
Internet Draft Y. Cheng
draft-ietf-tcpm-fastopen-08.txt J. Chu
Intended status: Experimental S. Radhakrishnan
Expiration date: August, 2014 A. Jain
 Google, Inc.
 March 11, 2014

TCP Fast Open

Abstract

 This document describes an experimental TCP mechanism TCP Fast Open
 (TFO). TFO allows data to be carried in the SYN and SYN-ACK packets
 and consumed by the receiving end during the initial connection
 handshake, thus saving up to one full round trip time (RTT) compared
 to the standard TCP, which requires a three-way handshake (3WHS) to
 complete before data can be exchanged. However TFO deviates from the
 standard TCP semantics since the data in the SYN could be replayed to
 an application in some rare circumstances. Applications should not
 use TFO unless they can tolerate this issue detailed in the
 Applicability section.

Status of this Memo

 Distribution of this memo is unlimited.

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Cheng, et. al. Expires September 6, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-fastopen-08.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

Internet Draft TCP Fast Open March 5, 2014

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1 Terminology . 3

2. Data In SYN . 4
2.1 Relaxing TCP Semantics on Duplicated SYNs 4
2.2. SYNs with Spoofed IP Addresses 4

3. Protocol Overview . 5
4. Protocol Details . 7
4.1. Fast Open Cookie . 7
4.1.1. TCP Options . 7
4.1.2. Server Cookie Handling 8
4.1.3. Client Cookie Handling 9
4.1.3.1 Client Caching Negative Responses 9

4.2. Fast Open Protocol . 10
4.2.1. Fast Open Cookie Request 10
4.2.2. TCP Fast Open . 11

5. Security Considerations . 13
 5.1. Resource Exhaustion Attack by SYN Flood with Valid
 Cookies . 13

5.1.1 Attacks from behind Shared Public IPs (NATs) 14
5.2. Amplified Reflection Attack to Random Host 15

6. TFO's Applicability . 16
6.1 Duplicate Data in SYNs 16
6.2 Potential Performance Improvement 16
6.3. Example: Web Clients and Servers 17
6.3.1. HTTP Request Replay 17
6.3.2. Speculative Connections by the Applications 17
6.3.3. HTTP over TLS (HTTPS) 17
6.3.4. Comparison with HTTP Persistent Connections 17

7. Open Areas for Experimentation 18
7.1. Performance impact due to middle-boxes and NAT 18
7.2. Cookie-less Fast Open 19
7.3 Impact on congestion control 19

8. Related Work . 20
8.1. T/TCP . 20
8.2. Common Defenses Against SYN Flood Attacks 20
8.3. TCP Cookie Transaction (TCPCT) 20

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Cheng, et. al. Expires September 6, 2014 [Page 2]

Internet Draft TCP Fast Open March 5, 2014

9. IANA Considerations . 20
10. Acknowledgement . 21
11. References . 21
11.1. Normative References 21
11.2. Informative References 21

Appendix A. Example Socket API Changes to support TFO 23
A.1 Active Open . 23
A.2 Passive Open . 23

 Authors' Addresses . 24

1. Introduction

 TCP Fast Open (TFO) is an experimental update to TCP that enables
 data to be exchanged safely during TCP's connection handshake. This
 document describes a design that enables applications to save a round
 trip while avoiding severe security ramifications. At the core of TFO
 is a security cookie used by the server side to authenticate a client
 initiating a TFO connection. This document covers the details of
 exchanging data during TCP's initial handshake, the protocol for TFO
 cookies, potential new security vulnerabilities and their mitigation,
 and the new socket API.

 TFO is motivated by the performance needs of today's Web
 applications. Current TCP only permits data exchange after the 3-way
 handshake (3WHS)[RFC793], which adds one RTT to network latency. For
 short Web transfers this additional RTT is a significant portion of
 overall network latency, even when HTTP persistent connection is
 widely used. For example, the Chrome browser keeps TCP connections
 idle for up to 5 minutes but 35% of Chrome HTTP requests are made on
 new TCP connections [RCCJR11]. For such Web and Web-like applications
 placing data in the SYN can yield significant latency improvements.
 Next we describe how we resolve the challenges that arise upon doing
 so.

1.1 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].
 TFO refers to TCP Fast Open. Client refers to the TCP's active open
 side and server refers to the TCP's passive open side.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Cheng, et. al. Expires September 6, 2014 [Page 3]

Internet Draft TCP Fast Open March 5, 2014

2. Data In SYN

 Standard TCP already allows data to be carried in SYN packets
 ([RFC793], section 3.4) but forbids the receiver from delivering it
 to the application until 3WHS is completed. This is because TCP's
 initial handshake serves to capture old or duplicate SYNs.

 To enable applications exchange data in TCP handshake, TFO removes
 the constraint and allows data in SYN packets to be delivered to the
 application. This change of TCP semantic raises two issues discussed
 in the following subsections, making TFO unsuitable for certain
 applications.

 Therefore TCP implementations MUST NOT use TFO by default, but only
 use TFO if requested explicitly by the application on a per service
 port basis. Applications need to evaluate TFO applicability described
 in Section 6 before using TFO.

2.1 Relaxing TCP Semantics on Duplicated SYNs

 TFO allows data to be delivered to the application before the 3WHS
 is completed, thus opening itself to a data integrity issue in either
 of the two cases below:

 a) the receiver host receives data in a duplicate SYN after it has
 forgotten it received the original SYN (e.g. due to a reboot);

 b) the duplicate is received after the connection created by the
 original SYN has been closed and the close was initiated by the
 sender (so the receiver will not be protected by the 2MSL TIMEWAIT
 state).

 The now obsoleted T/TCP [RFC1644] attempted to address these issues.
 It was not successful and not deployed due to various vulnerabilities
 as described in the Related Work section. Rather than trying to
 capture all dubious SYN packets to make TFO 100% compatible with TCP
 semantics, we made a design decision early on to accept old SYN
 packets with data, i.e., to restrict TFO use to a class of
 applications (Section 6) that are tolerant of duplicate SYN packets
 with data. We believe this is the right design trade-off balancing
 complexity with usefulness.

2.2. SYNs with Spoofed IP Addresses

 Standard TCP suffers from the SYN flood attack [RFC4987] because SYN
 packets with spoofed source IP addresses can easily fill up a
 listener's small queue, causing a service port to be blocked
 completely until timeouts.

https://datatracker.ietf.org/doc/html/rfc793#section-3.4
https://datatracker.ietf.org/doc/html/rfc1644
https://datatracker.ietf.org/doc/html/rfc4987

Cheng, et. al. Expires September 6, 2014 [Page 4]

Internet Draft TCP Fast Open March 5, 2014

 TFO goes one step further to allow server-side TCP to send up data to
 the application layer before 3WHS is completed. This opens up serious
 new vulnerabilities. Applications serving ports that have TFO enabled
 may waste lots of CPU and memory resources processing the requests
 and producing the responses. If the response is much larger than the
 request, the attacker can further mount an amplified reflection
 attack against victims of choice beyond the TFO server itself.

 Numerous mitigation techniques against regular SYN flood attacks
 exist and have been well documented [RFC4987]. Unfortunately none are
 applicable to TFO. We propose a server-supplied cookie to mitigate
 these new vulnerabilities in Section 3 and evaluate the effectiveness
 of the defense in Section 7.

3. Protocol Overview

 The key component of TFO is the Fast Open Cookie (cookie), a message
 authentication code (MAC) tag generated by the server. The client
 requests a cookie in one regular TCP connection, then uses it for
 future TCP connections to exchange data during 3WHS:

 Requesting a Fast Open Cookie:

 1. The client sends a SYN with a Fast Open Cookie Request option.

 2. The server generates a cookie and sends it through the Fast Open
 Cookie option of a SYN-ACK packet.

 3. The client caches the cookie for future TCP Fast Open connections
 (see below).

 Performing TCP Fast Open:

 1. The client sends a SYN with Fast Open Cookie option and data.

 2. The server validates the cookie:
 a. If the cookie is valid, the server sends a SYN-ACK
 acknowledging both the SYN and the data. The server then
 delivers the data to the application.

 b. Otherwise, the server drops the data and sends a SYN-ACK
 acknowledging only the SYN sequence number.

 3. If the server accepts the data in the SYN packet, it may send the
 response data before the handshake finishes. The maximum amount is
 governed by the TCP's congestion control [RFC5681].

 4. The client sends an ACK acknowledging the SYN and the server data.

https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/rfc5681

Cheng, et. al. Expires September 6, 2014 [Page 5]

Internet Draft TCP Fast Open March 5, 2014

 If the client's data is not acknowledged, the client retransmits
 the data in the ACK packet.

 5. The rest of the connection proceeds like a normal TCP connection.
 The client can repeat many Fast Open operations once it acquires a
 cookie (until the cookie is expired by the server). Thus TFO is
 useful for applications that have temporal locality on client and
 server connections.

 Requesting Fast Open Cookie in connection 1:

 TCP A (Client) TCP B(Server)
 ______________ _____________
 CLOSED LISTEN

 #1 SYN-SENT ----- <SYN,CookieOpt=NIL> ----------> SYN-RCVD

 #2 ESTABLISHED <---- <SYN,ACK,CookieOpt=C> ---------- SYN-RCVD
 (caches cookie C)

 Performing TCP Fast Open in connection 2:

 TCP A (Client) TCP B(Server)
 ______________ _____________
 CLOSED LISTEN

 #1 SYN-SENT ----- <SYN=x,CookieOpt=C,DATA_A> ----> SYN-RCVD

 #2 ESTABLISHED <---- <SYN=y,ACK=x+len(DATA_A)+1> ---- SYN-RCVD

 #3 ESTABLISHED <---- <ACK=x+len(DATA_A)+1,DATA_B>---- SYN-RCVD

 #4 ESTABLISHED ----- <ACK=y+1>--------------------> ESTABLISHED

 #5 ESTABLISHED --- <ACK=y+len(DATA_B)+1>----------> ESTABLISHED

Cheng, et. al. Expires September 6, 2014 [Page 6]

Internet Draft TCP Fast Open March 5, 2014

4. Protocol Details

4.1. Fast Open Cookie

 The Fast Open Cookie is designed to mitigate new security
 vulnerabilities in order to enable data exchange during handshake.
 The cookie is a message authentication code tag generated by the
 server and is opaque to the client; the client simply caches the
 cookie and passes it back on subsequent SYN packets to open new
 connections. The server can expire the cookie at any time to enhance
 security.

4.1.1. TCP Options

 Fast Open Cookie Option

 The server uses this option to grant a cookie to the client in the
 SYN-ACK packet; the client uses it to pass the cookie back to the
 server in subsequent SYN packets.

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Kind | Length |
 +-+
 | |
 ~ Cookie ~
 | |
 +-+

 Kind 1 byte: constant TBD (assigned by IANA)
 Length 1 byte: range 6 to 18 (bytes); limited by
 remaining space in the options field.
 The number MUST be even.
 Cookie 4 to 16 bytes (Length - 2)
 Options with invalid Length values or without SYN flag set MUST be
 ignored. The minimum Cookie size is 4 bytes. Although the diagram
 shows a cookie aligned on 32-bit boundaries, alignment is not
 required.

 Fast Open Cookie Request Option

 The client uses this option in the SYN packet to request a cookie
 from a TFO-enabled server
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Kind | Length |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Kind 1 byte: same as the Fast Open Cookie option
 Length 1 byte: constant 2. This distinguishes the option

Cheng, et. al. Expires September 6, 2014 [Page 7]

Internet Draft TCP Fast Open March 5, 2014

 from the Fast Open cookie option.
 Options with invalid Length values, without SYN flag set, or with ACK
 flag set MUST be ignored.

4.1.2. Server Cookie Handling

 The server is in charge of cookie generation and authentication. The
 cookie SHOULD be a message authentication code tag with the following
 properties:
 1. The cookie authenticates the client's (source) IP address of the
 SYN packet. The IP address may be an IPv4 or IPv6 address.

 2. The cookie can only be generated by the server and can not be
 fabricated by any other parties including the client.

 3. The generation and verification are fast relative to the rest of
 SYN and SYN-ACK processing.

 4. A server may encode other information in the cookie, and accept
 more than one valid cookie per client at any given time. But this
 is server implementation dependent and transparent to the
 client.

 5. The cookie expires after a certain amount of time. The reason for
 cookie expiration is detailed in the "Security Consideration"
 section. This can be done by either periodically changing the
 server key used to generate cookies or including a timestamp when
 generating the cookie.

 To gradually invalidate cookies over time, the server can
 implement key rotation to generate and verify cookies using
 multiple keys. This approach is useful for large-scale servers to
 retain Fast Open rolling key updates. We do not specify a
 particular mechanism because the implementation is server
 specific.

 The server supports the cookie generation and verification
 operations:

 - GetCookie(IP_Address): returns a (new) cookie

 - IsCookieValid(IP_Address, Cookie): checks if the cookie is valid,
 i.e., it has not expired and it authenticates the client IP address.

 Example Implementation: a simple implementation is to use AES_128 to
 encrypt the IPv4 (with padding) or IPv6 address and truncate to 64
 bits. The server can periodically update the key to expire the
 cookies. AES encryption on recent processors is fast and takes only a

Cheng, et. al. Expires September 6, 2014 [Page 8]

Internet Draft TCP Fast Open March 5, 2014

 few hundred nanoseconds [RCCJR11].

 If only one valid cookie is allowed per-IP and the server can
 regenerate the cookie independently, the best validation process is
 to simply regenerate a valid cookie and compare it against the
 incoming cookie. In that case if the incoming cookie fails the check,
 a valid cookie is readily available to be sent to the client.

4.1.3. Client Cookie Handling

 The client MUST cache cookies from servers for later Fast Open
 connections. For a multi-homed client, the cookies are both client
 and server IP dependent. Beside the cookie we RECOMMEND that the
 client caches the MSS to the server to enhance performance.

 The MSS advertised by the server is stored in the cache to determine
 the maximum amount of data that can be supported in the SYN packet.
 This information is needed because data is sent before the server
 announces its MSS in the SYN-ACK packet. Without this information,
 the data size in the SYN packet is limited to the default MSS of 536
 bytes for IPv4 [RFC1122] and 1240 bytes for IPv6 [RFC2460]. In
 particular it's known an IPv4 receiver advertised MSS less than 536
 bytes would result in transmission of an unexpected large segment. If
 the cache MSS is larger than the typical 1460 bytes, the extra large
 data in SYN segment may have issues that offsets the performance
 benefit of Fast Open. For examples, the super-size SYN may trigger IP
 fragmentation and may confuse firewall or middle-boxes, causing SYN
 retransmission and other side-effects. Therefore the client MAY limit
 the cached MSS to 1460 bytes.

4.1.3.1 Client Caching Negative Responses

 The client MUST cache negative responses from the server in order to
 avoid potential connection failures. Negative responses include
 server not acknowledging the data in SYN, ICMP error messages, and
 most importantly no response (SYN/ACK) from the server at all, i.e.,
 connection timeout. The last case is likely due to incompatible
 middle-boxes or firewall blocking the connection completely after it
 sees data in SYN. If the client does not react to these negative
 responses and continue to retry Fast Open, the client may never be
 able to connect to the specific server.

 For any negative responses, the client SHOULD disable Fast Open on
 the specific path (the source and destination IP addresses and ports)
 at least temporarily. Since TFO is enabled on a per-service port
 basis but cookies are independent of service ports, the client's
 cache should include remote port numbers too.

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2460

Cheng, et. al. Expires September 6, 2014 [Page 9]

Internet Draft TCP Fast Open March 5, 2014

4.2. Fast Open Protocol

 One predominant requirement of TFO is to be fully compatible with
 existing TCP implementations, both on the client and the server
 sides.

 The server keeps two variables per listening port:

 FastOpenEnabled: default is off. It MUST be turned on explicitly by
 the application. When this flag is off, the server does not perform
 any TFO related operations and MUST ignore all cookie options.

 PendingFastOpenRequests: tracks number of TFO connections in SYN-RCVD
 state. If this variable goes over a preset system limit, the server
 MUST disable TFO for all new connection requests until
 PendingFastOpenRequests drops below the system limit. This variable
 is used for defending some vulnerabilities discussed in the "Security
 Considerations" section.

 The server keeps a FastOpened flag per connection to mark if a
 connection has successfully performed a TFO.

4.2.1. Fast Open Cookie Request

 Any client attempting TFO MUST first request a cookie from the server
 with the following steps:

 1. The client sends a SYN packet with a Fast Open Cookie Request
 option.

 2. The server SHOULD respond with a SYN-ACK based on the procedures
 in the "Server Cookie Handling" section. This SYN-ACK SHOULD
 contain a Fast Open Cookie option if the server currently supports
 TFO for this listener port.

 3. If the SYN-ACK contains a Fast Open Cookie option, the client
 replaces the cookie and other information as described in the
 "Client Cookie Handling" section. Otherwise, if the SYN-ACK is
 first seen, i.e., not a (spurious) retransmission, the client MAY
 remove the server information from the cookie cache. If the SYN-
 ACK is a spurious retransmission without valid Fast Open Cookie
 Option, the client does nothing to the cookie cache for the
 reasons below.

 The network or servers may drop the SYN or SYN-ACK packets with the
 new cookie options, which will cause SYN or SYN-ACK timeouts. We
 RECOMMEND both the client and the server to retransmit SYN and SYN-
 ACK without the cookie options on timeouts. This ensures the

Cheng, et. al. Expires September 6, 2014 [Page 10]

Internet Draft TCP Fast Open March 5, 2014

 connections of cookie requests will go through and lowers the latency
 penalty (of dropped SYN/SYN-ACK packets). The obvious downside for
 maximum compatibility is that any regular SYN drop will fail the
 cookie (although one can argue the delay in the data transmission
 till after 3WHS is justified if the SYN drop is due to network
 congestion). Next section describes a heuristic to detect such drops
 when the client receives the SYN-ACK.

 We also RECOMMEND the client to record the set of servers that failed
 to respond to cookie requests and only attempt another cookie request
 after certain period.

 An alternate proposal is to request a TFO cookie in the FIN instead,
 since FIN-drop by incompatible middle-boxes does not affect latency.
 However paths that block SYN cookies may be more likely to drop a
 later SYN packet with data, and many applications close a connection
 with RST instead anyway.

 Although cookie-in-FIN may not improve robustness, it would give
 clients using a single connection a latency advantage over clients
 opening multiple parallel connections. If experiments with TFO find
 that it leads to increased connection-sharding, cookie-in-FIN may
 prove to be a useful alternative.

4.2.2. TCP Fast Open

 Once the client obtains the cookie from the target server, it can
 perform subsequent TFO connections until the cookie is expired by the
 server.

 Client: Sending SYN

 To open a TFO connection, the client MUST have obtained a cookie from
 the server:

 1. Send a SYN packet.

 a. If the SYN packet does not have enough option space for the
 Fast Open Cookie option, abort TFO and fall back to regular 3WHS.

 b. Otherwise, include the Fast Open Cookie option with the cookie
 of the server. Include any data up to the cached server MSS or
 default 536 bytes.

 2. Advance to SYN-SENT state and update SND.NXT to include the data
 accordingly.

Cheng, et. al. Expires September 6, 2014 [Page 11]

Internet Draft TCP Fast Open March 5, 2014

 To deal with network or servers dropping SYN packets with payload or
 unknown options, when the SYN timer fires, the client SHOULD
 retransmit a SYN packet without data and Fast Open Cookie options.

 Server: Receiving SYN and responding with SYN-ACK

 Upon receiving the SYN packet with Fast Open Cookie option:

 1. Initialize and reset a local FastOpened flag. If FastOpenEnabled
 is false, go to step 5.

 2. If PendingFastOpenRequests is over the system limit, go to step 5.

 3. If IsCookieValid() in section 4.1.2 returns false, go to step 5.

 4. Buffer the data and notify the application. Set FastOpened flag
 and increment PendingFastOpenRequests.

 5. Send the SYN-ACK packet. The packet MAY include a Fast Open
 Option. If FastOpened flag is set, the packet acknowledges the SYN
 and data sequence. Otherwise it acknowledges only the SYN
 sequence. The server MAY include data in the SYN-ACK packet if the
 response data is readily available. Some application may favor
 delaying the SYN-ACK, allowing the application to process the
 request in order to produce a response, but this is left up to the
 implementation.

 6. Advance to the SYN-RCVD state. If the FastOpened flag is set, the
 server MUST follow [RFC5681] (based on [RFC3390]) to set the
 initial congestion window for sending more data packets.

 If the SYN-ACK timer fires, the server SHOULD retransmit a SYN-ACK
 segment with neither data nor Fast Open Cookie options for
 compatibility reasons.

 A special case is simultaneous open where the SYN receiver is a
 client in SYN-SENT state. The protocol remains the same because
 [RFC793] already supports both data in SYN and simultaneous open. But
 the client's socket may have data available to read before it's
 connected. This document does not cover the corresponding API change.

 Client: Receiving SYN-ACK

 The client SHOULD perform the following steps upon receiving the SYN-
 ACK:

 1. Update the cookie cache if the SYN-ACK has a Fast Open Cookie

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3390
https://datatracker.ietf.org/doc/html/rfc793

Cheng, et. al. Expires September 6, 2014 [Page 12]

Internet Draft TCP Fast Open March 5, 2014

 Option or MSS option or both.

 2. Send an ACK packet. Set acknowledgment number to RCV.NXT and
 include the data after SND.UNA if data is available.

 3. Advance to the ESTABLISHED state.

 Note there is no latency penalty if the server does not acknowledge
 the data in the original SYN packet. The client SHOULD retransmit any
 unacknowledged data in the first ACK packet in step 2. The data
 exchange will start after the handshake like a regular TCP
 connection.

 If the client has timed out and retransmitted only regular SYN
 packets, it can heuristically detect paths that intentionally drop
 SYN with Fast Open option or data. If the SYN-ACK acknowledges only
 the initial sequence and does not carry a Fast Open cookie option,
 presumably it is triggered by a retransmitted (regular) SYN and the
 original SYN or the corresponding SYN-ACK was lost.

 Server: Receiving ACK

 Upon receiving an ACK acknowledging the SYN sequence, the server
 decrements PendingFastOpenRequests and advances to the ESTABLISHED
 state. No special handling is required further.

5. Security Considerations

 The Fast Open cookie stops an attacker from trivially flooding
 spoofed SYN packets with data to burn server resources or to mount an
 amplified reflection attack on random hosts. The server can defend
 against spoofed SYN floods with invalid cookies using existing
 techniques [RFC4987]. We note that although generating bogus cookies
 is cost-free, the cost of validating the cookies, inherent to any
 authentication scheme, may be substantial compared to processing a
 regular SYN packet. We describe these new vulnerabilities of TFO and
 the countermeasures in detail below.

5.1. Resource Exhaustion Attack by SYN Flood with Valid Cookies

 An attacker may still obtain cookies from some compromised hosts,
 then flood spoofed SYN with data and "valid" cookies (from these
 hosts or other vantage points). Like regular TCP handshakes, TFO is
 vulnerable to such an attack. But the potential damage can be much
 more severe. Besides causing temporary disruption to service ports
 under attack, it may exhaust server CPU and memory resources. Such an
 attack will show up on application server logs as a application level
 DoS from Bot-nets, triggering other defenses and alerts.

https://datatracker.ietf.org/doc/html/rfc4987

Cheng, et. al. Expires September 6, 2014 [Page 13]

Internet Draft TCP Fast Open March 5, 2014

 To protect the server it is important to limit the maximum number of
 total pending TFO connection requests, i.e., PendingFastOpenRequests
 (Section 4.2). When the limit is exceeded, the server temporarily
 disables TFO entirely as described in "Server Cookie Handling". Then
 subsequent TFO requests will be downgraded to regular connection
 requests, i.e., with the data dropped and only SYN acknowledged. This
 allows regular SYN flood defense techniques [RFC4987] like SYN-
 cookies to kick in and prevent further service disruption.

 The main impact of SYN floods against the standard TCP stack is not
 directly from the floods themselves costing TCP processing overhead
 or host memory, but rather from the spoofed SYN packets filling up
 the often small listener's queue.

 On the other hand, TFO SYN floods can cause damage directly if
 admitted without limit into the stack. The RST packets from the
 spoofed host will fuel rather than defeat the SYN floods as compared
 to the non-TFO case, because the attacker can flood more SYNs with
 data to cost more data processing resources. For this reason, a TFO
 server needs to monitor the connections in SYN-RCVD being reset in
 addition to imposing a reasonable max queue length. Implementations
 may combine the two, e.g., by continuing to account for those
 connection requests that have just been reset against the listener's
 PendingFastOpenRequests until a timeout period has passed.

 Limiting the maximum number of pending TFO connection requests does
 make it easy for an attacker to overflow the queue, causing TFO to be
 disabled. We argue that causing TFO to be disabled is unlikely to be
 of interest to attackers because the service will remain intact
 without TFO hence there is hardly any real damage.

5.1.1 Attacks from behind Shared Public IPs (NATs)

 An attacker behind a NAT can easily obtain valid cookies to launch
 the above attack to hurt other clients that share the path.
 [BRISCOE12] suggested that the server can extend cookie generation to
 include the TCP timestamp---GetCookie(IP_Address, Timestamp)---and
 implement it by encrypting the concatenation of the two values to
 generate the cookie. The client stores both the cookie and its
 corresponding timestamp, and echoes both in the SYN. The server then
 implements IsCookieValid(IP_Address, Timestamp, Cookie) by encrypting
 the IP and timestamp data and comparing it with the cookie value.

 This enables the server to issue different cookies to clients that
 share the same IP address, hence can selectively discard those
 misused cookies from the attacker. However the attacker can simply
 repeat the attack with new cookies. The server would eventually need
 to throttle all requests from the IP address just like the current

https://datatracker.ietf.org/doc/html/rfc4987

Cheng, et. al. Expires September 6, 2014 [Page 14]

Internet Draft TCP Fast Open March 5, 2014

 approach. Moreover this approach requires modifying [RFC1323] to send
 non-zero Timestamp Echo Reply in SYN, potentially cause firewall
 issues. Therefore we believe the benefit does not outweigh the
 drawbacks.

5.2. Amplified Reflection Attack to Random Host

 Limiting PendingFastOpenRequests with a system limit can be done
 without Fast Open Cookies and would protect the server from resource
 exhaustion. It would also limit how much damage an attacker can cause
 through an amplified reflection attack from that server. However, it
 would still be vulnerable to an amplified reflection attack from a
 large number of servers. An attacker can easily cause damage by
 tricking many servers to respond with data packets at once to any
 spoofed victim IP address of choice.

 With the use of Fast Open Cookies, the attacker would first have to
 steal a valid cookie from its target victim. This likely requires the
 attacker to compromise the victim host or network first. But in some
 case it may be relatively easy.

 The attacker here has little interest in mounting an attack on the
 victim host that has already been compromised. But it may be
 motivated to disrupt the victim's network. Since a stolen cookie is
 only valid for a single server, it has to steal valid cookies from a
 large number of servers and use them before they expire to cause
 sufficient damage without triggering the defense.

 One can argue that if the attacker has compromised the target network
 or hosts, it could perform a similar but simpler attack by injecting
 bits directly. The degree of damage will be identical, but TFO-
 specific attack allows the attacker to remain anonymous and disguises
 the attack as from other servers.

 For example with DHCP an attacker can obtain cookies when he (or the
 host he has compromised) owns a particular IP address by performing
 regular Fast Open to servers supporting TFO and collect valid
 cookies. The attacker then actively or passively releases his IP
 address. When the IP address is re-assigned to a victim, the attacker
 now owning a different IP address, floods spoofed Fast Open requests
 to perform an amplified reflection attack on the victim.

 The best defense is for the server not to respond with data until
 handshake finishes. In this case the risk of amplification reflection
 attack is completely eliminated. But the potential latency saving
 from TFO may diminish if the server application produces responses
 earlier before the handshake completes.

https://datatracker.ietf.org/doc/html/rfc1323

Cheng, et. al. Expires September 6, 2014 [Page 15]

Internet Draft TCP Fast Open March 5, 2014

6. TFO's Applicability

 This section is to help applications considering TFO to evaluate
 TFO's benefits and drawbacks using the Web client and server
 applications as an example throughout. Applications here refer
 specifically to the process that writes data into the socket, i.e., a
 JavaScript process that sends data to the server. A proposed socket
 API change is in the Appendix.

6.1 Duplicate Data in SYNs

 It is possible that using TFO results in the first data written to a
 socket to be delivered more than once to the application on the
 remote host (Section 2.1). This replay potential only applies to data
 in the SYN but not subsequent data exchanges.

 Empirically [JIDKT07] showed the packet duplication on a Tier-1
 network is rare. Since the replay only happens specifically when the
 SYN data packet is duplicated and also the duplicate arrives after
 the receiver has cleared the original SYN's connection state, the
 replay is thought to be uncommon in practice. Neverthless a client
 that cannot handle receiving the same SYN data more than once MUST
 NOT enable TFO to send data in a SYN. Similarly a server that cannot
 accept receiving the same SYN data more than once MUST NOT enable TFO
 to receive data in a SYN.

6.2 Potential Performance Improvement

 TFO is designed for latency-conscious applications that are sensitive
 to TCP's initial connection setup delay. To benefit from TFO, the
 first application data unit (e.g., an HTTP request) needs to be no
 more than TCP's maximum segment size (minus options used in SYN).
 Otherwise the remote server can only process the client's application
 data unit once the rest of it is delivered after the initial
 handshake, diminishing TFO's benefit.

 To the extent possible, applications SHOULD reuse the connection to
 take advantage of TCP's built-in congestion control and reduce
 connection setup overhead. An application that employs too many
 short-lived connections will negatively impact network stability, as
 these connections often exit before TCP's congestion control
 algorithm takes effect.

Cheng, et. al. Expires September 6, 2014 [Page 16]

Internet Draft TCP Fast Open March 5, 2014

6.3. Example: Web Clients and Servers

6.3.1. HTTP Request Replay

 While TFO is motivated by Web applications, the browser should not
 use TFO to send requests in SYNs if those requests cannot tolerate
 replays. One example is POST requests without application-layer
 transaction protection (e.g., a unique identifier in the request
 header).

 On the other hand, TFO is particularly useful for GET requests.
 Although not all GET requests are idem-potent, GETs are frequently
 replayed today across striped TCP connections: after a server
 receives an HTTP request but before the ACKs of the requests reach
 the browser, the browser may timeout and retry the same request on
 another (possibly new) TCP connection. This differs from a TFO replay
 only in that the replay is initiated by the browser, not by the TCP
 stack.

6.3.2. Speculative Connections by the Applications

 Some Web browsers maintain a history of the domains for frequently
 visited web pages. The browsers then speculatively pre-open TCP
 connections to these domains before the user initiates any requests
 for them [BELSHE11]. While this technique also saves the handshake
 latency, it wastes server and network resources by initiating and
 maintaining idle connections.

6.3.3. HTTP over TLS (HTTPS)

 For TLS over TCP, it is safe and useful to include TLS CLIENT_HELLO
 in the SYN packet to save one RTT in TLS handshake. There is no
 concern about violating idem-potency. In particular it can be used
 alone with the speculative connection above.

6.3.4. Comparison with HTTP Persistent Connections

 Is TFO useful given the wide deployment of HTTP persistent
 connections? The short answer is yes. Studies [RCCJR11][AERG11] show
 that the average number of transactions per connection is between 2
 and 4, based on large-scale measurements from both servers and
 clients. In these studies, the servers and clients both kept idle
 connections up to several minutes, well into "human think" time.

 Keeping connections open and idle even longer risks a greater
 performance penalty. [HNESSK10][MQXMZ11] show that the majority of
 home routers and ISPs fail to meet the the 124-minute idle timeout
 mandated in [RFC5382]. In [MQXMZ11], 35% of mobile ISPs silently

https://datatracker.ietf.org/doc/html/rfc5382

Cheng, et. al. Expires September 6, 2014 [Page 17]

Internet Draft TCP Fast Open March 5, 2014

 timeout idle connections within 30 minutes. End hosts, unaware of
 silent middle-box timeouts, suffer multi-minute TCP timeouts upon
 using those long-idle connections.

 To circumvent this problem, some applications send frequent TCP keep-
 alive probes. However, this technique drains power on mobile devices
 [MQXMZ11]. In fact, power has become such a prominent issue in modern
 LTE devices that mobile browsers close HTTP connections within
 seconds or even immediately [SOUDERS11].

 [RCCJR11] studied Chrome browser performance based on 28 days of
 global statistics. The Chrome browser keeps idle HTTP persistent
 connections for 5 to 10 minutes. However the average number of the
 transactions per connection is only 3.3 and TCP 3WHS accounts for up
 to 25% of the HTTP transaction network latency. The authors estimated
 that TFO improves page load time by 10% to 40% on selected popular
 Web sites.

7. Open Areas for Experimentation

 We now outline some areas that need experimentation in the Internet
 and under different network scenarios. These experiments should help
 the community evaluate Fast Open benefits and risks towards further
 standardization and implementation of Fast Open and its related
 protocols.

7.1. Performance impact due to middle-boxes and NAT

 [MAF04] found that some middle-boxes and end-hosts may drop packets
 with unknown TCP options. Studies [LANGLEY06, HNRGHT11] both found
 that 6% of the probed paths on the Internet drop SYN packets with
 data or with unknown TCP options. The TFO protocol deals with this
 problem by falling back to regular TCP handshake and re-transmitting
 SYN without data or cookie options after the initial SYN timeout.
 Moreover the implementation is recommended to negatively cache such
 incidents to avoid recurring timeouts. Further study is required to
 evaluate the performance impact of these malicious drop behaviors.

 Another interesting study is the (loss of) TFO performance benefit
 behind certain carrier-grade NAT. Typically hosts behind a NAT
 sharing the same IP address will get the same cookie for the same
 server. This will not prevent TFO from working. But on some carrier-
 grade NAT configurations where every new TCP connection from the same
 physical host uses a different public IP address, TFO does not
 provide latency benefits. However, there is no performance penalty
 either, as described in Section "Client: Receiving SYN-ACK".

Cheng, et. al. Expires September 6, 2014 [Page 18]

Internet Draft TCP Fast Open March 5, 2014

7.2. Cookie-less Fast Open

 The cookie mechanism mitigates resource exhaustion and amplification
 attacks. However cookies are not necessary if the server has
 application-level protection or is immune to these attacks. For
 example a Web server that only replies with a simple HTTP redirect
 response that fits in the SYN-ACK packet may not care about resource
 exhaustion. For such an application, the server could decide to
 disable TFO cookie checks.

 Disabling cookies (i.e., no Fast Open TCP options in SYN and SYN/ACK)
 simplifies both the client and the server, as the client no longer
 needs to request a cookie and the server no longer needs to check or
 generate cookies. Disabling cookies also potentially simplifies
 configuration, as the server no longer needs a key. It may be
 preferable to enable SYN cookies and disable TFO [RFC4987] when a
 server is overloaded by a large-scale Bot-net attack.

 Careful experimentation is necessary to evaluate if cookie-less TFO
 is practical. The implementation can provide an experimental feature
 to allow zero length, or null, cookies as opposed to the minimum 4
 bytes cookies. Thus the server may return a null cookie and the
 client will send data in SYN with it subsequently. If the server
 believes it's under a DoS attack through other defense mechanisms, it
 can switch to regular Fast Open for listener sockets.

7.3 Impact on congestion control

 Although TFO does not directly change the congestion control, there
 are subtle cases that it may. When SYN-ACK times out, regular TCP
 reduces the initial congestion window before sending any data
 [RFC5681]. However in TFO the server may have already sent up to an
 initial window of data.

 If the server serves mostly short connections then the losses of SYN-
 ACKs are not as effective as regular TCP on reducing the congestion
 window. This could result in an unstable network condition. The
 connections that experience losses may attempt again and add more
 load under congestion. A potential solution is to temporarily disable
 Fast Open if the server observes many SYN-ACK or data losses during
 the handshake across connections. Further experimentation regarding
 the congestion control impact will be useful.

https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/rfc5681

Cheng, et. al. Expires September 6, 2014 [Page 19]

Internet Draft TCP Fast Open March 5, 2014

8. Related Work

8.1. T/TCP

 TCP Extensions for Transactions [RFC1644] attempted to bypass the
 three-way handshake, among other things, hence shared the same goal
 but also the same set of issues as TFO. It focused most of its effort
 battling old or duplicate SYNs, but paid no attention to security
 vulnerabilities it introduced when bypassing 3WHS [PHRACK98].

 As stated earlier, we take a practical approach to focus TFO on the
 security aspect, while allowing old, duplicate SYN packets with data
 after recognizing that 100% TCP semantics is likely infeasible. We
 believe this approach strikes the right tradeoff, and makes TFO much
 simpler and more appealing to TCP implementers and users.

8.2. Common Defenses Against SYN Flood Attacks

 [RFC4987] studies on mitigating attacks from regular SYN flood, i.e.,
 SYN without data. But from the stateless SYN-cookies to the stateful
 SYN Cache, none can preserve data sent with SYN safely while still
 providing an effective defense.

 The best defense may be to simply disable TFO when a host is
 suspected to be under a SYN flood attack, e.g., the SYN backlog is
 filled. Once TFO is disabled, normal SYN flood defenses can be
 applied. The "Security Consideration" section contains a thorough
 discussion on this topic.

8.3. TCP Cookie Transaction (TCPCT)

 TCPCT [RFC6013] eliminates server state during initial handshake and
 defends spoofing DoS attacks. Like TFO, TCPCT allows SYN and SYN-ACK
 packets to carry data. But the server can only send up to MSS bytes
 of data during the handshake instead of the initial congestion window
 unlike TFO. Therefore the latency of applications such as Web may be
 worse than with TFO.

9. IANA Considerations

 The Fast Open Cookie Option and Fast Open Cookie Request Option
 define no new namespace. The options require IANA to allocate one
 value from the TCP option Kind namespace. Early implementation before
 the IANA allocation SHOULD follow [RFC6994] and use experimental
 option 254 and magic number 0xF989 (16 bits), then migrate to the new
 option after the allocation accordingly.

https://datatracker.ietf.org/doc/html/rfc1644
https://datatracker.ietf.org/doc/html/rfc6013
https://datatracker.ietf.org/doc/html/rfc6994

Cheng, et. al. Expires September 6, 2014 [Page 20]

Internet Draft TCP Fast Open March 5, 2014

10. Acknowledgement

 We thank Bob Briscoe, Michael Scharf, Gorry Fairhurst, Rick Jones,
 Roberto Peon, William Chan, Adam Langley, Neal Cardwell, Eric
 Dumazet, and Matt Mathis for their feedbacks. We especially thank
 Barath Raghavan for his contribution on the security design of Fast
 Open and proofreading this draft numerous times.

11. References

11.1. Normative References

 [RFC793] Postel, J. "Transmission Control Protocol", RFC 793,
 September 1981.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5382] S. Guha, Ed., Biswas, K., Ford B., Sivakumar S., Srisuresh,
 P., "NAT Behavioral Requirements for TCP", RFC 5382

 [RFC5681] Allman, M., Paxson, V. and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009

 [RFC6994] Touch, Joe, "Shared Use of Experimental TCP Options",
RFC6994, August 2013.

 [RFC3390] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP's
 Initial Window", RFC 3390, October 2002.

11.2. Informative References

 [AERG11] Al-Fares, M., Elmeleegy, K., Reed, B., Gashinsky, I.,
 "Overclocking the Yahoo! CDN for Faster Web Page Loads".
 In Proceedings of Internet Measurement Conference,
 November 2011.

 [HNESSK10] Haetoenen, S., Nyrhinen, A., Eggert, L., Strowes, S.,
 Sarolahti, P., Kojo., M., "An Experimental Study of Home
 Gateway Characteristics". In Proceedings of Internet
 Measurement Conference. October 2010

 [HNRGHT11] Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A.,
 Handley, M., Tokuda, H., "Is it Still Possible to
 Extend TCP?". In Proceedings of Internet Measurement

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5382
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc3390

Cheng, et. al. Expires September 6, 2014 [Page 21]

Internet Draft TCP Fast Open March 5, 2014

 Conference. November 2011.

 [LANGLEY06] Langley, A, "Probing the viability of TCP extensions",
 URL http://www.imperialviolet.org/binary/ecntest.pdf

 [MAF04] Medina, A., Allman, M., and S. Floyd, "Measuring
 Interactions Between Transport Protocols and
 Middleboxes". In Proceedings of Internet Measurement
 Conference, October 2004.

 [MQXMZ11] Wang, Z., Qian, Z., Xu, Q., Mao, Z., Zhang, M.,
 "An Untold Story of Middleboxes in Cellular Networks".
 In Proceedings of SIGCOMM. August 2011.

 [PHRACK98] "T/TCP vulnerabilities", Phrack Magazine, Volume 8, Issue
 53 artical 6. July 8, 1998. URL

http://www.phrack.com/issues.html?issue=53&id=6

 [RCCJR11] Radhakrishnan, S., Cheng, Y., Chu, J., Jain, A.,
 Raghavan, B., "TCP Fast Open". In Proceedings of 7th
 ACM CoNEXT Conference, December 2011.

 [RFC1323] Jacobson, V., Braden, R., Borman, D., "TCP Extensions for
 High Performance", RFC 1323, May 1992.

 [RFC1644] Braden, R., "T/TCP -- TCP Extensions for Transactions
 Functional Specification", RFC 1644, July 1994.

 [RFC2460] Deering, S., Hinden, R., "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, August 2007.

 [RFC6013] Simpson, W., "TCP Cookie Transactions (TCPCT)", RFC6013,
 January 2011.

 [SOUDERS11] Souders, S., "Making A Mobile Connection".
http://www.stevesouders.com/blog/2011/09/21/making-a-
mobile-connection/

 [BRISCOE12] Briscoe, B., "Some ideas building on draft-ietf-tcpm-
fastopen-01", tcpm list,
http://www.ietf.org/mail-archive/web/tcpm/
current/msg07192.html

 [BELSHE11] Belshe, M., "The era of browser preconnect.",
http://www.belshe.com/2011/02/10/

http://www.imperialviolet.org/binary/ecntest.pdf
http://www.phrack.com/issues
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1644
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/rfc6013
http://www.stevesouders.com/blog/2011/09/21/making-a-mobile-connection/
http://www.stevesouders.com/blog/2011/09/21/making-a-mobile-connection/
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-fastopen-01
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-fastopen-01
http://www.ietf.org/mail-archive/web/tcpm/current/msg07192.html
http://www.ietf.org/mail-archive/web/tcpm/current/msg07192.html
http://www.belshe.com/2011/02/10/

Cheng, et. al. Expires September 6, 2014 [Page 22]

Internet Draft TCP Fast Open March 5, 2014

 the-era-of-browser-preconnect/

 [JIDKT07] Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J.,
 Towsley, D., "Measurement and classification of
 out-of-sequence packets in a tier-1 IP backbone.".
 IEEE/ACM Transactions on Networking (TON), 15(1), 54-66.

Appendix A. Example Socket API Changes to support TFO

A.1 Active Open

 The active open side involves changing or replacing the connect()
 call, which does not take a user data buffer argument. We recommend
 replacing connect() call to minimize API changes and hence
 applications to reduce the deployment hurdle.

 One solution implemented in Linux 3.7 is introducing a new flag
 MSG_FASTOPEN for sendto() or sendmsg(). MSG_FASTOPEN marks the
 attempt to send data in SYN like a combination of connect() and
 sendto(), by performing an implicit connect() operation. It blocks
 until the handshake has completed and the data is buffered.

 For non-blocking socket it returns the number of bytes buffered and
 sent in the SYN packet. If the cookie is not available locally, it
 returns -1 with errno EINPROGRESS, and sends a SYN with TFO cookie
 request automatically. The caller needs to write the data again when
 the socket is connected. On errors, it returns the same errno as
 connect() if the handshake fails.

 An implementation may prefer not to change the sendmsg() because TFO
 is a TCP specific feature. A solution is to add a new socket option
 TCP_FASTOPEN for TCP sockets. When the option is enabled before a
 connect operation, sendmsg() or sendto() will perform Fast Open
 operation similar to the MSG_FASTOPEN flag described above. This
 approach however requires an extra setsockopt() system call.

A.2 Passive Open

 The passive open side change is simpler compared to active open side.
 The application only needs to enable the reception of Fast Open
 requests via a new TCP_FASTOPEN setsockopt() socket option before
 listen().

 The option enables Fast Open on the listener socket. The option value
 specifies the PendingFastOpenRequests threshold, i.e., the maximum
 length of pending SYNs with data payload. Once enabled, the TCP
 implementation will respond with TFO cookies per request.

Cheng, et. al. Expires September 6, 2014 [Page 23]

Internet Draft TCP Fast Open March 5, 2014

 Traditionally accept() returns only after a socket is connected. But
 for a Fast Open connection, accept() returns upon receiving a SYN
 with a valid Fast Open cookie and data, and the data is available to
 be read through, e.g., recvmsg(), read().

Authors' Addresses

 Yuchung Cheng
 Google, Inc.
 1600 Amphitheatre Parkway
 Mountain View, CA 94043, USA
 EMail: ycheng@google.com

 Jerry Chu
 Google, Inc.
 1600 Amphitheatre Parkway
 Mountain View, CA 94043, USA
 EMail: hkchu@google.com

 Sivasankar Radhakrishnan
 Department of Computer Science and Engineering
 University of California, San Diego
 9500 Gilman Dr
 La Jolla, CA 92093-0404
 EMail: sivasankar@cs.ucsd.edu

 Arvind Jain
 Google, Inc.
 1600 Amphitheatre Parkway
 Mountain View, CA 94043, USA
 EMail: arvind@google.com

Cheng, et. al. Expires September 6, 2014 [Page 24]

