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Abstract

   This document describes recommendations for the implementation of
   public key cryptography based on the mediated RSA algorithm. The
   Mediated RSA algorithm bases on fragmentation of a private key. As a
   result the signature process consists from multiple stages. The
   verification process is the same as in the case of RSA algorithm
   [RFC3447].
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1. Introduction

   This memo is the extension to the RFC 3447. This document describes
   aspects specific to the mediated RSA signature scheme such as:
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   o  Key generation

   o  Signature creation

   The recommendations are intended for general application within
   computer and communications systems, and as such include a fair
   amount of flexibility. It is expected that application standards
   based on these specifications may include additional constraints.

   mRSA algorithm may exists in many versions, depending on the way how
   the private RSA exponent is split between parties. We might
   distinguish two main cases (cf. sect. 1 of [7]):

   o  mRSAA for additive splitting of the private exponent:

      d \equiv du + df (mod lcm(p-1,q-1)) for some integers du, df,

   o  and mRSAM if the private exponent is divided multiplicatively:

      d \equiv du' * df' (mod lcm(p-1,q-1)) for some integers du', df'
      coprime with lcm(p-1,q-1).

   Since each of the above possibilities determines different
   communication content between the user and the finalization service
   during signature generation (this imposes constraints on
   interoperability of implementations of mRSA schemes), and since
   addition gives more flexibility in choice of a key generation
   procedure, this document covers only the additive scheme.

2. Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC-2119 [1].

     (n, e)         RSA public key

     c              ciphertext representative, an integer between 0
                     and n-1

     cp             ciphertext created using du key, an integer
                     between 0 and n-1

     C              ciphertext, an octet string

     Cp             ciphertext created using du, an octet string

https://datatracker.ietf.org/doc/html/rfc2119
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     d              private exponent of a user, an integer such that
                     df + du \equiv d (mod \lambda(n))

     df             private component of a finalization service, a
                     positive integer such that df + du \equiv d (mod
                     lambda(n))

     dP             p's exponent, a positive integer such that:
                     e(dP)\equiv 1 (mod(p-1))

                    NOTE: The dP value is not used in the MRSAA
                     algorithm. It has been placed for compliancy with
                     the RSA specification.

     dQ             q's exponent, a positive integer such that:
                     e(dQ)\equiv 1 (mod(q-1))

                    NOTE: The dQ value is not used in the MRSAA
                     algorithm. It has been placed for compliancy with
                     the RSA specification.

     e              public exponent

     EM             encoded message, an octet string

     emLen          intended length in octets of an encoded message

     Fm             finalization service's master key

     H              hash value, an output of Hash

     Hash           hash function

     hLen           output length in octets of hash function Hash

     K              RSA private key,  we assume that that meaningful
                     fields of the K are at least (n,e,d,p,q)

     Kf             RSA private key which consists of (n, df)

     Ku             RSA private key which consists of (n, du)

     k              length in octets of the modulus n

     l              intended length of octet string

     lcm(.,.)       least common multiple of two nonnegative integers
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     m              message representative, an integer between 0 and n-1

     mp             message decrypted using df key, an integer between 0
                     and n-1

     M              message, an octet string

     MGF            mask generation function

     n              RSA modulus, n=pq

     P              encoding parameters, an octet string

     p,q            prime factors of the modulus

     qInv           CRT coefficient, a positive integer less than p
                     such: q(qInv)\equiv 1 (mod p)

                    NOTE: This value is not used in the MRSAA algorithm.
                     It has been placed for compliancy with the RSA
                     specification.

     s              signature representative, an integer between 0 and
                     n-1

     Sp             signature representative, created using du key, an
                     integer between 0 and n-1

     S              signature, an octet string

     Sp             signature created using du key, an octet string

     Uid            user identifier, an octet string

     x              a nonnegative integer

     X              an octet string corresponding to x

     \abs(x)        absolute value of argument x

     \eea(a,b)      an extended Euclidean algorithm which gives a result
                     that satisfies:

                    result*a\equiv gcd(a,b) mod b,

                    where gcd(a,b) is the greatest common divisor of
                     arguments a and b.
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     \floor(x)      the greatest integer not greater than real number
                     x

     \lambda(n)     lcm(p-1, q-1), where n = pq

     \log_2(x)      logarithm in base 2 from positive number x

     \xor           bitwise exclusive-or of two octet strings

     ||             concatenation operator

     ||.||          octet length operator

3. Key types

   This document employs two types of key: an RSA public and RSA private
   key. The RSA private key is divided into two fragments, one fragment
   is stored privately by the user the other is privately recalculated
   by the finalization service on finalization requests.

   The public key is not fragmented and thus is independent from private
   key fragmentation schema.

3.1. RSA public key

   For the purposes of this document, an RSA public key consists of two
   components:

   n, the modulus, an odd, positive integer

   e, the public exponent, an odd, positive integer

   In a valid RSA public key, the modulus n is a product of two odd
   primes p and q, and the public exponent e is an integer between 3 and
   n-1 satisfying gcd(e, \lambda(n)) = 1, where \lambda(n) = lcm
   (p-1,q-1).

3.2. Mediated RSAA private key

   This document defines mediated RSA key as a set of two keys:

   o  User's mRSAA private key

   o  Finalization service's mRSAA private key

   These keys are created from standard RSA key (the base key) which in
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   particular includes:

   o  p, q, prime factors of the public modulus n, that is pq=n

   o  d, the private exponent, a nonnegative integer

   In the valid RSA private key, the product pq equals the modulus n
   from the corresponding public key, and the private exponent d is a
   positive integer less than \lambda(n) satisfying:

   ed \equiv 1 (mod \lambda(n)).

   In mediated RSA variant the private exponent is split between two
   parties: between the user and the finalization service. In mRSAA the
   split is done to satisfy the following relation:

     d \equiv df +  du (mod \lambda(n)).

   NOTE: In this document we require that df is longer than modulus n,
   hence above we have a congruence modulo \lambda(n) instead of
   equality of integers.

   Although, it is possible to use a different key splitting method,
   this document covers only the method based on the addition (additive
   scheme).

3.2.1. User's mRSAA private key

   User's key consists of two components:

   o  n, the modulus, a positive integer, the same one as in the public
      key

   o  du, user's  private exponent, an integer

   In a valid mRSAA user's private key the user's private component
   meets the following equation:

   df + du \equiv d (mod \lambda(n))

   The process of key generation is described in section 7.

   Because some key generation techniques might yield du being a
   negative integer (cf. sect. 11.2. ), we do not exclude du < 0 in the
   document

3.2.2. Finalization service's mRSAA private key
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   For the purposes of this document the finalization service's private
   key Kf consists of the pair (n,df) where the components have the
   following meaning:

   o  n, the modulus, a positive integer, the same one as in the public
      key

   o  df, the finalization service's private exponent, a positive
      integer

   In a valid mRSAA finalization service's private key, the finalization
   service's private component meets the following equation:

   df + du \equiv d (mod \lambda(n))

4. Data conversion primitives

   In this document are used following data conversion primitives:

      I2OSP: Integer-to-Octet-String primitive

      OS2IP: Octet-String-to-Integer primitive

   This document describes briefly syntax of data conversion primitives.
   More detailed description can be found in [RFC3447].

   For the purposes of this document, and consistent with ASN.1 syntax,
   an octet string is an ordered sequence of octets (eight-bit bytes).
   The sequence is indexed from first (conventionally, leftmost) to last
   rightmost). For purposes of conversion to and from integers, the
   first octet is considered the most significant in the following
   conversion primitives.

4.1. I2OSP

   I2OSP converts a nonnegative integer to an octet string of a
   specified length.

      I2OSP (x, l)

   Input:

      x             nonnegative integer to be converted

      l             intended length of the resulting octet string

https://datatracker.ietf.org/doc/html/rfc3447
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      Output:

      X             corresponding octet string of length l; or "integer
                    too large"

4.2. OS2IP

   OS2IP converts an octet string to a nonnegative integer.

      OS2IP (X)

      Input:

      X            octet string to be converted

      Output:

      x            corresponding nonnegative integer

5. Cryptographic primitives

   Cryptographic primitives are basic mathematical operations on which
   cryptographic schemes can be built. They are intended for
   implementation in hardware or as software modules, and are not
   intended to provide security apart from a scheme.

   Five types of primitive are specified in this document, organized in
   sections: key generation; encryption and decryption; and signature
   and verification.

   The specifications of the primitives assume that certain conditions
   are met by the inputs, in particular that public and private keys are
   valid.

5.1. Key generation primitives

   The purpose of using key generation primitives is to create mRSAA key
   pair: a public key and pair of private keys: a finalization service's
   key and a user's key.

   The finalization service's exponent df is derived from a master
   service key Fm and a user identifier Uid. The derivation is a
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   asymmetric signature key then generation process of exponent df might
   be as follows: Uid is signed with key Fm, and this signature is a
   seed for pseudorandom string generation (cf. deterministic seed for
   generation of pseudorandom bits in paper [14]). The resulting string
   df (output of the generator) should have bitlength defined as
   follows:

      \floor(\log_2(n))+1 + Delta

   where Delta is a fixed value taken from the set {80,...,128}. That is
   df should be longer by Delta bits from the length of the modulus n.
   The aim of taking a longer bitstring df is to equalize chances of
   each single value modulo \lambda(n) to be chosen as the remainder rem
   in the relation

      df \equiv rem mod \lambda(n)

   Note that the finalization service does not know the value
   lambda(n). The greater Delta is the tighten equalization is achieved.

   Note that in case of asymmetric method there is no need to make
   public the key complementary to Fm, that is the signature
   verification key. The complementary key should remain secret to
   prevent any cryptoanalytic attempts: one option is to use it
   internally in the system for the purpose of verification of
   implementation correctness (e.g., of subliminal channel freeness),
   another possibility is to completely erase the complementary key.

   Generation of the pseudorandom bit string uses deterministic random
   bit generator which bases on block ciphers algorithms (CTR_DRBG).
   CTR_DRBG's primitives are specified in the paper [3]. For the
   purposes of this document, primitives specified in [3] have been
   briefly described in Appendix A.

   The user's private key is created on a basis of the finalization
   service's private key (n,df) and the RSA base key K.

5.1.1. MRSAA_F_GP

   MRSAA_F_GP generates pseudorandom key of requested length on a basis
   of a given bit string. This document describes MRSA_F_GP as a
   primitive which is based on the CRT_DRBG pseudorandom generator. An
   implementer may use other pseudorandom generator type conformant to
   [3].

   MRSAA_F_GP(w, len)
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     w               the string of bits received from the consuming
                      application

     len             Requested bitlength of the output string

   Output:

     returned_bits pseudorandom bit string with length specified in
                      len

   Assumptions:

   CRT_DRBG generator conformant to [3] is used.

   Steps:

   1. Let H = Hash(w)
   2. Let (V, Key, reseed_counter) =
     CTR_DRBG_Instantiate_algorithm(null, H)
   3. Let (status, returned_bits, Key, V, reseed_counter) =
     CTR_DRBG_Generate_algoritm(reseed_counter, len, null)
   4. If the status is SUCCESS output returned_bits and stop. In a
     different case return an error

5.1.2. MRSAA_U_GP

   Creates user's private exponent from finalization service's private
   exponent and a base RSA key.

   NOTE: For alternative procedures see sect.11.2.

   MRSAA_U_GP(K,df)

   Input:

     K               Base RSA private key which contains values (n, d,
                      p, q)

     df              Private exponent of finalization service's key

   Output:

     du              Private exponent of user's key
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   Assumptions:

   The K is a valid RSA private key corresponding to the public key
   (e,n) for which df has been calculated

   Steps:

   1. Let lambda = (p-1)*(q-1)/gcd(p-1,q-1).
   2. Let du = (d - df) mod lambda

5.2. Encryption and decryption primitives

An encryption primitive produces a ciphertext from a message
representative under a control of public key. The primitive MRSAA_F_DP
is used to transform a ciphertext to a form which can be processed by
the MRSAA_U_DP primitive. The primitive MRSAA_U_DP recovers a message
from MRSAA_F_DP output.

The encryption/decryption scheme involves all three primitives described
below.

Primitives RSAEP and RSADP are briefly described in the Appendix B.

MRSAA_EP is identical as a RSAEP primitive and thus they can be used
interchangeably.

5.2.1. MRSAA_F_DP

   MRSAA_F_DP transforms ciphertext to the form which can be decrypted
   by a MRSAA_U_DP primitive.

MRSAA_F_DP(Kf, c)

   Input:

     Kf              Finalization service's private key in the form of a
                      pair of (n, df)

     c               ciphertext representative, an integer between 0 and
                      n-1

   Output:

     mp              message partially decrypted using df key, an
                      integer between 0 and n-1

   Assumptions:
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   The Kf key is a valid mRSAA key which corresponds to the user's
   identifier Uid.

   Steps:

   1. Let mp = RSADP(Kf, c)

5.2.2. MRSAA_U_DP

   Retrieves message from partially deciphered message (result of an
   MRSAA_F_DP)

MRSAA_U_DP(Ku, mp, c)

   Input:

     Ku              user's private key in the form of a pair of (n, du)

     mp              message partially decrypted using df key, an
                      integer between 0 and n-1
     c               ciphertext representative, an integer between 0
                      and n-1

   Output:

     m               message representative, an integer between 0 and
                      n-1

   Assumptions:

   The Ku key is a valid mRSAA key (n, du)

   Steps:

   1. Let Ku' = (n,\abs(du))
   2. Let temp = RSADP(Ku', c)
   3. If (du < 0) temp = \eea(temp,n)
   4. Let m = mp*temp mod n

5.2.3. MRSAA_EP

   MRSAA_EP encrypts given message

   MRSAA_EP((n,e),m)



Kutylowski et al.         Expires May 6, 2013                  [Page 14]



Internet-Draft  Mediated RSA cryptography specification November 2, 2012

   Input:

     (n, e)          RSA public key

     m               message representative, an integer between 0 and
                      n-1

   Output:

     c               ciphertext representative, an integer between 0 and
                      n-1; or "message representative out of range"

   Assumptions:

   The public key (n, e) is valid

   Steps:

   1. Let c = RSAEP((n,e) , m)

5.3. Signature and verification primitives

   A verification primitive works in similar way like an RSAVP1
   primitive. Signature process uses two primitives specified below: an
   MRSAA_U_SP1 and MRSAA_F_SP1 primitive. MRSAA_U_SP1 primitive creates
   partial signature, which cannot be verified before execution of the
   MRSAA_F_SP1 primitive.

   Signature/verification scheme uses all three primitives specified
   below.

   Verification primitive is identical as an RSAVP1 primitive and thus
   RSAVP1 can be used instead of MRSAA_VP1.

   Primitives RSAVP1, RSASP1 are briefly described in Appendix B.

   For the final signature creation step (MRSAA_F_SP1) we strongly
   recommend to perform signature verification before passing the

   assume that signature verification includes verification of encoding
   correctness.

5.3.1. MRSAA_U_SP1
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   MRSAA_U_SP1 creates partial signature from given message.

   MRSAA_U_SP1(Ku,m)

   Input:

     Ku              user's private key in the form of a pair of (n, du)

     m               message representative, an integer between 0 and
                      n-1

   Output:

     sp              representative of a partial signature, an integer
                      between 0 and n-1, created using Ku key

   Assumptions:

   The Ku key is a valid mRSAA key which corresponds to the user's
   identifier Uid and public key (n,e)

   Steps:

   1. Let Ku' = (n,\abs(du))
   2. Let sp = RSASP1(Ku', m)
   3. If (du < 0) then sp = \eea(sp,n) mod n

5.3.2. MRSAA_F_SP1

   MRSAA_F_SP1 creates valid RSA signature from given partial signature.

   MRSAA_F_SP1(Kf, sp, m)

   Input:

     Kf              Finalization service's private key in the form of a
                      pair (n, df)

     sp              representative of a partial signature, an integer
                      between 0 and n-1, created using Ku key

     m               message representative, an integer between 0 and
                      n-1

   Output:
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     s               signature representative, an integer between 0
                      and n-1

   Assumptions:

   The Kf key is a valid mRSAA key which corresponds to the key Ku

   Steps:

   1. Let temp = RSADP1(Kf, m)
   2. Let s = temp*sp mod n

5.3.3. MRSAA_VP1

   MRSAA_VP1 retrieves a message from a given signature

   MRSAA_VP1((n, e), s)

   Input:

     (n, e)          RSA public key

     s               signature representative, an integer between 0
                      and n-1

   Output:

     c               message representative, an integer between 0 and
                      n-1

   Assumptions:

   The public key (n, e) is valid

   Steps:

   1. Let m = RSAVP1((n, e) , s)

6. Overview of schemes

   A scheme combines cryptographic primitives and other techniques to
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   achieve a particular security goal.  Two types of scheme are
   specified in this document: encryption schemes and signature schemes
   with appendix.

   The schemes specified in this document are limited in scope in that
   their operations consist only of steps to process data with an mRSAA
   public or private key. Additionally steps necessary for private key
   splitting have been described (see section 7.1. ). Thus, in addition
   to the scheme operations, an application will typically include key
   management operations by which parties may select mRSAA public and
   private keys for a scheme operation.  The specific additional
   operations and other details are outside the scope of this document.

   As was the case for the cryptographic primitives (Section 5), the
   specifications of scheme operations assume that certain conditions
   are met by the inputs, in particular that mRSAA public and private
   keys are valid.  The behavior of an implementation is thus
   unspecified when a key is invalid.  The impact of such unspecified
   behavior depends on the application.  In general possible means of
   addressing key validation include:

   o  explicit key validation by the application;

   o  key validation within the public-key infrastructure;

   o  assignment of liability for operations performed with an invalid
      key to the party which generated the key.

   In case of mRSAA signatures the key validation could be performed by
   verifying the first finalized signature using the public key. To
   validate mRSAA decryption keys, decryption of some test message may
   be performed.

7. Key generation schemes

   A key generation scheme combines a MRSAA_U_GP and MRSAA_F_GP with a
   RSASP1 operation to create MRSAA private key pair for user and
   finalization service.

   The finalization service's key can be derived from a service key Fm
   and user identifier Uid. This kind of solution eliminates necessity
   of key archival on the finalization service's side. To derive private
   key from service's master key Fm some secure pseudorandom numbers
   generator is used. Fm is described below as an asymmetric signature
   key of a deterministic scheme. However, since Fm is used internally
   in the system, we do not exclude possibility of implementing other
   secure derivation methods of exponents df. As stated in section 5.1.
   we recommend the key complementary to asymmetric signature key Fm to
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   remain secret.

   In key generation schemes described below we do not assume that all
   input variables are available at the same location, and that all
   output variables are generated at the same place.

7.1. Key generation operation

7.1.1. Generation of the private key assigned to identifier Uid of a
   user

   MRSAA_U_GS-DRBG-GENERATE (K,df)

   Input:

     K               Base RSA private key which contains values (n,
                      d, p, q)

     df              Finalization services exponent calculated for the
                      user of identifier Uid

   Output:

     Ku              RSA key (n, du) such that du + df \equiv d
                      \lambda(n), and e*d \equiv 1 \lambda(n), where
                      (n,e) is the public key for which exponent df has
                      been calculated on finalization service side
   Steps:

   1. Apply an MRSAA_U_GP to generate user's MRSAA private exponent du:
     du = MRSAA_U_GP(K,df)
   2. Return (n,du) as Ku

7.1.2. Key generation on the finalization service's side

   MRSAA_F_GS-DRBG-GENERATE generates finalization service's private
   key. An implementer may use other deterministic signature algorithms
   (i.e. RSASSA-PKCS-v1_5-SIGN) or other methods to generate df
   exponent.

   MRSAA_F_GS-DRBG-GENERATE (n, Uid, Fm)

   Input:
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     n               public RSA modulus of the user and the identifier
                      Uid

     Uid             User identifier, an octet string

     Fm              Finalization service's master key, a RSA key

   Output:

     Kf              Finalization service's key, RSA key (n, df) which
                      together with key Ku shall satisfy the
                      congruence:  df + du \equiv d mod \lambda(n),
                      where d is the private exponent corresponding to
                      the public key (n,e) of the user of identifier
                      Uid, that is d*e \equiv 1 mod \lambda(n)
   Assumptions:

   The finalization service uses a fixed value Delta, an integer from
   the set {80,...,128} (see remarks in sect. 5.1. ).

   In the case when Kf is generated anew for each signature finalization
   or/and for each decryption operation concerning the user of
   identifier Uid, that is why the process must be deterministic.

     1. Steps:Apply the RSASP1 primitive to Fm key and Uid integer
        representative value to create signature W, with salt of length
        0 (cf. [RFC3447], point 4 on page 37), or with salt being a
        fixed value (cf. [RFC3447], sect. 8.1 page 29):
        W = RSASSA-PSS-SIGN(Fm, Uid)
     2. Convert W octet string to an integer representative w:
        w = OS2IP(W)
     3. Apply an MRSAA_F_GP to generate finalization service's MRSAA
        private exponent df:
        df = MRSAA_F_GP(w, \floor(\log_2(n))+1 + Delta)
     4. Return (n, df) as Kf

8. Encryption schemes

   For the purpose of this document, an encryption scheme consists of an
   encryption operation and decryption operation, where the encryption
   operation produces a ciphertext from a message with a recipient's RSA
   public key, and the decryption operation recovers original message in
   two stages: transformation made by finalization service, and
   decryption performed by an recipient.

   The encryption scheme can be employed in variety of applications,
   especially in systems with different level access to confidential

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
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   information. The scheme assures additional level of protection
   because of a usage of a finalization service.

   The document extends existing RSA encryption and decryption scheme,
   particularly the decryption scheme, which differs from the RSA
   scheme.

   The Encryption scheme combines encryption and decryption primitives
   with an encoding method for encryption. The encryption operations
   apply a message encoding operation to a message to produce an encoded
   message, which is then converted to an integer message
   representative. An encryption primitive is applied to the message
   representative to produce the ciphertext. Reversing this, the
   decryption operations apply a decryption primitive to the ciphertext
   to recover a message representative, which is then converted to an
   octet string encoded message. A message decoding operation is applied
   to the encoded message to recover the message and verify the
   correctness of the decryption.

8.1. MRSAAES-OAEP

   MRSAA-OAEP combines RSAEP, MRSAA_U_DP, and MRSAA_F_DP primitives
   (Sections 5.2.2. 5.2. ) with EME-OAEP encoding method specified in
   [RFC3447].

8.1.1. Encryption operation

   There are no differences in encryption operation (RSAES-OAEP-
   ENCRYPT) according to [RFC3447].

8.1.2. Decryption operation

   MRSAA-F-OAEP-DECRYPT(Kf, C)

   Options:

     Hash            Hash function (hLen denotes the length in octets of
                      the hash function output)

     MGF             Mask generation function

   Input:

     Kf              Finalization service's private key (k denotes the
                      length in octets of the RSA modulus n)

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
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     C               Ciphertext to be decrypted, an octet string of
                      length k, where k >= 2hLen + 2

   Output:

     Cp              Transformed ciphertext, which can be deciphered
                      using Ku key

   Assumptions:

   The Kf key is generated with MRSAA_F_GS-DRBG-GENERATE and corresponds
   to the public key which has been used to produce the ciphertext C.

   Steps:

   1. Length checking
        a. If a the length of the ciphertext C is not k octets, output
          "decryption error" and stop.
        b. If k < 2hLen + 2, output "decryption error and stop"
   2. RSA decryption
        a. Convert the ciphertext C to an integer ciphertext
          representative c (see Section 4.2. ):
          c = OS2IP(C)
        b. Apply the MRSAA_F_DP decryption primitive (Section 5.2.1. )to
          the mRSAA private key Kf and ciphertext representative c to
          produce an integer representative cp:
          cp = MRSAA_F_DP(Kf,c)
        c. Convert the transformed ciphertext cp to an encoded
          transformed ciphertext Cp of length k octets:
          Cp = I2OSP(cp,k)
        d. Output the Cp

   MRSAA-U-OAEP-DECRYPT(Ku, Cp, C, L)

   Input:

     Ku              User's private key (k denotes the length in
                      octets of the RSA modulus n)

     Cp              Transformed ciphertext, to be decrypted

     C               Ciphertext, an octet string

     L               Optional label whose association with the message
                      is to be verified; the default value for L, if L
                      is not provided, is the empty string
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   Output:

     M               message, an octet string of length mLen, where mLen
                      <= k - 2hLen - 2

   Steps:

   1. RSA decryption
        a. Convert the ciphertext Cp to an integer ciphertext
          representative cp (see Section 4.2. ):
          cp = OS2IP(Cp)
        b. Convert the ciphertext C to an integer ciphertext
          representative c (see Section 4.2.
          c = OS2IP(C)
        c. Apply the MRSAA_U_DP decryption primitive (Section 5.2.2. )to
          the RSA private key Ku and ciphertext representative cp to
          produce an integer representative m' of an encoded message:
          m' = MRSAA_U_DP(Ku, cp, c)
        d. Convert the encoded message representative m' to an encoded
          message M' of length k octets:
          M' = I2OSP(m',k)
   2. EME-OAEP decoding message M from string M':

     Process is performed on M' as described in [RFC3447]

   3. Output the message M

8.2. MRSAAES-PKCS1-v1_5

   MRSAAES-PKCS1-v1_5 combines the RSAEP and MRSAADP primitives with the
   EME-PKCS1-v1_5 encoding method. RSAES-PKCS1-v1_5 can operate on
   messages length up to k-11 octets, although care should be taken to
   avoid certain attacks on low-exponent RSA due to Coppersmith, et al.
   when long messages are encrypted (see [4]). As general rule, the use
   of this scheme for encrypting an arbitrary message, as opposed to a
   randomly generated key, is not recommended. Moreover, one must still
   avoid encrypting the same random key with relatively short, different
   randomizers, to some number of recipients sharing the same small
   public exponent (see section 5 and appendix C of [15]).

8.2.1. Encryption operation

   There are no differences between MRSAA and RSA encryption process and
   thus RSAES-PKC1-V1_5-ENCRYPT should be used. Detailed specification
   can be found in the [RFC3447]

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
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8.2.2. Decryption operation

   Input:

     Kf              Finalization service's private key (k denotes the
                      length in octets of the RSA modulus n)

     C               Ciphertext to be decrypted, an octet string of
                      length k, where k is the length in octets of the
                      RSA modulus n

   Output:

     Cp              Transformed ciphertext, which can be deciphered
                      using Ku key

   Assumptions:

   The Kf key is generated with MRSAA_F_GS-DRBG-GENERATE and corresponds
   to the public key which has been used to produce the ciphertext C.

   Steps:

   1. Length checking: If the length of the ciphertext C is not k octets
     (or if k < 11), output "decryption error" and stop.
   2. RSA decryption
        a. Convert the ciphertext C to an integer ciphertext
          representative c (see Section 4.2. ):
          c = OS2IP(C)
        b. Apply the MRSAA_F_DP decryption primitive (section 5.2.1. )to
          the mRSAA private key Kf and ciphertext representative c to
          produce an integer representative cp:
          cp = MRSAA_F_DP(Kf,c)
        c. Convert the transformed ciphertext cp to an encoded
          transformed ciphertext Cp of length k octets:
          Cp = I2OSP(cp,k)
   3. Output Cp

   MRSAAES-U-PKCS-1-V1_5-DECRYPT (Ku, CP, C)

   Input:

     Ku              User's private key (k denotes the length in
                      octets of the RSA modulus n)

     Cp              Transformed ciphertext, to be decrypted



Kutylowski et al.         Expires May 6, 2013                  [Page 24]



Internet-Draft  Mediated RSA cryptography specification November 2, 2012

     C               Original ciphertext, octet string

     M               message, an octet string of length at most k - 11

   Steps:

   1. Length checking: If the length of the ciphertext C is not k octets
     (or if k < 11), output "decryption error" and stop.
   2. RSA decryption
        a. Convert the ciphertext C to an integer ciphertext
          representative c (see Section 4.2. ):
          c = OS2IP(C)
        b. Convert the transformed ciphertext Cp to an integer
          ciphertext representative cp (see Section 4.2. ):
          cp = OS2IP(Cp)
        c. Apply the MRSAA_U_DP decryption primitive (section 5.2.2. )to
          the RSA private key Ku and transformed ciphertext
          representative cp and original ciphertext c to produce an
          integer representative of an encoded message m':
          m' = MRSAA_U_DP(Ku,cp, c)
          If MRSAA_U_DP outputs "ciphertext representative out of
          range" (meaning that cp>=n), output "decryption error" and
          stop.
        d. Convert the encoded message representative m' to an encoded
          message M' of length k octets:
          M' = I2OSP(m',k)
   3. EME-PKCS1-v1_5 decoding message M from string M'
     Performed on string M' as specified in [RFC3447].
   4. Output M

9. Signature schemes with appendix

   For the purposes of this document signature schemes with appendix
   consists of three main operations: signature verification and two
   complementary operations of signature generation. Signature
   verification produces a message from signature value using RSA public
   key, and signature operations creates a signature value from a
   message value and from the intermediate product, i.e., from a partial
   signature. The partial signature is created using a user's private
   key, and final signature value is created using finalization
   service's private key corresponding to the public key of the user.

   Two signature schemes are specified in this document: MRSAASA-PSS and
   MRSAASA-PKCS1-v1_5. Both of them base on an corresponding RSA scheme
   specified in [RFC3447].

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
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9.1. MRSAASSA-PSS

   MRSAASSA-PSS combines MRSAA_U_SP1, MRSAA_F_SP1 and RSAVP1 which is
   The MRSAA_U_SP1 primitive is identical to the RSASP1 primitive, and
   thus it is sufficient to implement only RSASP1.

   The length of messages on which MRSAASSA-PSS can operate is either
   unrestricted or constrained by a very large number, depending on the
   hash function underlying the EMSA-PSS encoding method.

   To make signature verification by the finalization service possible
   (see remark in Section 5.3. ) we strongly recommend adding at least
   mHash to the list of arguments passed to the finalization service.
   Note that according to [RFC3447] (page 37, point 3) the EMSA-PSS
   encoding is secure even if an adversary can freely choose mHash. Thus
   to utilize strength of the EMSA-PSS encoding verification must at
   least comprise verification of encoding correctness.

9.1.1. Signature generation operations

   MRSAASSA_U_PSS_SIGN (Ku, M)

   Input:

     Ku              Signer's RSA private key

     M               Message to be signed, an octet string

   Output:

     Sp              Partial signature, an octet string of length k,
                      where k is the length in octets of the RSA
                      modulus n
     EM              Message encoded using EMSA-PSS-ENCODE primitive
                      (see [RFC3447] paragraph 9.1.1)

   Errors: "message too long;" "encoding error"

   Steps:

   1. Let EM = EMSA-PSS-ENCODE(M, modBits -1)
   2. Convert the encoded message into integer message representative m:
     m=OS2IP(EM)
   3. Apply the RSASP1 signature primitive to the key Ku and Message M:
     sp = RSASP1(Ku, m)
   4. Convert the signature representative sp into partial signature
     value Sp with the length of k octets. Where k is the length in
     octets of the RSA modulus n

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
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     Sp = I2OSP(sp, k)
   5. Output Sp, EM

   MRSASSSA_F_PSS_SIGN (Kf, Sp, EM)

   Input:

     Kf              Finalization service's RSA private key

     Sp              Partial signature to be transformed into valid
                      signature
     EM              Message encoded using EMSA-PSS-ENCODE primitive
                      (see [RFC3447] paragraph 9.1.1)
   Output:

     S               signature, an octet string of length k, where k
                      is the length in octets of the RSA modulus n

   Errors: "message too long;"

   Assumptions:

   The Kf key is generated with MRSAA_F_GS-DRBG-GENERATE and corresponds
   to the public key which will be used to verify the signature S.

   Steps:

   1. RSA signature

        a. Convert the partial signature Sp to an integer signature
          representative sp:
          sp = OS2IP(Sp)
        b. Convert the pss-encoded message EM to an integer
          representative m:
          m = OS2IP(EM)
        c. Apply the MRSAA_F_SP1 signature primitive (see Section 5.3.2.
          ) to the RSA private key Kf and the partial signature
          representative sp to produce a signature representative s:
          s = MRSAA_F_SP1(Kf, sp, m)
        d. Convert the signature representative s to a signature S of
          length k octets (see section 4.1. ):
          S = I2OSP(s, k)

   2. Output the signature S

https://datatracker.ietf.org/doc/html/rfc3447
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9.1.2. Signature verification operation

   There are no differences between MRSASSSA-PSS-VERIFY and RSASSA-PSS-
   VERIFY operation and thus RSASSA-PSS-VERIFY should be used. The
   RSASSA-PSS-VERIFY operation has been specified in [RFC3447] section

8.1.2.

9.2. MRSAASSA-PKCS1-v1_5

MRSAASSA-PKCS-v1_5 combines MRSAA_U_SP1, MRSAA_F_SP1 and MRSAA_VP1 with
EMSA-PKCS1-v1_5 encoding method. Since MRSAA_U_SP1 is identical to
MRSAASP and MRSAA_VP1 is identical to RSAVP1, RSA version of primitives
is used in specification.

However, as paper [16] indicates, fixed pattern padding method is
relatively weak (note that for a fixed hash function PKCS-v1_5 is a
fixed pattern encoding). The attack from [16] allows producing valid
signatures under a message of attacker's choice (it might be a hash of
some meaningful message), if the following conditions are satisfied
simultaneously:

   o  hash of the message is longer than one-third of the length of the
      modulus,

   o  a victim has signed three encoding results without verifying that
      the values present in the hash-block of encoding are really hashes
      of some messages. The three values are related with the final
      signature forged by the adversary.

Although the attack seems to be theoretical (the victim must sign three
artificial messages to make the adversary able to produce a single
meaningful forgery), it exhibits weakness of this encoding method. To
mitigate this kind of attacks we recommend to use hashes that are
shorter than one-third of the RSA modulus, and to make the finalization
service capable of checking that the value present in the hash-block is
really a hash of some message.

Verification process in the scheme is identical to the RSASSA-PKCS1-
v1_5 verification process. The signing process consists of two stages:
intermediate signature generation (presignature), which is done in
similar way to the RSA scheme, and signature finalization, where
MRSAA_F_SP1 primitive is used in combination with EMSA-PKCS1-v1_5
encoding.

9.2.1. Signature generation operations

https://datatracker.ietf.org/doc/html/rfc3447
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MRSAASSA_U_PKCS1_v1_5_SIGN (Ku, M)

   Input:

     Ku              Signer's RSA private key

     M               Message to be signed, an octet string

   Output:

     Sp              Partial signature, an octet string of length k,
                      where k is the length in octets of the RSA
                      modulus n
     EM              Pkcs1-encoded message (see [RFC3447] section 9.2)

   Errors: "message too long"; "RSA modulus too short"

   Assumptions:

   The Kf key is generated with MRSAA_F_GS-DRBG-GENERATE and corresponds
   to the public key which will be used to verify the signature S.

   Steps:

   1. Let EM = EMSA-PKCS1-V1_5-ENCODE (M, k)
   2. Convert EM value into message representative m:
     m = OS2IP(EM)
   3. Apply RSASP1 signature primitive to the key Ku and message m to
     obtain partial signature value Sp:
     Sp = RSASP1(Ku,m)
   4. Output Sp, EM

MRSAA_F_PKCS1_v1_5_SIGN (Kf, Sp, EM)

   Input:

     Kf              Finalization service's RSA private key

     Sp              Partial signature to be transformed into valid
                      signature
     EM              Pkcs1-encoded message (see [RFC3447] section 9.2)

   Output:

     S               signature, an octet string of length k, where k
                      is the length in octets of the RSA modulus n

https://datatracker.ietf.org/doc/html/rfc3447#section-9.2
https://datatracker.ietf.org/doc/html/rfc3447#section-9.2


Kutylowski et al.         Expires May 6, 2013                  [Page 29]



Internet-Draft  Mediated RSA cryptography specification November 2, 2012

   Errors: "message too long;"

   Steps:

   1. RSA signature
        a. Convert the partial signature Sp to an integer signature

          sp = OS2IP(Sp)
        b. Convert the encoded message EM to an integer representative
          m:
          m = OS2IP(EM)
        c. Apply the MRSAA_F_SP1 signature primitive (see section 5.3.2.
          ) to the RSA private key Kf, the partial signature
          representative sp and message representative m to produce a
          signature representative s:
          s = MRSAA_F_SP1(Kf, sp, m)
        d. Convert the signature representative s to a signature S of
          length k octets (see section 4.1. ):
          S = I2OSP (s, k)
   2. Output the signature S

9.2.2. Signature verification operation

There are no differences between MRSAASSA-PKCS1-v1_5-VERIFY and RSASSA-
PKCS1-v1_5-VERIFY operation and thus RSA version should be used.
RSASSA-PKCS1-v1_5-VERIFY operation has been specified in [RFC3447]
section 8.2.2.

10. Encoding method for signatures with appendix

   The encoding methods specified in [RFC3447] in section 9. should be
   used.

11. Security Considerations

   Formal proof of security of two-party RSA signatures in the random
   oracle model is given in the paper [7]. The proof applies both to
   multiplicative and to additive private exponent splitting.

   However, the paper [7] assumes that the key material is securely
   generated, distributed and stored. It does not investigate for
   example side channel or fault injection attacks into parts of the
   system involved in generation, distribution of keys and replacement
   of old key material.

https://datatracker.ietf.org/doc/html/rfc3447#section-8.2.2
https://datatracker.ietf.org/doc/html/rfc3447#section-8.2.2
https://datatracker.ietf.org/doc/html/rfc3447
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   Some issues of designing, implementing and maintaining a secure
   system that is demonstrably trustworthy are depicted for example in
   papers [8], [9].

   Obviously, building such a system is not a trivial task, and many
   factors have to be taken into consideration.

   The following sections contain an analysis of those factors and give
   recommendations, what kind of controls could be taken into
   consideration when building such a system.

   The subsequent sections identify the assets which should be protected
   and describe security considerations which should be taken into
   account. Security considerations are identified for particular
   processes such as: key generation, signature generation etc.

11.1. Identification of assets and actors

   The main advantage of the MRSAA scheme over the RSA scheme is the
   private exponent fragmentation. This allows the trusted third party
   to confirm user's right to perform MRSAA operation. To achieve this
   functionality neither user nor finalization service knows a base RSA
   key. This can be achieved using distributed key generation techniques
   (see for example [10]), or by outsourcing key generation to a trusted
   third party. Alternatively, to facilitate implementation the base key
   may exist on one component for a short period of lifecycle of the
   keys in a secure environment and must be destroyed immediately
   afterwards.

   After the introduction of the key generation trusted third party, the
   MRSAA key generation algorithm actors list is as follows:

   o  User's device - uses user's MRSAA key

   o  Finalization service - uses finalization service's MRSAA key

   o  Key generation service - generates base RSA key

   In the MRSA algorithm the following assets can be identified:

   o  Fm - master key used in finalization service's exponent (df)
      derivation

   o  df - finalization service's MRSAA private exponent derived from Fm
      and Uid

   o  du - user's MRSAA private exponent
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   o  d - base RSA private exponent

   o  Uid - user identifier used in derivation of df

   For the MRSAA algorithm the following threats can be identified:

   o  Fm key's privacy violation - disclosure of the Fm key allows an
      attacker to generate finalization private exponent df on the basis
      of the Uid's. The attacker is able to create his own

   o  df privacy violation - disclosure of the df exponent allows an
      attacker to act as an finalizations service in a relation to a
      specific user that holds a complementary Ku key.

   o  du privacy violation - a disclosure of the du exponent allows an
      attacker to sign in behalf of the key owner. To produce such a
      signature, the attacker has to use finalization service to
      complete a signature. In the case of an encryption scheme the
      attacker has to obtain a partially deciphered message from
      finalization service.

   o  d exponent's privacy violation - a disclosure of the base RSA key
      allows an attacker to make all operations, either signature and
      decryption, without participation of the user and finalization
      service

   o  Uid's privacy violation - revealing Uid does not affect the MRSAA
      algorithm security.

11.2. Key generation security

   Generation of keys referring to a particular user includes three main
   steps:

   o  Generation of user's base RSA key;

   o  Generation of finalization service's key Kf (the key is
      complementary to the user's key Ku); the procedure is usually
      executed anew for each signature finalization and for each partial
      decryption operation referring to the user;

   o  Generation of the user's private key Ku

   MRSAA keys are distributed among parties. The security of the MRSAA
   algorithm bases on fact that neither user nor finalization service
   knows user's base RSA key (K).
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   Security of the generation process is critical because on this stage
   the base key K with private exponent d is generated. In this stage
   the exponent du, and hence the exponent df needed for this task, are
   calculated as well.

   We can distinguish at least five approaches to the key generation
   process:

   o  Key generation by a separate yet distributed key generation
      service

   o  Generation of the RSA key directly by the user and the
      finalization service with a two-party protocol

   o  Generation of the RSA keys on user's device

   o  Key generation directly by the finalization service

11.2.1. Key generation by a separate yet distributed service.

   The key generation model described in addresses the threat of
   disclosing the base RSA key and finalization exponent df by a single
   protocol participant. Distributed key generation protocols enjoys the
   following property: compromise of a single party does not lead to
   disclosure of the private key. This is achieved by representing some
   intermediate values of the protocol and the final private key as a
   set of shares, and each party knows only a single share of each
   shared value and of the final key. Only having collected some subset
   of shares of a value an adversary is able to reconstruct the value.
   The same refers to the private key. The cardinality of the subset
   must be greater than some threshold. Usually the threshold equals
   floor((k-1)/2), where k is the number of parties generating the key,
   in the two-party schemes the threshold is obviously set to one.

   However, distributed protocols suffer from some drawback: total
   communication volume grows rapidly with the number of participants k,
   thus the protocols do not scale well and are useful only for
   relatively small values of k. Distributed protocols assume that
   point-to-point communication lines between parties are secured (i.e.,
   are encrypted and authenticated).

   To refer to distributed RSA-key generation, many such protocols
   exist in the literature. Some of them consider two-party setting
   [22], [23], [24], whereas other use techniques requiring at least
   three participants of the protocol - see e.g., [25], [26], [10].
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   Suppose that RSA key-pair (n,e), d was generated by k parties:
   P_1, P_2, ..., P_k, and the private exponent d (an integer d such
   that d*e \equiv 1 \lambda(n)) is represented as sum of integers:

                     d = d_1 + d_2 + ... + d_k,

   where party P_i knows only the component d_i. Let df be split by
   the finalization service to the following sum of integers:

                      df = df_1 + df_2 + ... + df_k

   Next, df_i is sent over a secure channel to party P_i. Then P_i
   calculates integer value d_i - df_i and sends the result over a
   secure channel to the device of user u. Finally, user u obtains

         du = (d_1 - df_1) + ... + (d_k - df_k)

   which equals d - df.

   The distributed key generation is exposed to the eavesdropping. For
   example, an adversary who is able to get access to all of the df_i
   fragments is able to recover a df exponent. Access to all fragments
   of the d exponent gives a possibility to recreate the original d
   exponent.

   Therefore, to secure distributed key generation mechanism the
   following security measures may be taken into account:

   o  Authenticating all parties involved in communication

   o  Encrypting communication channels between parties with session
      keys that are secret and unique for each communicating pair.

11.2.2. Key generation by the a separate, centralized service

   In this case a single party, i.e., the key generation service, has a
   control over the base key K. Moreover, it is necessary to involve
   this party into generation of the user's private exponent du.

   On the other hand generation of the finalization service's private
   exponent df should be performed by a finalization service in order to
   not disclose finalization service's master key Fm to other parties.
   Note that key Fm (and thus exponent df) is independent of the values
   of generated RSA  (public (n,e), private d) key-pairs. Exponent df
   depends only on the length of the RSA modulus.
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   To secure key generation process the following requirements should be
   fulfilled:

   o  Fm key should be protected by a finalization service, the key must
      not be disclosed to the other parties

   o  df exponent should be generated in a secure environment by a
      finalization service; the key should be transferred to a key
      generation service in encrypted form

   o  du exponent should be generated in a secure manner by a key
      generation service; the exponent du should be transferred to the
      user in a  encrypted form;

   o  K key should be generated in a secure environment by a key
      generation service; the key should not be transferred to other
      parties; private part d of the key should be destroyed

   A centralized approach to the key generation problem gives an
   opportunity to use many security techniques to protect privacy and
   availability of assets. To protect privacy the following controls may
   be used:

   o  Hardware security modules

   o  Strong authentication and authorization between components

   o  Smart cards for protection of user's key du

   o  Encryption of messages passed between the key generation module
      and the user's device

   To achieve high availability of the key generation environment the
   duplication of the Fm key on multiple devices may be considered as
   long as full control over usage of Fm is maintained. However,
   duplication of Fm rises a risk of the key being compromised.

   In the described model a single party knows the complete RSA key K
   ((n,e), d). However, one might prevent the party from learning how
   the private exponent is divided between the finalization service and
   the user's device. In such case the following method may be used.

   Let the finalization services express the positive integer df as a
   sum of two pseudorandom integers df_1+df_2, where both values have
   roughly the same length. Then df_1 might be encrypted by finalization
   service with the public key to (a device of) the user. We suppose
   that at the time of signature key generation there is some public key
   assigned to the device of the user (e.g., it might be the key used
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   for the device authentication), and that this public key might also
   be used for encryption purposes. Then the finalization service signs
   the pair (ciphertext of df_1, Uid) and both the signed pair and df_2
   are sent to the key generation service. The key generation service
   calculates a multiple of \lambda(n) such that the sum of the multiple
   and d is greater than df_2. Next the service subtracts df_2 from the
   sum result, and passes this subtraction result (we denote it by
   df_2') to the user's device. Also the pair (ciphertext of df_1, Uid)
   and key generation service's signature under it is passed to the
   user's device. We assume that all messages are sent through a secure
   and authenticated channel. The user's device checks Uid, the
   signature of the key generation service, and decrypts df_1. Finally
   the device calculates the integer du=df_2' - df_1.

   Below we shall justify some requirements concerning the channel
   between user's device and the finalization service. Note that pre-
   signature m^{du} mod n, together with the finalized signature m^d mod
   n both represent the DLP (discrete logarithm problem) in the
   multiplicative group of ring Zn:

   Knowing m^d mod n one might easily obtain m. Consequently, to
   learn du from m^{du} mod n it suffices to solve the DLP problem in
   the ring Zn. Knowing factorization of n the (staff of the) key
   generation service might transform this problem to an equivalent
   pair of DLP problems: one modulo p, the other modulo q. However,
   comparing known attacks on factorization problem and on the DLP
   defined in prime fields it is obvious that these two resulting DLP
   problems are much easier to solve than factoring n by an external
   observer (n is about two times longer than each of its factors p,
   q). Therefore, to prevent the (staff of the) key generation service
   from learning du by attacking the DLP problem we advise not only
   authenticate, but also to encrypt the channel between the user's
   device and the finalization service. If the channel between the
   device and the finalization service is not authenticated then,
   having exponent du, the adversary might submit pre-signatures that
   shall be correctly finalized and assigned to the owner of the public
   key (e,n).

   Both in the distributed and the centralized version of the RSA key
   generation service one should take into account possibility of
   kleptographic attacks [27]. To prevent them one might verify a
   fraction of randomly chosen keys being generated regarding randomness
   used.

   Some methods of randomness verification are presented in the papers
   [8], [9]. Another option is to use a deterministic signature scheme
   as a tool to generate seeds for a pseudo-random number generator
   [14]. Such seeds are unpredictable, but easily verifiable in respect
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   to correctness.

   Another issue concerns the finalization service. The issue is
   possibility of subliminal leakage made by finalization service's
   manufacturer by utilizing the relation d \equiv df + du mod
   lambda(n). Note that d must be odd and \lambda(n) is even, hence
   manipulating parity bit of df the finalization service chooses parity
   bit of du. If the channel between the user's device and finalization
   service is not encrypted, then parity of du might be easily
   determined by testing values of Jacobi symbol calculated by user's
   device on a few pre-signatures. Suppose that the finalization service
   is given master key Fm and the aim of the attack prepared by
   finalization service's manufacturer is to leak a ciphertext of Fm say
   AES CFB-mode ciphertext (AES encryption key might be chosen in
   advance by the producer). Let the infected device divide the AES
   ciphertext into say 48-bit blocks and let each block be loaded as an
   initial state of some LFSR (Linear Feedback Shift Register) secretly
   implemented inside finalization's service HSM. Suppose the upper
   limit L on the number of ciphertext's blocks is correctly estimated
   by service's malicious producer. Let hash of Uid indicates both the
   index of LFSR and the index of the bit on that LFSR's output, and let
   parity bit of du be value of the bit indicated by hash of Uid.
   pseudorandom sequence of period 2^{48}-1, hence indicated bits are
   sparsely distributed in LFSR's period and we expect that there would
   be no bit-repetition. Accordingly, outside the system parity bits of
   exponents du seem to be not correlated. On the other hand, stealing
   some number of users' devices the producer collects different bits in
   the sequence produced by each LFSR, that is the producer collects
   linear equations with unknowns being the initial state's bits. Having
   collected 48 independent equations for each LFSR the HSM producer
   calculates values of initial state of each LFSR. In such a way all
   blocks of the ciphertext are collected.

   If output of user's device is encrypted, a powerful adversary might
   try to bypass encryption (cf. instruction nulling with laser beam
   [28] in case of smart cards). We do not exclude possibility of
   mounting such a sophisticated attack against key Fm. Therefore, to
   prevent such an attack we recommend to fix the parity bit of values
   df generated in the system, or to generate exponent df in a
   verifiable manner, for example from seeds being signatures.

11.2.3. Key generation executed directly by the user's device and the
   finalization service with a two-party protocol

   This is a special case of distributed RSA key generation limited to
   two protocol participants [24],[22]. If executed properly (i.e.,
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   parties are curious but honest), it prevents each single participant
   from learning the private key. Such a solution eliminates the need of
   having a separate key generation service. On the other hand, a
   distributed protocol imposes heavy communication and computational
   burden on user's device and (cumulatively) on the central server.
   Moreover, if a more robust version of the protocol is considered
   (i.e., one that prevents parties from cheating - cf. e.g., sect. 6 of
   [23]) the imposed burden is even greater. Designing robust and
   efficient solution well-tailored to capabilities of constrained
   parties seems still to be a challenge.

11.2.4. Key generation on user's device

   In this model functionalities related to the key generation service
   are implemented by a user device. It should be noticed that to
   successfully generate user's exponent du, the user's device need to
   know the df exponent. The df exponent can be transmitted during key
   generation process or stored securely on the device production phase.

   In this model the user's exponent du and the base key K are not
   revealed to the finalization service. The disadvantage of this model
   is that at some stage of the protocol the user's device knows the df
   exponent and the base key K, which gives it a possibility to create
   exposes the user to attacks performed by a malicious device producer.

   To increase security level of this model the following requirements
   should be taken into consideration:

   o  Securely store encryption of exponent df key on user's device
      before the key K is generated by the device. Decryption key Kdf
      for this ciphertext should be sent to the device after revealing
      the public RSA key by the device. In this way even a malicious
      device cannot adjust the key generated to the given exponent df.
      Note that one round of communication after generation of the RSA
      key is always required in this model in order to obtain a
      certificate. Note also that the decryption key Kdf does not have
      to be sent over a secure channel provided that the ciphertext of
      df is placed on the user's device in a secure environment.

   o  Completely erase df and K from user's device immediately after the
      key Ku is generated.

   It should be noticed that all mentioned controls are based on the
   trust to manufacturer of the user's device. In particular the user
   must trust that no kleptographic channel is implemented on the device
   (cf. [11]).

   Note however that if the RSA key is generated directly on a user's
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   device, then particular attention should be given to quality of
   randomness. This refers also to signature generation process for
   non-deterministic signature schemes (cf. RSA-PSS with random salt).

11.2.5. Key generation directly by the finalization service.

   This model does not employ a third party generating keys. All steps
   related to the key generation are performed by the finalization
   service. In such case a finalization service has all necessary
   information needed to forge user's signatures.

   All threats specific key generation by a separate centralized service
   (Section 11.2.1. , but since finalization service should be publicly
   available for signatures finalization, the risk of interception of
   the finalization service by an adversary becomes significantly
   bigger. Moreover, because the key generation procedure is cumulated
   into the server that permanently is contacted by users' devices and
   might be heavily loaded with new connections, the process controlling
   quality of keys generated might be somewhat cumbersome. Further,
   theoretically, one might develop a malicious implementation, which
   might generate false signatures of some user on a request of an
   adversary (we suppose that the malicious implementation knows how to
   recover user's complete RSA key because this implementation has
   generated the key).

   Therefore, the key generation performed directly by the finalization
   service could be considered only in environments with low
   security requirements.

11.3. Replacement of a finalization service

   Probability of a successful attack on the finalization service's key
   depends on strength of cryptographic algorithm used, strength of the
   used key, implementation, security policies executed during system
   lifetime and other issues. Even in implementations that are
   supposed to be secure there is a danger of extracting the Fm key by
   utilizing some new attack, which was not taken into account when the
   system was designed (cf. e.g., [29],[30],[31]). To minimize
   consequences of such situation and to additionally facilitate load
   balancing it is possible to use multiple finalizations services
   with different Fm keys.

   If a few finalization services operate at the same time, with
   corresponding master keys Fm_1, Fm_2, ..,Fm_t, then if one of the
   keys (say Fm_2) becomes compromised it is possible to replace it with
   a new one, and then gradually change users' public keys (immediate
   change of all public keys in a large system might be infeasible).
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   Suppose that user's device holds exponents du_1, du_2, ..., du_t
   referring to the same public key (n,e) or holds some subset of these
   exponents. Each du_i corresponds to df_i produced from key Fm_i,
   and the following condition is satisfied:

   du_i + df_i = d_i, where d_i is some integer such that d_i*e \equiv 1
   mod \lambda(n), that is, d_i \equiv d mod \lambda(n).

   If say Fm_2 becomes compromised, exponent du_2 should be erased from
   the user's device. To introduce a new finalization server with a new
   master key Fm_2' the following, exemplary procedure might be applied:

   Generate df_j (for some j\neq 2) on the server holding Fm_j and split
   df_j pseudorandomly to the sum of two integers of roughly the same
   length: df_j = df_j1+df_j2. Next the server holding Fm_j sends df_j2
   to the server holding Fm_2'. The latter server generates df_2' from
   user's Uid and key Fm_2' and subtracts the value generated from the
   value received: df_j2-df_2'. The resulting value is encrypted with
   the public encryption key corresponding to Uid (see remarks in Sect.
   11.2.2.  on preventing the key generation service from learning df).
   Next the pair (the ciphertext, Uid) is signed by the server holding
   Fm_2', and this pair and the signature is sent to the server holding
   Fm_j. The latter server sends df_j1 and the data received from the
   server holding Fm_2' to the user's device over a secure channel.

   The user's device checks the signature, decrypts the ciphertext and
   adds du_j to the sum of values: df_j1+(df_j2-df_2') = df_j-df_2'.

   As a result value d_j - df_2' \equiv d - df_2' mod \lambda(n) is
   obtained. User's device defines du_2' as d_j - df_2'. When du_2' is
   calculated all intermediate data should be immediately erased from
   the user's device.

   The procedure above might be initialized at the time of finalization
   of some signature - this should reduce communication overhead from
   user's point of view.

   Apart from key Fm the finalization server should also hold some
   authentication key pair and its short-term certificate. Thus in case
   of detection that Fm could be compromised such an additional security
   mechanisms should prevent signature finalization outside the
   legitimate finalization service.

   There is some limitation of the technique described above. If Fm_j
   becomes compromised later, then security of df_2' depends on
   inaccessibility of df_j - df_2' outside the user's device. If such
   inaccessibility might be questionable, then we recommend to gradually
   replace users' public keys.
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11.4. Signature creation process security

   The signing process consists of two parts:

   o  Creating a  partial signature

   o  Finalizing a  signature

   The partial signature creation is performed by a user. The final
   signature is created by a finalization service. The user key Ku is
   stored by the user. The key Kf is derived by a finalization service
   on a basis of the user specific identifier Uid and finalization
   service's master key Fm.

   To create a final signature there is a need to establish a
   communication channel between the user and the finalization service.

   It should be noticed that in the case of the interception of a user's
   private exponent du it is easy to make the exponent useless. The
   adversary has to access to the finalization service to create a valid
   signature. The access to the finalization service can be blocked for
   a specific exponent. The mediated signature scheme has another
   advantage: in the case of dispute, the finalization service is able
   to present the evidence of the signature creation. The finalization
   service's logs might even have a public form of undeniable timestamps
   [17] made automatically by the finalization Note that the not-
   mediated RSA variant usually does not satisfy this property: user's
   certificate revocation does not prevent the adversary from making
   signatures with the stolen key. It is possible to achieve comparable
   level of functionality with timestamped signature with a mandatory
   signature policy. However, it should be noticed that signature
   verification applications must be adjusted accordingly.

   Since in MRSAA scheme user's device does not know the factorization
   of the modulus, the Bellcore attack [18] aimed to injecting faults
   modulo one of the factors of n, does not apply. Even more general
   attacks [19], [20] on implementation not utilizing knowledge about
   modulus factorization (i.e., CRT) do not apply directly because
   nobody knows public exponent eu such that

        eu * du \equiv 1 mod \lambda(n).

   Even user's device should not know such eu (note that knowledge of
   both eu and du, provided eu*du < n^2, is polynomially equivalent to
   the knowledge of factors of n - cf. [21]). Moreover, there is a very
   efficient probabilistic algorithm that, given eu and du, factors n.
   The algorithm does not impose constraints on eu*du.
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   However, in MRSAA scheme the device of the user is not the only
   component involved in signature generation. Suppose that the channel
   between user's device and the finalization service is not encrypted,
   and that the finalization service does not verify the final
   signature. Let m, sp' be integers representing some encoded message
   and its faulty partial signature correspondingly. Let sp' be faulty
   because of a single-bit fault that occurred during this partial
   signature generation (cf. assumptions in [19], [20], concerning
   faults generated). Since m and sp' are sent to the finalization
   service, and

                     m^{df} * sp' mod n

   is returned to the device of the user, it is easy for the adversary
   to obtain m^{df} mod n from the data eavesdropped. If exponentiation
   method used on the side of the device is the method attacked in [19]
   or the method attacked in [20], then having m and m^{df} mod n
   the adversary might modify the original attack from [19] or [20] to
   obtain exponent du.

   Hence to prevent an adversary from learning du by utilizing some
   fault injection attack we recommend to verify the final signature by
   the finalization service.  Verification should include verification
   of encoding correctness.

   The signature creation in MRSAA scheme gives also a possibility to
   perform the following attack: suppose that the finalization service
   (e.g., Uid is not included in the certificate of the key (n,e) nor
   Uid includes hash of (n,e)). Suppose that public keys are not
   stored by the finalization service's device (e.g., a HSM). Let the
   adversary might input all necessary data to the finalization
   service's device and let the device does not verify the finalized
   signature nor check message encoding correctness. Instead of modulus
   n the adversary will use modulus n' such that n'> n, let
   factorization of n' is known to the adversary, and for each prime
   factor p of n' number p-1 is smooth. In such a case having m^{df}
   mod n' the adversary is able to compute df mod \lambda(n') using
   Pohling-Hellman method modulo each prime factor of n'. Details of
   the attack are as follows:

   Let the adversary input to the finalization service some tuple
   (m,sp,n'), where m, sp are some integers.

   The finalization service outputs sp*m^{df} mod n'.

   Knowing sp the adversary calculates m^{df} mod n'  and then

                    df mod \lambda(n').
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   If \lambda(n') is too short to recover df completely, the
   adversary might repeat the procedure for another, appropriately
   chosen n''. As a result

                    df mod lcm(\lambda(n'),\lambda(n''))

   is found by the adversary.

   The attack above might be modified in such a way that df leaks even
   if the finalization service verifies the signature (but does not
   check encoding correctness) - in this case we assume that if
   signature verification fails finalization service does not return any
   value modulo n'. The modification proceeds as follows:

   modulus n' will again be chosen in a way that the multiplicative
   group of Z_{n'} will have smooth order and that some other
   conditions are satisfied, namely: let prime p be divisor of n' and
   let p' be a prime factor of p-1 such that df is not divisible by p'.
   Let (p')^t be the greatest power of p' dividing p-1, and let for
   each prime factor q of n' either (p')^t be the greatest power of
   p' dividing q-1 or p' do not divide q-1.

   Let sp, m belong to the multiplicative group Z_{n'}^{*} of the ring
   Z_{n'} and are chosen in such a way that:

   sp is the neutral element in each cyclic subgroup of the order
   (p')^t, and in other subgroups of Z_{n'}^{*} it might be any element.

   m is the neutral element of each cyclic subgroup of the order not
   divisible by p', and it is a generator of each subgroup of the order
   (p')^t. Such m modulo Z_{n'} might be easily found using generators
   of the multiplicative groups Z_{p}^{*}, Z_{q}^{*} and then utilizing
   the Chinese Remainder Theorem.

   Then the adversary will test some set of exponents e being co-prime
   with p', such that the set of tested exponents is not greater than
   the complete set of elements of the multiplicative group
   Z_{(p')^t}^{*}. Let each tested exponent e fulfill the following
   condition: for each prime factor q of n' and for each prime factor q'
   of q-1, if q' is different from p', then e is divisible by the
   greatest power of q' dividing q-1.

   During each test the adversary inputs tuple (m, sp, (n', e)) to the
   finalization service. If no value modulo n' is returned by the
   finalization service, then the adversary tries the next exponent e
   giving not tested yet element of Z_{(p')^t}^{*}. Values m, sp do not
   have to be changed for the next trial. If df is indeed not divisible
   by p', then for some e the condition
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                        (sp * m^{df})^e \equiv m mod n'

   is satisfied, and the finalization service returns sp*m^{df} mod
   n'. The adversary knows that for this e the congruence

                       df * e \equiv 1 mod (p')^t

   holds, hence df mod (p')^t is found. If no value is returned and
   all residues from Z_{(p')^t}^{*} were tested as exponents e, then

                        df \equiv 0 mod p'.

   Executing the attack for different primes p' the adversary finally
   finds complete exponent df. We have assumed that m does not represent
   correct message encoding, because finding m, n' fulfilling the
   conditions above and m representing correct encoding might be
   computationally hard for appropriate encoding.

   If (m, sp, (n',e))  must be delivered over user's device, then
   security of df depends on security of the authentication key.

   Therefore, to provide some security margin we recommend checking
   during finalization all the following conditions:

   o  Does m represent correct encoding?

   o  Do (n,e) and Uid correspond to each other?

   o  Does Uid correspond the authentication key of the user's device?

   o  Is the finalized value a correct signature?

   Additionally, to protect a signature process the following
   requirements should be fulfilled:

   o  du exponent should be stored securely by the user; the exponent
      shouldn't be revealed to other parties;

   o  df exponent should be derived from the key Fm in a secure
      environment by the finalization service; the df exponent should be
      destroyed immediately after the completion of the signature
      process;

   o  the channel between the user's device and the finalization service
      should be encrypted.
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11.5. Decryption process security

   The decryption process in MRSAA algorithm consists of the following
   stages:

   o  transformation of the ciphertext by the finalization service,

   o  decryption of the ciphertext by the user.

   To perform a decryption it is necessary to transfer a transformed
   ciphertext to the user's device. The device must check correctness of
   encoding of the encrypted value.

   To protect a decryption process the following requirements should be
   fulfilled:

   o  df exponent should be derived in a secure environment by the
      finalization service; the exponent should be destroyed immediately
      after the completion of the transformation process;

   o  (n, e) and df must correspond to the same Uid;

   o  du exponent should be stored securely by the user; the exponent
      must not be relayed to other parties.

   To provide some security margin we recommend encrypting the channel
   between the user's device and the finalization service.

11.6. Short summary of possible security techniques

   To sum up this section we can briefly enumerate exemplary
   countermeasures to the threats listed in subsection 11.1.  (in the
   previous subsections we have analyzed need of some of the
   countermeasures in more detail):

   o  log service, which works in an append-only way, and which is
      audited by a third party,

   o  mutual authentication protocol such like chip authentication and
      terminal authentication protocols (cf. e.g., [3])resulting in
      secure and authenticated connection between the finalization
      service and user's device (in particular, such a connection must
      be inaccessible for operators of the RSA key generation server).

   o  internal (nested) signature carried by salt in EMSA-PSS encoding,

   o  external timestamp and signature applied automatically by the
      finalization service,
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   o  evolution of unique secrets shared between users and the
      finalization service as a simple clone-detection mechanism,

   o  hiding exponent df from the RSA key generation service which can
      be realized by the finalization service in the following way: the
      finalization service expresses df as a sum of two integers df_1 +
      df_2 and then encrypts df_1 to the user, and next sends df_2
      instead of df to the key generation service; getting du from the
      key generation service the user must only subtract df_1 from du to
      obtain the correct value.

   Most of the techniques listed above are described in [13]. The
   general goal is system decomposition by utilizing existing or
   introducing additional security layers (cf. chip and terminal
   authentication procedures), and by assigning to separate parties the
   task of generating key material used in separate layers.

   Moreover, a prudent approach is to require that the parties
   generating key material have only "local" knowledge on the system
   that is to require that they are provided with minimum data necessary
   to accomplish their task. Accordingly, we advise to separate
   information flow by utilizing encryption.

12. IANA Considerations

13. Conclusions

   The main difference between a MRSAA and a RSA algorithm is related to
   the signing key. In the MRSAA algorithm the key is divided into two
   fragments. This fact gives a possibility to transfer a final step of
   signature creation to a finalization service [5].

   Incorporating a third party into the signature process allows
   confirming the signature at the creation time. In such a case the
   signature which can be successfully verified using a public key can
   be considered as a confirmed one. The confirmation process can
   consist of verification of multiple signature attributes (see [6]),
   particularly a signer's certificate validity check (cf. [12]).

   The signature with certificate validity verified on the signature
   creation stage can be considered as a trusted one without additional
   verification of certificate validity.

   In conclusion, MRSAA protects relying party from rogue signer.
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Appendix A.                 Pseudorandom generator primitives

   Primitives described below are described in details in [2]. This
   annex describes only inputs and outputs for these primitives.

A.1. CTR_DRBG_Instantiate_algorithm(entropy_input,
personalization_string)

   Input:

     entropy_input      the string of bits obtained from the source of
                         entropy input

     personalization_   the personalization string received from the
     string             consuming application

   Output:

     initial_working_   The initial values for V, Key, and
     state              reseed_counter

A.2. CTR_DRBG_Generate_algorithm(working_state,
requested_number_of_bits, additional_input)

   Input:

     working_state      The current values for V, Key and
                         reseed_counter
     requested_numbe    The number of pseudorandom bits to be returned
     r_of_bits          to the generate function
     additional_inpu    The additional input string received from the
     t                  consuming application. If additional_input is
                         not supported by an implementation, then step
                         2 becomes:
                         additional_input = 0^seedlen

   Output:

     status             The status returned from the function. The
                         status will indicate SUCCESS, or indicate that
                         a reseed is required before the requested
                         pseudorandom bits can be generated.

     returned_bits      The pseudorandom bits returned to the generate
                         function

     working_state      The new values for V, Key and reseed_counter
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Appendix B.                 Standard RSA primitives

   Appendix contains a list of primitives with short description.
   Detailed specification of primitives can be found in [RFC3447]
   document.

B.1. Encryption and decryption primitives

   RSAEP transforms cleartext into ciphertext. RSADP performs a reverse
   operation.

B.1.1. RSAEP((n,e),m)

   Input:

     (n,e)              RSA public key

     m                  message representative, an integer between 0,
                         and n-1

   Output:

     c                  Ciphertext representative, an integer between
                         0 and n-1 or message "message representative
                         out of range"

B.1.2. RSADP(K,c)

   Input:

     K                  RSA private key, where K has one of the
                         following forms
                         - A pair (n,d)
                         - A quintuple(p,q,dP,dQ,qInv)

     c                  Ciphertext representative, an integer between
                         0 and n-1

   Output:

     m                  message representative, an integer between 0,
                         and n-1 or message "ciphertext representative
                         out of range"

   In the present document RSADP was used for key K=Kf and key K=Ku',
   thus the first form of a private key representation has been
   utilized.

https://datatracker.ietf.org/doc/html/rfc3447
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B.2. Signature and verification primitives

   RSASP1 produces signature value from message. RSAVP1 retrieves a
   message value from signature value.

B.2.1. RSASP1(K,m)

   Input:

     K                  RSA private key, where K has one of the
                         following forms
                         - A pair (n,d)
                         - A quintuple(p,q,dP,dQ,qInv)

     c                  message representative, an integer between 0 and
                         n-1

   Output:

     m                  signature representative, an integer between
                         0, and n-1 or message "message representative
                         out of range"

   In the present document RSASP1 was used for key K=Ku and key K=Fm. In
   the first case the first form of a private key representation has
   been utilized.

B.2.2. RSAVP1((n,e),s)

   Input:

     (n,e)              RSA public key

     s                  signature representative, an integer between 0
                         and n-1

   Output:

     m                  message representative, an integer between 0,
                         and n-1 or message "invalid"
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Appendix C.                 ASN.1 Syntax

C.1. MRSAA key representation

   This section defines ASN.1 object identifiers for MRSA public and
   private keys. It does not define new types, but shows how to use RSA
   data types with MRSA scheme.

C.1.1. MRSAA public key syntax

   The RSA public key syntax is identical to a RSA public key syntax.
   The RSAPublicKey type should be used to represent MRSAA public key.

C.1.2. MRSAA private key syntax

   MRSAA private key should be represented with ASN.1 type RSAPrivateKey
   according to [RFC3447] section A.1.2:

   RSAPrivateKey ::= SEQUENCE {
             version           Version,
             modulus           INTEGER,  -- n
             publicExponent    INTEGER,  -- e
             privateExponent   INTEGER,  -- d
             prime1            INTEGER,  -- p
             prime2            INTEGER,  -- q
             exponent1         INTEGER,  -- d mod (p-1)
             exponent2         INTEGER,  -- d mod (q-1)
             coefficient       INTEGER,  -- (inverse of q) mod p
             otherPrimeInfos   OtherPrimeInfos OPTIONAL
         }

   MRSAA private key, either Ku or Kf, should not contain information
   which give a possibility to recover d private exponent which
   corresponds to the public exponent. This implies that the key cannot
   contain original p and q, d mod (p-1), d mod (q-1), qInv values.

   For the purposes of storing finalization service's key Kf or user's
   key Ku, RSAPrivateKey structure's fields have the following meaning:

   o  version is the version number, for compatibility with future
      revisions of this document. It shall be 0 for this version of the
      document, unless multi-prime is used, in which case it shall be 1.
      In the case of MRSAA version number 2 should be used

   Version ::= INTEGER { two-prime(0), multi(1) }
   (CONSTRAINED BY
   {-- version must be multi if otherPrimeInfos present --})

https://datatracker.ietf.org/doc/html/rfc3447
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   o  modulus is the RSA modulus n

   o  privateExponent is the MRSAA private exponent (df or du
      respectively)

   Other fields should be set to value 0
C.1.3. Scheme identification

   The section defines object identifiers for the MRSAA encryption
   schemes. For signature schemes RSA object identifiers should be used
   as defined in [RFC3447] section A.2.

   Here are the type identifier definitions for the MRSAA OIDs:

   mrsa OBJECT-IDENTIFIER ::= { iso(1) identified-organization(3) dod(6)
   internet(1) private(4) enterprise(1) 37722 applications(1) 1} }

   mrsaEncryption OBJECT-IDENTIFIER ::= { applications(1) mrsa(1)
   algorithms(1) 1}

   Id-MRSAES-OAEP OBJECT-IDENTIFIER ::= { applications(1) mrsa(1)
   algorithms(1) 2}

https://datatracker.ietf.org/doc/html/rfc3447
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Appendix D.                 ASN.1 Module

   MRSAA  {
    iso(1) identified-organization(3) dod(6) internet(1) private(4)
   enterprise(1) 37722 applications(1) 1
   }

   DEFINITIONS EXPLICIT TAGS ::= BEGIN

   EXPORTS ALL;
   IMPORTS  ALGORITHM-IDENTIFIER, PKCS1Algorithms
      FROM PKCS-1 {
         iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1
      } ;

    MRSAAAlgorithms  ALGORITHM-IDENTIFIER ::= {
    { OID mrsaaEncryption  PARAMETERS NULL } |
    { OID id-MRSAAES-OAEP  PARAMETERS RSA-OAEP-params } |
    PKCS1Algorithms,
    ...
    }

   mrsaa OBJECT IDENTIFIER  ::= {
      iso(1) identified-organization(3) dod(6) internet(1) private(4)
   enterprise(1) 37722 applications(1) 1
   }

   --
   -- When rsaEncryption is used in an AlgorithmIdentifier the
   -- parameters MUST be present and MUST be NULL.
   --
   mrsaaEncryption OBJECT IDENTIFIER ::= { mrsaa algorithms(1) 1}

   --
   -- When id-MRSAAES-OAEP is used in an AlgorithmIdentifier the
   -- parameters MUST be present and MUST be RSAES-OAEP-params.
   --
   id-MRSAAES-OAEP OBJECT IDENTIFIER ::= { mrsa algorithms(1) 2}

   END
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Appendix E.                 Intellectual Property Considerations

The RSA public-key cryptosystem is described in U.S. Patent 4,405,829,
which expired on September 20, 2000. RSA Security Inc. For this moment
there are no active patents related to the RSA algorithm.

The Mediated RSA cryptographic method and system is described in
U.S.patent 20,040,252,830, which will expire on June 2024. The patent
describes a mediated RSA cryptosystem with the key fragmented using
additive scheme. Additionally the messages passed between a finalization
service (Trusted Authority) and message receiver are blinded using
random number. However the schema described in this document differs
from the one described in the patent, some similarities such like user
exponent du can be found.

A U.S. patent 20 050 002 528 describes mediated signature system with
identifier based key generation. The concept described in the patent is
similar to the one described in this document, but the key generation
method is different than presented in this document. Additionally,
during a message transmission a random blinding is incorporated.
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   Full copyright statement

   Copyright (c) 2012 IETF Trust and the persons identified as authors
   of the code. All rights reserved.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

   o  Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.

   o  Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in
      the documentation and/or other materials provided with the
      distribution.

   o  Neither the name of Internet Society, IETF or IETF Trust, nor the
      names of specific contributors, may be used to endorse or promote
      products derived from this software without specific prior written
      permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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