
Independent Submission M. Kutylowski, P. Kubiak
Internet Draft Wroclaw University of Technology
Intended status: Informational M. Tabor, D. Wachnik
Expires: May 6, 2013 Trusted Information Consulting
 November 2, 2012

Mediated RSA cryptography specification for additive private key
splitting (mRSAA)

draft-kutylowski-mrsa-algorithm-03

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on May 6, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Kutylowski et al. Expires May 6, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Mediated RSA cryptography specification November 2, 2012

Abstract

 This document describes recommendations for the implementation of
 public key cryptography based on the mediated RSA algorithm. The
 Mediated RSA algorithm bases on fragmentation of a private key. As a
 result the signature process consists from multiple stages. The
 verification process is the same as in the case of RSA algorithm
 [RFC3447].

Table of Contents

1. Introduction . 3
2. Conventions used in this document 4
3. Key types . 7
3.1. RSA public key . 7
3.2. Mediated RSAA private key 7
3.2.1. User's mRSAA private key 8
3.2.2. Finalization service's mRSAA private key 8

4. Data conversion primitives 9
4.1. I2OSP . 9
4.2. OS2IP . 10

5. Cryptographic primitives 10
5.1. Key generation primitives 10
5.1.1. MRSAA_F_GP . 11
5.1.2. MRSAA_U_GP . 12

5.2. Encryption and decryption primitives 13
5.2.1. MRSAA_F_DP . 13

 MRSAA_F_DP(Kf, c) . 13
5.2.2. MRSAA_U_DP . 14

 MRSAA_U_DP(Ku, mp, c) . 14
5.2.3. MRSAA_EP . 14

5.3. Signature and verification primitives 15
5.3.1. MRSAA_U_SP1 . 15
5.3.2. MRSAA_F_SP1 . 16
5.3.3. MRSAA_VP1 . 17

6. Overview of schemes . 17
7. Key generation schemes . 18
7.1. Key generation operation 19
7.1.2. Key generation on the finalization service's side . . . 19

8. Encryption schemes . 20
8.1. MRSAAES-OAEP . 21
8.1.1. Encryption operation 21
8.1.2. Decryption operation 21

8.2. MRSAAES-PKCS1-v1_5 . 23
8.2.1. Encryption operation 23
8.2.2. Decryption operation 24

9. Signature schemes with appendix 25

https://datatracker.ietf.org/doc/html/rfc3447

Kutylowski et al. Expires May 6, 2013 [Page 2]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

9.1. MRSAASSA-PSS . 26
9.1.1. Signature generation operations 26
9.1.2. Signature verification operation 28

9.2. MRSAASSA-PKCS1-v1_5 . 28
9.2.1. Signature generation operations 28

 MRSAA_F_PKCS1_v1_5_SIGN (Kf, Sp, EM) 29
9.2.2. Signature verification operation 30

10. Encoding method for signatures with appendix 30
11. Security Considerations 30
11.1. Identification of assets and actors 31
11.2. Key generation security 32

 11.2.1. Key generation by a separate yet distributed
 service. 33
 11.2.2. Key generation by the a separate, centralized
 service . 34

11.2.4. Key generation on user's device 38
11.2.5. Key generation directly by the finalization service. . 39

11.3. Replacement of a finalization service 39
11.4. Signature creation process security 41
11.5. Decryption process security 45
11.6. Short summary of possible security techniques 45

12. IANA Considerations . 46
13. Conclusions . 46
14. References . 47
14.1. Normative References 47
14.2. Informative References 47

15. Acknowledgments . 49
Appendix A. Pseudorandom generator primitives . . 50
Appendix B. Standard RSA primitives 51
B.1. Encryption and decryption primitives 51
B.1.1. RSAEP((n,e),m) . 51
B.1.2. RSADP(K,c) . 51

B.2. Signature and verification primitives 52
B.2.1. RSASP1(K,m) . 52
B.2.2. RSAVP1((n,e),s) . 52

Appendix C. ASN.1 Syntax 53
C.1. MRSAA key representation 53
C.1.1. MRSAA public key syntax 53
C.1.2. MRSAA private key syntax 53

Appendix D. ASN.1 Module 55
Appendix E. Intellectual Property Considerations . 56

1. Introduction

 This memo is the extension to the RFC 3447. This document describes
 aspects specific to the mediated RSA signature scheme such as:

https://datatracker.ietf.org/doc/html/rfc3447

Kutylowski et al. Expires May 6, 2013 [Page 3]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 o Key generation

 o Signature creation

 The recommendations are intended for general application within
 computer and communications systems, and as such include a fair
 amount of flexibility. It is expected that application standards
 based on these specifications may include additional constraints.

 mRSA algorithm may exists in many versions, depending on the way how
 the private RSA exponent is split between parties. We might
 distinguish two main cases (cf. sect. 1 of [7]):

 o mRSAA for additive splitting of the private exponent:

 d \equiv du + df (mod lcm(p-1,q-1)) for some integers du, df,

 o and mRSAM if the private exponent is divided multiplicatively:

 d \equiv du' * df' (mod lcm(p-1,q-1)) for some integers du', df'
 coprime with lcm(p-1,q-1).

 Since each of the above possibilities determines different
 communication content between the user and the finalization service
 during signature generation (this imposes constraints on
 interoperability of implementations of mRSA schemes), and since
 addition gives more flexibility in choice of a key generation
 procedure, this document covers only the additive scheme.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [1].

 (n, e) RSA public key

 c ciphertext representative, an integer between 0
 and n-1

 cp ciphertext created using du key, an integer
 between 0 and n-1

 C ciphertext, an octet string

 Cp ciphertext created using du, an octet string

https://datatracker.ietf.org/doc/html/rfc2119

Kutylowski et al. Expires May 6, 2013 [Page 4]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 d private exponent of a user, an integer such that
 df + du \equiv d (mod \lambda(n))

 df private component of a finalization service, a
 positive integer such that df + du \equiv d (mod
 lambda(n))

 dP p's exponent, a positive integer such that:
 e(dP)\equiv 1 (mod(p-1))

 NOTE: The dP value is not used in the MRSAA
 algorithm. It has been placed for compliancy with
 the RSA specification.

 dQ q's exponent, a positive integer such that:
 e(dQ)\equiv 1 (mod(q-1))

 NOTE: The dQ value is not used in the MRSAA
 algorithm. It has been placed for compliancy with
 the RSA specification.

 e public exponent

 EM encoded message, an octet string

 emLen intended length in octets of an encoded message

 Fm finalization service's master key

 H hash value, an output of Hash

 Hash hash function

 hLen output length in octets of hash function Hash

 K RSA private key, we assume that that meaningful
 fields of the K are at least (n,e,d,p,q)

 Kf RSA private key which consists of (n, df)

 Ku RSA private key which consists of (n, du)

 k length in octets of the modulus n

 l intended length of octet string

 lcm(.,.) least common multiple of two nonnegative integers

Kutylowski et al. Expires May 6, 2013 [Page 5]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 m message representative, an integer between 0 and n-1

 mp message decrypted using df key, an integer between 0
 and n-1

 M message, an octet string

 MGF mask generation function

 n RSA modulus, n=pq

 P encoding parameters, an octet string

 p,q prime factors of the modulus

 qInv CRT coefficient, a positive integer less than p
 such: q(qInv)\equiv 1 (mod p)

 NOTE: This value is not used in the MRSAA algorithm.
 It has been placed for compliancy with the RSA
 specification.

 s signature representative, an integer between 0 and
 n-1

 Sp signature representative, created using du key, an
 integer between 0 and n-1

 S signature, an octet string

 Sp signature created using du key, an octet string

 Uid user identifier, an octet string

 x a nonnegative integer

 X an octet string corresponding to x

 \abs(x) absolute value of argument x

 \eea(a,b) an extended Euclidean algorithm which gives a result
 that satisfies:

 result*a\equiv gcd(a,b) mod b,

 where gcd(a,b) is the greatest common divisor of
 arguments a and b.

Kutylowski et al. Expires May 6, 2013 [Page 6]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 \floor(x) the greatest integer not greater than real number
 x

 \lambda(n) lcm(p-1, q-1), where n = pq

 \log_2(x) logarithm in base 2 from positive number x

 \xor bitwise exclusive-or of two octet strings

 || concatenation operator

 ||.|| octet length operator

3. Key types

 This document employs two types of key: an RSA public and RSA private
 key. The RSA private key is divided into two fragments, one fragment
 is stored privately by the user the other is privately recalculated
 by the finalization service on finalization requests.

 The public key is not fragmented and thus is independent from private
 key fragmentation schema.

3.1. RSA public key

 For the purposes of this document, an RSA public key consists of two
 components:

 n, the modulus, an odd, positive integer

 e, the public exponent, an odd, positive integer

 In a valid RSA public key, the modulus n is a product of two odd
 primes p and q, and the public exponent e is an integer between 3 and
 n-1 satisfying gcd(e, \lambda(n)) = 1, where \lambda(n) = lcm
 (p-1,q-1).

3.2. Mediated RSAA private key

 This document defines mediated RSA key as a set of two keys:

 o User's mRSAA private key

 o Finalization service's mRSAA private key

 These keys are created from standard RSA key (the base key) which in

Kutylowski et al. Expires May 6, 2013 [Page 7]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 particular includes:

 o p, q, prime factors of the public modulus n, that is pq=n

 o d, the private exponent, a nonnegative integer

 In the valid RSA private key, the product pq equals the modulus n
 from the corresponding public key, and the private exponent d is a
 positive integer less than \lambda(n) satisfying:

 ed \equiv 1 (mod \lambda(n)).

 In mediated RSA variant the private exponent is split between two
 parties: between the user and the finalization service. In mRSAA the
 split is done to satisfy the following relation:

 d \equiv df + du (mod \lambda(n)).

 NOTE: In this document we require that df is longer than modulus n,
 hence above we have a congruence modulo \lambda(n) instead of
 equality of integers.

 Although, it is possible to use a different key splitting method,
 this document covers only the method based on the addition (additive
 scheme).

3.2.1. User's mRSAA private key

 User's key consists of two components:

 o n, the modulus, a positive integer, the same one as in the public
 key

 o du, user's private exponent, an integer

 In a valid mRSAA user's private key the user's private component
 meets the following equation:

 df + du \equiv d (mod \lambda(n))

 The process of key generation is described in section 7.

 Because some key generation techniques might yield du being a
 negative integer (cf. sect. 11.2.), we do not exclude du < 0 in the
 document

3.2.2. Finalization service's mRSAA private key

Kutylowski et al. Expires May 6, 2013 [Page 8]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 For the purposes of this document the finalization service's private
 key Kf consists of the pair (n,df) where the components have the
 following meaning:

 o n, the modulus, a positive integer, the same one as in the public
 key

 o df, the finalization service's private exponent, a positive
 integer

 In a valid mRSAA finalization service's private key, the finalization
 service's private component meets the following equation:

 df + du \equiv d (mod \lambda(n))

4. Data conversion primitives

 In this document are used following data conversion primitives:

 I2OSP: Integer-to-Octet-String primitive

 OS2IP: Octet-String-to-Integer primitive

 This document describes briefly syntax of data conversion primitives.
 More detailed description can be found in [RFC3447].

 For the purposes of this document, and consistent with ASN.1 syntax,
 an octet string is an ordered sequence of octets (eight-bit bytes).
 The sequence is indexed from first (conventionally, leftmost) to last
 rightmost). For purposes of conversion to and from integers, the
 first octet is considered the most significant in the following
 conversion primitives.

4.1. I2OSP

 I2OSP converts a nonnegative integer to an octet string of a
 specified length.

 I2OSP (x, l)

 Input:

 x nonnegative integer to be converted

 l intended length of the resulting octet string

https://datatracker.ietf.org/doc/html/rfc3447

Kutylowski et al. Expires May 6, 2013 [Page 9]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 Output:

 X corresponding octet string of length l; or "integer
 too large"

4.2. OS2IP

 OS2IP converts an octet string to a nonnegative integer.

 OS2IP (X)

 Input:

 X octet string to be converted

 Output:

 x corresponding nonnegative integer

5. Cryptographic primitives

 Cryptographic primitives are basic mathematical operations on which
 cryptographic schemes can be built. They are intended for
 implementation in hardware or as software modules, and are not
 intended to provide security apart from a scheme.

 Five types of primitive are specified in this document, organized in
 sections: key generation; encryption and decryption; and signature
 and verification.

 The specifications of the primitives assume that certain conditions
 are met by the inputs, in particular that public and private keys are
 valid.

5.1. Key generation primitives

 The purpose of using key generation primitives is to create mRSAA key
 pair: a public key and pair of private keys: a finalization service's
 key and a user's key.

 The finalization service's exponent df is derived from a master
 service key Fm and a user identifier Uid. The derivation is a

Kutylowski et al. Expires May 6, 2013 [Page 10]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 asymmetric signature key then generation process of exponent df might
 be as follows: Uid is signed with key Fm, and this signature is a
 seed for pseudorandom string generation (cf. deterministic seed for
 generation of pseudorandom bits in paper [14]). The resulting string
 df (output of the generator) should have bitlength defined as
 follows:

 \floor(\log_2(n))+1 + Delta

 where Delta is a fixed value taken from the set {80,...,128}. That is
 df should be longer by Delta bits from the length of the modulus n.
 The aim of taking a longer bitstring df is to equalize chances of
 each single value modulo \lambda(n) to be chosen as the remainder rem
 in the relation

 df \equiv rem mod \lambda(n)

 Note that the finalization service does not know the value
 lambda(n). The greater Delta is the tighten equalization is achieved.

 Note that in case of asymmetric method there is no need to make
 public the key complementary to Fm, that is the signature
 verification key. The complementary key should remain secret to
 prevent any cryptoanalytic attempts: one option is to use it
 internally in the system for the purpose of verification of
 implementation correctness (e.g., of subliminal channel freeness),
 another possibility is to completely erase the complementary key.

 Generation of the pseudorandom bit string uses deterministic random
 bit generator which bases on block ciphers algorithms (CTR_DRBG).
 CTR_DRBG's primitives are specified in the paper [3]. For the
 purposes of this document, primitives specified in [3] have been
 briefly described in Appendix A.

 The user's private key is created on a basis of the finalization
 service's private key (n,df) and the RSA base key K.

5.1.1. MRSAA_F_GP

 MRSAA_F_GP generates pseudorandom key of requested length on a basis
 of a given bit string. This document describes MRSA_F_GP as a
 primitive which is based on the CRT_DRBG pseudorandom generator. An
 implementer may use other pseudorandom generator type conformant to
 [3].

 MRSAA_F_GP(w, len)

Kutylowski et al. Expires May 6, 2013 [Page 11]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 w the string of bits received from the consuming
 application

 len Requested bitlength of the output string

 Output:

 returned_bits pseudorandom bit string with length specified in
 len

 Assumptions:

 CRT_DRBG generator conformant to [3] is used.

 Steps:

 1. Let H = Hash(w)
 2. Let (V, Key, reseed_counter) =
 CTR_DRBG_Instantiate_algorithm(null, H)
 3. Let (status, returned_bits, Key, V, reseed_counter) =
 CTR_DRBG_Generate_algoritm(reseed_counter, len, null)
 4. If the status is SUCCESS output returned_bits and stop. In a
 different case return an error

5.1.2. MRSAA_U_GP

 Creates user's private exponent from finalization service's private
 exponent and a base RSA key.

 NOTE: For alternative procedures see sect.11.2.

 MRSAA_U_GP(K,df)

 Input:

 K Base RSA private key which contains values (n, d,
 p, q)

 df Private exponent of finalization service's key

 Output:

 du Private exponent of user's key

Kutylowski et al. Expires May 6, 2013 [Page 12]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 Assumptions:

 The K is a valid RSA private key corresponding to the public key
 (e,n) for which df has been calculated

 Steps:

 1. Let lambda = (p-1)*(q-1)/gcd(p-1,q-1).
 2. Let du = (d - df) mod lambda

5.2. Encryption and decryption primitives

An encryption primitive produces a ciphertext from a message
representative under a control of public key. The primitive MRSAA_F_DP
is used to transform a ciphertext to a form which can be processed by
the MRSAA_U_DP primitive. The primitive MRSAA_U_DP recovers a message
from MRSAA_F_DP output.

The encryption/decryption scheme involves all three primitives described
below.

Primitives RSAEP and RSADP are briefly described in the Appendix B.

MRSAA_EP is identical as a RSAEP primitive and thus they can be used
interchangeably.

5.2.1. MRSAA_F_DP

 MRSAA_F_DP transforms ciphertext to the form which can be decrypted
 by a MRSAA_U_DP primitive.

MRSAA_F_DP(Kf, c)

 Input:

 Kf Finalization service's private key in the form of a
 pair of (n, df)

 c ciphertext representative, an integer between 0 and
 n-1

 Output:

 mp message partially decrypted using df key, an
 integer between 0 and n-1

 Assumptions:

Kutylowski et al. Expires May 6, 2013 [Page 13]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 The Kf key is a valid mRSAA key which corresponds to the user's
 identifier Uid.

 Steps:

 1. Let mp = RSADP(Kf, c)

5.2.2. MRSAA_U_DP

 Retrieves message from partially deciphered message (result of an
 MRSAA_F_DP)

MRSAA_U_DP(Ku, mp, c)

 Input:

 Ku user's private key in the form of a pair of (n, du)

 mp message partially decrypted using df key, an
 integer between 0 and n-1
 c ciphertext representative, an integer between 0
 and n-1

 Output:

 m message representative, an integer between 0 and
 n-1

 Assumptions:

 The Ku key is a valid mRSAA key (n, du)

 Steps:

 1. Let Ku' = (n,\abs(du))
 2. Let temp = RSADP(Ku', c)
 3. If (du < 0) temp = \eea(temp,n)
 4. Let m = mp*temp mod n

5.2.3. MRSAA_EP

 MRSAA_EP encrypts given message

 MRSAA_EP((n,e),m)

Kutylowski et al. Expires May 6, 2013 [Page 14]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 Input:

 (n, e) RSA public key

 m message representative, an integer between 0 and
 n-1

 Output:

 c ciphertext representative, an integer between 0 and
 n-1; or "message representative out of range"

 Assumptions:

 The public key (n, e) is valid

 Steps:

 1. Let c = RSAEP((n,e) , m)

5.3. Signature and verification primitives

 A verification primitive works in similar way like an RSAVP1
 primitive. Signature process uses two primitives specified below: an
 MRSAA_U_SP1 and MRSAA_F_SP1 primitive. MRSAA_U_SP1 primitive creates
 partial signature, which cannot be verified before execution of the
 MRSAA_F_SP1 primitive.

 Signature/verification scheme uses all three primitives specified
 below.

 Verification primitive is identical as an RSAVP1 primitive and thus
 RSAVP1 can be used instead of MRSAA_VP1.

 Primitives RSAVP1, RSASP1 are briefly described in Appendix B.

 For the final signature creation step (MRSAA_F_SP1) we strongly
 recommend to perform signature verification before passing the

 assume that signature verification includes verification of encoding
 correctness.

5.3.1. MRSAA_U_SP1

Kutylowski et al. Expires May 6, 2013 [Page 15]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 MRSAA_U_SP1 creates partial signature from given message.

 MRSAA_U_SP1(Ku,m)

 Input:

 Ku user's private key in the form of a pair of (n, du)

 m message representative, an integer between 0 and
 n-1

 Output:

 sp representative of a partial signature, an integer
 between 0 and n-1, created using Ku key

 Assumptions:

 The Ku key is a valid mRSAA key which corresponds to the user's
 identifier Uid and public key (n,e)

 Steps:

 1. Let Ku' = (n,\abs(du))
 2. Let sp = RSASP1(Ku', m)
 3. If (du < 0) then sp = \eea(sp,n) mod n

5.3.2. MRSAA_F_SP1

 MRSAA_F_SP1 creates valid RSA signature from given partial signature.

 MRSAA_F_SP1(Kf, sp, m)

 Input:

 Kf Finalization service's private key in the form of a
 pair (n, df)

 sp representative of a partial signature, an integer
 between 0 and n-1, created using Ku key

 m message representative, an integer between 0 and
 n-1

 Output:

Kutylowski et al. Expires May 6, 2013 [Page 16]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 s signature representative, an integer between 0
 and n-1

 Assumptions:

 The Kf key is a valid mRSAA key which corresponds to the key Ku

 Steps:

 1. Let temp = RSADP1(Kf, m)
 2. Let s = temp*sp mod n

5.3.3. MRSAA_VP1

 MRSAA_VP1 retrieves a message from a given signature

 MRSAA_VP1((n, e), s)

 Input:

 (n, e) RSA public key

 s signature representative, an integer between 0
 and n-1

 Output:

 c message representative, an integer between 0 and
 n-1

 Assumptions:

 The public key (n, e) is valid

 Steps:

 1. Let m = RSAVP1((n, e) , s)

6. Overview of schemes

 A scheme combines cryptographic primitives and other techniques to

Kutylowski et al. Expires May 6, 2013 [Page 17]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 achieve a particular security goal. Two types of scheme are
 specified in this document: encryption schemes and signature schemes
 with appendix.

 The schemes specified in this document are limited in scope in that
 their operations consist only of steps to process data with an mRSAA
 public or private key. Additionally steps necessary for private key
 splitting have been described (see section 7.1.). Thus, in addition
 to the scheme operations, an application will typically include key
 management operations by which parties may select mRSAA public and
 private keys for a scheme operation. The specific additional
 operations and other details are outside the scope of this document.

 As was the case for the cryptographic primitives (Section 5), the
 specifications of scheme operations assume that certain conditions
 are met by the inputs, in particular that mRSAA public and private
 keys are valid. The behavior of an implementation is thus
 unspecified when a key is invalid. The impact of such unspecified
 behavior depends on the application. In general possible means of
 addressing key validation include:

 o explicit key validation by the application;

 o key validation within the public-key infrastructure;

 o assignment of liability for operations performed with an invalid
 key to the party which generated the key.

 In case of mRSAA signatures the key validation could be performed by
 verifying the first finalized signature using the public key. To
 validate mRSAA decryption keys, decryption of some test message may
 be performed.

7. Key generation schemes

 A key generation scheme combines a MRSAA_U_GP and MRSAA_F_GP with a
 RSASP1 operation to create MRSAA private key pair for user and
 finalization service.

 The finalization service's key can be derived from a service key Fm
 and user identifier Uid. This kind of solution eliminates necessity
 of key archival on the finalization service's side. To derive private
 key from service's master key Fm some secure pseudorandom numbers
 generator is used. Fm is described below as an asymmetric signature
 key of a deterministic scheme. However, since Fm is used internally
 in the system, we do not exclude possibility of implementing other
 secure derivation methods of exponents df. As stated in section 5.1.
 we recommend the key complementary to asymmetric signature key Fm to

Kutylowski et al. Expires May 6, 2013 [Page 18]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 remain secret.

 In key generation schemes described below we do not assume that all
 input variables are available at the same location, and that all
 output variables are generated at the same place.

7.1. Key generation operation

7.1.1. Generation of the private key assigned to identifier Uid of a
 user

 MRSAA_U_GS-DRBG-GENERATE (K,df)

 Input:

 K Base RSA private key which contains values (n,
 d, p, q)

 df Finalization services exponent calculated for the
 user of identifier Uid

 Output:

 Ku RSA key (n, du) such that du + df \equiv d
 \lambda(n), and e*d \equiv 1 \lambda(n), where
 (n,e) is the public key for which exponent df has
 been calculated on finalization service side
 Steps:

 1. Apply an MRSAA_U_GP to generate user's MRSAA private exponent du:
 du = MRSAA_U_GP(K,df)
 2. Return (n,du) as Ku

7.1.2. Key generation on the finalization service's side

 MRSAA_F_GS-DRBG-GENERATE generates finalization service's private
 key. An implementer may use other deterministic signature algorithms
 (i.e. RSASSA-PKCS-v1_5-SIGN) or other methods to generate df
 exponent.

 MRSAA_F_GS-DRBG-GENERATE (n, Uid, Fm)

 Input:

Kutylowski et al. Expires May 6, 2013 [Page 19]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 n public RSA modulus of the user and the identifier
 Uid

 Uid User identifier, an octet string

 Fm Finalization service's master key, a RSA key

 Output:

 Kf Finalization service's key, RSA key (n, df) which
 together with key Ku shall satisfy the
 congruence: df + du \equiv d mod \lambda(n),
 where d is the private exponent corresponding to
 the public key (n,e) of the user of identifier
 Uid, that is d*e \equiv 1 mod \lambda(n)
 Assumptions:

 The finalization service uses a fixed value Delta, an integer from
 the set {80,...,128} (see remarks in sect. 5.1.).

 In the case when Kf is generated anew for each signature finalization
 or/and for each decryption operation concerning the user of
 identifier Uid, that is why the process must be deterministic.

 1. Steps:Apply the RSASP1 primitive to Fm key and Uid integer
 representative value to create signature W, with salt of length
 0 (cf. [RFC3447], point 4 on page 37), or with salt being a
 fixed value (cf. [RFC3447], sect. 8.1 page 29):
 W = RSASSA-PSS-SIGN(Fm, Uid)
 2. Convert W octet string to an integer representative w:
 w = OS2IP(W)
 3. Apply an MRSAA_F_GP to generate finalization service's MRSAA
 private exponent df:
 df = MRSAA_F_GP(w, \floor(\log_2(n))+1 + Delta)
 4. Return (n, df) as Kf

8. Encryption schemes

 For the purpose of this document, an encryption scheme consists of an
 encryption operation and decryption operation, where the encryption
 operation produces a ciphertext from a message with a recipient's RSA
 public key, and the decryption operation recovers original message in
 two stages: transformation made by finalization service, and
 decryption performed by an recipient.

 The encryption scheme can be employed in variety of applications,
 especially in systems with different level access to confidential

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447

Kutylowski et al. Expires May 6, 2013 [Page 20]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 information. The scheme assures additional level of protection
 because of a usage of a finalization service.

 The document extends existing RSA encryption and decryption scheme,
 particularly the decryption scheme, which differs from the RSA
 scheme.

 The Encryption scheme combines encryption and decryption primitives
 with an encoding method for encryption. The encryption operations
 apply a message encoding operation to a message to produce an encoded
 message, which is then converted to an integer message
 representative. An encryption primitive is applied to the message
 representative to produce the ciphertext. Reversing this, the
 decryption operations apply a decryption primitive to the ciphertext
 to recover a message representative, which is then converted to an
 octet string encoded message. A message decoding operation is applied
 to the encoded message to recover the message and verify the
 correctness of the decryption.

8.1. MRSAAES-OAEP

 MRSAA-OAEP combines RSAEP, MRSAA_U_DP, and MRSAA_F_DP primitives
 (Sections 5.2.2. 5.2.) with EME-OAEP encoding method specified in
 [RFC3447].

8.1.1. Encryption operation

 There are no differences in encryption operation (RSAES-OAEP-
 ENCRYPT) according to [RFC3447].

8.1.2. Decryption operation

 MRSAA-F-OAEP-DECRYPT(Kf, C)

 Options:

 Hash Hash function (hLen denotes the length in octets of
 the hash function output)

 MGF Mask generation function

 Input:

 Kf Finalization service's private key (k denotes the
 length in octets of the RSA modulus n)

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447

Kutylowski et al. Expires May 6, 2013 [Page 21]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 C Ciphertext to be decrypted, an octet string of
 length k, where k >= 2hLen + 2

 Output:

 Cp Transformed ciphertext, which can be deciphered
 using Ku key

 Assumptions:

 The Kf key is generated with MRSAA_F_GS-DRBG-GENERATE and corresponds
 to the public key which has been used to produce the ciphertext C.

 Steps:

 1. Length checking
 a. If a the length of the ciphertext C is not k octets, output
 "decryption error" and stop.
 b. If k < 2hLen + 2, output "decryption error and stop"
 2. RSA decryption
 a. Convert the ciphertext C to an integer ciphertext
 representative c (see Section 4.2.):
 c = OS2IP(C)
 b. Apply the MRSAA_F_DP decryption primitive (Section 5.2.1.)to
 the mRSAA private key Kf and ciphertext representative c to
 produce an integer representative cp:
 cp = MRSAA_F_DP(Kf,c)
 c. Convert the transformed ciphertext cp to an encoded
 transformed ciphertext Cp of length k octets:
 Cp = I2OSP(cp,k)
 d. Output the Cp

 MRSAA-U-OAEP-DECRYPT(Ku, Cp, C, L)

 Input:

 Ku User's private key (k denotes the length in
 octets of the RSA modulus n)

 Cp Transformed ciphertext, to be decrypted

 C Ciphertext, an octet string

 L Optional label whose association with the message
 is to be verified; the default value for L, if L
 is not provided, is the empty string

Kutylowski et al. Expires May 6, 2013 [Page 22]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 Output:

 M message, an octet string of length mLen, where mLen
 <= k - 2hLen - 2

 Steps:

 1. RSA decryption
 a. Convert the ciphertext Cp to an integer ciphertext
 representative cp (see Section 4.2.):
 cp = OS2IP(Cp)
 b. Convert the ciphertext C to an integer ciphertext
 representative c (see Section 4.2.
 c = OS2IP(C)
 c. Apply the MRSAA_U_DP decryption primitive (Section 5.2.2.)to
 the RSA private key Ku and ciphertext representative cp to
 produce an integer representative m' of an encoded message:
 m' = MRSAA_U_DP(Ku, cp, c)
 d. Convert the encoded message representative m' to an encoded
 message M' of length k octets:
 M' = I2OSP(m',k)
 2. EME-OAEP decoding message M from string M':

 Process is performed on M' as described in [RFC3447]

 3. Output the message M

8.2. MRSAAES-PKCS1-v1_5

 MRSAAES-PKCS1-v1_5 combines the RSAEP and MRSAADP primitives with the
 EME-PKCS1-v1_5 encoding method. RSAES-PKCS1-v1_5 can operate on
 messages length up to k-11 octets, although care should be taken to
 avoid certain attacks on low-exponent RSA due to Coppersmith, et al.
 when long messages are encrypted (see [4]). As general rule, the use
 of this scheme for encrypting an arbitrary message, as opposed to a
 randomly generated key, is not recommended. Moreover, one must still
 avoid encrypting the same random key with relatively short, different
 randomizers, to some number of recipients sharing the same small
 public exponent (see section 5 and appendix C of [15]).

8.2.1. Encryption operation

 There are no differences between MRSAA and RSA encryption process and
 thus RSAES-PKC1-V1_5-ENCRYPT should be used. Detailed specification
 can be found in the [RFC3447]

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447

Kutylowski et al. Expires May 6, 2013 [Page 23]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

8.2.2. Decryption operation

 Input:

 Kf Finalization service's private key (k denotes the
 length in octets of the RSA modulus n)

 C Ciphertext to be decrypted, an octet string of
 length k, where k is the length in octets of the
 RSA modulus n

 Output:

 Cp Transformed ciphertext, which can be deciphered
 using Ku key

 Assumptions:

 The Kf key is generated with MRSAA_F_GS-DRBG-GENERATE and corresponds
 to the public key which has been used to produce the ciphertext C.

 Steps:

 1. Length checking: If the length of the ciphertext C is not k octets
 (or if k < 11), output "decryption error" and stop.
 2. RSA decryption
 a. Convert the ciphertext C to an integer ciphertext
 representative c (see Section 4.2.):
 c = OS2IP(C)
 b. Apply the MRSAA_F_DP decryption primitive (section 5.2.1.)to
 the mRSAA private key Kf and ciphertext representative c to
 produce an integer representative cp:
 cp = MRSAA_F_DP(Kf,c)
 c. Convert the transformed ciphertext cp to an encoded
 transformed ciphertext Cp of length k octets:
 Cp = I2OSP(cp,k)
 3. Output Cp

 MRSAAES-U-PKCS-1-V1_5-DECRYPT (Ku, CP, C)

 Input:

 Ku User's private key (k denotes the length in
 octets of the RSA modulus n)

 Cp Transformed ciphertext, to be decrypted

Kutylowski et al. Expires May 6, 2013 [Page 24]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 C Original ciphertext, octet string

 M message, an octet string of length at most k - 11

 Steps:

 1. Length checking: If the length of the ciphertext C is not k octets
 (or if k < 11), output "decryption error" and stop.
 2. RSA decryption
 a. Convert the ciphertext C to an integer ciphertext
 representative c (see Section 4.2.):
 c = OS2IP(C)
 b. Convert the transformed ciphertext Cp to an integer
 ciphertext representative cp (see Section 4.2.):
 cp = OS2IP(Cp)
 c. Apply the MRSAA_U_DP decryption primitive (section 5.2.2.)to
 the RSA private key Ku and transformed ciphertext
 representative cp and original ciphertext c to produce an
 integer representative of an encoded message m':
 m' = MRSAA_U_DP(Ku,cp, c)
 If MRSAA_U_DP outputs "ciphertext representative out of
 range" (meaning that cp>=n), output "decryption error" and
 stop.
 d. Convert the encoded message representative m' to an encoded
 message M' of length k octets:
 M' = I2OSP(m',k)
 3. EME-PKCS1-v1_5 decoding message M from string M'
 Performed on string M' as specified in [RFC3447].
 4. Output M

9. Signature schemes with appendix

 For the purposes of this document signature schemes with appendix
 consists of three main operations: signature verification and two
 complementary operations of signature generation. Signature
 verification produces a message from signature value using RSA public
 key, and signature operations creates a signature value from a
 message value and from the intermediate product, i.e., from a partial
 signature. The partial signature is created using a user's private
 key, and final signature value is created using finalization
 service's private key corresponding to the public key of the user.

 Two signature schemes are specified in this document: MRSAASA-PSS and
 MRSAASA-PKCS1-v1_5. Both of them base on an corresponding RSA scheme
 specified in [RFC3447].

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447

Kutylowski et al. Expires May 6, 2013 [Page 25]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

9.1. MRSAASSA-PSS

 MRSAASSA-PSS combines MRSAA_U_SP1, MRSAA_F_SP1 and RSAVP1 which is
 The MRSAA_U_SP1 primitive is identical to the RSASP1 primitive, and
 thus it is sufficient to implement only RSASP1.

 The length of messages on which MRSAASSA-PSS can operate is either
 unrestricted or constrained by a very large number, depending on the
 hash function underlying the EMSA-PSS encoding method.

 To make signature verification by the finalization service possible
 (see remark in Section 5.3.) we strongly recommend adding at least
 mHash to the list of arguments passed to the finalization service.
 Note that according to [RFC3447] (page 37, point 3) the EMSA-PSS
 encoding is secure even if an adversary can freely choose mHash. Thus
 to utilize strength of the EMSA-PSS encoding verification must at
 least comprise verification of encoding correctness.

9.1.1. Signature generation operations

 MRSAASSA_U_PSS_SIGN (Ku, M)

 Input:

 Ku Signer's RSA private key

 M Message to be signed, an octet string

 Output:

 Sp Partial signature, an octet string of length k,
 where k is the length in octets of the RSA
 modulus n
 EM Message encoded using EMSA-PSS-ENCODE primitive
 (see [RFC3447] paragraph 9.1.1)

 Errors: "message too long;" "encoding error"

 Steps:

 1. Let EM = EMSA-PSS-ENCODE(M, modBits -1)
 2. Convert the encoded message into integer message representative m:
 m=OS2IP(EM)
 3. Apply the RSASP1 signature primitive to the key Ku and Message M:
 sp = RSASP1(Ku, m)
 4. Convert the signature representative sp into partial signature
 value Sp with the length of k octets. Where k is the length in
 octets of the RSA modulus n

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447

Kutylowski et al. Expires May 6, 2013 [Page 26]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 Sp = I2OSP(sp, k)
 5. Output Sp, EM

 MRSASSSA_F_PSS_SIGN (Kf, Sp, EM)

 Input:

 Kf Finalization service's RSA private key

 Sp Partial signature to be transformed into valid
 signature
 EM Message encoded using EMSA-PSS-ENCODE primitive
 (see [RFC3447] paragraph 9.1.1)
 Output:

 S signature, an octet string of length k, where k
 is the length in octets of the RSA modulus n

 Errors: "message too long;"

 Assumptions:

 The Kf key is generated with MRSAA_F_GS-DRBG-GENERATE and corresponds
 to the public key which will be used to verify the signature S.

 Steps:

 1. RSA signature

 a. Convert the partial signature Sp to an integer signature
 representative sp:
 sp = OS2IP(Sp)
 b. Convert the pss-encoded message EM to an integer
 representative m:
 m = OS2IP(EM)
 c. Apply the MRSAA_F_SP1 signature primitive (see Section 5.3.2.
) to the RSA private key Kf and the partial signature
 representative sp to produce a signature representative s:
 s = MRSAA_F_SP1(Kf, sp, m)
 d. Convert the signature representative s to a signature S of
 length k octets (see section 4.1.):
 S = I2OSP(s, k)

 2. Output the signature S

https://datatracker.ietf.org/doc/html/rfc3447

Kutylowski et al. Expires May 6, 2013 [Page 27]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

9.1.2. Signature verification operation

 There are no differences between MRSASSSA-PSS-VERIFY and RSASSA-PSS-
 VERIFY operation and thus RSASSA-PSS-VERIFY should be used. The
 RSASSA-PSS-VERIFY operation has been specified in [RFC3447] section

8.1.2.

9.2. MRSAASSA-PKCS1-v1_5

MRSAASSA-PKCS-v1_5 combines MRSAA_U_SP1, MRSAA_F_SP1 and MRSAA_VP1 with
EMSA-PKCS1-v1_5 encoding method. Since MRSAA_U_SP1 is identical to
MRSAASP and MRSAA_VP1 is identical to RSAVP1, RSA version of primitives
is used in specification.

However, as paper [16] indicates, fixed pattern padding method is
relatively weak (note that for a fixed hash function PKCS-v1_5 is a
fixed pattern encoding). The attack from [16] allows producing valid
signatures under a message of attacker's choice (it might be a hash of
some meaningful message), if the following conditions are satisfied
simultaneously:

 o hash of the message is longer than one-third of the length of the
 modulus,

 o a victim has signed three encoding results without verifying that
 the values present in the hash-block of encoding are really hashes
 of some messages. The three values are related with the final
 signature forged by the adversary.

Although the attack seems to be theoretical (the victim must sign three
artificial messages to make the adversary able to produce a single
meaningful forgery), it exhibits weakness of this encoding method. To
mitigate this kind of attacks we recommend to use hashes that are
shorter than one-third of the RSA modulus, and to make the finalization
service capable of checking that the value present in the hash-block is
really a hash of some message.

Verification process in the scheme is identical to the RSASSA-PKCS1-
v1_5 verification process. The signing process consists of two stages:
intermediate signature generation (presignature), which is done in
similar way to the RSA scheme, and signature finalization, where
MRSAA_F_SP1 primitive is used in combination with EMSA-PKCS1-v1_5
encoding.

9.2.1. Signature generation operations

https://datatracker.ietf.org/doc/html/rfc3447

Kutylowski et al. Expires May 6, 2013 [Page 28]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

MRSAASSA_U_PKCS1_v1_5_SIGN (Ku, M)

 Input:

 Ku Signer's RSA private key

 M Message to be signed, an octet string

 Output:

 Sp Partial signature, an octet string of length k,
 where k is the length in octets of the RSA
 modulus n
 EM Pkcs1-encoded message (see [RFC3447] section 9.2)

 Errors: "message too long"; "RSA modulus too short"

 Assumptions:

 The Kf key is generated with MRSAA_F_GS-DRBG-GENERATE and corresponds
 to the public key which will be used to verify the signature S.

 Steps:

 1. Let EM = EMSA-PKCS1-V1_5-ENCODE (M, k)
 2. Convert EM value into message representative m:
 m = OS2IP(EM)
 3. Apply RSASP1 signature primitive to the key Ku and message m to
 obtain partial signature value Sp:
 Sp = RSASP1(Ku,m)
 4. Output Sp, EM

MRSAA_F_PKCS1_v1_5_SIGN (Kf, Sp, EM)

 Input:

 Kf Finalization service's RSA private key

 Sp Partial signature to be transformed into valid
 signature
 EM Pkcs1-encoded message (see [RFC3447] section 9.2)

 Output:

 S signature, an octet string of length k, where k
 is the length in octets of the RSA modulus n

https://datatracker.ietf.org/doc/html/rfc3447#section-9.2
https://datatracker.ietf.org/doc/html/rfc3447#section-9.2

Kutylowski et al. Expires May 6, 2013 [Page 29]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 Errors: "message too long;"

 Steps:

 1. RSA signature
 a. Convert the partial signature Sp to an integer signature

 sp = OS2IP(Sp)
 b. Convert the encoded message EM to an integer representative
 m:
 m = OS2IP(EM)
 c. Apply the MRSAA_F_SP1 signature primitive (see section 5.3.2.
) to the RSA private key Kf, the partial signature
 representative sp and message representative m to produce a
 signature representative s:
 s = MRSAA_F_SP1(Kf, sp, m)
 d. Convert the signature representative s to a signature S of
 length k octets (see section 4.1.):
 S = I2OSP (s, k)
 2. Output the signature S

9.2.2. Signature verification operation

There are no differences between MRSAASSA-PKCS1-v1_5-VERIFY and RSASSA-
PKCS1-v1_5-VERIFY operation and thus RSA version should be used.
RSASSA-PKCS1-v1_5-VERIFY operation has been specified in [RFC3447]
section 8.2.2.

10. Encoding method for signatures with appendix

 The encoding methods specified in [RFC3447] in section 9. should be
 used.

11. Security Considerations

 Formal proof of security of two-party RSA signatures in the random
 oracle model is given in the paper [7]. The proof applies both to
 multiplicative and to additive private exponent splitting.

 However, the paper [7] assumes that the key material is securely
 generated, distributed and stored. It does not investigate for
 example side channel or fault injection attacks into parts of the
 system involved in generation, distribution of keys and replacement
 of old key material.

https://datatracker.ietf.org/doc/html/rfc3447#section-8.2.2
https://datatracker.ietf.org/doc/html/rfc3447#section-8.2.2
https://datatracker.ietf.org/doc/html/rfc3447

Kutylowski et al. Expires May 6, 2013 [Page 30]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 Some issues of designing, implementing and maintaining a secure
 system that is demonstrably trustworthy are depicted for example in
 papers [8], [9].

 Obviously, building such a system is not a trivial task, and many
 factors have to be taken into consideration.

 The following sections contain an analysis of those factors and give
 recommendations, what kind of controls could be taken into
 consideration when building such a system.

 The subsequent sections identify the assets which should be protected
 and describe security considerations which should be taken into
 account. Security considerations are identified for particular
 processes such as: key generation, signature generation etc.

11.1. Identification of assets and actors

 The main advantage of the MRSAA scheme over the RSA scheme is the
 private exponent fragmentation. This allows the trusted third party
 to confirm user's right to perform MRSAA operation. To achieve this
 functionality neither user nor finalization service knows a base RSA
 key. This can be achieved using distributed key generation techniques
 (see for example [10]), or by outsourcing key generation to a trusted
 third party. Alternatively, to facilitate implementation the base key
 may exist on one component for a short period of lifecycle of the
 keys in a secure environment and must be destroyed immediately
 afterwards.

 After the introduction of the key generation trusted third party, the
 MRSAA key generation algorithm actors list is as follows:

 o User's device - uses user's MRSAA key

 o Finalization service - uses finalization service's MRSAA key

 o Key generation service - generates base RSA key

 In the MRSA algorithm the following assets can be identified:

 o Fm - master key used in finalization service's exponent (df)
 derivation

 o df - finalization service's MRSAA private exponent derived from Fm
 and Uid

 o du - user's MRSAA private exponent

Kutylowski et al. Expires May 6, 2013 [Page 31]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 o d - base RSA private exponent

 o Uid - user identifier used in derivation of df

 For the MRSAA algorithm the following threats can be identified:

 o Fm key's privacy violation - disclosure of the Fm key allows an
 attacker to generate finalization private exponent df on the basis
 of the Uid's. The attacker is able to create his own

 o df privacy violation - disclosure of the df exponent allows an
 attacker to act as an finalizations service in a relation to a
 specific user that holds a complementary Ku key.

 o du privacy violation - a disclosure of the du exponent allows an
 attacker to sign in behalf of the key owner. To produce such a
 signature, the attacker has to use finalization service to
 complete a signature. In the case of an encryption scheme the
 attacker has to obtain a partially deciphered message from
 finalization service.

 o d exponent's privacy violation - a disclosure of the base RSA key
 allows an attacker to make all operations, either signature and
 decryption, without participation of the user and finalization
 service

 o Uid's privacy violation - revealing Uid does not affect the MRSAA
 algorithm security.

11.2. Key generation security

 Generation of keys referring to a particular user includes three main
 steps:

 o Generation of user's base RSA key;

 o Generation of finalization service's key Kf (the key is
 complementary to the user's key Ku); the procedure is usually
 executed anew for each signature finalization and for each partial
 decryption operation referring to the user;

 o Generation of the user's private key Ku

 MRSAA keys are distributed among parties. The security of the MRSAA
 algorithm bases on fact that neither user nor finalization service
 knows user's base RSA key (K).

Kutylowski et al. Expires May 6, 2013 [Page 32]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 Security of the generation process is critical because on this stage
 the base key K with private exponent d is generated. In this stage
 the exponent du, and hence the exponent df needed for this task, are
 calculated as well.

 We can distinguish at least five approaches to the key generation
 process:

 o Key generation by a separate yet distributed key generation
 service

 o Generation of the RSA key directly by the user and the
 finalization service with a two-party protocol

 o Generation of the RSA keys on user's device

 o Key generation directly by the finalization service

11.2.1. Key generation by a separate yet distributed service.

 The key generation model described in addresses the threat of
 disclosing the base RSA key and finalization exponent df by a single
 protocol participant. Distributed key generation protocols enjoys the
 following property: compromise of a single party does not lead to
 disclosure of the private key. This is achieved by representing some
 intermediate values of the protocol and the final private key as a
 set of shares, and each party knows only a single share of each
 shared value and of the final key. Only having collected some subset
 of shares of a value an adversary is able to reconstruct the value.
 The same refers to the private key. The cardinality of the subset
 must be greater than some threshold. Usually the threshold equals
 floor((k-1)/2), where k is the number of parties generating the key,
 in the two-party schemes the threshold is obviously set to one.

 However, distributed protocols suffer from some drawback: total
 communication volume grows rapidly with the number of participants k,
 thus the protocols do not scale well and are useful only for
 relatively small values of k. Distributed protocols assume that
 point-to-point communication lines between parties are secured (i.e.,
 are encrypted and authenticated).

 To refer to distributed RSA-key generation, many such protocols
 exist in the literature. Some of them consider two-party setting
 [22], [23], [24], whereas other use techniques requiring at least
 three participants of the protocol - see e.g., [25], [26], [10].

Kutylowski et al. Expires May 6, 2013 [Page 33]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 Suppose that RSA key-pair (n,e), d was generated by k parties:
 P_1, P_2, ..., P_k, and the private exponent d (an integer d such
 that d*e \equiv 1 \lambda(n)) is represented as sum of integers:

 d = d_1 + d_2 + ... + d_k,

 where party P_i knows only the component d_i. Let df be split by
 the finalization service to the following sum of integers:

 df = df_1 + df_2 + ... + df_k

 Next, df_i is sent over a secure channel to party P_i. Then P_i
 calculates integer value d_i - df_i and sends the result over a
 secure channel to the device of user u. Finally, user u obtains

 du = (d_1 - df_1) + ... + (d_k - df_k)

 which equals d - df.

 The distributed key generation is exposed to the eavesdropping. For
 example, an adversary who is able to get access to all of the df_i
 fragments is able to recover a df exponent. Access to all fragments
 of the d exponent gives a possibility to recreate the original d
 exponent.

 Therefore, to secure distributed key generation mechanism the
 following security measures may be taken into account:

 o Authenticating all parties involved in communication

 o Encrypting communication channels between parties with session
 keys that are secret and unique for each communicating pair.

11.2.2. Key generation by the a separate, centralized service

 In this case a single party, i.e., the key generation service, has a
 control over the base key K. Moreover, it is necessary to involve
 this party into generation of the user's private exponent du.

 On the other hand generation of the finalization service's private
 exponent df should be performed by a finalization service in order to
 not disclose finalization service's master key Fm to other parties.
 Note that key Fm (and thus exponent df) is independent of the values
 of generated RSA (public (n,e), private d) key-pairs. Exponent df
 depends only on the length of the RSA modulus.

Kutylowski et al. Expires May 6, 2013 [Page 34]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 To secure key generation process the following requirements should be
 fulfilled:

 o Fm key should be protected by a finalization service, the key must
 not be disclosed to the other parties

 o df exponent should be generated in a secure environment by a
 finalization service; the key should be transferred to a key
 generation service in encrypted form

 o du exponent should be generated in a secure manner by a key
 generation service; the exponent du should be transferred to the
 user in a encrypted form;

 o K key should be generated in a secure environment by a key
 generation service; the key should not be transferred to other
 parties; private part d of the key should be destroyed

 A centralized approach to the key generation problem gives an
 opportunity to use many security techniques to protect privacy and
 availability of assets. To protect privacy the following controls may
 be used:

 o Hardware security modules

 o Strong authentication and authorization between components

 o Smart cards for protection of user's key du

 o Encryption of messages passed between the key generation module
 and the user's device

 To achieve high availability of the key generation environment the
 duplication of the Fm key on multiple devices may be considered as
 long as full control over usage of Fm is maintained. However,
 duplication of Fm rises a risk of the key being compromised.

 In the described model a single party knows the complete RSA key K
 ((n,e), d). However, one might prevent the party from learning how
 the private exponent is divided between the finalization service and
 the user's device. In such case the following method may be used.

 Let the finalization services express the positive integer df as a
 sum of two pseudorandom integers df_1+df_2, where both values have
 roughly the same length. Then df_1 might be encrypted by finalization
 service with the public key to (a device of) the user. We suppose
 that at the time of signature key generation there is some public key
 assigned to the device of the user (e.g., it might be the key used

Kutylowski et al. Expires May 6, 2013 [Page 35]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 for the device authentication), and that this public key might also
 be used for encryption purposes. Then the finalization service signs
 the pair (ciphertext of df_1, Uid) and both the signed pair and df_2
 are sent to the key generation service. The key generation service
 calculates a multiple of \lambda(n) such that the sum of the multiple
 and d is greater than df_2. Next the service subtracts df_2 from the
 sum result, and passes this subtraction result (we denote it by
 df_2') to the user's device. Also the pair (ciphertext of df_1, Uid)
 and key generation service's signature under it is passed to the
 user's device. We assume that all messages are sent through a secure
 and authenticated channel. The user's device checks Uid, the
 signature of the key generation service, and decrypts df_1. Finally
 the device calculates the integer du=df_2' - df_1.

 Below we shall justify some requirements concerning the channel
 between user's device and the finalization service. Note that pre-
 signature m^{du} mod n, together with the finalized signature m^d mod
 n both represent the DLP (discrete logarithm problem) in the
 multiplicative group of ring Zn:

 Knowing m^d mod n one might easily obtain m. Consequently, to
 learn du from m^{du} mod n it suffices to solve the DLP problem in
 the ring Zn. Knowing factorization of n the (staff of the) key
 generation service might transform this problem to an equivalent
 pair of DLP problems: one modulo p, the other modulo q. However,
 comparing known attacks on factorization problem and on the DLP
 defined in prime fields it is obvious that these two resulting DLP
 problems are much easier to solve than factoring n by an external
 observer (n is about two times longer than each of its factors p,
 q). Therefore, to prevent the (staff of the) key generation service
 from learning du by attacking the DLP problem we advise not only
 authenticate, but also to encrypt the channel between the user's
 device and the finalization service. If the channel between the
 device and the finalization service is not authenticated then,
 having exponent du, the adversary might submit pre-signatures that
 shall be correctly finalized and assigned to the owner of the public
 key (e,n).

 Both in the distributed and the centralized version of the RSA key
 generation service one should take into account possibility of
 kleptographic attacks [27]. To prevent them one might verify a
 fraction of randomly chosen keys being generated regarding randomness
 used.

 Some methods of randomness verification are presented in the papers
 [8], [9]. Another option is to use a deterministic signature scheme
 as a tool to generate seeds for a pseudo-random number generator
 [14]. Such seeds are unpredictable, but easily verifiable in respect

Kutylowski et al. Expires May 6, 2013 [Page 36]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 to correctness.

 Another issue concerns the finalization service. The issue is
 possibility of subliminal leakage made by finalization service's
 manufacturer by utilizing the relation d \equiv df + du mod
 lambda(n). Note that d must be odd and \lambda(n) is even, hence
 manipulating parity bit of df the finalization service chooses parity
 bit of du. If the channel between the user's device and finalization
 service is not encrypted, then parity of du might be easily
 determined by testing values of Jacobi symbol calculated by user's
 device on a few pre-signatures. Suppose that the finalization service
 is given master key Fm and the aim of the attack prepared by
 finalization service's manufacturer is to leak a ciphertext of Fm say
 AES CFB-mode ciphertext (AES encryption key might be chosen in
 advance by the producer). Let the infected device divide the AES
 ciphertext into say 48-bit blocks and let each block be loaded as an
 initial state of some LFSR (Linear Feedback Shift Register) secretly
 implemented inside finalization's service HSM. Suppose the upper
 limit L on the number of ciphertext's blocks is correctly estimated
 by service's malicious producer. Let hash of Uid indicates both the
 index of LFSR and the index of the bit on that LFSR's output, and let
 parity bit of du be value of the bit indicated by hash of Uid.
 pseudorandom sequence of period 2^{48}-1, hence indicated bits are
 sparsely distributed in LFSR's period and we expect that there would
 be no bit-repetition. Accordingly, outside the system parity bits of
 exponents du seem to be not correlated. On the other hand, stealing
 some number of users' devices the producer collects different bits in
 the sequence produced by each LFSR, that is the producer collects
 linear equations with unknowns being the initial state's bits. Having
 collected 48 independent equations for each LFSR the HSM producer
 calculates values of initial state of each LFSR. In such a way all
 blocks of the ciphertext are collected.

 If output of user's device is encrypted, a powerful adversary might
 try to bypass encryption (cf. instruction nulling with laser beam
 [28] in case of smart cards). We do not exclude possibility of
 mounting such a sophisticated attack against key Fm. Therefore, to
 prevent such an attack we recommend to fix the parity bit of values
 df generated in the system, or to generate exponent df in a
 verifiable manner, for example from seeds being signatures.

11.2.3. Key generation executed directly by the user's device and the
 finalization service with a two-party protocol

 This is a special case of distributed RSA key generation limited to
 two protocol participants [24],[22]. If executed properly (i.e.,

Kutylowski et al. Expires May 6, 2013 [Page 37]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 parties are curious but honest), it prevents each single participant
 from learning the private key. Such a solution eliminates the need of
 having a separate key generation service. On the other hand, a
 distributed protocol imposes heavy communication and computational
 burden on user's device and (cumulatively) on the central server.
 Moreover, if a more robust version of the protocol is considered
 (i.e., one that prevents parties from cheating - cf. e.g., sect. 6 of
 [23]) the imposed burden is even greater. Designing robust and
 efficient solution well-tailored to capabilities of constrained
 parties seems still to be a challenge.

11.2.4. Key generation on user's device

 In this model functionalities related to the key generation service
 are implemented by a user device. It should be noticed that to
 successfully generate user's exponent du, the user's device need to
 know the df exponent. The df exponent can be transmitted during key
 generation process or stored securely on the device production phase.

 In this model the user's exponent du and the base key K are not
 revealed to the finalization service. The disadvantage of this model
 is that at some stage of the protocol the user's device knows the df
 exponent and the base key K, which gives it a possibility to create
 exposes the user to attacks performed by a malicious device producer.

 To increase security level of this model the following requirements
 should be taken into consideration:

 o Securely store encryption of exponent df key on user's device
 before the key K is generated by the device. Decryption key Kdf
 for this ciphertext should be sent to the device after revealing
 the public RSA key by the device. In this way even a malicious
 device cannot adjust the key generated to the given exponent df.
 Note that one round of communication after generation of the RSA
 key is always required in this model in order to obtain a
 certificate. Note also that the decryption key Kdf does not have
 to be sent over a secure channel provided that the ciphertext of
 df is placed on the user's device in a secure environment.

 o Completely erase df and K from user's device immediately after the
 key Ku is generated.

 It should be noticed that all mentioned controls are based on the
 trust to manufacturer of the user's device. In particular the user
 must trust that no kleptographic channel is implemented on the device
 (cf. [11]).

 Note however that if the RSA key is generated directly on a user's

Kutylowski et al. Expires May 6, 2013 [Page 38]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 device, then particular attention should be given to quality of
 randomness. This refers also to signature generation process for
 non-deterministic signature schemes (cf. RSA-PSS with random salt).

11.2.5. Key generation directly by the finalization service.

 This model does not employ a third party generating keys. All steps
 related to the key generation are performed by the finalization
 service. In such case a finalization service has all necessary
 information needed to forge user's signatures.

 All threats specific key generation by a separate centralized service
 (Section 11.2.1. , but since finalization service should be publicly
 available for signatures finalization, the risk of interception of
 the finalization service by an adversary becomes significantly
 bigger. Moreover, because the key generation procedure is cumulated
 into the server that permanently is contacted by users' devices and
 might be heavily loaded with new connections, the process controlling
 quality of keys generated might be somewhat cumbersome. Further,
 theoretically, one might develop a malicious implementation, which
 might generate false signatures of some user on a request of an
 adversary (we suppose that the malicious implementation knows how to
 recover user's complete RSA key because this implementation has
 generated the key).

 Therefore, the key generation performed directly by the finalization
 service could be considered only in environments with low
 security requirements.

11.3. Replacement of a finalization service

 Probability of a successful attack on the finalization service's key
 depends on strength of cryptographic algorithm used, strength of the
 used key, implementation, security policies executed during system
 lifetime and other issues. Even in implementations that are
 supposed to be secure there is a danger of extracting the Fm key by
 utilizing some new attack, which was not taken into account when the
 system was designed (cf. e.g., [29],[30],[31]). To minimize
 consequences of such situation and to additionally facilitate load
 balancing it is possible to use multiple finalizations services
 with different Fm keys.

 If a few finalization services operate at the same time, with
 corresponding master keys Fm_1, Fm_2, ..,Fm_t, then if one of the
 keys (say Fm_2) becomes compromised it is possible to replace it with
 a new one, and then gradually change users' public keys (immediate
 change of all public keys in a large system might be infeasible).

Kutylowski et al. Expires May 6, 2013 [Page 39]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 Suppose that user's device holds exponents du_1, du_2, ..., du_t
 referring to the same public key (n,e) or holds some subset of these
 exponents. Each du_i corresponds to df_i produced from key Fm_i,
 and the following condition is satisfied:

 du_i + df_i = d_i, where d_i is some integer such that d_i*e \equiv 1
 mod \lambda(n), that is, d_i \equiv d mod \lambda(n).

 If say Fm_2 becomes compromised, exponent du_2 should be erased from
 the user's device. To introduce a new finalization server with a new
 master key Fm_2' the following, exemplary procedure might be applied:

 Generate df_j (for some j\neq 2) on the server holding Fm_j and split
 df_j pseudorandomly to the sum of two integers of roughly the same
 length: df_j = df_j1+df_j2. Next the server holding Fm_j sends df_j2
 to the server holding Fm_2'. The latter server generates df_2' from
 user's Uid and key Fm_2' and subtracts the value generated from the
 value received: df_j2-df_2'. The resulting value is encrypted with
 the public encryption key corresponding to Uid (see remarks in Sect.
 11.2.2. on preventing the key generation service from learning df).
 Next the pair (the ciphertext, Uid) is signed by the server holding
 Fm_2', and this pair and the signature is sent to the server holding
 Fm_j. The latter server sends df_j1 and the data received from the
 server holding Fm_2' to the user's device over a secure channel.

 The user's device checks the signature, decrypts the ciphertext and
 adds du_j to the sum of values: df_j1+(df_j2-df_2') = df_j-df_2'.

 As a result value d_j - df_2' \equiv d - df_2' mod \lambda(n) is
 obtained. User's device defines du_2' as d_j - df_2'. When du_2' is
 calculated all intermediate data should be immediately erased from
 the user's device.

 The procedure above might be initialized at the time of finalization
 of some signature - this should reduce communication overhead from
 user's point of view.

 Apart from key Fm the finalization server should also hold some
 authentication key pair and its short-term certificate. Thus in case
 of detection that Fm could be compromised such an additional security
 mechanisms should prevent signature finalization outside the
 legitimate finalization service.

 There is some limitation of the technique described above. If Fm_j
 becomes compromised later, then security of df_2' depends on
 inaccessibility of df_j - df_2' outside the user's device. If such
 inaccessibility might be questionable, then we recommend to gradually
 replace users' public keys.

Kutylowski et al. Expires May 6, 2013 [Page 40]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

11.4. Signature creation process security

 The signing process consists of two parts:

 o Creating a partial signature

 o Finalizing a signature

 The partial signature creation is performed by a user. The final
 signature is created by a finalization service. The user key Ku is
 stored by the user. The key Kf is derived by a finalization service
 on a basis of the user specific identifier Uid and finalization
 service's master key Fm.

 To create a final signature there is a need to establish a
 communication channel between the user and the finalization service.

 It should be noticed that in the case of the interception of a user's
 private exponent du it is easy to make the exponent useless. The
 adversary has to access to the finalization service to create a valid
 signature. The access to the finalization service can be blocked for
 a specific exponent. The mediated signature scheme has another
 advantage: in the case of dispute, the finalization service is able
 to present the evidence of the signature creation. The finalization
 service's logs might even have a public form of undeniable timestamps
 [17] made automatically by the finalization Note that the not-
 mediated RSA variant usually does not satisfy this property: user's
 certificate revocation does not prevent the adversary from making
 signatures with the stolen key. It is possible to achieve comparable
 level of functionality with timestamped signature with a mandatory
 signature policy. However, it should be noticed that signature
 verification applications must be adjusted accordingly.

 Since in MRSAA scheme user's device does not know the factorization
 of the modulus, the Bellcore attack [18] aimed to injecting faults
 modulo one of the factors of n, does not apply. Even more general
 attacks [19], [20] on implementation not utilizing knowledge about
 modulus factorization (i.e., CRT) do not apply directly because
 nobody knows public exponent eu such that

 eu * du \equiv 1 mod \lambda(n).

 Even user's device should not know such eu (note that knowledge of
 both eu and du, provided eu*du < n^2, is polynomially equivalent to
 the knowledge of factors of n - cf. [21]). Moreover, there is a very
 efficient probabilistic algorithm that, given eu and du, factors n.
 The algorithm does not impose constraints on eu*du.

Kutylowski et al. Expires May 6, 2013 [Page 41]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 However, in MRSAA scheme the device of the user is not the only
 component involved in signature generation. Suppose that the channel
 between user's device and the finalization service is not encrypted,
 and that the finalization service does not verify the final
 signature. Let m, sp' be integers representing some encoded message
 and its faulty partial signature correspondingly. Let sp' be faulty
 because of a single-bit fault that occurred during this partial
 signature generation (cf. assumptions in [19], [20], concerning
 faults generated). Since m and sp' are sent to the finalization
 service, and

 m^{df} * sp' mod n

 is returned to the device of the user, it is easy for the adversary
 to obtain m^{df} mod n from the data eavesdropped. If exponentiation
 method used on the side of the device is the method attacked in [19]
 or the method attacked in [20], then having m and m^{df} mod n
 the adversary might modify the original attack from [19] or [20] to
 obtain exponent du.

 Hence to prevent an adversary from learning du by utilizing some
 fault injection attack we recommend to verify the final signature by
 the finalization service. Verification should include verification
 of encoding correctness.

 The signature creation in MRSAA scheme gives also a possibility to
 perform the following attack: suppose that the finalization service
 (e.g., Uid is not included in the certificate of the key (n,e) nor
 Uid includes hash of (n,e)). Suppose that public keys are not
 stored by the finalization service's device (e.g., a HSM). Let the
 adversary might input all necessary data to the finalization
 service's device and let the device does not verify the finalized
 signature nor check message encoding correctness. Instead of modulus
 n the adversary will use modulus n' such that n'> n, let
 factorization of n' is known to the adversary, and for each prime
 factor p of n' number p-1 is smooth. In such a case having m^{df}
 mod n' the adversary is able to compute df mod \lambda(n') using
 Pohling-Hellman method modulo each prime factor of n'. Details of
 the attack are as follows:

 Let the adversary input to the finalization service some tuple
 (m,sp,n'), where m, sp are some integers.

 The finalization service outputs sp*m^{df} mod n'.

 Knowing sp the adversary calculates m^{df} mod n' and then

 df mod \lambda(n').

Kutylowski et al. Expires May 6, 2013 [Page 42]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 If \lambda(n') is too short to recover df completely, the
 adversary might repeat the procedure for another, appropriately
 chosen n''. As a result

 df mod lcm(\lambda(n'),\lambda(n''))

 is found by the adversary.

 The attack above might be modified in such a way that df leaks even
 if the finalization service verifies the signature (but does not
 check encoding correctness) - in this case we assume that if
 signature verification fails finalization service does not return any
 value modulo n'. The modification proceeds as follows:

 modulus n' will again be chosen in a way that the multiplicative
 group of Z_{n'} will have smooth order and that some other
 conditions are satisfied, namely: let prime p be divisor of n' and
 let p' be a prime factor of p-1 such that df is not divisible by p'.
 Let (p')^t be the greatest power of p' dividing p-1, and let for
 each prime factor q of n' either (p')^t be the greatest power of
 p' dividing q-1 or p' do not divide q-1.

 Let sp, m belong to the multiplicative group Z_{n'}^{*} of the ring
 Z_{n'} and are chosen in such a way that:

 sp is the neutral element in each cyclic subgroup of the order
 (p')^t, and in other subgroups of Z_{n'}^{*} it might be any element.

 m is the neutral element of each cyclic subgroup of the order not
 divisible by p', and it is a generator of each subgroup of the order
 (p')^t. Such m modulo Z_{n'} might be easily found using generators
 of the multiplicative groups Z_{p}^{*}, Z_{q}^{*} and then utilizing
 the Chinese Remainder Theorem.

 Then the adversary will test some set of exponents e being co-prime
 with p', such that the set of tested exponents is not greater than
 the complete set of elements of the multiplicative group
 Z_{(p')^t}^{*}. Let each tested exponent e fulfill the following
 condition: for each prime factor q of n' and for each prime factor q'
 of q-1, if q' is different from p', then e is divisible by the
 greatest power of q' dividing q-1.

 During each test the adversary inputs tuple (m, sp, (n', e)) to the
 finalization service. If no value modulo n' is returned by the
 finalization service, then the adversary tries the next exponent e
 giving not tested yet element of Z_{(p')^t}^{*}. Values m, sp do not
 have to be changed for the next trial. If df is indeed not divisible
 by p', then for some e the condition

Kutylowski et al. Expires May 6, 2013 [Page 43]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 (sp * m^{df})^e \equiv m mod n'

 is satisfied, and the finalization service returns sp*m^{df} mod
 n'. The adversary knows that for this e the congruence

 df * e \equiv 1 mod (p')^t

 holds, hence df mod (p')^t is found. If no value is returned and
 all residues from Z_{(p')^t}^{*} were tested as exponents e, then

 df \equiv 0 mod p'.

 Executing the attack for different primes p' the adversary finally
 finds complete exponent df. We have assumed that m does not represent
 correct message encoding, because finding m, n' fulfilling the
 conditions above and m representing correct encoding might be
 computationally hard for appropriate encoding.

 If (m, sp, (n',e)) must be delivered over user's device, then
 security of df depends on security of the authentication key.

 Therefore, to provide some security margin we recommend checking
 during finalization all the following conditions:

 o Does m represent correct encoding?

 o Do (n,e) and Uid correspond to each other?

 o Does Uid correspond the authentication key of the user's device?

 o Is the finalized value a correct signature?

 Additionally, to protect a signature process the following
 requirements should be fulfilled:

 o du exponent should be stored securely by the user; the exponent
 shouldn't be revealed to other parties;

 o df exponent should be derived from the key Fm in a secure
 environment by the finalization service; the df exponent should be
 destroyed immediately after the completion of the signature
 process;

 o the channel between the user's device and the finalization service
 should be encrypted.

Kutylowski et al. Expires May 6, 2013 [Page 44]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

11.5. Decryption process security

 The decryption process in MRSAA algorithm consists of the following
 stages:

 o transformation of the ciphertext by the finalization service,

 o decryption of the ciphertext by the user.

 To perform a decryption it is necessary to transfer a transformed
 ciphertext to the user's device. The device must check correctness of
 encoding of the encrypted value.

 To protect a decryption process the following requirements should be
 fulfilled:

 o df exponent should be derived in a secure environment by the
 finalization service; the exponent should be destroyed immediately
 after the completion of the transformation process;

 o (n, e) and df must correspond to the same Uid;

 o du exponent should be stored securely by the user; the exponent
 must not be relayed to other parties.

 To provide some security margin we recommend encrypting the channel
 between the user's device and the finalization service.

11.6. Short summary of possible security techniques

 To sum up this section we can briefly enumerate exemplary
 countermeasures to the threats listed in subsection 11.1. (in the
 previous subsections we have analyzed need of some of the
 countermeasures in more detail):

 o log service, which works in an append-only way, and which is
 audited by a third party,

 o mutual authentication protocol such like chip authentication and
 terminal authentication protocols (cf. e.g., [3])resulting in
 secure and authenticated connection between the finalization
 service and user's device (in particular, such a connection must
 be inaccessible for operators of the RSA key generation server).

 o internal (nested) signature carried by salt in EMSA-PSS encoding,

 o external timestamp and signature applied automatically by the
 finalization service,

Kutylowski et al. Expires May 6, 2013 [Page 45]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 o evolution of unique secrets shared between users and the
 finalization service as a simple clone-detection mechanism,

 o hiding exponent df from the RSA key generation service which can
 be realized by the finalization service in the following way: the
 finalization service expresses df as a sum of two integers df_1 +
 df_2 and then encrypts df_1 to the user, and next sends df_2
 instead of df to the key generation service; getting du from the
 key generation service the user must only subtract df_1 from du to
 obtain the correct value.

 Most of the techniques listed above are described in [13]. The
 general goal is system decomposition by utilizing existing or
 introducing additional security layers (cf. chip and terminal
 authentication procedures), and by assigning to separate parties the
 task of generating key material used in separate layers.

 Moreover, a prudent approach is to require that the parties
 generating key material have only "local" knowledge on the system
 that is to require that they are provided with minimum data necessary
 to accomplish their task. Accordingly, we advise to separate
 information flow by utilizing encryption.

12. IANA Considerations

13. Conclusions

 The main difference between a MRSAA and a RSA algorithm is related to
 the signing key. In the MRSAA algorithm the key is divided into two
 fragments. This fact gives a possibility to transfer a final step of
 signature creation to a finalization service [5].

 Incorporating a third party into the signature process allows
 confirming the signature at the creation time. In such a case the
 signature which can be successfully verified using a public key can
 be considered as a confirmed one. The confirmation process can
 consist of verification of multiple signature attributes (see [6]),
 particularly a signer's certificate validity check (cf. [12]).

 The signature with certificate validity verified on the signature
 creation stage can be considered as a trusted one without additional
 verification of certificate validity.

 In conclusion, MRSAA protects relying party from rogue signer.

Kutylowski et al. Expires May 6, 2013 [Page 46]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

14. References

14.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] E. Barkley, J. Kelsey, "NIST SP800-90 Recommendation for Random
 Number Generation using Deterministic Random Bit Generators",
 NIST, March 2007

 [3] Bundesamt fur Sicherheit in der Informationstechnik: Technical
 Guideline TR-03110, Advanced Security Mechanisms for Machine
 Readable Travel Documents Version 2.05

14.2. Informative References

 [4] D. Coppersmith, M. Franklin, J. Patarin and M. Reiter. Low-
 Exponent RSA with Related Messages. In Advances in Cryptology-
 Eurocrypt '96, pp. 1-9, Springer-Verlag, 1996

 [RFC3447] J. Jonsson, B. Kaliski, "Public-Key Cryptography Standards
 (PKCS) #1: RSA Cryptography Specifications Version 2.1

 [5] D. Boneh X. Ding, G. Tsudik and Ch. M. Wong, "A method for Fast
 Revocation of Public Key Certificates and Security
 Capabilities", USENIX Association, 2001

 [6] M. Tabor, "Electronic signature - easy as card transactions",
 Polskie Karty 2011 almanach. Medien Service Slawomir
 Cieslinski,2010

 [7] M. Bellare, R. Sandhu, "The Security of Practical Two-Party RSA
 Signature Schemes", Cryptology ePrint Archive, Report 2001/060

 [8] E. Konstantinou, V. Liagkou, P. G. Spirakis, Y. C. Stamatiou,
 M. Yung, "Trust Engineering: " From Requirements to System
 Design and Maintenance - A Working National Lottery System
 Experience", ISC, 2005

 [9] E. Konstantinou, V. Liagkou, P. G. Spirakis, Y. C. Stamatiou, M.
 Yung, "Electronic National Lotteries.", Financial Cryptography,
 2004

 [10] I. Damgard, G. L. Mikkelsen, "Efficient, Robust and Constant-
 Round Distributed RSA Key Generation", TCC, 2010

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Kutylowski et al. Expires May 6, 2013 [Page 47]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 [11] A. Young, M. Young, "A Space Efficient Backdoor in RSA and Its
 Applications", Selected Areas in Cryptography, 2005

 [12] D. Boneh, X. Ding, G. Tsudik, "Fine-grained control of security
 capabilities", ACM Trans. Internet Techn.,4(1) 2004

 [13] P. Blaskiewicz, P. Kubiak, M Kutylowski, "Digital signatures
 for e-government - a long-term security architecture", China
 Communications 7(6),December 2010

 [14] D. Chaum: Secret-Ballot Receipts: True Voter-Verifiable
 Elections. IEEE Security & Privacy 2(1): 38-47 (2004)

 [15] A. Bauer, J.-S. Coron, D. Naccache, M. Tibouchi, D. Vergnaud,
 "On the Broadcast and Validity-Checking Security of pkcs#1 v1.5
 Encryption", ACNS, 2010

 [16] A. K. Lenstra, I. Shparlinski, "Selective Forgery of RSA
 Signatures with Fixed-Pattern Padding", Public Key
 Cryptography, 2002

 [17] S. Haber, W. S. Stornetta, "How to Time-Stamp a Digital
 Document", J. Cryptology, 1991

 [18] D. Boneh, R. A. DeMillo, R. J. Lipton, "On the Importance of
 Checking Cryptographic Protocols for Faults (Extended
 Abstract)", EUROCRYPT, 1997

 [19] A. Pellegrini, V. Bertacco, T. M. Austin, "Fault-based attack
 of RSA authentication", DATE 2010, 2010

 [20] D. Boneh, R. A. DeMillo, R. J. Lipton, "On the Importance of
 Eliminating Errors in Cryptographic Computations", J.
 Cryptology 14, 2001

 [21] J. Coron, A. May, "Deterministic Polynomial-Time Equivalence of
 Computing the RSA Secret Key and Factoring", J. Cryptology 20,
 2007

 [22] C. Cocks, "Split Knowledge Generation of RSA Parameters", IMA
 Int. Conf., 1997

 [23] M. Joye, R. Pinch, "Cheating in split-knowledge RSA parameter
 generation", Workshop on Coding and Cryptography, January 1999

 [24] N. Gilboa, "Two Party RSA Key Generation", CRYPTO, 1999

 [25] J. Algesheimer, J. Camenisch, V. Shoup, "Efficient Computation

Kutylowski et al. Expires May 6, 2013 [Page 48]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 Modulo a Shared Secret with Application to the Generation of
 Shared Safe-Prime Products", CRYPTO, 2002

 [26] E. Ong, J. Kubiatowicz, "Optimizing Robustness While Generating
 Shared Secret Safe Primes", Public Key Cryptography, 2005

 [27] A. Young, M. Yung, "A Space Efficient Backdoor in RSA and Its
 Applications", Selected Areas in Cryptography, 2005

 [28] G. Barbu, H. Thiebeauld, V. Guerin, "Attacks on Java Card 3.0
 Combining Fault and Logical Attacks", CARDIS, 2010

 [29] O. Aciicmez, C. K. Koc, J.-P. Seifert, "On the Power of Simple
 Branch Prediction Analysis",Cryptology ePrint Archive: Report
 2006/351

 [30] D. Bleichenbacher: Chosen Ciphertext Attacks Against Protocols
 Based on the RSA Encryption Standard PKCS #1. CRYPTO 1998: 1-
 12

 [31] E. Biham, Y. Carmeli, A. Shamir: Bug Attacks. CRYPTO 2008:
 221-240

15. Acknowledgments

 This document was prepared using 2-Word-v2.0.template.dot.

Kutylowski et al. Expires May 6, 2013 [Page 49]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

Appendix A. Pseudorandom generator primitives

 Primitives described below are described in details in [2]. This
 annex describes only inputs and outputs for these primitives.

A.1. CTR_DRBG_Instantiate_algorithm(entropy_input,
personalization_string)

 Input:

 entropy_input the string of bits obtained from the source of
 entropy input

 personalization_ the personalization string received from the
 string consuming application

 Output:

 initial_working_ The initial values for V, Key, and
 state reseed_counter

A.2. CTR_DRBG_Generate_algorithm(working_state,
requested_number_of_bits, additional_input)

 Input:

 working_state The current values for V, Key and
 reseed_counter
 requested_numbe The number of pseudorandom bits to be returned
 r_of_bits to the generate function
 additional_inpu The additional input string received from the
 t consuming application. If additional_input is
 not supported by an implementation, then step
 2 becomes:
 additional_input = 0^seedlen

 Output:

 status The status returned from the function. The
 status will indicate SUCCESS, or indicate that
 a reseed is required before the requested
 pseudorandom bits can be generated.

 returned_bits The pseudorandom bits returned to the generate
 function

 working_state The new values for V, Key and reseed_counter

Kutylowski et al. Expires May 6, 2013 [Page 50]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

Appendix B. Standard RSA primitives

 Appendix contains a list of primitives with short description.
 Detailed specification of primitives can be found in [RFC3447]
 document.

B.1. Encryption and decryption primitives

 RSAEP transforms cleartext into ciphertext. RSADP performs a reverse
 operation.

B.1.1. RSAEP((n,e),m)

 Input:

 (n,e) RSA public key

 m message representative, an integer between 0,
 and n-1

 Output:

 c Ciphertext representative, an integer between
 0 and n-1 or message "message representative
 out of range"

B.1.2. RSADP(K,c)

 Input:

 K RSA private key, where K has one of the
 following forms
 - A pair (n,d)
 - A quintuple(p,q,dP,dQ,qInv)

 c Ciphertext representative, an integer between
 0 and n-1

 Output:

 m message representative, an integer between 0,
 and n-1 or message "ciphertext representative
 out of range"

 In the present document RSADP was used for key K=Kf and key K=Ku',
 thus the first form of a private key representation has been
 utilized.

https://datatracker.ietf.org/doc/html/rfc3447

Kutylowski et al. Expires May 6, 2013 [Page 51]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

B.2. Signature and verification primitives

 RSASP1 produces signature value from message. RSAVP1 retrieves a
 message value from signature value.

B.2.1. RSASP1(K,m)

 Input:

 K RSA private key, where K has one of the
 following forms
 - A pair (n,d)
 - A quintuple(p,q,dP,dQ,qInv)

 c message representative, an integer between 0 and
 n-1

 Output:

 m signature representative, an integer between
 0, and n-1 or message "message representative
 out of range"

 In the present document RSASP1 was used for key K=Ku and key K=Fm. In
 the first case the first form of a private key representation has
 been utilized.

B.2.2. RSAVP1((n,e),s)

 Input:

 (n,e) RSA public key

 s signature representative, an integer between 0
 and n-1

 Output:

 m message representative, an integer between 0,
 and n-1 or message "invalid"

Kutylowski et al. Expires May 6, 2013 [Page 52]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

Appendix C. ASN.1 Syntax

C.1. MRSAA key representation

 This section defines ASN.1 object identifiers for MRSA public and
 private keys. It does not define new types, but shows how to use RSA
 data types with MRSA scheme.

C.1.1. MRSAA public key syntax

 The RSA public key syntax is identical to a RSA public key syntax.
 The RSAPublicKey type should be used to represent MRSAA public key.

C.1.2. MRSAA private key syntax

 MRSAA private key should be represented with ASN.1 type RSAPrivateKey
 according to [RFC3447] section A.1.2:

 RSAPrivateKey ::= SEQUENCE {
 version Version,
 modulus INTEGER, -- n
 publicExponent INTEGER, -- e
 privateExponent INTEGER, -- d
 prime1 INTEGER, -- p
 prime2 INTEGER, -- q
 exponent1 INTEGER, -- d mod (p-1)
 exponent2 INTEGER, -- d mod (q-1)
 coefficient INTEGER, -- (inverse of q) mod p
 otherPrimeInfos OtherPrimeInfos OPTIONAL
 }

 MRSAA private key, either Ku or Kf, should not contain information
 which give a possibility to recover d private exponent which
 corresponds to the public exponent. This implies that the key cannot
 contain original p and q, d mod (p-1), d mod (q-1), qInv values.

 For the purposes of storing finalization service's key Kf or user's
 key Ku, RSAPrivateKey structure's fields have the following meaning:

 o version is the version number, for compatibility with future
 revisions of this document. It shall be 0 for this version of the
 document, unless multi-prime is used, in which case it shall be 1.
 In the case of MRSAA version number 2 should be used

 Version ::= INTEGER { two-prime(0), multi(1) }
 (CONSTRAINED BY
 {-- version must be multi if otherPrimeInfos present --})

https://datatracker.ietf.org/doc/html/rfc3447

Kutylowski et al. Expires May 6, 2013 [Page 53]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 o modulus is the RSA modulus n

 o privateExponent is the MRSAA private exponent (df or du
 respectively)

 Other fields should be set to value 0
C.1.3. Scheme identification

 The section defines object identifiers for the MRSAA encryption
 schemes. For signature schemes RSA object identifiers should be used
 as defined in [RFC3447] section A.2.

 Here are the type identifier definitions for the MRSAA OIDs:

 mrsa OBJECT-IDENTIFIER ::= { iso(1) identified-organization(3) dod(6)
 internet(1) private(4) enterprise(1) 37722 applications(1) 1} }

 mrsaEncryption OBJECT-IDENTIFIER ::= { applications(1) mrsa(1)
 algorithms(1) 1}

 Id-MRSAES-OAEP OBJECT-IDENTIFIER ::= { applications(1) mrsa(1)
 algorithms(1) 2}

https://datatracker.ietf.org/doc/html/rfc3447

Kutylowski et al. Expires May 6, 2013 [Page 54]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

Appendix D. ASN.1 Module

 MRSAA {
 iso(1) identified-organization(3) dod(6) internet(1) private(4)
 enterprise(1) 37722 applications(1) 1
 }

 DEFINITIONS EXPLICIT TAGS ::= BEGIN

 EXPORTS ALL;
 IMPORTS ALGORITHM-IDENTIFIER, PKCS1Algorithms
 FROM PKCS-1 {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1
 } ;

 MRSAAAlgorithms ALGORITHM-IDENTIFIER ::= {
 { OID mrsaaEncryption PARAMETERS NULL } |
 { OID id-MRSAAES-OAEP PARAMETERS RSA-OAEP-params } |
 PKCS1Algorithms,
 ...
 }

 mrsaa OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) dod(6) internet(1) private(4)
 enterprise(1) 37722 applications(1) 1
 }

 --
 -- When rsaEncryption is used in an AlgorithmIdentifier the
 -- parameters MUST be present and MUST be NULL.
 --
 mrsaaEncryption OBJECT IDENTIFIER ::= { mrsaa algorithms(1) 1}

 --
 -- When id-MRSAAES-OAEP is used in an AlgorithmIdentifier the
 -- parameters MUST be present and MUST be RSAES-OAEP-params.
 --
 id-MRSAAES-OAEP OBJECT IDENTIFIER ::= { mrsa algorithms(1) 2}

 END

Kutylowski et al. Expires May 6, 2013 [Page 55]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

Appendix E. Intellectual Property Considerations

The RSA public-key cryptosystem is described in U.S. Patent 4,405,829,
which expired on September 20, 2000. RSA Security Inc. For this moment
there are no active patents related to the RSA algorithm.

The Mediated RSA cryptographic method and system is described in
U.S.patent 20,040,252,830, which will expire on June 2024. The patent
describes a mediated RSA cryptosystem with the key fragmented using
additive scheme. Additionally the messages passed between a finalization
service (Trusted Authority) and message receiver are blinded using
random number. However the schema described in this document differs
from the one described in the patent, some similarities such like user
exponent du can be found.

A U.S. patent 20 050 002 528 describes mediated signature system with
identifier based key generation. The concept described in the patent is
similar to the one described in this document, but the key generation
method is different than presented in this document. Additionally,
during a message transmission a random blinding is incorporated.

Authors' Addresses
 Miroslaw Kutylowski
 Wroclaw University of Technology
 Wybrzeze Wyspianskiego 27
 PL-50-370 Wroclaw

 Email: miroslaw.kutylowski@pwr.wroc.pl

 Przemyslaw Kubiak
 Wroclaw University of Technology
 Wybrzeze Wyspianskiego 27
 PL-50-370 Wroclaw
 Email: przemyslaw.kubiak@pwr.wroc.pl

 Michal Tabor
 Trusted Information Consulting
 Domaniewska 41A
 PL-02-672 Warszawa

 Email: michal.tabor@ticons.pl

 Daniel Wachnik
 Trusted Information Consulting

Kutylowski et al. Expires May 6, 2013 [Page 56]

Internet-Draft Mediated RSA cryptography specification November 2, 2012

 Domaniewska 41A
 PL-02-672 Warszwawa

 Email: daniel.wachnik@ticons.pl

 Full copyright statement

 Copyright (c) 2012 IETF Trust and the persons identified as authors
 of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:

 o Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 o Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.

 o Neither the name of Internet Society, IETF or IETF Trust, nor the
 names of specific contributors, may be used to endorse or promote
 products derived from this software without specific prior written
 permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Kutylowski et al. Expires May 6, 2013 [Page 57]

