 request by matching the binding value to the user- agent's
 authenticated state.

5.4. Resource Servers

 The following section details security considerations for resource
 servers.

5.4.1. Authorization headers

 Authorization headers are recognized and specially treated by HTTP
 proxies and servers. Thus the usage of such headers for sending
 access tokens to resource servers reduces the likelihood of leakage
 or unintended storage of authenticated requests in general and
 especially Authorization headers.

5.4.2. Authenticated requests

 An authorization server may bind tokens to a certain client identity
 and encourage resource servers to validate that binding. This will
 require the resource server to authenticate the originator of a
 request as the legitimate owner of a particular token. There are a
 couple of options to implement this countermeasure:

 o The authorization server may associate the distinguished name of
 the client with the token (either internally or in the payload of
 an self-contained token). The client then uses client
 certificate-based HTTP authentication on the resource server's
 endpoint to authenticate its identity and the resource server
 validates the name with the name referenced by the token.

 o same as before, but the client uses his private key to sign the
 request to the resource server (public key is either contained in
 the token or sent along with the request)

Lodderstedt, et al. Expires November 26, 2012 [Page 61]

Internet-Draft OAuth 2.0 Security May 2012

 o Alternatively, the authorization server may issue a token-bound
 secret, which the client uses to sign the request. The resource
 server obtains the secret either directly from the authorization
 server or it is contained in an encrypted section of the token.
 That way the resource server does not "know" the client but is
 able to validate whether the authorization server issued the token
 to that client

 This mechanisms is a countermeasure against abuse of tokens by
 counterfeit resource servers.

5.4.3. Signed requests

 A resource server may decide to accept signed requests only, either
 to replace transport level security measures or to complement such
 measures. Every signed request should be uniquely identifiable and
 should not be processed twice by the resource server. This
 countermeasure helps to mitigate:

 o modifications of the message and

 o replay attempts

5.5. A Word on User Interaction and User-Installed Apps

 OAuth, as a security protocol, is distinctive in that its flow
 usually involves significant user interaction, making the end user a
 part of the security model. This creates some important difficulties
 in defending against some of the threats discussed above. Some of
 these points have already been made, but it's worth repeating and
 highlighting them here.

 o End users must understand what they are being asked to approve
 (see Section Section 5.2.4.1). Users often do not have the
 expertise to understand the ramifications of saying "yes" to an
 authorization request. and are likely not to be able to see subtle
 differences in wording of requests. Malicious software can
 confuse the user, tricking the user into approving almost
 anything.

 o End-user devices are prone to software compromise. This has been
 a long-standing problem, with frequent attacks on web browsers and
 other parts of the user's system. But with increasing popularity
 of user-installed "apps", the threat posed by compromised or
 malicious end-user software is very strong, and is one that is
 very difficult to mitigate.

Lodderstedt, et al. Expires November 26, 2012 [Page 62]

Internet-Draft OAuth 2.0 Security May 2012

 o Be aware that users will demand to install and run such apps, and
 that compromised or malicious ones can steal credentials at many
 points in the data flow. They can intercept the very user login
 credentials that OAuth is designed to protect. They can request
 authorization far beyond what they have led the user to understand
 and approve. They can automate a response on behalf of the user,
 hiding the whole process. No solution is offered here, because
 none is known; this remains in the space between better security
 and better usability.

 o Addressing these issues by restricting the use of user-installed
 software may be practical in some limited environments, and can be
 used as a countermeasure in those cases. Such restrictions are
 not practical in the general case, and mechanisms for after-the-
 fact recovery should be in place.

 o While end users are mostly incapable of properly vetting
 applications they load onto their devices, those who deploy
 Authorization Servers might have tools at their disposal to
 mitigate malicious Clients. For example, a well run Authorization
 Server MUST only assert client properties to the end-user it is
 effectively capable to validate, explicitely point out which
 properties it cannot validate and indicate to the end-user the
 risk associated with granting access to the particular client.

6. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

7. Acknowledgements

 We would like to thank Barry Leiba, Hui-Lan Lu, Francisco Corella,
 Peifung E Lam, Shane B Weeden, Skylar Woodward, Niv Steingarten, Tim
 Bray, and James H. Manger for their comments and contributions.

8. References

8.1. Normative References

 [I-D.ietf-oauth-v2]
 Hammer-Lahav, E., Recordon, D., and D. Hardt, "The OAuth
 2.0 Authorization Framework", draft-ietf-oauth-v2-26 (work

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-26

Lodderstedt, et al. Expires November 26, 2012 [Page 63]

Internet-Draft OAuth 2.0 Security May 2012

 in progress), May 2012.

8.2. Informative References

 [I-D.ietf-oauth-v2-bearer]
 Jones, M., Hardt, D., and D. Recordon, "The OAuth 2.0
 Authorization Protocol: Bearer Tokens",

draft-ietf-oauth-v2-bearer-19 (work in progress),
 April 2012.

 [I-D.ietf-oauth-v2-http-mac]
 Hammer-Lahav, E., "HTTP Authentication: MAC Access
 Authentication", draft-ietf-oauth-v2-http-mac-01 (work in
 progress), February 2012.

 [I-D.lodderstedt-oauth-revocation]
 Lodderstedt, T., Dronia, S., and M. Scurtescu, "Token
 Revocation", draft-lodderstedt-oauth-revocation-04 (work
 in progress), March 2012.

 [portable-contacts]
 Smarr, J., "Portable Contacts 1.0 Draft C", August 2008,
 <http://portablecontacts.net/>.

Appendix A. Document History

 [[to be removed by RFC editor before publication as an RFC]]

draft-lodderstedt-oauth-security-01

 o section 4.4.1.2 - changed "resource server" to "client" in
 countermeasures description.

 o section 4.4.1.6 - changed "client shall authenticate the server"
 to "The browser shall be utilized to authenticate the redirection
 URI of the client"

 o section 5 - general review and alignment with public/confidential
 client terms

 o all sections - general clean-up and typo corrections

draft-ietf-oauth-v2-threatmodel-00

 o section 3.4 - added the purposes for using authorization codes.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-bearer-19
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-http-mac-01
https://datatracker.ietf.org/doc/html/draft-lodderstedt-oauth-revocation-04
http://portablecontacts.net/
https://datatracker.ietf.org/doc/html/draft-lodderstedt-oauth-security-01
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-threatmodel-00

Lodderstedt, et al. Expires November 26, 2012 [Page 64]

Internet-Draft OAuth 2.0 Security May 2012

 o extended section 4.4.1.1

 o merged 4.4.1.5 into 4.4.1.2

 o corrected some typos

 o reformulated "session fixation", renamed respective sections into
 "authorization code disclosure through counterfeit client"

 o added new section "User session impersonation"

 o worked out or reworked sections 2.3.3, 4.4.2.4, 4.4.4, 5.1.4.1.2,
 5.1.4.1.4, 5.2.3.5

 o added new threat "DoS using manufactured authorization codes" as
 proposed by Peifung E Lam

 o added XSRF and clickjacking (incl. state parameter explanation)

 o changed sub-section order in section 4.4.1

 o incorporated feedback from Skylar Woodward (client secrets) and
 Shane B Weeden (refresh tokens as client instance secret)

 o aligned client section with core draft's client type definition

 o converted I-D into WG document

draft-ietf-oauth-v2-threatmodel-01

 o Alignment of terminology with core draft 22 (private/public
 client, redirect URI validation policy, replaced definition of the
 client categories by reference to respective core section)

 o Synchronisation with the core's security consideration section
 (UPDATE 10.12 CSRF, NEW 10.14/15)

 o Added Resource Owner Impersonation

 o Improved section 5

 o Renamed Refresh Token Replacement to Refresh Token Rotation

draft-ietf-oauth-v2-threatmodel-02

 o Incoporated Tim Bray's review comments (e.g. removed all normative
 language)

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-threatmodel-01
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-threatmodel-02

Lodderstedt, et al. Expires November 26, 2012 [Page 65]

Internet-Draft OAuth 2.0 Security May 2012

draft-ietf-oauth-v2-threatmodel-03

 o removed 2119 boilerplate and normative reference

 o incorporated shepherd review feedback

Authors' Addresses

 Torsten Lodderstedt (editor)
 Deutsche Telekom AG

 Email: torsten@lodderstedt.net

 Mark McGloin
 IBM

 Email: mark.mcgloin@ie.ibm.com

 Phil Hunt
 Oracle Corporation

 Email: phil.hunt@yahoo.com

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-threatmodel-03

Lodderstedt, et al. Expires November 26, 2012 [Page 66]

