Operation and Management Area Working Group

Internet-Draft

Intended status: Standards Track

Expires: May 16, 2012

Chen. Li Lianvuan. Li China Mobile Tina. TSOU Huawei November 13, 2011

Management Information Base for Load Balancers draft-li-opsawg-loadbalance-mib-03

Abstract

Load balancer is deployed widely in datacenter nowadays. There is a requirement to build a unique LB network management system where two or more vendors' LB devices are used. We propose the standard MIBs for unique NMS.

Load balancer description is introduced at "http://en.wikipedia.org/wiki/Load_balancing_(computing)".

This memo defines an portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes a MIB module for load balance device.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 16, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

<u>1</u> .	Introduction
<u>2</u> .	The Internet-Standard Management Framework
<u>3</u> .	Conventions
<u>4</u> .	Structure of Load-Balance MIB objects
<u>5</u> .	Loadbalance-MIB Module Definitions
<u>6</u> .	Security Considerations
<u>7</u> .	IANA Considerations
<u>8</u> .	Normative References
Auth	nors' Addresses

1. Introduction

Load balancer is deployed widely in datacenter nowadays. There is a requirement to build a unique LB network management system where two or more vendors' LB devices are used. We propose the standard MIBs for unique NMS.

This document defines 5 MIB Modules which together support the configuration and monitoring of Load Balance device.

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, [RFC2578] STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

3. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

4. Structure of Load-Balance MIB objects

The following subsections describe the purpose of each of the objects contained in the loadbalance-MIB.

4.1. Load balance Virtual Service Table

Services provided by LB devices are virtual services. Configured on an LB device, a virtual service is uniquely identified by virtual service IP address, service protocol, service mode, and service port number. Access requests of users are sent to the LB device through a public or private network. If matching the virtual service, the requests are distributed to real services by the LB device.

4.2. Load balance Real Service Table

Internet-Draft Load Balancer MIB November 2011

Services provided by real servers are real services. A real service can be a traditional FTP or HTTP service, and can also be a forwarding service in a generic sense. For example, a real service in firewall load balancing is the packet forwarding path.

4.3. Load balance Real Service Group Table

Server group----a real service group is a logical concept. Servers can be classified into different groups according to the common attributes of these servers. For example, servers can be classified into static storage server group and dynamic switching server group according to their functions; or they can be classified into music server group, video server group and picture server group according to the services they provide.

4.4. Load balance health checking Table

Health monitoring allows an LB device to check the statuses of real servers or links, collect the corresponding information, and quarantine the servers or links that work abnormally. Health monitoring can not only mark whether servers or links can work normally, but also can collect statistics of the response time of the servers or links for selecting servers or links.

4.5. Load balance Statistic Table

The statistic for Virtual Service or Real Service session, transmission rate.

5. Loadbalance-MIB Module Definitions

Li Chen (lichenyj@chinamobile.com) China Mobile" "email: DESCRIPTION "MIB objects for load-balancing devices. Copyright (c) 2011 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info)." REVISION "201111310000Z" ::= { mib-2 XXX } lbMIBNotifications OBJECT IDENTIFIER ::= { lbMIB 0 } lbMIBObjects OBJECT IDENTIFIER ::= { lbMIB 1 } lbMIBConformance OBJECT IDENTIFIER ::= { lbMIB 2 } lbMIBCompliances OBJECT IDENTIFIER ::= { lbMIBConformance 1 } lbMIBGroups OBJECT IDENTIFIER ::= { lbMIBConformance 2 } -- Load-balancer Virtual Service table lbVSTable OBJECT-TYPE SEQUENCE OF LbVSEntry SYNTAX MAX-ACCESS not-accessible STATUS current DESCRIPTION "Configured on an LB device, a virtual service is uniquely identified by virtual service IP address, service protocol, service mode , and service port number. Access requests of users are sent to the LB device through a public or private network. If matching the virtual service, the requests are distributed to real services by the LB device." ::= { lbMIBObjects 1 } lbVSEntry **OBJECT-TYPE** SYNTAX LbVSEntry MAX-ACCESS not-accessible STATUS current

DESCRIPTION

```
"A row describing LB virtual service."
    INDEX { lbVSId }
    ::= { lbVSTable 1 }
LbVSEntry ::= SEQUENCE {
    lbVSId
                    Unsigned32,
    lbVSAddr
                    IpAddress,
    1bVSPort
                    INTEGER,
    1bVSmode
                   INTEGER,
    lbVSproto
                    INTEGER,
}
LbVSId
               OBJECT-TYPE
               Unsigned32 (1..'ffffffff'H)
    SYNTAX
   MAX-ACCESS read-write
    STATUS
               current
    DESCRIPTION
        "LB virtual service identifier."
    ::= { lbVSEntry 1 }
 lbVSAddr
               OBJECT-TYPE
    SYNTAX
               IpAddress
   MAX-ACCESS read-write
               current
    STATUS
    DESCRIPTION
        "Virtual service IP address of cluster/LB, used for users
       to request services."
    ::= { lbVSEntry 2 }
 lbVSPort
                OBJECT-TYPE
     SYNTAX
                INTEGER (0..65535)
    MAX-ACCESS read-write
     STATUS
             current
     DESCRIPTION
         "The LB distributes the requests with the same source IP
         address and source port
         to a specific server."
     ::= { lbVSEntry 3 }
 1bVSmode
                 OBJECT-TYPE
     SYNTAX
                INTEGER (NAT(0), DR(1))
    MAX-ACCESS read-write
     STATUS
                current
     DESCRIPTION
         "Layer 4 server load balancing can be classified into
         Network Address Translation (NAT)-mode server load
```

```
balancing and Direct routing (DR)-mode server
         load balancing."
     ::= { lbVSEntry 4 }
 1bVSproto
                 OBJECT-TYPE
     SYNTAX
                INTEGER (TCP(0), UDP(1))
    MAX-ACCESS read-write
    STATUS
                current
     DESCRIPTION
         "LB can support protocol for user."
     ::= { lbVSEntry 5 }
-- Load-balancer Real Service table
lbRSTable OBJECT-TYPE
    SYNTAX
                SEQUENCE OF LbRSEntry
   MAX-ACCESS not-accessible
    STATUS
               current
    DESCRIPTION
         "Services provided by real servers are real services.
         A real service can be a traditional FTP or HTTP service,
         and can also be a forwarding service in a generic sense.
         For example, a real service in firewall load balancing
         is the packet forwarding path."
    ::= { lbMIBObjects 2 }
lbRSEntry OBJECT-TYPE
    SYNTAX
               LbRSEntry
   MAX-ACCESS not-accessible
               current
    STATUS
    DESCRIPTION
        "A row describing LB real service."
    INDEX { lbRSId }
    ::= { lbRSTable 1 }
LbRSEntry
                  ::= SEQUENCE {
    lbRSId
                  Unsigned32,
    lbRSGId
                  Unsigned32
    lbRSAddr
                   IpAddress,
    1bRSPort
                  INTEGER,
}
lbRSId
                OBJECT-TYPE
     SYNTAX
                 Unsigned32 (1..'ffffffff'H)
    MAX-ACCESS read-write
     STATUS
               current
```

[Page 7]

```
DESCRIPTION
         "LB real service identifier."
     ::= { lbRSEntry 1 }
lbRSGId
                OBJECT-TYPE
    SYNTAX
                Unsigned32 (1..'ffffffff'H)
    MAX-ACCESS read-only
    STATUS
                current
     DESCRIPTION
         "a real service group is a logical concept. Servers
        can be classified into different groups according
        to the common attributes of these servers."
     ::= { lbRSEntry 2 }
 1bRSAddr
               OBJECT-TYPE
     SYNTAX
                IpAddress
    MAX-ACCESS read-write
     STATUS
            current
     DESCRIPTION
        "IP address of a server, used by the LB device to
        distribute requests."
     ::= { lbRSEntry 3 }
1bRSPort
               OBJECT-TYPE
    SYNTAX
                INTEGER (0..65535)
    MAX-ACCESS read-write
     STATUS
                current
     DESCRIPTION
         "The LB uses the port for communication with server."
     ::= { lbRSEntry 4 }
-- Load-balancer Real Service Group table
 lbRSGTable OBJECT-TYPE
     SYNTAX
                   SEQUENCE OF LbRSGEntry
    MAX-ACCESS
                   not-accessible
     STATUS
                  current
     DESCRIPTION
        "Real Server group is a logical concept. Servers can
        be classified into different groups according to the
        common attributes of these servers."
     ::= { lbMIBObjects 3 }
lbRSGEntry OBJECT-TYPE
   SYNTAX
               LbRSGEntry
   MAX-ACCESS not-accessible
```

```
STATUS
           current
    DESCRIPTION
        "A row describing LB real service group."
    INDEX { lbRSGId }
    ::= { lbRSGTable 1 }
 LbRSGEntry ::= SEQUENCE {
     lbRSGId
                          Unsigned32,
     lbRSID
                          Unsigned32,
     lbRSGschdalgorithm INTEGER,
     lbRSGhealth
                          INTEGER
}
lbRSGId
              OBJECT-TYPE
     SYNTAX
                Unsigned32 (1..'ffffffff'H)
     MAX-ACCESS read-write
     STATUS
                current
     DESCRIPTION
         "LB real service group identifier."
     ::= { lbRSGEntry 1 }
 lbRSId
               OBJECT-TYPE
     SYNTAX
                 Unsigned32 (1..'ffffffff'H)
    MAX-ACCESS read only
     STATUS
                current
     DESCRIPTION
         "LB real service identifier."
     ::= { lbRSGEntry 2 }
 lbRSGschdalgorithm OBJECT-TYPE
    SYNTAX
                 INTEGER(
                        Round Robin(0),
                        Weighted Round Robin(1),
                        Random(2),
                        Weighted Random(3),
                        Source IP Hashing(4),
                        Source IP and Source Port Hashing(5),
                        Destination IP Hashing(6),
                        UDP Packet Load Hashing(7),
                        Least Connection(8),
                        Weighted Least Connection(9),
                        Bandwidth(10)
    MAX-ACCESS read only
     STATUS
                current
     DESCRIPTION
         "An LB needs to distribute service traffic to different
```

```
real services according to a load balancing scheduling
         algorithm."
     ::= { lbRSGEntry 3 }
 lbRSGhealth
                 OBJECT-TYPE
     SYNTAX
                 INTEGER(
                        DNS(0),
                        ICMP(1),
                        HTTP(2)
                        )
    MAX-ACCESS read-write
     STATUS
                 current
     DESCRIPTION
         "The health monitoring method of RSG. It allows an LB device
          to detect whether real servers can provide services. The
          common method includes DNS\ICMP\HTTP, etc."
     ::= { lbRSGEntry 4 }
-- Load-balancer health monitering table
lbHealthchkTable OBJECT-TYPE
    SYNTAX
                SEQUENCE OF LbHealthchkEntry
   MAX-ACCESS not-accessible
                current
    STATUS
    DESCRIPTION
        "This table contains information about the health check
        parameters, which include IP address, prot, health check type
        , health check interval,
          retry times."
    ::= { lbMIBObjects 4 }
LbHealthchkEntry OBJECT-TYPE
    SYNTAX
              LbHealthchkEntry
    MAX-ACCESS not-accessible
    STATUS
             current
    DESCRIPTION
        "A row describing LB health check."
    INDEX { lbHealthchkId }
    ::= { lbHealthchkTable 1 }
LbHealthchkEntry ::= SEQUENCE {
     lbHealthchkId
                               Unsigned32,
     lbHealthchkAddr
                               IpAddress,
     lbHealthchkPort
                               INTEGER,
     1bHealthchktype
                               INTEGER,
     lbHealthchkintvl
                               Integer32,
```

```
lbHealthchkretrytimes Integer32
}
lbHealthchkId OBJECT-TYPE
    SYNTAX
           Unsigned32 (1..'ffffffff'H)
   MAX-ACCESS not-accessible
   STATUS current
   DESCRIPTION
       "LB health check identifier."
    ::= { lbHealthchkEntry 1 }
lbHealthchkAddr
                   OBJECT-TYPE
    SYNTAX
            IpAddress
   MAX-ACCESS read-write
   STATUS current
   DESCRIPTION
       "The remote IP address of server."
    ::= { lbHealthchkEntry 2 }
lbHealthchkPort
                 OBJECT-TYPE
    SYNTAX INTEGER (0..65535)
   MAX-ACCESS read-write
   STATUS current
   DESCRIPTION
       "The remote port of server supporting service."
    ::= { lbHealthchkEntry 3 }
lbHealthchktype
                   OBJECT-TYPE
               INTEGER(ICMP(0), DNS(1), HTTP(2))
   SYNTAX
   MAX-ACCESS read-write
   STATUS
           current
    DESCRIPTION
       "The set of health check method that include ICMP\DNS\HTTP,
       etc."
    ::= { lbHealthchkEntry 4 }
 lbHealthchkintvl
                    OBJECT-TYPE
    SYNTAX
           Integer32
   MAX-ACCESS read-write
              current
   STATUS
   DESCRIPTION
       "The definite length of between two packets. the packet can be
        ICMP\DNS\HTTP message."
    ::= { lbHealthchkEntry 5 }
 lbHealthchkretrytimes
                        OBJECT-TYPE
   SYNTAX
               Integer32
   MAX-ACCESS read-write
```

```
STATUS
            current
    DESCRIPTION
        "the LB will retry the defined times when server doesn't reply
        health check packet in time. "
     ::= { lbHealthchkEntry 6 }
-- Statistic table
 lbStaTable OBJECT-TYPE
                  SEQUENCE OF LbStaEntry
    SYNTAX
    MAX-ACCESS
                  not-accessible
    STATUS
                  current
    DESCRIPTION
        "The statistic for Virtual Service or Real Service session,
        transmission rate."
     ::= { lbMIBObjects 5 }
 lbStaEntry OBJECT-TYPE
   SYNTAX
               LbStaEntry
   MAX-ACCESS not-accessible
   STATUS
               current
    DESCRIPTION
       "A row describing LB Statistic."
   INDEX { lbStaId }
    ::= { lbStaTable 1 }
 LbStaEntry ::= SEQUENCE {
     lbStaId
                         Unsigned32,
     lbStasession
                         INTEGER,
     lbStarate
                         INTEGER
}
lbStaId
               OBJECT-TYPE
    SYNTAX Unsigned32 (1..'ffffffff'H)
    MAX-ACCESS read-write
    STATUS
                current
    DESCRIPTION
        "LB statistic table identifier."
     ::= { lbStaEntry 1 }
 lbStasession OBJECT-TYPE
    SYNTAX
                INTEGER32
    MAX-ACCESS read only
```

```
STATUS current
    DESCRIPTION
        "the max or min session number of a RS or RSG."
     ::= { lbStaEntry 2 }
 lbStarate OBJECT-TYPE
    SYNTAX
               INTEGER32
    MAX-ACCESS read only
    STATUS current
    DESCRIPTION
        "the max or min flow rate of a RS or RSG."
     ::= { lbStaEntry 3 }
-- Conformance statements
lbMIBCompliance MODULE-COMPLIANCE
   STATUS
               current
   DESCRIPTION "The compliance statement for SNMP engines that support
                the LOAD-BALANCER-MIB."
   MODULE
       MANDATORY-GROUPS { lbMIBGroup }
    ::= { lbMIBCompliances 1 }
lbMIBGroup OBJECT-GROUP
    OBJECTS {
       1bVSmode,
       lbRSGschdalgorithm,
       lbHealthchktype,
       lbStasession,
   STATUS
               current
   DESCRIPTION
       "A collection of objects for managing load-balancer."
    ::= { lbMIBGroups 1 }
END
```

6. Security Considerations

[TBD]

7. IANA Considerations

IANA is requested to assign a value for "XXX" under the 'mib-2' subtree and to record the assignment in the SMI Numbers registry. When the assignment has been made, the RFC Editor is asked to replace "XXX" (here and in the MIB module) with the assigned value and to remove this note.

8. Normative References

- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", <u>BCP 14</u>, <u>RFC 2119</u>, March 1997.
- [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

- [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for InternetStandard Management Framework", RFC 3410, December 2002.

Authors' Addresses

Chen Li China Mobile Unit2, Dacheng Plaza, No. 28 Xuanwumenxi Ave, Xuanwu District Beijing 100053 P.R. China

Email: lichenyj@chinamobile.com

Lianyuan Li China Mobile Unit2, Dacheng Plaza, No. 28 Xuanwumenxi Ave, Xuanwu District Beijing 100053 P.R. China

Email: lilianyuan@chinamobile.com

Tina TSOU Huawei

Email: Tina.Tsou.Zouting@huawei.com