
Network Working Group D. Kutscher
Internet-Draft NEC
Intended status: Standards Track S. Farrell
Expires: August 14, 2013 E. Davies
 Trinity College Dublin
 February 10, 2013

The NetInf Protocol
draft-kutscher-icnrg-netinf-proto-01

Abstract

 This document defines a conceptual protocol and corresponding node
 requirements for NetInf nodes in a NetInf network. A NetInf network
 offers an information-centric paradigm that supports the creation,
 location, exchange and storage of Named Data Objects (NDOs). NetInf
 nodes can provide different services to other NetInf nodes, e.g.,
 forwarding requests for information objects, delivering corresponding
 response messages, name resolution services etc. This (abstract)
 protocol is intended to be run over some "convergence layer" that
 handles transport issues. Two "wire" formats are defined, one that
 uses HTTP for message transfer and one layered on UDP.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 14, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Kutscher, et al. Expires August 14, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft NetInf Protocol February 2013

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

1. Introduction . 3
2. Principles and Assumptions 3
3. Convergence Layer Architecture 5
4. The NetInf Protocol - Overview 7
5. Protocol Details . 9
5.1. GET/GET-RESP . 9
5.2. PUBLISH/PUBLISH-RESP 11
5.3. SEARCH/SEARCH-RESP . 13

6. Convergence Layer Specifications 14
6.1. HTTP CL . 14
6.2. UDP CL . 17

7. Security Considerations 19
8. Acknowledgments . 19
9. References . 20
9.1. Normative References 20
9.2. Informative References 21

 Authors' Addresses . 21

http://trustee.ietf.org/license-info

Kutscher, et al. Expires August 14, 2013 [Page 2]

Internet-Draft NetInf Protocol February 2013

1. Introduction

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119. [RFC2119]

 Syntax definitions in this memo are specified according to ABNF
 [RFC5234].

 There is an open-source implementation available that implements
 (most of) this. See http://sourceforge.net/projects/netinf/ for code
 and http://village.n4c.eu/getputform.html for access to a test
 server.

2. Principles and Assumptions

 A NetInf network provides an information-centric networking (ICN)
 environment in which units of data content can be identified and
 accessed using a URI-based naming scheme. NetInf nodes in a NetInf
 network support the creation, location, exchange and storage of these
 units of content. In order to support interoperable implementation
 of the NetInf design, [ref.netinf-db2] [ref.netinf-db3] the following
 assumptions are made here:

 o all nodes can take on all NetInf roles (but do not have to);

 o as necessary, nodes may access a Name Resolution System (NRS)
 and/or a (possibly name based) message routing infrastructure for
 NetInf messages; and

 o the NetInf protocol can be used directly to access content.

 The NetInf protocol operates on Named Data Objects (see
 [ref.netinf-db2]) referred to as NDOs. An NDO is an ordered
 collection of octets associated with a name. The NetInf protocol is
 designed to cache, locate and transmit complete NDOs.

 The NetInf protocol is specified so that NDOs can in principle be
 retrieved from nodes anywhere in the network to which messages can be
 routed. This routing is intended to be driven by the names of the
 NDOs, with the option to use an NRS, but this specification does not
 discuss how routing, nor calling to an NRS, is carried out. Routing
 will also depend on the underlying Convergence Layer protocol (see

Section 3) in use at that node.

 Nodes offering NetInf services may return locators in some cases.
 These locators designate network locations where an NDO might

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
http://sourceforge.net/projects/netinf/
http://village.n4c.eu/getputform.html

Kutscher, et al. Expires August 14, 2013 [Page 3]

Internet-Draft NetInf Protocol February 2013

 potentially be available for retrieval, but locators may not be
 usable outside of some (possibly hard-to-characterise) domain, or for
 more than a limited period of time, due to mobility of nodes or time
 limited access through "pinholes" in middleboxes such as firewalls
 and Network Address Translators (NATs). Accordingly, a design goal
 is to enable preferential use of names, with locators mostly as hints
 to improve efficiency. For this reason one can argue that locators
 ought not be made available to applications using the NetInf protocol
 in a form that would allow them to try to use the locator outside the
 NetInf protocol. NDOs may have multiple locators in order to
 indicate specific interfaces or to reflect attachment to multiple
 addressing domains. Locators also typically map to a specific
 instance (copy) of an NDO residing at a given host.

 Locators are an example of NDO associated data that may be stored in
 association with the data content of the NDO. Other types of such
 data include "metadata" relating to the data content of the NDO,
 information describing the history of the copy of the NDO in the node
 where it is stored and search terms that are applicable to the NDO
 content. The term "affiliated data" will be used to describe the
 overall set of data, other than the actual octets of the content,
 stored or transmitted in association with an NDO. This affiliated
 data could be described as metadata of the NDO but we will reserve
 that term for a subset of the affiliated data that is usually
 constructed by the publisher of the NDO describing the content data
 of the NDO that is sent out in tandem with the data content. The
 NetInf protocol allows this affiliated data to be transmitted, in
 whole or in part, in association with NetInf messages.

 NDO names will often be based on hash-function output values, and
 since the preferred hash-function will change over time and may
 change depending on location, this implies that NDOs can also have
 more than one name. There may also be cases where truncated hash
 values are desired (e.g., in cases where packets must be kept below
 some small size and fitting an entire request into one packet is
 required), and in such cases collisions will occur, or can easily be
 generated by bad actors. There are also cases where it is desirable
 to use a name to refer to some "dynamic" NDO, whose octets change
 (e.g., perhaps the current weather report) and there are
 cryptographic methods for doing this. This all means that there is
 no strict 1:1 mapping between names and NDOs, however, we do expect
 that for most objects, for most ICN deployments, there will in
 practice be one NDO that is named by each name. That is, each name
 usually does refer to just one object, and this protocol is designed
 to work best for that case.

 The following NetInf services are assumed to be implemented on nodes
 through the NetInf protocol:

Kutscher, et al. Expires August 14, 2013 [Page 4]

Internet-Draft NetInf Protocol February 2013

 o caching of NDOs, both locally originated and acquired through
 network operations with the NetInf protocol;

 o requesting the fetching of an NDO using its name, possibly with
 the addition of a locator, from elsewhere in the network;

 o responding to NetInf protocol NDO fetch operations using a name
 referring to one of its locally known NDOs, which may have been
 locally generated or acquired from another NetInf node and cached
 here, by returning either or both of the data named in the
 operation or affiliated data including locator(s) referring to a
 node where that NDO is (assumed to be) available;

 o initiating a search for NDOs matching specified search criteria;

 o responding to search requests received by determining if any
 locally known NDOs meet the search criteria according to locally
 determined algorithms;

 o NDO publication via sending out the name and, optionally, either
 or both of the content data and some affiliated data, such as
 locators, to other nodes;

 o according to locally determined policy, the ability to accept or
 reject NDO publication requests that are delivered to the node,
 and to cache either or both of the objects and/or information
 about those that are accepted;

 o according to locally determined policy, after carrying out local
 processing, the ability to forward NetInf messages to other nodes
 or discard them;

 o managing the data affiliated with the NDO as well as the content
 data; and

 o local cache management, driven by local policy and (optionally)
 whatever cache directives are carried in NetInf messages.

3. Convergence Layer Architecture

 The idea of the Convergence Layer (CL) is to provide a means to
 transport NetInf messages between pairs of nodes that offer NetInf
 services. Any protocol that allows NetInf messages to be passed
 without loss of information can be used as a NetInf Convergence Layer
 (NetInf-CL) protocol.

 This document does not cover the bit-level specification of any CL

Kutscher, et al. Expires August 14, 2013 [Page 5]

Internet-Draft NetInf Protocol February 2013

 protocol. The individual CL protocols will provide their own
 specification regarding their bit-level format.

 Different CLs can be used in the various regions forming a global
 NetInf network. Where a message has to pass through several
 intermediate NetInf-capable nodes from source to destination, the
 NetInf protocol layer at each node is responsible for selecting the
 appropriate link and CL to forward messages.

 Each CL has to offer the following minimal set of capabilities:

 o unidirectional point-to-point transport of NetInf messages from
 source to destination,

 o preservation of message boundaries,

 o reliable transmission of message octets, and

 o in-order delivery of message octets to the destination node.

 If an underlying protocol used by a particular CL cannot offer these
 capabilities natively, then the CL is responsible for synthesising
 these capabilities by appropriate means, e.g., use of retransmission
 or insertion of sequence numbers. However, this does not prevent a
 CL that uses a more capable underlying protocol from implementing
 additional capabilities, e.g., bidirectional connections that allow a
 single connection to send NDOs in both directions.

 The CL itself does not specify the properties of the messages, how
 they are interpreted, and the way nodes should interact with them, as
 that is what is specified in the present document.

 The CL architecture is inspired by, and similar to, the concept used
 in Delay-Tolerant Networking. [RFC4838][RFC5050].

 However, in contrast to DTN-CLs, the NetInf-CL concept does not
 include the handling of fragments of an NDO "above" the CL. This is
 the main difference between the CL concept as used in DTNs and ICNs.
 Put another way, a DTN-CL may result in a bundle being fragmented,
 and those fragments are only re-assembled at the final bundle
 destination. In the case of an NetInf-CL, if an NDO is fragmented or
 chunked within the CL, then those fragments or chunks are reassembled
 at the next ICN node and that fragmentation or chunking is not
 visible to the ICN protocol. One can also consider that the DTN
 Bundle Protocol (BP)[RFC5050], which runs over a DTN-CL, can itself,
 with an appropriate extension such as the "BPQ" extension,
 [I-D.farrell-dtnrg-bpq] be an NetInf-CL. That is, a concrete
 instance of this protocol could use the BP with the BPQ extension as

https://datatracker.ietf.org/doc/html/rfc4838
https://datatracker.ietf.org/doc/html/rfc5050

Kutscher, et al. Expires August 14, 2013 [Page 6]

Internet-Draft NetInf Protocol February 2013

 an NetInf-CL.

4. The NetInf Protocol - Overview

 This protocol assumes that NDOs are named using URIs, and in
 particular via the "ni" URI scheme [I-D.farrell-decade-ni] which MUST
 be supported. There are a set of extensions to the "ni" URI scheme
 [I-D.hallambaker-decade-ni-params] that MAY be supported by nodes.
 However, other URI forms MAY also be used in the NetInf protocol, in
 particular as locators, and nodes SHOULD support at least fetching of
 "http" URLs.

 Nodes are assumed to be capable of discriminating between names and
 locators, based on the URI scheme or otherwise.

 The most common operations for a NetInf node will be fetching (using
 a GET message) an NDO or responding to such queries. The response to
 the GET message will, if possible, contain the octets making up the
 specified NDO and MAY contain

 o one or more URIs (typically locators) that could subsequently be
 used to retrieve the octets of the NDO either via this NetInf
 protocol or by alternative, locator-specific, means, and/or

 o other affiliated data such as metadata relevant to the NDO.

 There are some circumstances in which it MAY be appropriate for the
 response to the GET message to contain only one or more locators and,
 optionally, other affiliated data. Examples of this situation occur
 if the responding node is aware that the object content can be
 returned more effectively using an alternative protocol or from an
 alternative source because of bandwidth limitations on the links
 connecting the responding node.

 In addition to GET, there is the analagous PUBLISH operation where
 one node sends URIs and/or NDO octets to another. There is also a
 SEARCH operation, where one node submits a search query and receives
 a set of URIs and optional meta-data in response.

 GET, PUBLISH and SEARCH messages MAY be forwarded by any node that
 receives them if there is good reason and local policy indicates that
 this would not result in excessive usage of network resources.

 If a request message is forwarded, then a response message MUST NOT
 be sent for that request while the overall "transaction" is still in
 progress. That is, a node that forwards a request does not answer
 that request itself until it gets an answer from elsewhere.

Kutscher, et al. Expires August 14, 2013 [Page 7]

Internet-Draft NetInf Protocol February 2013

 Response messages MUST be forwarded by routers to the node from which
 the corresponding request message was received. The routing
 mechanisms that are used to ensure responses are correctly forwarded
 in this way are not specified here.

 Since this specification does not determine how message routing, nor
 use of an NRS is done, we do not otherwise specify how or when
 messages are to be forwarded.

 Nodes that want to make a locally stored NDO available with a
 specific name can use the PUBLISH message to announce that data to
 the network. This message MAY "push" the octets of the NDO into
 other nodes' caches. (If those nodes are willing to take them.) The
 reasoning behind this is that in many circumstances pushing just a
 name or a locator will not be helpful because the node with the NDO
 may be located behind a middlebox that will not allow access to the
 data from "outside." Pushing the complete NDO to a node that is
 accessible from the originating node but is also accessible from
 outside the middlebox "interior," can allow global access, e.g., by
 caching the NDO on a server in the DMZ ("DeMilitarized Zone") of an
 enterprise network or in a server provided by a home user's
 ISP.(Internet Service Provider). The publisher MAY also push
 affiliated data for the NDO, including additional locators and
 content metadata that can be stored in a node's NDO cache. The
 caching node MAY choose to store just the affiliated data without the
 content data depending on local policy.

 As in the case of routing messages generally, this specification does
 not determine the node(s) to which an NDO can be "pushed."

 Finally, NetInf nodes can send a SEARCH message to other NetInf
 nodes. In response, a NetInf node can perform a local search (i.e.,
 of its local cache) As a response, any of the NetInf nodes that
 receives the SEARCH message returns a set of "ni" URIs of objects
 matching the search query. It may also return other types of URI
 such as "http" URIs. Searching of a node's local cache is the main
 goal for the SEARCH operation, but if a set of nodes were to forward
 SEARCH messages, then a global search (e.g., a Google-like service)
 service could be offered.

 NDOs together with any affiliated data are represented using MIME
 objects. [RFC2045]. Placing as much of the affiliated data linked
 to the NDO in a multipart MIME object along with the octets of the
 actual object allows for significant specification and code re-use.
 For example, we do not need to invent a new typing scheme nor any
 associated registration rules nor registries.

 As an example we might have a MIME object of that is multipart/mixed

https://datatracker.ietf.org/doc/html/rfc2045

Kutscher, et al. Expires August 14, 2013 [Page 8]

Internet-Draft NetInf Protocol February 2013

 and contains image/jpeg and application/json body parts, with the
 named image in the former and loosely structured associated data in
 the latter. The "ni" scheme parameters draft discusses such
 examples. This means that the details of the verification of name-
 data integrity supported by the ni name scheme also depend on the
 MIME type(s) used.

 MIME also simplifies the specification of schemes that make use of
 digital signatures, reusing techniques from existing systems
 including Secure MIME (S/MIME) [RFC5751]and the Cryptographic Message
 Syntax (CMS) [RFC5652].

 Note that (as specified in [I-D.farrell-decade-ni]) two "ni" URIs
 refer to the same object when the digest algorithm and values are the
 same, and other fields within the URI (e.g., the authority) are not
 relevant. Two ni names are identical when they refer to the same
 object. This means that a comparison function for ni names MUST only
 compare the digest algorithms and values.

5. Protocol Details

 We define the GET, PUBLISH and SEARCH messages in line with the
 above. GET and PUBLISH MUST be supported. SEARCH SHOULD be
 supported. Each message has an associated response.

 This means that GET and PUBLISH MUST be implemented and SEARCH SHOULD
 be implemented. In terms of services, GET and PUBLISH SHOULD be
 operational but SEARCH MAY be turned off.

5.1. GET/GET-RESP

 The GET message is used to request an NDO from the NetInf network. A
 node responding to the GET message would send a GET-RESP that is
 linked to the GET request using the msg-id from the GET message as
 the msg-id for corresponding GET-RESP messages if it has an instance
 of the requested NDO.

 The "ni" form or URI MUST be supported. Other forms of URI MAY be
 supported.

 The msg-id SHOULD be chosen so as to be highly unlikely to collide
 with any other msg-id and MUST NOT contain information that might be
 personally identifying, e.g., an IP address or username. A
 sufficiently long random string SHOULD be used for this.

 The ext field is to handle future extensibility (e.g., for message
 authenticators) and allows for the inclusion of a sequence of type,

https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc5652

Kutscher, et al. Expires August 14, 2013 [Page 9]

Internet-Draft NetInf Protocol February 2013

 length value tuples. No extensions for GET messages are defined at
 this point in time.

 get-req = GET msg-id URI [ext]
 get-resp = status msg-id [1*URI] [ext] [object]

 ext = json-coded-string

 Figure 1: GET/GET-RESP Message Format

 Any node that receives a GET message and does not have an instance of
 the NDO referenced in the message MUST either

 o forward the message to another node, or

 o generate a GET response message with an appropriate status code
 and the msg-id from the GET message as the response msg-id.

 If the message is forwarded, the node SHOULD maintain state that will
 allow it to generate the GET response message if a matching response
 message is not received for forwarding within a reasonable period of
 time after the GET message was forwarded.

 If the node has an instance of the NDO, the response MAY contain zero
 or more URIs that MUST be either locators for the specified object or
 else alternative names for that object. If the receiving node has a
 copy of the relevant object in its cache it SHOULD include the object
 in the response. Possible reasons for not including the object would
 include situations where the GET message was received via a low-
 bandwidth interface but where the node "knows" that returning a
 locator will allow the requestor faster access to the object octets.
 Alternatively, the node may only be maintaining the affiliated data
 for the NDO and not the content data if it has not yet received the
 content data or has discarded it due to cache size limitations.

 The object MUST be encoded as a MIME object. If there is affiliated
 data linked to the object this MUST also be encoded using MIME and
 integrated with the object in a multipart/mixed MIME object.

 If the receiving node does not have a cached copy of the object it
 MAY choose to forward the message depending on local policy. Such
 forwarding could be based on name-based routing, on an NRS lookup or
 other mechanisms (e.g. a node might have a default route).

 If an get-resp is received with an object that is not MIME encoded or
 of an unknown MIME type then that MUST be treated as an application/

Kutscher, et al. Expires August 14, 2013 [Page 10]

Internet-Draft NetInf Protocol February 2013

 octet-stream for the purposes of name-data integrity verification.

 get-resp messages MAY include extensions as with all others.

5.2. PUBLISH/PUBLISH-RESP

 The PUBLISH message allows a node to push the name, and optionally,
 alternative names, locators, a copy of the object octets and/or
 object meta-data. Ignoring extensions, only a status code is
 expected in return.

 A msg-id MUST be included as in a GET message.

 A URI containing a name MUST be included. The "ni" URI scheme SHOULD
 be used for this name.

 The message MAY also contain additional URIs that represent either
 alternative names or locators where the identical object can be found
 and metadata relating to the published content. As mentioned in

Section 4 it is the responsibility of the receiving node to
 discriminate between those URIs used as names and those used as
 locators.

 The object octets MAY be included. This is intended to handle the
 case where the publishing node is not able to receive GET messages
 for objects. An implementation SHOULD test (or "know") its local
 network context sufficiently well to decide if the object octets
 ought to be included or not. Methods for checking this are out of
 scope of this specification.

 A node receiving a PUBLISH message chooses what information from the
 message, if any, to cache according to local policy and availability
 of resources. It is RECOMMENDED that a node that receives a PUBLISH
 message containing the object octets verify that the digest in the
 name under which the content is published matches with the digest of
 the received data.

 One way to "fill a cache" if the object octets are not included in
 the PUBLISH would be for the recipient of the PUBLISH to simply
 request the object octets using GET and cache those. (There is no
 point in sending a PUBLISH without the octets and without any
 locator.) This behaviour is, of course, an implementation issue.

 In some cases it may make sense for a (contactable) node to only
 publish the name and metadata about the object. The idea here is
 that the metadata could help with routing or name resolution or
 search. Since we are representing both NDO octets and affiliated
 data such as the metadata as MIME objects, we need to tell the

Kutscher, et al. Expires August 14, 2013 [Page 11]

Internet-Draft NetInf Protocol February 2013

 receiver of the PUBLISH message whether or not that message contains
 the full object. We do this via the "full-ndo-flag" which, if
 present, indicates that the PUBLISH message contains enough data so
 the receiver of the PUBLISH message has sufficient data to provide a
 complete answer a subsequent GET message for that name, i.e., data
 content and affiliated data.

 If a node receives a PUBLISH message for an NDO which already exists
 in its cache, the received information SHOULD be used to complete or
 update the node's cached information for the NDO:

 o If the object octets are included and the node currently does not
 have the octets cached, the data content MAY be added to the
 cache. Again it is RECOMMENDED that the received data has the
 correct digest as specified in the NDO name, and

 o Items in the affiliated data MAY be merged into cached affiliated
 data, including adding additional locators to the list of known
 locators for the NDO and merging any content metadata with
 previously received metadata. If there is a conflict, the choice
 of metadata to be stored is a matter of policy.

 It is RECOMMENDED that a timestamp be recorded whenever the cached
 information for an NDO is updated and that this timestamp be stored
 in the affiliated data and the most recent timestamp returned with
 any subsequent GET or SEARCH request that references the NDO.

 Extensions ("ext") MAY be included as in a GET request. One such
 HTTP CL-specific extension ("meta") is defined in Section 6.1 below.

 pub-req = PUBLISH msg-id 1*URI [ext] [[full-ndo-flag] object]
 pub-resp = status msg-id [ext]

 Figure 2: PUBLISH/PUBLISH-RESP Message Format

 The response to a PUBLISH message is a status code and the msg-id
 from the PUBLISH message and optional extensions.

 A node receiving a PUBLISH message MAY choose to forward the message
 to other nodes whether or not it chooses to cache any information.
 If this node does not cache the information but does forward the
 PUBLISH message, it should postpone sending a response message until
 a reasonable period of time has elapsed during which no other
 responses to the PUBLISH message are received for forwarding.
 However, the node MAY send an extra response message, even if it
 forwards the PUBLISH message, if the sender of the PUBLISH message

Kutscher, et al. Expires August 14, 2013 [Page 12]

Internet-Draft NetInf Protocol February 2013

 would have expected the receiving node to cache the object (e.g.,
 because of a contractual relationship) but it was unable to do so for
 some reason.

5.3. SEARCH/SEARCH-RESP

 The SEARCH message allows the requestor to send a set of query tokens
 containing search keywords. The response is either a status code or
 a multipart MIME object containing a set of metadata body parts, each
 of which MUST include a name for an NDO that is considered to match
 the query keywords.

 search-req = SEARCH msg-id [1*token] [ext]
 search-resp = status msg-id [results] [ext]

 Figure 3: SEARCH/SEARCH-RESP Message Format

 In the case where the response contains results, these MUST take the
 form of an application/json MIME object containing an array of
 results. Each result MUST have a "name" field with a URI as the
 value of that field. Any other fields in array elements SHOULD
 contain metadata that is intended to allow the requestor to select
 which, if any, of the names offered to retrieve.

 The URIs included in a search-resp SHOULD be names, but MAY be
 locators, to be distinguished by the requestor as in the case of GET
 responses.

 The intent of the SEARCH message is to allow nodes to search one
 another's caches, but without requiring us to fix the details
 (ontology) for NDO content metadata. While this main intended use-
 case does not involve forwarding of SEARCH messages that is not
 precluded.

 As with PUBLISH messages, if a SEARCH message is forwarded, the
 forwarding node postpones sending an empty SEARCH response until a
 reasonable time is elapsed to see if alternative node responds to the
 SEARCH.

 If a SEARCH at a node identifies an NDO that is included in the
 results of a search, the tokens that were used for the search MAY be
 recorded in the affiliated data cached with the NDO. Each set of
 search tokens for which a "match" is obtained should be recorded
 separately resulting in an array of set of tokens. If the search
 mechanisms used provides a reliability measure, this MAY also be
 recorded and the measure may be used to limit the size of the search

Kutscher, et al. Expires August 14, 2013 [Page 13]

Internet-Draft NetInf Protocol February 2013

 tokens array by discarding (or never inserting) sets of tokens with
 low reliability scores.

 SEARCH messages MAY include extensions as for other messages.

6. Convergence Layer Specifications

 This section specifies two convergence layers that represent
 instantiations of the NetInf protocol. The first, based on HTTP, is
 intended for using NetInf in existing web infrastructures, whereas
 the second, based on UDP, provides an efficient datagram-based hop-
 by-hop message transport that can be used to query for GET requests
 sent to an NRS node or for multicasting such requests in a local
 network.

6.1. HTTP CL

 The HTTP CL maps the NetInf protocol to HTTP, ensuring
 interoperability with existing web infrastructure (client and server
 implementations as well as installed proxies).

 All NetInf protocol requests are mapped to HTTP POST requests
 [RFC2616]. The corresponding NetInf protocol responses are mapped to
 the HTTP response messages of such HTTP POST request messages.

 The HTTP CL assumes that the client knows the address of the HTTP
 server to which it will send requests. Clients MAY use the authority
 part of an ni URI, if one is present to select the HTTP responder.
 NetInf HTTP responders MUST accept requests sent to the following
 paths:

 /netinfproto/get for NetInf GET requests

 /netinfproto/publish for NetInf PUB requests

 /netinfproto/search for NetInf SEARCH requests

 So for example a client would send an HTTP POST request containing a
 NetInf GET to http://example.com/netinfproto/get

 NetInf HTTP responders SHOULD also make ni URIs available at the
 relevant well-known URL [RFC5785] for the ni URI.
 [I-D.farrell-decade-ni]

 NetInf protocol requests use HTML forms, and as specified in
 [W3C.REC-html401-19991224] the form data set for the HTTP POST
 messages is included in the body of the form. The content type of

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc5785

Kutscher, et al. Expires August 14, 2013 [Page 14]

Internet-Draft NetInf Protocol February 2013

 the form data body depends on the actual NetInf protocol request type
 (see below). Receivers MUST accept both 'application/
 x-www-form-urlencoded' and 'multipart/form-data' for all requests.

 The mapping of the fields from the abstract protocol is as shown in
 Figure 4.

 --
 Abstract | Form field | Comments (field type in form)
 Protocol | |
 Field | |
 --
 URI | urival, URI | usually an ni URI (text)
 | loc1,loc2 | or locator
 --
 msg-id | msgid | a message identifier (text)
 --
 ext | ext | extension(s) (JSON encoded string)
 --
 full-ndo-flag | fullPut | true if object supplied (checkbox)
 --
 object | octets | object octets (file specification)
 --
 n/a | rform | response format required, can be
 | | "html" or "json" (radio)
 --
 token | tokens | one text field with all search
 | | keywords (text)
 --

 Figure 4: Form fields used in NetInf requests

 Notes for Figure 4:

 For GET messages: 'application/x-www-form-urlencoded' SHOULD be
 used as a content type.
 "URI" and "msgid" parameters are MANDATORY.
 "loc1" and "loc2" are OPTIONAL.
 "ext" may be used in future but no values
 currently defined.

 For PUBLISH messages: 'application/x-www-form-urlencoded' SHOULD be
 used as a content type if the request does
 not contain an object. If the request
 contains an object (also see the description
 of the fullPut parameter below), 'multipart/

Kutscher, et al. Expires August 14, 2013 [Page 15]

Internet-Draft NetInf Protocol February 2013

 form-data' MUST be used as a content type.
 "URI" and "msgid" are MANDATORY.
 "loc1", "loc2", "ext", "rform" and "fullPut"
 are OPTIONAL.
 If "rform" is absent, the "json" value is
 assumed.
 If "fullPut" is absent, a "false" value is
 assumed.
 If "fullPut" is present and set to "true",
 "octets" must be present.
 If present, "octets" contains a file
 specification and the object octets.
 If present, "ext" may contain a "meta" item.
 The value of "ext" MUST be a JSON object
 string and the value of the "meta" item MUST
 be a (subsidiary) object, e.g., the "ext"
 string might be
 { "meta": { "mi1": 5, "mi2": { ...},
 "mi3": "abcd". "mi4": [...] }}

 For SEARCH messages: 'application/x-www-form-urlencoded' SHOULD be
 used as a content type.
 "msgid" and "tokens" are MANDATORY.
 "rform" is OPTIONAL.
 If "rform" is absent, the "json" value is
 assumed.
 "ext" may be used in future but no values
 currently defined.

 HTTP responses for each request can differ.

 For GET, the a successful HTTP response (HTTP response code 2xx) MUST
 contain either an application/json (if no object is returned) or else
 a multipart/mixed with exactly two body parts, the first being of
 content type 'application/json' and the second containing the object
 octets, with whatever MIME type is appropriate.

 The application/json component MUST consist of a JSON object that
 SHOULD contain the following named fields:

 NetInf A string describing the version of the NetInf protocol
 in use (e.g., "V0.1a").

 ni The "canonicalized" form of the NDO as a URI in the ni
 scheme: "canonicalized" means that the URI has empty
 netloc and query string fields. For example:
 "ni:///sha-256-64;gf2yhPY9Mu0" or "nih:/
 sha256-32;81fdb284;d".

Kutscher, et al. Expires August 14, 2013 [Page 16]

Internet-Draft NetInf Protocol February 2013

 msgid The value of the msgid field in the GET message that
 resulted in this response.

 ts The timestamp of the last update of the cached
 information in the cache from which the NDO is being
 sent.

 status A code, taken from the HTTP 2xx response codes
 indicating what has been returned (200 if both
 affiliated data and content has been returned and 203 if
 only affiliated data is returned).

 ct The MIME content type of the NDO content data, if known.
 Empty string if not yet known.

 loclist Array of locator names (strings) from where the NDO
 might potentially be retrieved.

 metadata A JSON object containing any named items copied in from
 "meta" object(s) supplied by any PUBLISH messages
 received at the node that sent the response plus an
 entry named "publish" which contains a string indicating
 the class of node and software that generated the cache
 entry.

 searches A JSON array of objects each containing a set of strings
 representing search tokens and information about the
 search mechanism that resulted in a match with the NDO
 during a previous search.

 For PUBLISH, the HTTP response will contain an application/json or
 text/html response, depending on the value of the rform form field.
 (If rform is missing json is the default.) The application/json
 structure is as for a GET response. The text/html document will
 provide a report of the successful publication of the NDO and
 whatever other relevant information form the affiliated information
 seems appropriate for inspection by a human user.

 For SEARCH, the HTTP response will contain an application/json or
 text/html response, depending on the value of the rform form field.
 (If rform is missing json is the default.) The application/json
 structure is similar to the previous structures, but has a "results"
 object that contains an array of object details.

6.2. UDP CL

 The UDP CL implements the NetInf protocol with a UDP datagram
 services, i.e., all NetInf messages are mapped to individual UDP

Kutscher, et al. Expires August 14, 2013 [Page 17]

Internet-Draft NetInf Protocol February 2013

 messages. The purpose is to provide a light-weight datagram-based CL
 that can be used to implement NetInf transport protocols on top and
 that can provide efficient communication for querying NRSs, and
 request broadcasting/multicasting. The UDP CL provides no hop-by-hop
 flow control, retransmission and fragmentation/re-assembly.

 The UDP CL has two sending modes: 1) send to specified destination IP
 address and 2) send to the well-known IPv4 multicast address
 225.4.5.6. For both unicast and multicast the UDP port number is
 2345. All request and response messages are JSON objects, i.e.,
 unordered sets of name/value pairs.

 For UDP CL messages, the following JSON names for name/value pairs
 are defined (not all objects have to be present in all messages):

 version # the NetInf UDP CL protocol version -- currently
 # "NetInfUDP/1.0"

 msgType # the message type (e.g., GET)

 uri # the NI URI

 msgId # the message ID (must be unique per CL hop and
 #request/response pair)

 locators # an array of locators

 instance # an UDP CL speaker identifier (must be unique per IP host,
 # e.g., process ID and per process ID

 Figure 5: UDP CL JSON request structure

 This version of the specification defines the GET request and the
 corresponding GET response only.

 GET request A GET request provides the following objects:

 version: "NetInfUDP/1.0"

 msgType: "GET"

 uri: name of the requested NDO

Kutscher, et al. Expires August 14, 2013 [Page 18]

Internet-Draft NetInf Protocol February 2013

 msgId: message ID (see above)

 GET reponse A GET response provides the following objects:

 version: "NetInfUDP/1.0"

 msgType: "GET-RESP"

 uri: name of the requested NDO

 msgId: message ID (see above)

 locators: a list of locator strings

7. Security Considerations

 For privacy preserving reasons requestors SHOULD attempt to limit the
 personally identifying information (PII) included with search
 requests. Including fine-grained search keywords can expose
 requestor PII. For this reason, we RECOMMEND that requestors include
 more coarse grained keywords and that responders include sufficient
 meta-data to allow the requestor to refine their search based on the
 meta-data in the response.

 Similarly, search responders SHOULD consider whether or not they
 respond to all or some search requests as exposing one's cached
 content can also be a form of PII if the cached content is generated
 at the behest of the responder.

 Name-data integrity validation details are TBD for some common MIME
 types.

 Users need to be aware that the affiliated data is NOT protected by
 the name-data integrity as this applies only to the data content
 octets.

 [[More TBD no doubt.]]

8. Acknowledgments

 This work has been supported by the EU FP7 project SAIL (FP7-ICT-
 2009-5-257448).

 Claudio Imbrenda and Christian Dannewitz contributed to early
 versions of this document whilst working at NEC and the University of
 Paderborn respectively.

Kutscher, et al. Expires August 14, 2013 [Page 19]

Internet-Draft NetInf Protocol February 2013

 Petteri Poeyhoenen and Janne Tuononen helped with interop testing and
 corresponding feedback.

9. References

9.1. Normative References

 [I-D.farrell-decade-ni]
 Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,
 Keraenen, A., and P. Hallam-Baker, "Naming Things with
 Hashes", draft-farrell-decade-ni-10 (work in progress),
 August 2012.

 [I-D.hallambaker-decade-ni-params]
 Hallam-Baker, P., Stradling, R., Farrell, S., Kutscher,
 D., and B. Ohlman, "The Named Information (ni) URI Scheme:
 Optional Features", draft-hallambaker-decade-ni-params-03
 (work in progress), June 2012.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 April 2010.

 [W3C.REC-html401-19991224]
 Hors, A., Raggett, D., and I. Jacobs, "HTML 4.01
 Specification", World Wide Web Consortium
 Recommendation REC-html401-19991224, December 1999,
 <http://www.w3.org/TR/1999/REC-html401-19991224>.

https://datatracker.ietf.org/doc/html/draft-farrell-decade-ni-10
https://datatracker.ietf.org/doc/html/draft-hallambaker-decade-ni-params-03
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5785
http://www.w3.org/TR/1999/REC-html401-19991224

Kutscher, et al. Expires August 14, 2013 [Page 20]

Internet-Draft NetInf Protocol February 2013

9.2. Informative References

 [I-D.farrell-dtnrg-bpq]
 Farrell, S., Lynch, A., Kutscher, D., and A. Lindgren,
 "Bundle Protocol Query Extension Block",

draft-farrell-dtnrg-bpq-01 (work in progress), March 2012.

 [RFC4838] Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst,
 R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant
 Networking Architecture", RFC 4838, April 2007.

 [RFC5050] Scott, K. and S. Burleigh, "Bundle Protocol
 Specification", RFC 5050, November 2007.

 [RFC5751] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, January 2010.

 [ref.netinf-db2]
 SAIL, "NetInf Content Delivery and Operations", SAIL
 Project Deliverable D-3.2 , May 2012.

 [ref.netinf-db3]
 SAIL, "Final NetInf Architecture", SAIL Project
 Deliverable D-3.3 , January 2013.

Authors' Addresses

 Dirk Kutscher
 NEC
 Kurfuersten-Anlage 36
 Heidelberg,
 Germany

 Phone:
 Email: kutscher@neclab.eu

 Stephen Farrell
 Trinity College Dublin
 Dublin, 2
 Ireland

 Phone: +353-1-896-2354
 Email: stephen.farrell@cs.tcd.ie

https://datatracker.ietf.org/doc/html/draft-farrell-dtnrg-bpq-01
https://datatracker.ietf.org/doc/html/rfc4838
https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc5751

Kutscher, et al. Expires August 14, 2013 [Page 21]

Internet-Draft NetInf Protocol February 2013

 Elwyn Davies
 Trinity College Dublin
 Dublin, 2
 Ireland

 Phone: +44 1353 624 579
 Fax:
 Email: davieseb@scss.tcd.ie
 URI:

Kutscher, et al. Expires August 14, 2013 [Page 22]

