
TSVWG J. Touch
Internet Draft Independent Consultant
Intended status: Standards Track March 21, 2024
Intended updates: 768
Expires: September 2024

Transport Options for UDP
draft-ietf-tsvwg-udp-options-32.txt

Abstract

 Transport protocols are extended through the use of transport header
 options. This document updates RFC 768 (UDP) by indicating the
 location, syntax, and semantics for UDP transport layer options
 within the surplus area after the end of the UDP user data but
 before the end of the IP length.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
https://www.ietf.org/shadow.html

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 21, 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Touch Expires September 21, 2024 [Page 1]

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
https://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft Transport Options for UDP March 2024

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

Table of Contents

1. Introduction ..3
2. Conventions used in this document3
3. Terminology ...3
4. Background ..4
5. UDP Option Intended Uses5
6. UDP Option Design Principles6
7. The UDP Option Area ...7
8. The UDP Surplus Area Structure10
9. The Option Checksum (OCS)10
10. UDP Options ...12
11. SAFE UDP Options ..16

11.1. End of Options List (EOL)17
11.2. No Operation (NOP)17
11.3. Additional Payload Checksum (APC)18
11.4. Fragmentation (FRAG)19
11.5. Maximum Datagram Size (MDS)26
11.6. Maximum Reassembled Datagram Size (MRDS)27
11.7. Echo request (REQ) and echo response (RES)27
11.8. Timestamps (TIME)28
11.9. Authentication (AUTH), RESERVED Only30
11.10. Experimental (EXP)30

12. UNSAFE Options ..31
12.1. UNSAFE Compression (UCMP)32
12.2. UNSAFE Encryption (UENC)32
12.3. UNSAFE Experimental (UEXP)32

13. Rules for designing new options32
14. Option inclusion and processing33
15. UDP API Extensions ..35
16. UDP Options are for Transport, Not Transit37
17. UDP options vs. UDP-Lite37
18. Interactions with Legacy Devices38
19. Options in a Stateless, Unreliable Transport Protocol39
20. UDP Option State Caching39
21. Updates to RFC 768 ..40
22. Interactions with other RFCs (and drafts)40
23. Multicast Considerations41
24. Security Considerations42

http://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc768

Touch Expires September 21, 2024 [Page 2]

Internet-Draft Transport Options for UDP March 2024

25. IANA Considerations ...44
26. References ..45

26.1. Normative References45
26.2. Informative References46

27. Acknowledgments ...49
Appendix A. Implementation Information50

1. Introduction

 Transport protocols use options as a way to extend their
 capabilities. TCP [RFC9293], SCTP [RFC9260], and DCCP [RFC4340]
 include space for these options but UDP [RFC768] currently does not.
 This document updates RFC 768 with an extension to UDP that provides
 space for transport options including their generic syntax and
 semantics for their use in UDP's stateless, unreliable message
 protocol. The details of the impact on RFC 768 are provided in

Section 21. This extension does not apply to UDP-Lite, as discussed
 further in Section 17.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 In this document, the characters ">>" preceding an indented line(s)
 indicates a statement using the key words listed above. This
 convention aids reviewers in quickly identifying or finding the
 portions of this RFC covered by these key words.

3. Terminology

 The following terminology is used in this document:

 o IP datagram [RFC791][RFC8200] - an IP packet, composed of the IP
 header and an IP payload area

 o User datagram - a UDP packet, composed of a UDP header and UDP
 payload; as discussed herein, that payload need not extend to the
 end of the IP datagram. In this document, the original intent
 that a UDP datagram corresponds to the user portion of a single
 IP datagram is redefined, where a UDP datagram can span more than
 one IP datagram through UDP fragmentation.

https://datatracker.ietf.org/doc/html/rfc9293
https://datatracker.ietf.org/doc/html/rfc9260
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc791

Touch Expires September 21, 2024 [Page 3]

Internet-Draft Transport Options for UDP March 2024

 o UDP packet - the more contemporary term used herein to refer to a
 user datagram [RFC768]

 o User - the upper layer application, protocol, or service that
 produces and consumes content that UDP transfers

 o Surplus area - the area of an IP payload that follows a UDP
 packet; this area is used for UDP options in this document

 o UDP fragment - one or more components of a UDP packet and its UDP
 options that enables transmission over multiple IP payloads,
 larger than permitted by the maximum size of a single IP; note
 that each UDP fragment is itself transmitted as a UDP packet with
 its own options

 o (UDP) User data - the user data field of a UDP packet [RFC768]

 o UDP Length - the length field of a UDP header [RFC768]

 o Must-support options - UDP options that all implementations are
 required to support. Their use in individual UDP packets is
 optional.

4. Background

 Many protocols include a default, invariant header and an area for
 header options that varies from packet to packet. These options
 enable the protocol to be extended for use in particular
 environments or in ways unforeseen by the original designers.
 Examples include TCP's Maximum Segment Size, Window Scale,
 Timestamp, and Authentication Options [RFC9293][RFC5925][RFC7323].

 Header options are used both in stateful (connection-oriented, e.g.,
 TCP [RFC9293], SCTP [RFC9260], DCCP [RFC4340]) and stateless
 (connectionless, e.g., IPv4 [RFC791], IPv6 [RFC8200]) protocols. In
 stateful protocols they can help extend the way in which state is
 managed. In stateless protocols their effect is often limited to
 individual packets, but they can have an aggregate effect on a
 sequence of packets as well.

 UDP is one of the most popular protocols that lacks space for header
 options [RFC768]. The UDP header was intended to be a minimal
 addition to IP, providing only ports and a checksum for error
 detection. This document extends UDP to provide a trailer area for
 such options, located after the UDP user data.

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc9293
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc9293
https://datatracker.ietf.org/doc/html/rfc9260
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc768

Touch Expires September 21, 2024 [Page 4]

Internet-Draft Transport Options for UDP March 2024

 UDP options are possible because UDP includes its own length field,
 separate from that of the IP header. Other transport protocols infer
 transport payload length from the IP datagram length (TCP, DCCP,
 SCTP). There are a number of reasons why Internet historians suggest
 that UDP includes this field, e.g., to support multiple UDP packets
 within the same IP datagram or to indicate the length of the UDP
 user data as distinct from zero padding required for systems that
 require writes that are not byte-aligned. These suggestions are not
 consistent with earlier versions of UDP or with concurrent design of
 multi-segment multiplexing protocols, however, so the real reason
 remains unknown. Regardless, this field presents an opportunity to
 differentiate the UDP user data from the implied transport payload
 length, which this document leverages to support a trailer options
 field.

 There are other ways to include additional header fields or options
 in protocols that otherwise are not extensible. In particular, in-
 band encoding can be used to differentiate transport payload from
 additional fields, such as was proposed in [Hi15]. This approach can
 cause complications for interactions with legacy devices, and is
 thus not considered further in this document.

 IPv6 Teredo extensions [RFC4380][RFC6081] use a similar
 inconsistency between UDP and IPv6 packet lengths to support
 trailers, but in this case the values differ between the UDP header
 and an IPv6 length contained as the payload of the UDP user data.
 This allows IPv6 trailers in the UDP user data, but have no relation
 to the surplus area discussed in this document. As a consequence,
 Teredo extensions are compatible with UDP options.

5. UDP Option Intended Uses

 UDP options provide a soft control plane to UDP. They enable
 capabilities available in other transport protocols, such as
 fragmentation and reassembly, that enable UDP frames larger than the
 IP MTU to traverse devices that rely on transport ports, e.g., NATs.
 It adds features that may, in the future, protect transport
 integrity and validate source identity (authentication), as well as
 those that may also encrypt the user payload, while still protecting
 the UDP transport header - unlike DTLS. They also enable
 packetization-layer path MTU discovery (PLPMTUD) over UDP, known as
 Datagram Packetization Layer Path Maximum Transmission Unit
 Discovery DPLPMTUD [Fa24], providing a means for probe packet
 validation without affecting the user data plane, as well as
 providing explicit indication of the receiver transport reassembly
 size.

https://datatracker.ietf.org/doc/html/rfc4380

Touch Expires September 21, 2024 [Page 5]

Internet-Draft Transport Options for UDP March 2024

 UDP was originally intended to assume such capabilities could be
 provided by the user or by a layer above UDP. However, enough
 protocols have evolved to use UDP directly, so such an intermediate
 layer would be difficult to deploy for legacy applications. UDP
 options leverage the opportunity presented by the surplus area to
 enable these extensions within the UDP transport layer itself.

6. UDP Option Design Principles

 UDP options have been designed based on the following core
 principles. Each is an observation about (preexisting) UDP [RFC768]
 in the absence of these extensions that this document does not
 intend to change or a lesson learned from other protocol designs.

 1. UDP is stateless; UDP options do not change that fact.

 State required or maintained by the endpoints must be managed
 either by the application or a layer/library on behalf of the
 application. Reassembly of fragments is the only limited
 exception where this document introduces a notion of state to
 UDP.

 2. UDP is unidirectional; UDP options do not change that fact.

 Responses to options are initiated by the application or a
 layer/library on behalf of the application. A mechanism that
 requires bidirectionally needs to be defined in a separate
 document.

 3. UDP options have no length limit separate from that of the UDP
 packet itself.

 Past experience confirms that static length limits will always
 need to be exceeded. Each implementation can limit how long/many
 options there are, but the specification should not introduce
 such a limit.

 4. UDP options are not intended replace or replicate other
 protocols.

 This includes NTP, ICMP (notably echo), etc. UDP options are
 intended to introduce features useful for applications, not to
 either replace these other protocols nor to instrument UDP to
 replace the need for network testing devices.

https://datatracker.ietf.org/doc/html/rfc768

Touch Expires September 21, 2024 [Page 6]

Internet-Draft Transport Options for UDP March 2024

 5. UDP options are a framework, not a protocol.

 Options can be defined in this initial document even when the
 details are not sufficient to specify a complete protocol. Uses
 of such options may then be described or supplemented in other
 documents. Examples herein include REQ/RES and TIME; in both
 cases, the option format is defined, but the protocol that uses
 these is specified elsewhere (REQ/RES for DPLPMTUD [Fa24]) or
 left undefined (TIME).

 6. The UDP option mechanism and UDP options themselves should
 default to the same behavior experienced by a legacy receiver.

 By default, even when option checksums (OCS, APC),
 authentication, or encryption fail, every received packet is
 passed (possibly with an empty data payload) to the user
 application. Options that do not modify user data should (by
 default) result in the user data also being passed, even if,
 e.g., option checksums or authentication fails. It is always the
 user's obligation to override this default behavior explicitly.

 These principles are intended to enable the design and use of UDP
 options with minimal impact to legacy UDP endpoints, preferably
 none. UDP is - and remains - a minimal transport protocol.
 Additional capability is explicitly activated by user applications
 or libraries acting on their behalf.

 Finally, UDP options do not attempt to match the number of zero-
 length UDP datagrams received by legacy and option-aware receivers
 from a source using UDP options. Legacy receivers interpret every
 UDP fragment as a zero-length packet (because they do not perform
 reassembly), but option-aware receivers would reassemble the packet
 as a non-zero-length packet. Zero-length UDP packets have been used
 as "liveness" indicators see Section 5 of [RFC8085]), but such use
 is dangerous because they lack unique identifiers (the IPv6 base
 header has none, the IPv4 ID field is deprecated for such use
 [RFC6994]).

7. The UDP Option Area

 The UDP transport header includes demultiplexing and service
 identification (port numbers), an error detection checksum, and a
 field that indicates the UDP datagram length (including UDP header).
 The UDP Length field is typically redundant with the size of the
 maximum space available as a transport protocol payload, as
 determined by the IP header (see detail in Section 18). The UDP

https://datatracker.ietf.org/doc/html/rfc8085#section-5
https://datatracker.ietf.org/doc/html/rfc6994

Touch Expires September 21, 2024 [Page 7]

Internet-Draft Transport Options for UDP March 2024

 Option area is created when the UDP Length indicates a smaller
 transport payload than implied by the IP header.

 For IPv4, IP Total Length field indicates the total IP datagram
 length (including IP header) and the size of the IP options is
 indicated in the IP header (in 4-byte words) as the "Internet Header
 Length" (IHL), as shown in Figure 1 [RFC791]. As a result, the
 typical (and largest valid) value for UDP Length is:

 UDP_Length = IPv4_Total_Length - IPv4_IHL * 4

 +-+
 |Version| IHL | Diff Svcs | Total Length |
 +-+
 | Identification |Flags| Fragment Offset |
 +-+
 | Time to Live | Proto=17 (UDP)| Header Checksum |
 +-+
 | Source Address |
 +-+
 | Destination Address |
 +-+
 ... zero or more IP Options (using space as indicated by IHL) ...
 +-+
 | UDP Source Port | UDP Destination Port |
 +-+
 | UDP Length | UDP Checksum |
 +-+

 Figure 1 IPv4 datagram with UDP header

 For IPv6, the IP Payload Length field indicates the transport
 payload after the base IPv6 header, which includes the IPv6
 extension headers and space available for the transport protocol, as
 shown in Figure 2 [RFC8200]. Note that the Next HDR field in IPv6
 might not indicate UDP (i.e., 17), e.g., when intervening IP
 extension headers are present. For IPv6, the lengths of any
 additional IP extensions are indicated within each extension
 [RFC8200], so the typical (and largest valid) value for UDP Length
 is:

 UDP_Length = IPv6_Payload_Length - sum(extension header lengths)

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc8200

Touch Expires September 21, 2024 [Page 8]

Internet-Draft Transport Options for UDP March 2024

 +-+
 |Version| Traffic Class | Flow Label |
 +-+
 | Payload Length | Next Hdr | Hop Limit |
 +-+
 ...
 | Source Address (128 bits) |
 ...
 +-+
 ...
 | Destination Address (128 bits) |
 ...
 +-+
 ... zero or more IP Extension headers (each indicating size) ...
 +-+
 | UDP Source Port | UDP Destination Port |
 +-+
 | UDP Length | UDP Checksum |
 +-+

 Figure 2 IPv6 datagram with UDP header

 In both cases, the space available for the UDP packet is indicated
 by IP, either directly in the base header (for IPv4) or by adding
 information in the extensions (for IPv6). In either case, this
 document will refer to this available space as the "IP transport
 payload".

 As a result of this redundancy, there is an opportunity to use the
 UDP Length field as a way to break up the IP transport payload into
 two areas - that intended as UDP user data and an additional
 "surplus area" (as shown in Figure 3).

 IP transport payload
 <--->
 +--------+---------+----------------------+------------------+
 | IP Hdr | UDP Hdr | UDP user data | surplus area |
 +--------+---------+----------------------+------------------+
 <------------------------------>
 UDP Length

 Figure 3 IP transport payload vs. UDP Length

 In most cases, the IP transport payload and UDP Length point to the
 same location, indicating that there is no surplus area. This is not
 a requirement of UDP [RFC768] (discussed further in Section 18).
 This document uses the surplus area for UDP options.

https://datatracker.ietf.org/doc/html/rfc768

Touch Expires September 21, 2024 [Page 9]

Internet-Draft Transport Options for UDP March 2024

 The surplus area can commence at any valid byte offset, i.e., it
 need not be 16-bit or 32-bit aligned. In effect, this document
 redefines the UDP "Length" field as a "trailer options offset".

8. The UDP Surplus Area Structure

 UDP options use the entire surplus area, i.e., the contents of the
 IP payload after the last byte of the UDP payload. They commence
 with a 2-byte Option Checksum (OCS) field aligned to the first 2-
 byte boundary (relative to the start of the IP datagram) of that
 area, using zeroes for alignment. The UDP option area can be used
 with any UDP payload length (including zero, i.e., a UDP Length of
 8), as long as there remains enough space for the aligned OCS and
 the options used.

 >> UDP options MAY begin at any UDP length offset.

 >> Option area bytes used for alignment before the OCS MUST be zero.

 The OCS contains an optional ones-complement sum that detects errors
 in the surplus area, which is not otherwise covered by the UDP
 checksum, as detailed in Section 9.

 The remainder of the surplus area consists of options defined using
 a TLV (type, length, and optional value) syntax similar to that of
 TCP [RFC9293], as detailed in Section 10. These options continue
 until the end of the surplus area or can end earlier using the EOL
 (end of list) option, followed by zeroes (discussed further in

Section 10).

9. The Option Checksum (OCS)

 The Option Checksum (OCS) option is a conventional Internet checksum
 [RFC791] that detects errors in the surplus area. The OCS option
 contains a 16-bit checksum that is aligned to the first 2-byte
 boundary, preceded by zeroes for padding (if needed), as shown in
 Figure 4.

 +--------+--------+--------+--------+
 | UDP data | 0 |
 +--------+--------+--------+--------+
 | OCS | UDP options... |
 +--------+--------+--------+--------+

 Figure 4 UDP OCS format, here using one zero byte for alignment

https://datatracker.ietf.org/doc/html/rfc9293
https://datatracker.ietf.org/doc/html/rfc791

Touch Expires September 21, 2024 [Page 10]

Internet-Draft Transport Options for UDP March 2024

 The OCS consists of a 16-bit Internet checksum [RFC1071], computed
 over the surplus area and including the length of the surplus area
 as an unsigned 16-bit value. The OCS protects the surplus area from
 errors in a similar way that the UDP checksum protects the UDP user
 data (when not zero).

 The primary purpose of the OCS is to detect existing non-standard
 (i.e., non-option) uses of that area and accidental errors. It is
 not intended to detect attacks, as discussed further in Section 24.
 OCS is not intended to prevent future non-standard uses of the
 surplus area, nor does it enable shared use with mechanisms that do
 not comply with UDP options.

 The design enables traversal of errant middleboxes that incorrectly
 compute the UDP checksum over the entire IP payload [Fa18][Zu20],
 rather than only the UDP header and UDP payload (as indicated by the
 UDP header length). Because the OCS is computed over the surplus
 area and its length and then inverted, OCS effectively negates the
 effect that incorrectly including the surplus has on the UDP
 checksum. As a result, when OCS is non-zero, the UDP checksum is the
 same in either case.

 >> The OCS MUST be non-zero when the UDP checksum is non-zero.

 >> When the UDP checksum is zero, the OCS MAY be unused, and is then
 indicated by a zero OCS value.

 >> UDP option implementations MUST default to using OCS (i.e., as a
 non-zero value); users overriding that default take the risk of not
 detecting nonstandard uses of the option area (of which there are
 none currently known).

 Like the UDP checksum, the OCS is optional under certain
 circumstances and contains zero when not used. UDP checksums can be
 zero for IPv4 [RFC791] and for IPv6 [RFC8200] when UDP payload
 already covered by another checksum, as might occur for tunnels
 [RFC6935]. The same exceptions apply to the OCS when used to detect
 bit errors; an additional exception occurs for its use in the UDP
 datagram prior to fragmentation or after reassembly (see Section

11.4).

 The benefits are similar to allowing UDP checksums to be zero, but
 the risks differ. OCS is additionally important to ensure packets
 with UDP options can traverse errant middleboxes [Zu20]. When the
 cost of computing an OCS is negligible, it is better to use OCS to
 ensure such traversal. In cases where such traversal risks can
 safely be ignored, such as controlled environments, over paths where

https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc6935

Touch Expires September 21, 2024 [Page 11]

Internet-Draft Transport Options for UDP March 2024

 traversal is validated, or where upper layer protocols
 (applications, libraries, etc.) can adapt (by enabling OCS when
 packet exchange fails), and when bit errors at the UDP layer would
 be detected by other layers (as with the UDP checksum) OCS can be
 disabled, e.g., to conserve energy or processing resources or when
 it can improve performance. This is why zeroing OCS is only safe
 when UDP checksum is also zero, but why OCS might still be used in
 that case.

 The OCS covers the surplus area as formatted for transmission and is
 processed immediately upon reception.

 >> If the receiver validation of the OCS fails, all options MUST be
 ignored and the surplus area silently discarded.

 >> UDP user data that is validated by a correct UDP checksum MUST be
 delivered to the application layer, even if the OCS fails, unless
 the endpoints have negotiated otherwise for this UDP packet's socket
 pair.

 When not used (i.e., containing zero), the OCS is assumed to be
 "correct" for the purpose of accepting UDP datagrams at a receiver
 (see Section 14).

10. UDP Options

 UDP options are typically a minimum of two bytes in length as shown
 in Figure 5, excepting only the one-byte options "No Operation"
 (NOP) and "End of Options List" (EOL) described below.

 +--------+--------+-------
 | Kind | Length | (remainder of option...)
 +--------+--------+-------

 Figure 5 UDP option default format

 The Kind field is always one byte. The Length field is one byte for
 all lengths below 255 (including the Kind and Length bytes). A
 Length of 255 indicates use of the UDP option extended format shown
 in Figure 6. The Extended Length field is a 16-bit field in network
 standard byte order.

Touch Expires September 21, 2024 [Page 12]

Internet-Draft Transport Options for UDP March 2024

 +--------+--------+--------+--------+
 | Kind | 255 | Extended Length |
 +--------+--------+--------+--------+
 | (remainder of option...)
 +--------+--------+--------+--------+

 Figure 6 UDP option extended format

 >> The UDP length MUST be at least as large as the UDP header (8)
 and no larger than the IP transport payload. Datagrams with length
 values outside this range MUST be silently dropped as invalid and
 logged where rate-limiting permits.

 >> Option Lengths (or Extended Lengths, where applicable) smaller
 than the minimum for the corresponding Kind MUST be treated as an
 error. Such errors call into question the remainder of the surplus
 area and thus MUST result in all UDP options being silently
 discarded.

 >> Any UDP option other than EOL and NOP MAY use either the default
 or extended option formats.

 >> Any UDP option whose length is larger than 254 MUST use the UDP
 option extended format shown in Figure 6.

 >> For compactness, UDP options SHOULD use the smallest option
 format possible.

 >> UDP options MUST be interpreted in the order in which they occur
 in the surplus area.

 The following UDP options are currently defined:

Touch Expires September 21, 2024 [Page 13]

Internet-Draft Transport Options for UDP March 2024

 Kind Length Meaning
 --
 0* - End of Options List (EOL)
 1* - No operation (NOP)
 2* 6 Additional payload checksum (APC)
 3* 10/12 Fragmentation (FRAG)
 4* 4 Maximum datagram size (MDS)
 5* 4 Maximum reassembled datagram size (MRDS)
 6* 6 Request (REQ)
 7* 6 Response (RES)
 8 10 Timestamps (TIME)
 9 (varies) RESERVED for Authentication (AUTH)
 10-126 (varies) UNASSIGNED (assignable by IANA)
 127 (varies) RFC 3692-style experiments (EXP)
 128-191 RESERVED

 192 (varies) RESERVED for Compression (UCMP)
 193 (varies) RESERVED for Encryption (UENC)
 194-253 UNASSIGNED-UNSAFE (assignable by IANA)
 254 (varies) RFC 3692-style experiments (UEXP)
 255 RESERVED-UNSAFE

 Options indicated by Kind values in the range 0..191 are known as
 SAFE options because they do not interfere with use of that data by
 legacy endpoints or when the option is unsupported. Options
 indicated by Kind values in the range 192..255 are known as UNSAFE
 options because might interfere with use by legacy receiving
 endpoints (e.g., an option that alters the UDP data payload).

 UNSAFE option nicknames are expected to begin with capital "U",
 which should be avoided for SAFE option nicknames (see Section 25).
 RESERVED and RESERVED-UNSAFE are not assignable by IANA and not
 otherwise defined at this time. The AUTH, UCMP, and UENC
 reservations are intended for all future options supporting
 authentication, compression, and encryption, respectively, and
 remain reserved until assigned for those uses.

 Although the FRAG option modifies the original UDP payload contents
 (i.e., is UNSAFE with respect to the original UDP payload), it is
 used only in subsequent fragments with zero-length UDP user data
 payloads, thus is SAFE in actual use, as discussed further in

Section 11.4.

 These options are defined in the following subsections. Options 0
 and 1 use the same values as for TCP.

https://datatracker.ietf.org/doc/html/rfc3692
https://datatracker.ietf.org/doc/html/rfc3692

Touch Expires September 21, 2024 [Page 14]

Internet-Draft Transport Options for UDP March 2024

 >> An endpoint supporting UDP options MUST support those marked with
 a "*" above: EOL, NOP, APC, FRAG, MDS, MRDS, REQ, and RES. This
 includes both recognizing and being able to generate these options
 if configured to do so. These are called "must-support" options.

 >> All other SAFE options (without a "*") MAY be implemented, and
 their use SHOULD be determined either out-of-band or negotiated,
 notably if needed to detect when options are silently ignored by
 legacy receivers.

 >> Receivers supporting UDP options MUST silently ignore unknown
 SAFE options (i.e., in the same way a legacy receiver would ignore
 all UDP options). That includes options whose length does not
 indicate the specified value(s), as long as the length is not
 inherently invalid (i.e., smaller than 2 for the default and 4 for
 the extended formats).

 >> UNSAFE options MUST be used only with the FRAG option, in a
 manner that prevents them from being silently ignored while still
 passing up potentially modified UDP payload. This ensures their safe
 use in environments that might include legacy receivers (See Section

12), because the UDP payload occurs inside the FRAG option area and
 is silently discarded by legacy receivers.

 >> Receivers supporting UDP options that receive unsupported options
 in the UNSAFE range MUST terminate all option processing and MUST
 silently drop all UDP options in that datagram. See Section 12 for
 further discussion of UNSAFE options.

 >> Each option SHOULD NOT occur more than once in a single UDP
 datagram, the only exceptions being NOP, EXP, and UEXP. If an option
 other than these occurs more than once, a receiver MUST interpret
 only the first instance of that option and MUST ignore all others.

Section 24 provides additional advice for DOS issues that involve
 large numbers of options, whether valid, unknown, or repeating.

 >> EXP and UEXP MAY occur more than once, but SHOULD NOT occur more
 than once using the same ExID (see Sections 11.10 and 12.3).

 >> Only the OCS, AUTH, and UENC options include fields within the
 options that depend on the contents of the surplus area. AUTH and
 UENC are never used together, as UENC would serve both purposes.
 AUTH and UENC are always computed as if their hash and the OCS are
 zero; the OCS is always computed as if its contents are zero and
 after the AUTH or UENC hash has been computed. Future options MUST
 NOT be defined as having an option field value dependent on the
 remaining contents of the surplus area, i.e., the area after the

Touch Expires September 21, 2024 [Page 15]

Internet-Draft Transport Options for UDP March 2024

 last option (presumably EOL). Otherwise, interactions between those
 values, the OCS, and the AUTH and UENC options could be
 unpredictable. This does not prohibit future uses of the entire
 surplus area; space that would have occurred after the EOL can be
 used as a UDP option instead, i.e., rather than using the EOL option
 and trying to defining meaning beyond it, define a new option that
 uses the remaining surplus area as an option itself, in conjunction
 with an assigned UDP option codepoint and length to unambiguously
 indicate the meaning of that area. This also does not prohibit
 options that modify later options (in order of appearance within a
 packet), such as would typically be the case for compression (UCMP).

 >> Impossible lengths SHOULD be treated as an indication of a
 malformed surplus area and all options SHOULD silently be discarded.
 This includes lengths that imply a physical impossibility, e.g.,
 smaller than two for conventional options and four for extended
 length options. Lengths other than those expected result in safe
 options being ignored and skipped over, as with any other unknown
 safe option.

 Receivers cannot generally treat unexpected option lengths as
 invalid, as this would unnecessarily limit future revision of
 options (e.g., defining a new APC that is defined by having a
 different length).

 >> Option lengths MUST NOT exceed the IP length of the overall IP
 datagram. A receiver MUST drop all options in such a malformed
 packet and the event MAY be logged for diagnostics (logging SHOULD
 be rate limited).

 >> "Must-support" options other than NOP and EOL MUST be placed by
 the transmitter before other UDP options and a receiver MUST drop
 all UDP options in such malformed packet (i.e., in which this
 ordering is not honored) and that event MAY be logged for
 diagnostics (logging SHOULD be rate limited).

 The requirement that must-support options come before others is
 intended to allow for endpoints to implement DOS protection, as
 discussed further in Section 24.

11. SAFE UDP Options

 SAFE UDP options can be silently ignored by legacy receivers without
 affecting the meaning of the UDP user data. They stand in contrast
 to UNSAFE options, which modify UDP user data in ways that render it
 unusable by legacy receivers (Section 12). The following subsections
 describe SAFE options defined in this document.

Touch Expires September 21, 2024 [Page 16]

Internet-Draft Transport Options for UDP March 2024

11.1. End of Options List (EOL)

 The End of Options List (EOL, Kind=0) option indicates that there
 are no more options. It is used to indicate the end of the list of
 options without needing to use NOP options (see the following
 section) as padding to fill all available option space.

 +--------+
 | Kind=0 |
 +--------+

 Figure 7 UDP EOL option format

 >> When the UDP options do not consume the entire surplus area, the
 last non-NOP option MUST be EOL.

 >> NOPs SHOULD NOT be used as padding before the EOL option. As a
 one-byte option, EOL need not be otherwise aligned.

 >> All bytes in the surplus area after EOL MUST be set to zero on
 transmit.

 >> Bytes after EOL in the surplus area MAY be checked as being zero
 on receipt, but MUST NOT be otherwise processed (except for OCS
 calculation, which zeros would not affect) and MUST NOT be passed to
 the user (e.g., as part of the surplus area).

 Requiring the post-option surplus area to be zero prevents side-
 channel uses of this area, requiring instead that all use of the
 surplus area be UDP options supported by both endpoints. It is
 useful to allow this area to be used for zero padding to increase
 the UDP datagram length without affecting the UDP user data length,
 e.g., for UDP DPLPMTUD (Section 4.1 of [Fa24]).

11.2. No Operation (NOP)

 The No Operation (NOP, Kind=1) option is a one-byte placeholder,
 intended to be used as padding, e.g., to align multi-byte options
 along 16-bit, 32-bit, or 64-bit boundaries.

 +--------+
 | Kind=1 |
 +--------+

 Figure 8 UDP NOP option format

Touch Expires September 21, 2024 [Page 17]

Internet-Draft Transport Options for UDP March 2024

 >> UDP packets SHOULD NOT use more than seven consecutive NOPs,
 i.e., to support alignment up to 8-byte boundaries. UDP packets
 SHOULD NOT use NOPs at the end of the options area as a substitute
 for EOL followed by zero-fill. NOPs are intended to assist with
 alignment, not as other padding or fill.

 >> Receivers persistently experiencing packets with more than seven
 consecutive NOPs SHOULD log such events, at least occasionally, as a
 potential DOS indicator.

 NOPs are not reported to the user, whether used per-datagram or per-
 fragment (as defined in Section 11.4).

 This issue is discussed further in Section 24.

11.3. Additional Payload Checksum (APC)

 The Additional Payload Checksum (APC, Kind=2) option provides a
 stronger supplement to the checksum in the UDP header, using a 32-
 bit CRC of the conventional UDP user data payload only (excluding
 the IP pseudoheader, UDP header, and surplus area). It is not an
 alternative to the UDP checksum because it does not cover the IP
 pseudoheader or UDP header, and it is not a supplement to the OCS
 because the latter covers the surplus area only. Its purpose is to
 detect user data errors that the UDP checksum might not detect.

 A CRC32c has been chosen because of its ubiquity and use in other
 Internet protocols, including iSCSI and SCTP. The option contains
 the CRC32c in network standard byte order, as described in
 [RFC3385].

 +--------+--------+--------+--------+
 | Kind=2 | Len=6 | CRC32c... |
 +--------+--------+--------+--------+
 | CRC32c (cont.) |
 +--------+--------+

 Figure 9 UDP APC option format

 When present, the APC always contains a valid CRC checksum. There
 are no reserved values, including the value of zero. If the CRC is
 zero, this must indicate a valid checksum (i.e., it does not
 indicate that the APC is not used; instead, the option would simply
 not be included if that were the desired effect).

 APC does not protect the UDP pseudoheader; only the current UDP
 checksum provides that protection (when used). APC cannot provide

https://datatracker.ietf.org/doc/html/rfc3385

Touch Expires September 21, 2024 [Page 18]

Internet-Draft Transport Options for UDP March 2024

 that protection because it would need to be updated whenever the UDP
 pseudoheader changed, e.g., during NAT address and port translation.

 >> UDP packets with incorrect APC checksums SHOULD be passed to the
 application, e.g., with a flag indicating APC failure. This is the
 default behavior for APC.

 Like all SAFE UDP options, APC needs to be silently ignored when
 failing by default, unless the receiver has been configured to do
 otherwise. Although all UDP option-aware endpoints support APC
 (being in the required set), this silently-ignored behavior ensures
 that option-aware receivers operate the same as legacy receivers
 unless overridden. Another reason is because APC may fail even where
 the user data has not been corrupted, such as when its contents have
 been intentionally overwritten e.g. by a middlebox to update
 embedded ports numbers or IP addresses. Such overwrites could be
 intentional and not widely known; defaulting to silent ignore
 ensures that option-aware endpoints do not change how users or
 applications operate unless explicitly directed to do otherwise.

 >> UDP packets with unrecognized APC lengths MUST receive the same
 treatment as UDP packets with incorrect APC checksums.

 Ensuring that unrecognized APC lengths are treated as incorrect
 checksums enables future variants of APC to be treated as APC-like.

 APC is reported to the user and useful only per-datagram, because
 fragments have no UDP user data.

11.4. Fragmentation (FRAG)

 The Fragmentation (FRAG, Kind=3) option supports UDP fragmentation
 and reassembly, which can be used to transfer UDP messages larger
 than allowed by the IP receive MTU (EMTU_R [RFC1122]). FRAG includes
 a copy of the same UDP transport ports in each fragment, enabling
 them to traverse Network Address (and port) Translation (NAT)
 devices, in contrast to the behavior of IP fragments. FRAG is
 typically used with the UDP MDS and MRDS options to enable more
 efficient use of large messages, both at the UDP and IP layers. The
 design of FRAG is similar to that of the IPv6 Fragmentation Header
 [RFC8200], except that the UDP variant uses a 16-bit Offset measured
 in bytes, rather than IPv6's 13-bit Fragment Offset measured in 8-
 byte units. This UDP variant avoids creating reserved fields.

 The FRAG header also enables use of options that modify the contents
 of the UDP payload, such as encryption (UENC, see Sec. 12.2). Like
 fragmentation, such options would not be safely used on UDP payloads

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc8200

Touch Expires September 21, 2024 [Page 19]

Internet-Draft Transport Options for UDP March 2024

 because they would be misinterpreted by legacy receivers. FRAG
 allows use of these options, either on fragments or on a whole,
 unfragmented message (i.e., an "atomic" fragment at the UDP layer,
 similar to atomic IP datagrams [RFC6864]). This is safe because FRAG
 hides the payload from legacy receivers by placing it within the
 surplus area.

 >> When FRAG is present, it SHOULD come as early as possible in the
 UDP options list.

 When present, placing FRAG first can simplify some implementations,
 notably using hardware acceleration that assumes a fixed location
 for the FRAG option. However, there are cases where FRAG cannot
 occur first, such as when combined with per-fragment UENC or UCMP.
 In those cases, encryption or compression (or both) would precede
 FRAG when they also encrypt or compress the fragment option itself.
 Additional cases could include recoding, such as may be used to
 support forward error correction (FEC) over a group of fragments.
 FRAG not being first might result in software (so-called "slow
 path") option processing, or might also be accommodated via a small
 set of known cases.

 >> When FRAG is present, the UDP user data MUST be empty. If the
 user data is not empty, all UDP options MUST be silently ignored and
 the user data received sent to the user.

 Legacy receivers interpret FRAG messages as zero-length user data
 UDP packets (i.e., UDP Length field is 8, the length of just the UDP
 header), which would not affect the receiver unless the presence of
 the UDP packet itself were a signal (see Section 5 of [RFC8085]).
 In this manner, the FRAG option also helps hide UNSAFE options so
 they can be used more safely in the presence of legacy receivers.

 The FRAG option has two formats; non-terminal fragments use the
 shorter variant (Figure 10) and terminal fragments use the longer
 (Figure 11). The latter includes stand-alone fragments, i.e., when
 data is contained in the FRAG option but reassembly is not required.

 +--------+--------+--------+--------+
 | Kind=3 | Len=10 | Frag. Start |
 +--------+--------+--------+--------+
 | Identification |
 +--------+--------+--------+--------+
 | Frag. Offset |
 +--------+--------+

 Figure 10 UDP non-terminal FRAG option format

https://datatracker.ietf.org/doc/html/rfc6864
https://datatracker.ietf.org/doc/html/rfc8085#section-5

Touch Expires September 21, 2024 [Page 20]

Internet-Draft Transport Options for UDP March 2024

 Most fields are common to both FRAG option formats. The option Len
 field indicates whether there are more fragments (Len=10) or no more
 fragments (Len=12).

 Frag. Start indicates the location of the beginning of the fragment
 data, measured from the beginning of the UDP header of the fragment.
 The fragment data follows the remainder of the UDP options and
 continues to the end of the IP datagram (i.e., the end of the
 surplus area). Those options (i.e., any that precede or follow the
 FRAG option) are applied to this UDP fragment.

 The Frag. Offset field indicates the location of this fragment
 relative to the original UDP datagram (prior to fragmentation or
 after reassembly), measured from the start of the original UDP
 datagram's header.

 The Identification field is a 32-bit value that, when used in
 combination with the IP source address, UDP source port, IP
 destination address, and UDP destination port, uniquely identifies
 the original UDP datagram.

 +--------+--------+--------+--------+
 | Kind=3 | Len=12 | Frag. Start |
 +--------+--------+--------+--------+
 | Identification |
 +--------+--------+--------+--------+
 | Frag. Offset |Reass DgOpt Start|
 +--------+--------+--------+--------+

 Figure 11 UDP terminal FRAG option format

 The terminal FRAG option format adds a Reassembled Datagram Option
 Start (RDOS) pointer, measured from the start of the original UDP
 datagram header, indicating the end of the reassembled data and the
 start of the surplus area within the original UDP datagram. UDP
 options that apply to the reassembled datagram are contained in the
 partially reassembled surplus area, as indicated by RDOS. UDP
 options that occur within the fragment are processed on the fragment
 itself. This allows either pre-reassembly or post-reassembly UDP
 option effects, such as using UENC on each fragment while also using
 TIME on the reassembled datagram for round-trip latency
 measurements.

 An example showing the relationship between UDP fragments and the
 original UDP datagram is provided in Figure 12. In this example, the
 trailer containing per-datagram options resides entirely within the
 terminal fragment, but this need not always be the case.

Touch Expires September 21, 2024 [Page 21]

Internet-Draft Transport Options for UDP March 2024

 Constituent UDP Fragments Original UDP Datagram

 +-------------+------------+
 | Src Port | Dst Port |
 +-------------+------------+
 | UDP Len (8) | UDP Chksum |
 +-------------+------------+
 | OCS | K=3 L=10 | +-------------+------------+
 +-------------+------------+ | Src Port | Dst Port |
 ,--| Frag. Start | Identifi- ~ +-------------+------------+
 | +-------------+------------+ | UDP L.(RDOS)| UDP Chksum |
 | ~ cation | Frag. Off. |----->+-------------+------------+
 | +-------------+------------+ | Frag Data from 1st Frag. |
 | ~ Per Fragment Options ~ | . |
 '->+-------------+------------+ ~ . ~
 ~ Fragment Data ~ | . |
 +-------------+------------+ ,-->+-------------+------------+
 | | Frag Data from 2nd Frag. |
 +-------------+------------+ | | . |
 | Src Port | Dst Port | | ~ . ~
 +-------------+------------+ | | . |
 | UDP Len (8) | UDP Chksum | | ,>+-------------+------------+
 +-------------+------------+ | | | OCS | UDP Options|
 | OCS | K=3 L=12 | | | +-------------+ +
 +-------------+------------+ | | ~ . ~
 ,--| Frag. Start | Identifi- ~ | | +-------------+------------+
 | +-------------+------------+ | |
 | ~ cation | Frag. Off. |--' |
 | +-------------+------------+ |
 | | RDOS | Frag.Opts. | |
 '->+--|----------+------------+ |
 ~ | Fragment Data ~ |
 +--|----------+------------+ |
 | |
 '----------------------------'

 Figure 12 UDP fragments and Original UDP datagram

 The FRAG option does not need a "more fragments" bit because it
 provides the same indication by using the longer, 12-byte variant,
 as shown in Figure 11.

 >> The FRAG option MAY be used on a single fragment, in which case
 the Frag. Offset would be zero and the option would have the 12-byte
 format.

Touch Expires September 21, 2024 [Page 22]

Internet-Draft Transport Options for UDP March 2024

 >> Endpoints supporting UDP options MUST be capable of fragmenting
 and reassembling at least 2 fragments, for a total of at least 3,000
 bytes (see MRDS in Section 11.6).

 Use of the single fragment variant can be helpful in supporting use
 of UNSAFE options without undesirable impact to receivers that do
 not support either UDP options or the specific UNSAFE options.

 During fragmentation, the UDP header checksum of each fragment
 remains constant. It does not depend on the fragment data (which
 appears in the surplus area) because all fragments have a zero-
 length user data field.

 >> The Identification field is a 32-bit value that MUST be unique
 over the expected fragment reassembly timeout.

 >> The Identification field SHOULD be generated in a manner similar
 to that of the IPv6 Fragment ID [RFC8200].

 >> UDP fragments MUST NOT overlap.

 >> Similar to IPv6 reassembly [RFC8200], if any of the fragments
 being reassembled overlap with any other fragments being reassembled
 for the same UDP packet, reassembly of that UDP packet MUST be
 abandoned and all the fragments that have been received for that UDP
 packet must be discarded, and no ICMP error messages should be sent
 in this case (to avoid a potential DOS attack turning into an ICMP
 storm in the reverse direction).

 >> Note that fragments might be duplicated in the network. Instead
 of treating these exact duplicate fragments as overlapping
 fragments, an implementation MAY choose to detect this case and drop
 exact duplicate fragments while keeping the other fragments
 belonging to the same UDP packet.

 UDP fragmentation relies on a fragment expiration timer, which can
 be preset or could use a value computed using the UDP Timestamp
 option.

 >> The default UDP reassembly expiration timeout SHOULD be no more
 than 2 minutes.

 >> UDP reassembly expiration MUST NOT generate an ICMP error. Such
 events are not an IP error and can be addressed by the
 user/application layer if desired.

https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc8200

Touch Expires September 21, 2024 [Page 23]

Internet-Draft Transport Options for UDP March 2024

 >> UDP reassembly space SHOULD be limited to reduce the impact of
 DOS attacks on resource use.

 >> UDP reassembly space limits SHOULD NOT be computed as a shared
 resource across multiple sockets, to avoid cross-socketpair DOS
 attacks.

 >> Individual UDP fragments MUST NOT be forwarded to the user. The
 reassembled datagram is received only after complete reassembly,
 checksum validation, and continued processing of the remaining UDP
 options.

 Per-fragment UDP options, if used in addition to FRAG, occur before
 the fragment data. They typically occur after the FRAG option,
 except where they modify the FRAG option itself (e.g., UENC or
 UCMP). Per-fragment options are processed before the fragment is
 included in the reassembled datagram. Such options can be useful to
 protect the reassembly process itself, e.g., to prevent the
 reassembly cache from being polluted (using AUTH or UENC).

 >> Fragments of a single datagram MAY use different sets of options.
 It is expected to be computationally expensive to validate
 uniformity across all fragments and there may be legitimate reasons
 for including options in a fragment but not all fragments (e.g.,
 MDS, MRDS).

 If an option is used per-fragment but defined as not usable per-
 fragment, it is treated the same as any other unknown option.

 Per-datagram UDP options, if used, reside in the surplus area of the
 original UDP datagram. Processing of those options occurs after
 reassembly is complete. This enables the safe use of UNSAFE options,
 which are required to result in discarding the entire UDP datagram
 if they are unknown to the receiver or otherwise fail (see Section

12).

 In general, UDP packets are fragmented as follows:

Touch Expires September 21, 2024 [Page 24]

Internet-Draft Transport Options for UDP March 2024

 1. Create a UDP packet with data and UDP options. This is the
 original UDP datagram, which we will call "D". The UDP options
 follow the UDP user data and occur in the surplus area, just as
 in an unfragmented UDP datagram with UDP options.

 >> UDP options for the original packet MUST be fully prepared
 before the rest of the fragmentation steps that follow here.

 >> The UDP checksum of the original packet SHOULD be set to zero
 because it is never transmitted. Equivalent protection is
 provided if each fragment has a non-zero OCS value, as will be
 the case if each fragment's UDP checksum is non-zero. Similarly,
 the OCS value of the original packet SHOULD be zero if each
 fragment will have a non-zero OCS value, as will be the case if
 each fragment's UDP checksum is non-zero.

 2. Identify the desired fragment size, which we will call "S". This
 value should take into account the path MTU (if known) and allow
 space for per-fragment options.

 3. Fragment "D" into chunks of size no larger than "S"-12 each (10
 for the non-terminal FRAG option and 2 for OCS), with one final
 chunk no larger no larger than "S"-14 (12 for the terminal FRAG
 option and 2 for OCS). Note that all the per-datagram options in
 step #1 need not be limited to the terminal fragment, i.e., the
 RDOS pointer can indicate the start of the original surplus area
 anywhere in the reassembled datagram.

 Note: per packet options can occur either at the end of the
 original user data or be placed after the FRAG option of the
 first fragment, with the Reassembled Datagram Option Start (RDOS)
 in the terminal FRAG option set accordingly. This includes its
 use in atomic fragments, where the terminal option is the initial
 and only fragment.

 4. For each chunk of "D" in step #3, create a UDP packet with no
 user data (UDP Length=8) followed by the word-aligned OCS, the
 FRAG option, and any additional per-fragment UDP options,
 followed by the FRAG data chunk.

 5. Complete the processing associated with creating these additional
 per-fragment UDP options for each fragment.

 Receivers reverse the above sequence. They process all received
 options in each fragment. When the FRAG option is encountered, the
 FRAG data is used in reassembly. After all fragments are received,

Touch Expires September 21, 2024 [Page 25]

Internet-Draft Transport Options for UDP March 2024

 the entire UDP packet is processed with any trailing UDP options
 applying to the reassembled user data.

 >> Reassembly failures at the receiver result in silent discard of
 any per-fragment options and fragment contents and such failures
 SHOULD NOT generate zero-length frames to the user.

 >> Finally, because fragmentation processing can be expensive, the
 FRAG option SHOULD be avoided unless the original datagram requires
 fragmentation or it is needed for "safe" use of UNSAFE options.

 >> Users MAY also select the FRAG option to provide limited support
 for UDP options in systems that have access to only the initial
 portion of the data in incoming or outgoing packets, with the caveat
 that such packets would be silently ignored by legacy receivers
 (that do not support UDP options).

 FRAG is not reported to the user, whether used per-datagram or per-
 fragment (as defined in Section 11.4).

11.5. Maximum Datagram Size (MDS)

 The Maximum Datagram Size (MDS, Kind=4) option is a 16-bit hint of
 the largest unfragmented UDP packet that an endpoint believes can be
 received. As with the TCP Maximum Segment Size (MSS) option
 [RFC9293], the size indicated is the IP layer MTU decreased by the
 fixed IP and UDP headers only [RFC9293]. The space needed for IP and
 UDP options needs to be adjusted by the sender when using the value
 indicated. The value transmitted is based on EMTU_R, the largest IP
 datagram that can be received (i.e., reassembled at the receiver)
 [RFC1122]. However, as with TCP, this value is only a hint at what
 the receiver believes.

 >> MDS does not indicate a known path MTU and thus MUST NOT be used
 to limit transmissions.

 +--------+--------+--------+--------+
 | Kind=4 | Len=4 | MDS size |
 +--------+--------+--------+--------+

 Figure 13 UDP MDS option format

 >> The UDP MDS option MAY be used as a hint for path MTU discovery
 [RFC1191][RFC8201], but this may be difficult because of known
 issues with ICMP blocking [RFC2923] as well as UDP lacking automatic
 retransmission.

https://datatracker.ietf.org/doc/html/rfc9293
https://datatracker.ietf.org/doc/html/rfc9293
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2923

Touch Expires September 21, 2024 [Page 26]

Internet-Draft Transport Options for UDP March 2024

 MDS is more likely to be useful when coupled with IP source
 fragmentation or UDP fragmentation to limit the largest reassembled
 UDP message as indicated by MRDS (see Section 11.6), e.g., when
 EMTU_R is larger than the required minimums (576 for IPv4 [RFC791]
 and 1500 for IPv6 [RFC8200]).

 >> MDS can be used with DPLPMTUD [RFC8899] to provide a hint to the
 packetization layer path MTU (PLPMTU) value, though it MUST NOT
 prohibit transmission of larger UDP packets used as DPLPMTUD probes.

 MDS is reported to the user, whether used per-datagram or per-
 fragment (as defined in Section 11.4). When used per-fragment, the
 report should be the minimum of the MDS values received per-
 fragment.

11.6. Maximum Reassembled Datagram Size (MRDS)

 The Maximum Reassembled Datagram Size (MRDS, Kind=5) option is a 16-
 bit indicator of the largest reassembled UDP datagram that can be
 received. MRDS is the UDP equivalent of IP's EMTU_R but the two are
 not related [RFC1122]. Using the FRAG option (Section 11.4), UDP
 packets can be transmitted as transport fragments, each in their own
 (presumably not fragmented) IP datagram and be reassembled at the
 UDP layer.

 +--------+--------+--------+--------+
 | Kind=5 | Len=4 | MRDS size |
 +--------+--------+--------+--------+

 Figure 14 UDP MRDS option format

 >> Endpoints supporting UDP options MUST support a local MRDS of at
 least 3,000 bytes.

 NOPs are not reported to the user, whether used per-datagram or per-
 fragment (as defined in Section 11.4).

 MRDS is reported to the user, whether used per-datagram or per-
 fragment (as defined in Section 11.4). When used per-fragment, the
 report should be the minimum of the MRDS values received per-
 fragment.

11.7. Echo request (REQ) and echo response (RES)

 The echo request (REQ, Kind=6) and echo response (RES, Kind=7)
 options provides UDP packet-level acknowledgements as a capability
 for use by upper layer protocols, e.g., user applications,

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc8899
https://datatracker.ietf.org/doc/html/rfc1122

Touch Expires September 21, 2024 [Page 27]

Internet-Draft Transport Options for UDP March 2024

 libraries, operating systems, etc. Both the REQ and RES are under
 the control of these upper layers, i.e., UDP itself never
 automatically responds to a REQ with a RES. Instead, the REQ is
 delivered to the upper layer, which decides whether and when to
 issue a RES.

 One such use is described as part of DPLPMTUD [Fa24]. The options
 both have the format indicated in Figure 15, in which the token has
 no internal structure or meaning.

 +--------+--------+------------------+
 | Kind | Len=6 | token |
 +--------+--------+------------------+
 1 byte 1 byte 4 bytes

 Figure 15 UDP REQ and RES options format

 >> As advice to upper layer protocol/library designers, when
 supporting REQ/RES and responding with a RES, the upper layer SHOULD
 respond with the most recently received REQ token.

 >> REQ/RES MUST be disabled by default, i.e., arriving REQs are
 silently ignored and RES cannot be issued unless REQ/RES is actively
 enabled, e.g., for DPLPMTUD or other known use by an upper layer
 mechanism.

 For example, an application needs to explicitly enable the
 generation of a RES response by DPLPMTUD when using UDP Options
 [Fa24].

 >> The token transmitted in a RES option MUST be a token received in
 a REQ option by the transmitter. This ensures that the response is
 to a received request.

 REQ and RES option kinds appear at most once each in each UDP
 packet, as with most other options. Note also that the FRAG option
 is not used when sending DPLPMTUD probes to determine a PLPMTU
 [Fa24].

 REQ and RES are reported to the user, whether used per-datagram or
 per-fragment (as defined in Section 11.4). When used per-fragment,
 the report should indicate the most recently received token.

11.8. Timestamps (TIME)

 The Timestamp (TIME, Kind=8) option exchanges two four-byte unsigned
 timestamp fields. It serves a similar purpose to TCP's TS option

Touch Expires September 21, 2024 [Page 28]

Internet-Draft Transport Options for UDP March 2024

 [RFC7323], enabling UDP to estimate the round-trip time (RTT)
 between hosts. For UDP, this RTT can be useful for establishing UDP
 fragment reassembly timeouts or transport-layer rate-limiting
 [RFC8085].

 +--------+--------+------------------+------------------+
 | Kind=8 | Len=10 | TSval | TSecr |
 +--------+--------+------------------+------------------+
 1 byte 1 byte 4 bytes 4 bytes

 Figure 16 UDP TIME option format

 TS Value (TSval) and TS Echo Reply (TSecr) are used in a similar
 manner to the TCP TS option [RFC7323]. On transmitted UDP packets
 using the option, TS Value is always set based on the local "time"
 value. Received TSval and TSecr values are provided to the
 application, which can pass the TSval value to be used as TSecr on
 UDP messages sent in response (i.e., to echo the received TSval). A
 received TSecr of zero indicates that the TSval was not echoed by
 the transmitter, i.e., from a previously received UDP packet.

 >> TIME MAY use an RTT estimate based on nonzero Timestamp values as
 a hint for fragmentation reassembly, rate limiting, or other
 mechanisms that benefit from such an estimate.

 >> an application MAY use TIME to compute this RTT estimate for
 further use by the user.

 UDP timestamps are modeled after TCP timestamps and have similar
 expectations. In particular, they are expected to be:

 o Values are monotonic and non-decreasing except for anticipated
 number-space rollover events

 o Values should "increase" (allowing for rollover, i.e., modulo the
 field size excepting zero) according to a typical 'tick' time

 o A request is defined as TSval being non-zero and a reply is
 defined as TSecr being non-zero.

 o A receiver should always respond to a request with the highest
 TSval received (allowing for rollover), which is not necessarily
 the most recently received.

 Rollover can be handled as a special case or more completely using
 sequence number extension [RFC9187], however zero values need to be
 avoided explicitly.

https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc9187

Touch Expires September 21, 2024 [Page 29]

Internet-Draft Transport Options for UDP March 2024

 >> TIME values MUST NOT use zeros as valid time values, because they
 are used as indicators of requests and responses.

 TIME is reported to the user, whether used per-datagram or per-
 fragment (as defined in Section 11.4). When used per-fragment, the
 report should be the minimum and maximum of each of the timestamp
 values received per-fragment.

 >> Use of TIME per-fragment is NOT RECOMMENDED. Exceptions include
 supporting diagnostics on the reassembly process itself, which may
 be more appropriate to handle within the UDP option processing
 implementation.

11.9. Authentication (AUTH), RESERVED Only

 The Authentication (AUTH, Kind=9) option is reserved for all UDP
 authentication mechanisms [To24]. AUTH is expected to cover the UDP
 user data and UDP options, with possible additional coverage of
 portions of the IP and UDP headers and potentially also support for
 NAT traversal, in a similar manner as TCP-AO [RFC6978].

 Like APC, AUTH is a SAFE option because it would not modify the UDP
 user data. AUTH may fail even where the user data has not been
 corrupted, such as when its contents have been overwritten. Such
 overwrites could be intentional and not widely known; defaulting to
 silent ignore ensures that option-aware endpoints do not change how
 users or applications operate unless explicitly directed to do
 otherwise.

11.10. Experimental (EXP)

 The Experimental option (EXP, Kind=127) is allocated for experiments
 [RFC3692]. Only one such value is allocated because experiments are
 expected to use an Experimental ID (ExIDs) to differentiate
 concurrent use for different purposes, using UDP ExIDs registered
 with IANA according to the approach developed for TCP experimental
 options [RFC6994].

 +----------+----------+----------+----------+
 | Kind=127 | Len | UDP ExID |
 +----------+----------+----------+----------+
 | (option contents, as defined)... |
 +----------+----------+----------+----------+

 Figure 17 UDP EXP option format

https://datatracker.ietf.org/doc/html/rfc6978
https://datatracker.ietf.org/doc/html/rfc3692
https://datatracker.ietf.org/doc/html/rfc6994

Touch Expires September 21, 2024 [Page 30]

Internet-Draft Transport Options for UDP March 2024

 >> The length of the experimental option MUST be at least 4 to
 account for the Kind, Length, and the 16-bit UDP ExID identifier
 (similar to TCP ExIDs [RFC6994]).

 The UDP EXP option uses only 16-bit ExIDs, unlike TCP ExiDs. In TCP,
 the first 16 bits of the ExID is unique; the additional 16 bits,
 where present, iss used to decrease the chance of the entire ExID
 occurring in legacy use of the TCP EXP option. This extended variant
 provides no similar use for UDP EXP because ExIDs are required.

 The UDP EXP option also includes an extended length format, where
 the option LEN is 255 followed by two bytes of extended length.

 +----------+----------+----------+----------+
 | Kind=127 | 255 | Extended Length |
 +----------+----------+----------+----------+
 | UDP ExID |(option contents...) |
 +----------+----------+----------+----------+

 Figure 18 UDP EXP extended option format

 Assigned UDP experimental IDs (ExIDs) assigned from a single
 registry managed by IANA (see Section 25). Assigned ExIDs can be
 used in either the EXP or UEXP options (see Section 12.3 for the
 latter).

12. UNSAFE Options

 UNSAFE options are not safe to ignore and can be used
 unidirectionally or without soft-state confirmation of UDP option
 capability. They are always used only when the user data occurs
 inside a reassembled set of one or more UDP fragments, such that if
 UDP fragmentation is not supported, the enclosed UDP user data would
 be silently dropped anyway.

 >> Applications using UNSAFE options SHOULD NOT also use zero-length
 UDP packets as signals, because they will arrive when UNSAFE options
 fail. Those that choose to allow such packets MUST account for such
 events.

 >> UNSAFE options MUST be used only as part of UDP fragments, used
 either per-fragment or after reassembly.

 >> Receivers supporting UDP options MUST silently drop the UDP user
 data of the reassembled datagram if any fragment or the entire
 datagram includes an UNSAFE option whose UKind is not supported or

https://datatracker.ietf.org/doc/html/rfc6994

Touch Expires September 21, 2024 [Page 31]

Internet-Draft Transport Options for UDP March 2024

 if an UNSAFE option appears outside the context of a fragment or
 reassembled fragments.

12.1. UNSAFE Compression (UCMP)

 The UNSAFE Compression (UCMP, Kind=192) option is reserved for all
 UDP compression mechanisms. UCMP is expected to cover the UDP user
 data and some (e.g., later, in sequence) UDP options.

12.2. UNSAFE Encryption (UENC)

 The UNSAFE Encryption (UENC, Kind=193) option is reserved for all
 UDP encryption mechanisms. UENC is expected to cover the UDP user
 data and some (e.g., later, in sequence) UDP options, with possible
 additional protection of portions of the IP and UDP headers and
 potentially also support for NAT traversal, in a similar manner as
 TCP-AO [RFC6978].

12.3. UNSAFE Experimental (UEXP)

 The UNSAFE Experimental option (UEXP, Kind=254) is reserved for
 experiments [RFC3692]. As with EXP, only one such UEXP value is
 reserved because experiments are expected to use an Experimental ID
 (ExIDs) to differentiate concurrent use for different purposes,
 using UDP ExIDs registered with IANA according to the approach
 developed for TCP experimental options [RFC6994].

 Assigned ExIDs can be used with either the UEXP or EXP options.

13. Rules for designing new options

 The UDP option Kind space allows for the definition of new options,
 however the currently defined options do not allow for arbitrary new
 options. The following is a summary of rules for new options and
 their rationales:

 >> New options MUST NOT modify the content of options that precede
 them (in order of appearance and thus processing).

 >> The fields of new options MUST NOT depend on the content of other
 options.

 UNSAFE options can both depend on and vary user data content because
 they are contained only inside UDP fragments and thus are processed
 only by UDP option capable receivers.

https://datatracker.ietf.org/doc/html/rfc6978
https://datatracker.ietf.org/doc/html/rfc3692
https://datatracker.ietf.org/doc/html/rfc6994

Touch Expires September 21, 2024 [Page 32]

Internet-Draft Transport Options for UDP March 2024

 >> New options MUST NOT declare their order relative to other
 options, whether new or old, even as a preference.

 >> At the sender, new options MUST NOT modify UDP packet content
 anywhere except within their option field, excepting only those
 contained within the UNSAFE option; areas that need to remain
 unmodified include the IP header, IP options, the UDP user data, and
 the surplus area (i.e., other options).

 >> Options MUST NOT be modified in transit. This includes those
 already defined as well as new options.

 >> New options MUST NOT require or allow that any UDP options
 (including themselves) or the remaining surplus area be modified in
 transit.

 >> All options MUST indicate whether they can be used per-fragment,
 and, if so, MUST also indicate how their success or failure is
 reported to the user. This document RECOMMENDS that options be
 useful per-fragment and also RECOMMENDS that options used per-
 fragment be reported to the user as a finite aggregate (e.g., a sum,
 a flag, etc.) rather than individually.

 Note that only certain of the initially defined options violate
 these rules:

 o >> The FRAG option modifies UDP user data, splitting it across
 multiple IP packets. UNSAFE options MAY modify the UDP user data,
 e.g., by encryption, compression, or other transformations. All
 other (SAFE) options MUST NOT modify the UDP user data.

 The following recommendation helps enable efficient zero-copy
 processing:

 o >> FRAG SHOULD be the first option, when present.

14. Option inclusion and processing

 The following rules apply to option inclusion by senders and
 processing by receivers.

 >> Senders MAY add any option, as configured by the API.

 >> All "must-support" options MUST be processed by receivers, if
 present (presuming UDP options are supported at that receiver).

Touch Expires September 21, 2024 [Page 33]

Internet-Draft Transport Options for UDP March 2024

 >> Non-"must-support" options MAY be ignored by receivers, if
 present, e.g., based on API settings.

 >> All options MUST be processed by receivers in the order
 encountered in the options area.

 >> All options except UNSAFE options MUST result in the UDP user
 data being passed to the application layer, regardless of whether
 all options are processed, supported, or succeed.

 The basic premise is that, for options-aware endpoints, the sender
 decides what options to add and the receiver decides what options to
 handle. Simply adding an option does not force work upon a receiver,
 with the exception of the "must-support" options.

 Upon receipt, the receiver checks various properties of the UDP
 packet and its options to decide whether to accept or drop the UDP
 packet and whether to accept or ignore some of its options as
 follows (in order):

 if the UDP checksum fails then
 silently drop the entire UDP packet (per RFC1122)
 if the UDP checksum passes or is zero then
 if ((OCS != 0 and fails or OCS == 0)
 and UDP CS != 0) then
 deliver the UDP user data but ignore other options
 (this is required to emulate legacy behavior)
 if (OCS != 0 and passes) or
 (OCS == 0 and UDP CS == 0) then
 deliver the UDP user data after parsing
 and processing the rest of the options,
 regardless of whether each is supported or succeeds
 (again, this is required to emulate legacy behavior)

 The design of the UNSAFE options as used only inside the FRAG area
 ensures that the resulting UDP data will be silently dropped in both
 legacy and options-aware receivers. Again, note that this still
 results in the delivery of a zero-length UDP packet.

 Options-aware receivers can drop UDP packets with option processing
 errors via either an override of the default UDP processing or at
 the application layer.

 I.e., all options are treated the same, in that the transmitter can
 add it as desired and the receiver has the option to require it or
 not. Only if it is required (e.g., by API configuration) should the
 receiver require it being present and correct.

https://datatracker.ietf.org/doc/html/rfc1122

Touch Expires September 21, 2024 [Page 34]

Internet-Draft Transport Options for UDP March 2024

 I.e., for all options:

 o if the option is not required by the receiver, then UDP packets
 missing the option are accepted.

 o if the option is required (e.g., by override of the default
 behavior at the receiver) and missing or incorrectly formed,
 silently drop the UDP packet.

 o if the UDP packet is accepted (either because the option is not
 required or because it was required and correct), then pass the
 option with the UDP packet via the API. Note that FRAG, NOP, and
 EOL are not passed to the user (see Section 15).

 Any options whose length exceeds that of the UDP packet (i.e.,
 intending to use data that would have been beyond the surplus area)
 should be silently ignored (again to model legacy behavior).

15. UDP API Extensions

 UDP currently specifies an application programmer interface (API),
 summarized as follows (with Unix-style command as an example)
 [RFC768]:

 o Method to create new receive ports

 o E.g., bind(handle, recvaddr(optional), recvport)

 o Receive, which returns data octets, source port, and source
 address

 o E.g., recvfrom(handle, srcaddr, srcport, data)

 o Send, which specifies data, source and destination addresses, and
 source and destination ports

 o E.g., sendto(handle, destaddr, destport, data)

 This API is extended to support options as follows:

 o Extend the method to create receive ports to include per-packet
 and per-fragment receive options that are required or omitted as
 indicated by the application.

 >> Datagrams not containing these required options MUST be
 silently dropped and MAY be logged.

https://datatracker.ietf.org/doc/html/rfc768

Touch Expires September 21, 2024 [Page 35]

Internet-Draft Transport Options for UDP March 2024

 o Extend the receive function to indicate the per-packet options
 and their parameters as received with the corresponding received
 datagram. Note that per-fragment options are handled within the
 processing of each fragment.

 >> Options and their processing status (success/fail) MUST be
 available to the user (i.e., application layer or upper layer
 protocol/service), both for the packet and for the fragment set,
 except for FRAG, NOP, and EOL; those three options are handled
 within UDP option processing only. As a reminder (from Section

14), all options except UNSAFE options MUST result in the UDP
 user data being passed to the application layer, regardless of
 whether all options are processed, supported, or succeed.

 o For fragments, success for an option is reported only when all
 fragments succeed for that option.

 >> Per-fragment option status reporting SHOULD default as needed
 (e.g., not computed and/or not passed up to the upper layers) to
 minimize overhead unless actively requested (e.g., by the
 user/application layer).

 o >> SAFE options associated with fragments are accumulated when
 associated with the reassembled packet; values MAY be coalesced,
 e.g., to indicate only that an AUTH failure of a fragment
 occurred or not rather than indicating the AUTH status of each
 fragment.

 o Extend the send function to indicate the options to be added to
 the corresponding sent datagram. This includes indicating which
 options apply to individual fragments vs. which apply to the UDP
 packet prior to fragmentation, if fragmentation is enabled. This
 includes a minimum datagram length, such that the options list
 ends in EOL and additional space is zero-filled as needed. It
 also includes a maximum fragment size, e.g., as discovered by
 DPLPMTUD, whether implemented at the application layer per
 [RFC8899] or in conjunction with other UDP options [Fa24].

 Examples of API instances for Linux and FreeBSD are provided in
Appendix A, to encourage uniform cross-platform implementations.

 APIs are not intended to provide user control over option order,
 especially on a per-packet basis, as this could create a covert
 channel (see Section 24). Similarly, APIs are not intended to
 provide user/application control over UDP fragment boundaries on a
 per-packet basis, although they are expected to allow control over
 which options, including fragmentation, are enabled (or disabled) on

https://datatracker.ietf.org/doc/html/rfc8899

Touch Expires September 21, 2024 [Page 36]

Internet-Draft Transport Options for UDP March 2024

 a per-packet basis. Such control over fragmentation is critical to
 DPLPMTUD.

16. UDP Options are for Transport, Not Transit

 UDP options are indicated in the surplus area of the IP payload that
 is not used by UDP. That area is really part of the IP payload, not
 the UDP payload, and as such, it might be tempting to consider
 whether this is a generally useful approach to extending IP.

 Unfortunately, the surplus area exists only for transports that
 include their own transport layer payload length indicator. TCP and
 SCTP include header length fields that already provide space for
 transport options by indicating the total length of the header area,
 such that the entire remaining area indicated in the network layer
 (IP) is transport payload. UDP-Lite already uses the UDP Length
 field to indicate the boundary between data covered by the transport
 checksum and data not covered, and so there is no remaining area
 where the length of the UDP-Lite payload as a whole can be indicated
 [RFC3828].

 UDP options are transport options. They are no more (or less)
 appropriate to be modified in-transit than any other portion of the
 transport datagram.

 >> Generally, transport headers, options, and data are not intended
 to be modified in-transit. UDP options are no exception and here are
 specified as "MUST NOT" be altered in transit."

 However, note that the UDP option mechanism provides no specific
 protection against in-transit modification of the UDP header, UDP
 payload, or surplus area, except as provided by the OCS or the
 options selected (e.g., AUTH or UENC).

 Unless protected by encryption (e.g., UENC or via other layers,
 e.g., IPsec), UDP options remain visible to devices on the network
 path.

17. UDP options vs. UDP-Lite

 UDP-Lite provides partial checksum coverage, so that UDP packets
 with errors in some locations can be delivered to the user
 [RFC3828]. It uses a different transport protocol number (136) than
 UDP (17) to interpret the UDP Length field as the prefix covered by
 the UDP checksum.

https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc3828

Touch Expires September 21, 2024 [Page 37]

Internet-Draft Transport Options for UDP March 2024

 UDP (protocol 17) already defines the UDP Length field as the limit
 of the UDP checksum, but by default also limits the data provided to
 the application as that which precedes the UDP Length. A goal of
 UDP-Lite is to deliver data beyond UDP Length as a default, which is
 why a separate transport protocol number was required.

 UDP options do not use or need a separate transport protocol number
 because the data beyond the UDP Length offset (surplus data) is not
 provided to the application by default. That data is interpreted
 exclusively within the UDP transport layer.

 UDP-Lite cannot support UDP options, either as proposed here or in
 any other form, because the entire payload of the UDP packet is
 already defined as user data and there is no additional field in
 which to indicate a surplus area for options. The UDP Length field
 in UDP-Lite is already used to indicate the boundary between user
 data covered by the checksum and user data not covered.

18. Interactions with Legacy Devices

 It has always been permissible for the UDP Length to be inconsistent
 with the IP transport payload length [RFC768]. Such inconsistency
 has been utilized in UDP-Lite using a different transport number.
 There are no known systems that use this inconsistency for UDP
 [RFC3828]. It is possible that such use might interact with UDP
 options, i.e., where legacy systems might generate UDP datagrams
 that appear to have UDP options. The OCS provides protection against
 such events and is stronger than a static "magic number".

 UDP options have been tested as interoperable with Linux, macOS, and
 Windows Cygwin, and worked through NAT devices. These systems
 successfully delivered only the user data indicated by the UDP
 Length field and silently discarded the surplus area.

 One reported embedded device passes the entire IP datagram to the
 UDP application layer. Although this feature could enable
 application-layer UDP option processing, it would require that
 conventional UDP user applications examine only the UDP user data.
 This feature is also inconsistent with the UDP application interface
 [RFC768] [RFC1122].

 It has been reported that Alcatel-Lucent's "Brick" Intrusion
 Detection System has a default configuration that interprets
 inconsistencies between UDP Length and IP Length as an attack to be
 reported. Note that other firewall systems, e.g., CheckPoint, use a
 default "relaxed UDP length verification" to avoid falsely
 interpreting this inconsistency as an attack.

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc1122

Touch Expires September 21, 2024 [Page 38]

Internet-Draft Transport Options for UDP March 2024

 There are known uses of UDP exchanges of zero-length UDP user data
 packets, notably in the TIME protocol [RFC868]. The need to support
 such packets is also noted in the UDP usage guidelines [RFC8085].
 Some of the mechanisms in this document can generate more zero-
 length UDP packets for a UDP option aware endpoint than for a legacy
 (non-aware) endpoint (e.g., based some error conditions) and some
 can generate fewer (e.g., fragment reassembly). Because such packets
 inherently carry no unique transport header or transport content,
 endpoints are already expected to be tolerant of their (inadvertent)
 replication or loss by the network, so such variations are not
 expected to be problematic.

19. Options in a Stateless, Unreliable Transport Protocol

 There are two ways to interpret options for a stateless, unreliable
 protocol -- an option is either local to the message or intended to
 affect a stream of messages in a soft-state manner. Either
 interpretation is valid for defined UDP options.

 It is impossible to know in advance whether an endpoint supports a
 UDP option.

 >> All UDP options other than UNSAFE ones MUST be ignored if not
 supported or upon failure (e.g., APC).

 >> All UDP options that fail MUST result in the UDP data still being
 sent to the application layer by default, to ensure equivalence with
 legacy devices.

 UDP options that rely on soft-state exchange need allow for message
 reordering and loss, in the same way as UDP applications [RFC8085].

 The above requirements prevent using any option that cannot be
 safely ignored unless it is hidden inside the FRAG area (i.e.,
 UNSAFE options). Legacy systems also always need to be able to
 interpret the transport fragments as individual UDP packets.

20. UDP Option State Caching

 Some TCP connection parameters, stored in the TCP Control Block, can
 be usefully shared either among concurrent connections or between
 connections in sequence, known as TCP Sharing [RFC9040]. Although
 UDP is stateless, some of the options proposed herein may have
 similar benefit in being shared or cached. We call this UCB Sharing,
 or UDP Control Block Sharing, by analogy. Just as TCB sharing is not
 a standard because it is consistent with existing TCP
 specifications, UCB sharing would be consistent with existing UDP

https://datatracker.ietf.org/doc/html/rfc868
https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/rfc9040

Touch Expires September 21, 2024 [Page 39]

Internet-Draft Transport Options for UDP March 2024

 specifications, including this one. Both are implementation issues
 that are outside the scope of their respective specifications, and
 so UCB sharing is outside the scope of this document.

21. Updates to RFC 768

 This document updates RFC 768 as follows:

 o This document defines the meaning of the IP payload area beyond
 the UDP length but within the IP length as the surplus area used
 herein for UDP options.

 o This document extends the UDP API to support the use of UDP
 options.

22. Interactions with other RFCs (and drafts)

 This document clarifies the interaction between UDP Length and IP
 length that is not explicitly constrained in either UDP or the host
 requirements [RFC768] [RFC1122].

 Teredo extensions (TE) define use of a similar difference between
 these lengths for trailers [RFC4380][RFC6081]. TE defines the length
 of an IPv6 payload inside UDP as pointing to less than the end of
 the UDP payload, enabling trailing options for that IPv6 packet:

 "..the IPv6 packet length (i.e., the Payload Length value in
 the IPv6 header plus the IPv6 header size) is less than or
 equal to the UDP payload length (i.e., the Length value in
 the UDP header minus the UDP header size)"

 UDP options are not affected by the difference between the UDP user
 payload end and the payload IPv6 end; both would end at the UDP user
 payload, which could end before the enclosing IPv4 or IPv6 header
 indicates - allowing UDP options in addition to the trailer options
 of the IPv6 payload. The result, if UDP options were used, is shown
 in Figure 19.

Touch Expires September 21, 2024 [Page 40]

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc4380

Internet-Draft Transport Options for UDP March 2024

 Outer IP Length
 <-->
 +--------+---------+------------------------------+----------+
 | IP Hdr | UDP Hdr | IPv6 packet/len | TE trailer | surplus |
 +--------+---------+------------------------------+----------+
 <--------------->
 Inner IPv6 Length
 <-------------------------------------->
 UDP Length

 Figure 19 TE trailers and UDP options used concurrently

 UDP options cannot be supported when a UDP packet has no independent
 UDP Length. The only known such case is when UDP Length==0 in IPv6,
 intended for (but not limited to) IPv6 Jumbograms [RFC2675]. Note
 that although this technique is "Standard", the specification did
 not "update" UDP [RFC768]. The technique has been proposed for
 deprecation [Jo19].

 This document is consistent the UDP profile for Robust Header
 Compression (ROHC)[RFC3095], noted here:

 "The Length field of the UDP header MUST match the Length
 field(s) of the preceding subheaders, i.e., there must not
 be any padding after the UDP payload that is covered by the
 IP Length."

 ROHC compresses UDP headers only when this match succeeds. It does
 not prohibit UDP headers where the match fails; in those cases, ROHC
 default rules (Section 5.10) would cause the UDP header to remain
 uncompressed. Upon receipt of a compressed UDP header, Section A.1.3
 of that document indicates that the UDP length is "INFERRED"; in
 uncompressed packets, it would simply be explicitly provided.

 This issue of handling UDP header compression is more explicitly
 described in more recent specifications, e.g., Sec. 10.10 of Static
 Context Header Compression [RFC8724].

23. Multicast Considerations

 UDP options are primarily intended for unicast use. Using these
 options over multicast IP requires careful consideration, e.g., to
 ensure that the options used are safe for different endpoints to
 interpret differently (e.g., either to support or silently ignore)
 or to ensure that all receivers of a multicast group confirm support
 for the options in use.

https://datatracker.ietf.org/doc/html/rfc2675
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc3095
https://datatracker.ietf.org/doc/html/rfc8724

Touch Expires September 21, 2024 [Page 41]

Internet-Draft Transport Options for UDP March 2024

24. Security Considerations

 There are a number of security issues raised by the introduction of
 options to UDP. Some are specific to this variant, but others are
 associated with any packet processing mechanism; all are discussed
 in this section further.

 Note that any user application that considers UDP options to affect
 security need not enable them. However, their use does not impact
 security in a way substantially different than TCP options; both
 enable the use of a control channel that has the potential for
 abuse. Similar to TCP, there are many options that, if unprotected,
 could be used by an attacker to interfere with communication.

 UDP options create new potential opportunities for DDOS attacks,
 notably through the use of fragmentation. When enabled, UDP options
 cause additional work at the receiver, however, of the "must-
 support" options, only REQ (e.g., when used with DPLPMTUD [Fa24])
 will cause the upper layer to initiate a UDP response in the absence
 of user transmission.

 The use of UDP packets with inconsistent IP and UDP Length fields
 has the potential to trigger a buffer overflow error if not properly
 handled, e.g., if space is allocated based on the smaller field and
 copying is based on the larger. However, there have been no reports
 of such vulnerability and it would rely on inconsistent use of the
 two fields for memory allocation and copying.

 UDP options are not covered by DTLS (datagram transport-layer
 security). Neither TLS [RFC8446] (transport layer
 security, for TCP) nor DTLS [RFC9147] (TLS for UDP) protect the
 transport layer; both operate as a shim layer solely on the user
 data of transport packets, protecting only their contents.

 Just as TLS does not protect the TCP header or its options, DTLS
 does not protect the UDP header or the new options introduced by
 this document. Transport security is provided in TCP by the TCP
 Authentication Option (TCP-AO [RFC5925]) and (when defined) in UDP
 by the Authentication (AUTH) option (Section 11.9) and (when
 defined) the UNSAFE Encryption (UENC) option (Section 12). Transport
 headers are also protected as payload when using IP security (IPsec)
 [RFC4301].

 UDP options use the TLV syntax similar to that of TCP. This syntax
 is known to require serial processing and may pose a DOS risk, e.g.,
 if an attacker adds large numbers of unknown options that must be
 parsed in their entirety, as is the case for IPv6 [RFC8504].

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc9147
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc8504

Touch Expires September 21, 2024 [Page 42]

Internet-Draft Transport Options for UDP March 2024

 >> Implementations concerned with the potential for UDP options
 introducing a vulnerability MAY implement only the required UDP
 options and SHOULD also limit processing of TLVs, either in number
 of non-padding options or total length, or both. The number of non-
 zero TLVs allowed in such cases MUST be at least as many as the
 number of concurrent options supported with an additional few to
 account for unexpected unknown options, but should also consider
 being adaptive and based on the implementation, to avoid locking in
 that limit globally.

 E.g., if a system supports 10 different option types that could
 concurrently be used, it is expected to allow up to around 13-14
 different options in the same packet. This document avoids
 specifying a fixed minimum, but recognizes that a given system
 should not expect to receive more than a few unknown option types
 per packet.

 Because required options come first and at most once each (with the
 exception of NOPs, which should never need to come in sequences of
 more than seven in a row), this limits their DOS impact. Note that
 TLV formats for options does require serial processing, but any
 format that allows future options, whether ignored or not, could
 introduce a similar DOS vulnerability.

 >> Implementations concerned with the potential for DOS attacks
 involving large numbers of UDP options, either implemented or
 unknown, or excessive sequences of valid repeating options (e.g.,
 NOPs) SHOULD detect excessive numbers of such occurrences and limit
 resources they use, either through silent packet drops. Such
 responses MUST be logged. Specific thresholds for such limits will
 vary based on implementation and are thus not included here.

 >> Implementations concerned with the potential for UDP
 fragmentation introducing a vulnerability SHOULD implement limits on
 the number of pending fragments.

 UDP security should never rely solely on transport layer processing
 of options. UNSAFE options are the only type that share fate with
 the UDP data, because of the way that data is hidden in the surplus
 area until after those options are processed. All other options
 default to being silently ignored at the transport layer but may be
 dropped either if that default is overridden (e.g., by
 configuration) or discarded at the application layer (e.g., using
 information about the options processed that are passed along with
 the UDP packet).

Touch Expires September 21, 2024 [Page 43]

Internet-Draft Transport Options for UDP March 2024

 UDP fragmentation introduces its own set of security concerns, which
 can be handled in a manner similar to IP reassembly or TCP segment
 reordering [CERT18]. In particular, the number of UDP packets
 pending reassembly and effort used for reassembly is typically
 limited. In addition, it may be useful to assume a reasonable
 minimum fragment size, e.g., that non-terminal fragments should
 never be smaller than 500 bytes.

 UDP options, like any options, have the potential to expose option
 information to on-path attackers, unless the options themselves are
 encrypted (as might be the case with some configurations of UENC,
 when defined). Application protocol designers should ensure that
 information in UDP options is not used with the assumption of
 privacy unless UENC provides that capability. Application protocol
 designers using secure payload contents (e.g., via DTLS) should be
 aware that UDP options add information that is not inside the UDP
 payload and thus not protected by the same mechanism, and that
 alternate mechanisms (again, as might be the case with some
 configurations of UENC) may be additionally required to protect
 against information disclosure.

 Some UDP options are never passed to the receiving application,
 notably FRAG, NOP, and EOL. They are not intended to convey
 information, either by their presence (FRAG, EOL) or number (NOP).
 It may also be useful to provide the options received in a reference
 order (i.e., sorted by option number), to avoid the order of options
 being used as a covert channel.

 >> Implementations concerned with the potential use of UDP options
 as a covert channel MAY consider limiting use of some or all
 options. Such implementations SHOULD ensure FRAG, NOP, and EOL are
 not passed to the receiving user and SHOULD return options in an
 order not related to their sequence in the received packet.

25. IANA Considerations

 Upon publication, IANA is hereby requested to create a new registry
 group for UDP Options, consisting of UDP Option Kind numbers and UDP
 Option Experimental IDs (ExIDs).

 Initial values of the UDP Option Kind registry are as listed in
Section 10, including those both assigned and reserved. Additional

 values in this registry are to be assigned from the UNASSIGNED
 values in Section 10 by IESG Approval or Standards Action [RFC8126].
 Those assignments are subject to the conditions set forth in this
 document, particularly (but not limited to) those in Section 13.

https://datatracker.ietf.org/doc/html/rfc8126

Touch Expires September 21, 2024 [Page 44]

Internet-Draft Transport Options for UDP March 2024

 >> Although option nicknames are not used in-band, new UNSAFE option
 names SHOULD commence with the capital letter "U" and avoid either
 uppercase or lowercase "U" as commencing safe options.

 UDP Experimental Option Experiment Identifiers (UDP ExIDs) are
 intended for use in a similar manner as TCP ExIDs [RFC6994]. UDP
 ExIDs can be used in either (or both) the UDP EXP (Section 11.10) or
 UEXP (Section 12.3) options. UDP ExID entries consist of a 16-bit
 ExID (in network-standard order), and (as with the TCP ExID) will
 preferentially also include a short description and acronym for use
 in documentation. UDP ExIDs are always 16 bits because their use in
 EXP and UEXP options is required and thus do not need a larger
 number space to decrease the probability of accidental occurrence
 with non-ExID uses of the experimental options, as is the case with
 TCP ExIDs.

 Values in this registry are to be assigned by IANA using first-come,
 first-served (FCFS) rules applied to both the ExID value and the
 acronym [RFC8126]. Options using these ExIDs are subject to the same
 conditions as new options, i.e., they too are subject to the
 conditions set forth in this document, particularly (but not limited
 to) those in Section 13.

 The UDP ExID registry is intended to align with the TCP ExID
 registry, where all UDP ExIDs are also TCP ExIDs, and the first 16
 bits of all TCP ExIDs are also UDP ExIDs. Whether these are
 represented as separate registries or as a single registry is at the
 discretion of IANA. If as separate registries, this document
 requests that each ExID request in either registry generates a
 corresponding entry in the other registry. If as a single registry,
 please include the direction that "16-bit ExIDs can be used with
 either TCP or UDP; 32-bit ExIDs can be used with TCP or their first
 16 bits can be used with UDP".

26. References

26.1. Normative References

 [Fa24] Fairhurst, G., T. Jones, "Datagram PLPMTUD for UDP
 Options," draft-ietf-tsvwg-udp-options-dplpmtud, Jan.
 2024.

 [RFC768] Postel, J., "User Datagram Protocol," RFC 768, August
 1980.

 [RFC791] Postel, J., "Internet Protocol," RFC 791, Sept. 1981.

https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-udp-options-dplpmtud
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc791

Touch Expires September 21, 2024 [Page 45]

Internet-Draft Transport Options for UDP March 2024

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts --
 Communication Layers," RFC 1122, Oct. 1989.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels," BCP 14, RFC 2119, March 1997.

 [RFC5925] Touch, J., A. Mankin, R. Bonica, "The TCP Authentication
 Option," RFC 5925, June 2010.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words," RFC 2119, May 2017.

26.2. Informative References

 [Fa18] Fairhurst, G., T. Jones, R. Zullo, "Checksum Compensation
 Options for UDP Options", draft-fairhurst-udp-options-cco,
 Oct. 2018.

 [Hi15] Hildebrand, J., B. Trammel, "Substrate Protocol for User
 Datagrams (SPUD) Prototype," draft-hildebrand-spud-

prototype-03, Mar. 2015.

 [Jo19] Jones, T., G. Fairhurst, "Change Status of RFC 2675 to
 Historic," draft-jones-6man-historic-rfc2675, May 2019.

 [RFC868] Postel, J., K. Harrenstien, "Time Protocol," RFC 868, May
 1983.

 [RFC1071] Braden, R., D. Borman, C. Partridge, "Computing the
 Internet Checksum," RFC 1071, Sept. 1988.

 [RFC1191] Mogul, J., S. Deering, "Path MTU discovery," RFC 1191,
 November 1990.

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery," RFC
2923, September 2000.

 [RFC3095] Bormann, C. (Ed), et al., "RObust Header Compression
 (ROHC): Framework and four profiles: RTP, UDP, ESP, and
 uncompressed," RFC 3095, July 2001.

 [RFC3385] Sheinwald, D., J. Satran, P. Thaler, V. Cavanna, "Internet
 Protocol Small Computer System Interface (iSCSI) Cyclic
 Redundancy Check (CRC)/Checksum Considerations," RFC 3385,
 Sep. 2002.

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-fairhurst-udp-options-cco
https://datatracker.ietf.org/doc/html/draft-hildebrand-spud-prototype-03
https://datatracker.ietf.org/doc/html/draft-hildebrand-spud-prototype-03
https://datatracker.ietf.org/doc/html/rfc2675
https://datatracker.ietf.org/doc/html/draft-jones-6man-historic-rfc2675
https://datatracker.ietf.org/doc/html/rfc868
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc3095
https://datatracker.ietf.org/doc/html/rfc3385

Touch Expires September 21, 2024 [Page 46]

Internet-Draft Transport Options for UDP March 2024

 [RFC3692] Narten, T., "Assigning Experimental and Testing Numbers
 Considered Useful," RFC 3692, Jan. 2004.

 [RFC3828] Larzon, L-A., M. Degermark, S. Pink, L-E. Jonsson (Ed.),
 G. Fairhurst (Ed.), "The Lightweight User Datagram
 Protocol (UDP-Lite)," RFC 3828, July 2004.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, Dec. 2005.

 [RFC4340] Kohler, E., M. Handley, and S. Floyd, "Datagram Congestion
 Control Protocol (DCCP)", RFC 4340, March 2006.

 [RFC4380] Huitema, C., "Teredo: Tunneling IPv6 over UDP through
 Network Address Translations (NATs)," RFC 4380, Feb. 2006.

 [RFC6081] Thaler, D., "Teredo Extensions," RFC 6081, Jan 2011.

 [RFC6864] Touch, J., "Updated Specification of the IPv4 ID Field,"
RFC 6864, Feb. 2013.

 [RFC6935] Eubanks, M., P. Chimento, M. Westerlund, "IPv6 and UDP
 Checksums for Tunneled Packets," RFC 6935, April 2013.

 [RFC6978] Touch, J., "A TCP Authentication Option Extension for NAT
 Traversal", RFC 6978, July 2013.

 [RFC6994] Touch, J., "Shared Use of Experimental TCP Options," RFC
6994, Aug. 2013.

 [RFC7323] Borman, D., R. Braden, V. Jacobson, R. Scheffenegger
 (Ed.), "TCP Extensions for High Performance," RFC 7323,
 Sep. 2014.

 [RFC8085] Eggert, L., G. Fairhurst, G. Shepherd, "UDP Usage
 Guidelines," RFC 8085, Feb. 2017.

 [RFC8126] Cotton, M., B. Leiba, T. Narten, "Guidelines for Writing
 an IANA Considerations Section in RFCs," RFC 8126, June
 2017.

 [RFC8200] Deering, S., R. Hinden, "Internet Protocol Version 6
 (IPv6) Specification," RFC 8200, Jul. 2017.

 [RFC8201] McCann, J., S. Deering, J. Mogul, R. Hinden (Ed.), "Path
 MTU Discovery for IP version 6," RFC 8201, Jul. 2017.

https://datatracker.ietf.org/doc/html/rfc3692
https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4380
https://datatracker.ietf.org/doc/html/rfc6081
https://datatracker.ietf.org/doc/html/rfc6864
https://datatracker.ietf.org/doc/html/rfc6935
https://datatracker.ietf.org/doc/html/rfc6978
https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc8201

Touch Expires September 21, 2024 [Page 47]

Internet-Draft Transport Options for UDP March 2024

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3," RFC 8446, Aug. 2018.

 [RFC8504] Chown, T., J. Loughney, T. Winters, "IPv6 Node
 Requirements," RFC 8504, Jan. 2019.

 [RFC8724] Minaburo, A., L. Toutain, C. Gomez, D. Barthel, JC.,
 "SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation," RFC 8724, Apr. 2020.

 [RFC8899] Fairhurst, G., T. Jones, M. Tuxen, I. Rungeler, T. Volker,
 "Packetization Layer Path MTU Discovery for Datagram
 Transports," RFC 8899, Sep. 2020.

 [RFC9040] Touch, J., M. Welzl, S. Islam, "TCP Control Block
 Interdependence," RFC 9040, Jul. 2021.

 [RFC9147] Rescorla, E., H. Tschofenig, N. Modadugu, "Datagram
 Transport Layer Security Version 1.3," RFC 9147, Apr.
 2022.

 [RFC9187] Touch, J., "Sequence Number Extension for Windowed
 Protocols," RFC 9187, Jan. 2022.

 [RFC9260] Stewart, R., M. Tuxen, K. Nielsen, "Stream Control
 Transmission Protocol", RFC 9260, June 2022.

 [RFC9293] Eddy, W. (Ed.), "Transmission Control Protocol," STD 7,
RFC 9293, Aug. 2022.

 [CERT18] CERT Coordination Center, "TCP implementations vulnerable
 to Denial of Service,", Vulnerability Note VU 962459,
 Software Engineering Institute, CMU, 2018,

https://www.kb.cert.org/vuls/id/962459.

 [To18] Touch, J., "A TCP Authentication Option Extension for
 Payload Encryption," draft-touch-tcp-ao-encrypt, Jul.
 2018.

 [To24] Touch, J., "The UDP Authentication Option," draft-touch-
tsvwg-udp-auth-opt, Mar. 2024.

 [Zu20] Zullo, R., T. Jones, and G. Fairhurst, "Overcoming the
 Sorrows of the Young UDP Options," 2020 Network Traffic
 Measurement and Analysis Conference (TMA), IEEE, 2020.

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8504
https://datatracker.ietf.org/doc/html/rfc8724
https://datatracker.ietf.org/doc/html/rfc8899
https://datatracker.ietf.org/doc/html/rfc9040
https://datatracker.ietf.org/doc/html/rfc9147
https://datatracker.ietf.org/doc/html/rfc9187
https://datatracker.ietf.org/doc/html/rfc9260
https://datatracker.ietf.org/doc/html/rfc9293
https://www.kb.cert.org/vuls/id/962459
https://datatracker.ietf.org/doc/html/draft-touch-tcp-ao-encrypt
https://datatracker.ietf.org/doc/html/draft-touch-tsvwg-udp-auth-opt
https://datatracker.ietf.org/doc/html/draft-touch-tsvwg-udp-auth-opt

Touch Expires September 21, 2024 [Page 48]

Internet-Draft Transport Options for UDP March 2024

27. Acknowledgments

 This work benefitted from feedback from Erik Auerswald, Bob Briscoe,
 Ken Calvert, Ted Faber, Gorry Fairhurst (including OCS for errant
 middlebox traversal), C. M. Heard (including combining previous FRAG
 and LITE options into the new FRAG, as well as Figure 12), Tom
 Herbert, Tom Jones, Mark Smith, Carl Williams, and Raffaele Zullo,
 as well as discussions on the IETF TSVWG and SPUD email lists.

 This work was partly supported by USC/ISI's Postel Center.

 This document was prepared using 2-Word-v2.0.template.dot.

Authors' Addresses

 Joe Touch
 Manhattan Beach, CA 90266 USA

 Phone: +1 (310) 560-0334
 Email: touch@strayalpha.com

Touch Expires September 21, 2024 [Page 49]

Internet-Draft Transport Options for UDP March 2024

Appendix A.Implementation Information

 The following information is provided to encourage interoperable API
 implementations.

 System-level variables (sysctl):

 Name default meaning
 --
 net.ipv4.udp_opt 0 UDP options available
 net.ipv4.udp_opt_ocs 1 Use OCS
 net.ipv4.udp_opt_apc 0 Include APC
 net.ipv4.udp_opt_frag 0 Fragment
 net.ipv4.udp_opt_mds 0 Include MDS
 net.ipv4.udp_opt_mrds 0 Include MRDS
 net.ipv4.udp_opt_req 0 Include REQ
 net.ipv4.udp_opt_resp 0 Include RES
 net.ipv4.udp_opt_time 0 Include TIME
 net.ipv4.udp_opt_auth 0 Include AUTH
 net.ipv4.udp_opt_exp 0 Include EXP
 net.ipv4.udp_opt_ucmp 0 Include UCMP
 net.ipv4.udp_opt_uenc 0 Include UENC
 net.ipv4.udp_opt_uexp 0 Include UEXP

 Socket options (sockopt), cached for outgoing datagrams:

 Name meaning
 --
 UDP_OPT Enable UDP options (at all)
 UDP_OPT_OCS Use UDP OCS
 UDP_OPT_APC Enable UDP APC option
 UDP_OPT_FRAG Enable UDP fragmentation
 UDP OPT MDS Enable UDP MDS option
 UDP OPT MRDS Enable UDP MRDS option
 UDP OPT REQ Enable UDP REQ option
 UDP OPT RES Enable UDP RES option
 UDP_OPT_TIME Enable UDP TIME option
 UDP OPT AUTH Enable UDP AUTH option
 UDP OPT EXP Enable UDP EXP option
 UDP_OPT_UCMP Enable UDP UCMP option
 UDP_OPT_UENC Enable UDP UENC option
 UDP OPT UEXP Enable UDP UEXP option

 Send/sendto parameters:

 (Same as sysctl, with different prefixes)

Touch Expires September 21, 2024 [Page 50]

Internet-Draft Transport Options for UDP March 2024

 Connection parameters (per-socketpair cached state, part UCB):

 Name Initial value
 --
 opts_enabled net.ipv4.udp_opt
 ocs_enabled net.ipv4.udp_opt_ocs

 >> The JUNK option is included for debugging purposes, and MUST NOT
 be enabled otherwise.

 System variables

 net.ipv4.udp_opt_junk 0

 System-level variables (sysctl):

 Name default meaning
 --
 net.ipv4.udp_opt_junk 0 Default use of junk

 Socket options (sockopt):

 Name params meaning
 --
 UDP_JUNK - Enable UDP junk option
 UDP_JUNK_VAL fillval Value to use as junk fill
 UDP_JUNK_LEN length Length of junk payload in bytes

 Connection parameters (per-socketpair cached state, part UCB):

 Name Initial value
 --
 junk_enabled net.ipv4.udp_opt_junk
 junk_value 0xABCD
 junk_len 4

Touch Expires September 21, 2024 [Page 51]

