
Network Working Group J. Miller
Internet-Draft P. Saint-Andre
Expires: May 4, 2003 Jabber Software Foundation
 November 03, 2002

XMPP Core
draft-miller-xmpp-core-02

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 4, 2003.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document describes the core features of the eXtensible Messaging
 and Presence Protocol (XMPP), which is used by the servers, clients,
 and other applications that comprise the Jabber network.

Miller & Saint-Andre Expires May 4, 2003 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft XMPP Core November 2002

Table of Contents

1. Introduction . 4
1.1 Overview . 4
1.2 Conventions Used in this Document 4
1.3 Discussion Venue . 4
1.4 Intellectual Property Notice 4
2. Generalized Architecture 5
2.1 Overview . 5
2.2 Host . 5
2.3 Node . 6
2.4 Service . 6
2.4.1 Gateway . 6
2.5 Network . 6
3. Addressing Scheme . 8
3.1 Overview . 8
3.2 Domain Identifier . 8
3.3 Node Identifier . 8
3.4 Resource Identifier . 9
3.5 URIs . 9
4. XML Streams . 11
4.1 Overview . 11
4.2 Restrictions . 12
4.3 Stream Attributes . 12
4.4 Namespace Declarations 13
4.5 Stream Errors . 14
4.6 Example . 14
5. Stream Authentication 17
5.1 SASL Authentication . 17
5.1.1 Overview . 17
5.1.2 Example . 18
5.2 Dialback Authentication 20
5.2.1 Dialback Protocol . 22
6. Core Data Elements . 26
6.1 Overview . 26
6.2 Common Attributes . 26
6.2.1 to . 26
6.2.2 from . 26
6.2.3 id . 26
6.2.4 type . 27
6.3 Message Chunks . 27
6.3.1 Types of Message . 27
6.3.2 Children . 27
6.4 Presence Chunks . 28
6.4.1 Types of Presence . 28
6.4.2 Children . 29
6.5 IQ Chunks . 30
6.5.1 Overview . 30

Miller & Saint-Andre Expires May 4, 2003 [Page 2]

Internet-Draft XMPP Core November 2002

6.5.2 Types of IQ . 30
6.5.3 Children . 31
6.6 Extended Namespaces . 31
7. XML Usage within XMPP 33
7.1 Overview . 33
7.2 Namespaces . 33
7.3 Validation . 33
7.4 Character Encodings . 34
7.5 Inclusion of Text Declaration 34
8. IANA Considerations . 35
9. Internationalization Considerations 36
10. Security Considerations 37
10.1 Node-to-Host Communications 37
10.2 Host-to-Host Communications 37
10.3 Use of SASL . 37

 References . 38
 Authors' Addresses . 39

A. Standard Error Codes . 40
B. Formal Definitions . 42
B.1 streams namespace . 42
B.1.1 DTD . 42
B.1.2 Schema . 42
B.2 sasl namespace . 43
B.2.1 DTD . 43
B.2.2 Schema . 44
B.3 jabber:client namespace 45
B.3.1 DTD . 45
B.3.2 Schema . 46
C. OpenPGP Usage . 50
C.1 Signing Presence . 50
C.2 Encrypting Messages . 51

 Full Copyright Statement 53

Miller & Saint-Andre Expires May 4, 2003 [Page 3]

Internet-Draft XMPP Core November 2002

1. Introduction

1.1 Overview

 The eXtensible Messaging and Presence Protocol (XMPP) is an open, XML
 [1] protocol for near-real-time messaging and presence. Currently,
 there exist multiple implementations of the protocol, mostly offered
 under the name of Jabber. In addition, there are countless
 deployments of these implementations, which provide instant messaging
 (IM) and presence services at and among thousands of domains to a
 user base that is estimated at over one million end users. The
 current document defines the core constituents of XMPP; XMPP IM [2]
 defines the extensions necessary to provide basic instant messaging
 and presence functionality that addresses the requirements defined in

RFC 2779 [3].

1.2 Conventions Used in this Document

 The capitalized key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
 "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [4].

1.3 Discussion Venue

 The authors welcome discussion and comments related to the topics
 presented in this document, preferably on the "xmppwg@jabber.org"
 mailing list (archives and subscription information are available at

http://www.jabber.org/cgi-bin/mailman/listinfo/xmppwg/).

1.4 Intellectual Property Notice

 This document is in full compliance with all provisions of Section 10
 of RFC 2026. Parts of this specification use the term "jabber" for
 identifying namespaces and other protocol syntax. Jabber[tm] is a
 registered trademark of Jabber, Inc. Jabber, Inc. grants permission
 to the IETF for use of the Jabber trademark in association with this
 specification and its successors, if any.

https://datatracker.ietf.org/doc/html/rfc2779
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.jabber.org/cgi-bin/mailman/listinfo/xmppwg/
https://datatracker.ietf.org/doc/html/rfc2026#section-10
https://datatracker.ietf.org/doc/html/rfc2026#section-10

Miller & Saint-Andre Expires May 4, 2003 [Page 4]

Internet-Draft XMPP Core November 2002

2. Generalized Architecture

2.1 Overview

 Although XMPP is not wedded to any specific network architecture, to
 this point it has usually been implemented via a typical client-
 server architecture, wherein a client utilizing XMPP accesses a
 server over a TCP [5] socket. While it can be helpful to keep that
 specific architecture in mind when seeking to understand XMPP, we
 have herein abstracted from any specific architecture and have
 described the architecture in a more generalized fashion.

 The following diagram provides a high-level overview of this
 generalized architecture (where "-" represents communications that
 use XMPP and "=" represents communications that use any other
 protocol).

 Connection Map

 S1 S2
 \ /
 N1 - H1 - H2 - N3
 / \
 N2 - G1 = F1 = C1

 The symbols are as follows:

 o N1, N2, N3 -- Nodes on the Jabber network

 o H1, H2 -- Hosts on the Jabber network

 o S1, S2 -- Services that add functionality to a primary host

 o G1 -- A gateway that translates between XMPP and the protocol(s)
 used on a foreign messaging network

 o F1 -- A foreign messaging network

 o C1 -- A client on a foreign messaging network

2.2 Host

 A host acts as an intelligent abstraction layer for XMPP
 communications. Its primary responsibilities are to manage
 connections from or sessions for other entities (in the form of XML
 streams to and from authorized nodes, trusted services, and other
 hosts) and to route appropriately-addressed XML data "chunks" among

Miller & Saint-Andre Expires May 4, 2003 [Page 5]

Internet-Draft XMPP Core November 2002

 such entities over XML streams. Most XMPP-compliant hosts also
 assume responsibility for the storage of data that is used by nodes
 or services (e.g., the contact list for each IM user); in this case,
 the XML data is processed directly by the host itself on behalf of
 the node or service and is not routed to another entity.

2.3 Node

 Most nodes connect directly to a host over a TCP socket and use XMPP
 to take full advantage of the functionality provided by a host and
 its associated services. (Clients on foreign messaging networks may
 also be part of the architecture, made accessable via a gateway to
 that network.) Multiple resources (e.g., devices or locations) MAY
 connect simultaneously to a host on behalf of each authorized node,
 with each resource connecting over a discrete TCP socket and
 differentiated by the resource identifier of a JID (Section 3) (e.g.,
 node@host/home vs. node@host/work). The port assigned by the IANA
 [6] for connections between a Jabber node and a Jabber host is 5222.
 For further details about node-to-host communications for the purpose
 of instant messaging and presence, refer to XMPP IM [2].

2.4 Service

 In addition to the basic functionality provided by a host, additional
 functionality is made possible by connecting trusted services to a
 host. Examples include multi-user chat (a.k.a. conferencing), real-
 time alert systems, custom authentication modules, database
 connectivity, and translation to foreign messaging protocols. There
 is no set port on which services communicate with hosts; this is left
 up to the administrator of the service or host. Communications
 between services and hosts are not defined in this document.

2.4.1 Gateway

 A gateway is a special-purpose service whose primary function is to
 translate XMPP into the protocol(s) of another messaging system, as
 well as to translate the return data back into XMPP. Examples are
 gateways to Internet Relay Chat (IRC), Short Message Service (SMS),
 SMTP, and foreign instant messaging networks such as Yahoo!, MSN,
 ICQ, and AIM. Communications between gateways and hosts, and between
 gateways and the foreign messaging system, are not defined in this
 document.

2.5 Network

 Because each host is identified by a network address (typically a DNS
 hostname) and because host-to-host communications are a simple
 extension of the node-to-host protocol, in practice the system

Miller & Saint-Andre Expires May 4, 2003 [Page 6]

Internet-Draft XMPP Core November 2002

 consists of a network of hosts that inter-communicate. Thus node-
 a@host1 is able to exchange messages, presence, and other information
 with node-b@host2. This pattern is familiar from messaging protocols
 (such as SMTP) that make use of network addressing standards. The
 usual method for providing a connection between two hosts is to open
 a TCP socket on the IANA-assigned port 5269 and to negotiate a
 connection using the Dialback Protocol (Section 5.2) as defined in
 this document.

Miller & Saint-Andre Expires May 4, 2003 [Page 7]

Internet-Draft XMPP Core November 2002

3. Addressing Scheme

3.1 Overview

 Any entity that can be considered a network endpoint (i.e., an ID on
 the network) and that can communicate using XMPP is considered a
 Jabber Entity. All such entities are uniquely addressable in a form
 that is consistent with RFC 2396 [7]. In particular, a valid Jabber
 Identifier (JID) contains a set of ordered elements formed of a
 domain identifier, node identifier, and resource identifier in the
 following format: [node@]domain[/resource].

 All JIDs are based on the foregoing structure. The most common use
 of this structure is to identify an IM user, the host to which the
 user connects, and the user's active session or connection in the
 form of user@host/resource. However, other nodes are possible; for
 example, a specific conference room is offered by a multi-user chat
 service is addressed as room@service, where "room" is the name of the
 room and "service" is the hostname of the chat service.

3.2 Domain Identifier

 The domain identifier is the primary identifier and is the only
 required element of a JID (a simple domain identifier is a valid
 JID). It usually represents the network gateway or "primary" host to
 which other entities connect for XML routing and data management
 capabilities. However, the entity referenced by a domain identifier
 is not always a host, and may be a service that is addressed as a
 subdomain of a host and that provides functionality above and beyond
 the capabilities of a host (a multi-user chat service, a user
 directory, a gateway to a foreign messaging system, etc.).

 The domain identifier for every host or service that will communicate
 over a network SHOULD resolve to a Fully Qualified Domain Name, and a
 domain identifier SHOULD conform to RRC 952 [8] and REF 1123 [9].
 Specifically, a domain identifier is case-insensitive 7-bit ASCII and
 is limited to 255 bytes.

3.3 Node Identifier

 The node identifier is an optional secondary identifier. It usually
 represents the entity requesting and using network access provided by
 the host (e.g., a client), although it can also represent other kinds
 of entities (e.g., a multi-user chat room associated with a
 conference service). The entity represented by a node identifier is
 addressed within the context of a specific domain (e.g., user@host).
 Node identifiers are restricted to 256 bytes. A node identifier may
 contain any Unicode character higher than #x20 with the exception of

https://datatracker.ietf.org/doc/html/rfc2396

Miller & Saint-Andre Expires May 4, 2003 [Page 8]

Internet-Draft XMPP Core November 2002

 the following:

 o #x22 (")

 o #x26 (&)

 o #x27 (')

 o #x3A (:)

 o #x3C (<)

 o #x3E (>)

 o #x40 (@)

 o #x7F (del)

 o #xFFFE (BOM)

 o #xFFFF (BOM)

 Case is preserved, but comparisons are made in case-normalized
 canonical form.

3.4 Resource Identifier

 The resource identifer is an optional third identifier. It
 represents a specific session, connection (e.g., a device or
 location), or object (e.g., a participant in a multi-user chat room)
 belonging to a node. A node may maintain multiple resources
 simultaneously. A resource identifier is restricted to 256 bytes in
 length. A resource identifier MAY include any Unicode character
 greater than #x20, except #xFFFE and #xFFFF; if the Unicode character
 is a valid XML character as defined in Section 2.2 of [1], it MUST be
 suitably escaped for inclusion within an XML stream. Resource
 identifiers are case sensitive.

3.5 URIs

 Full conformance with [7] would be valuable. This would most likely
 be effected through use of an 'xmpp:' URI scheme of the following
 form:

 <xmpp>:[<node-identifier>@]<domain-identifier>[?<query>]

 At a minimum, the 'message' and 'presence' query types would be
 defined, with the likely addition of query types for 'subscribe' (to

Miller & Saint-Andre Expires May 4, 2003 [Page 9]

Internet-Draft XMPP Core November 2002

 manage a subscription to teh presence of another entity) and 'roster'
 (to manage the representation of another entity in one's contact
 list). However, the use of such URIs has not yet been standardized.

Miller & Saint-Andre Expires May 4, 2003 [Page 10]

Internet-Draft XMPP Core November 2002

4. XML Streams

4.1 Overview

 Two fundamental concepts make possible the rapid, asynchronous
 exchange of relatively small payloads of structured information
 between presence-aware entities: XML streams and, as a result,
 discrete units of structured information that are referred to as "XML
 chunks". (Note: in this overview we use the example of
 communications between a node and host; however XML streams are more
 generalized and may be used for communications among hosts and
 services as well.)

 In order to connect to a host, a node must initiate an XML stream by
 sending a <stream> tag to the host, optionally preceded by a text
 declaration specifying the XML version supported and the character
 encoding. A compliant entity must accept any namespace prefix on the
 <stream/> element; however, for historical reasons some entities may
 accept only a 'stream' prefix, resulting in use of a <stream:stream/>
 element. The host should then reply with a second XML stream back to
 the node, again optionally preceded by a text declaration.

 Within the context of an XML stream, a sender may send a discrete
 semantic unit of structured information to any recipient. This unit
 of structured information is a well-balanced XML chunk, such as a
 message, presence, or IQ chunk (a chunk of an XML document is said to
 be well-balanced if it matches production [43] content of [1]).
 These chunks exist at the direct child level (depth=1) of the root
 <stream/> element. The start of any XML chunk is unambiguously
 denoted by the element start tag at depth=1 (e.g., <presence>), and
 the end of any XML chunk is unambiguously denoted by the
 corresponding close tag at depth=1 (e.g., </presence>). Each XML
 chunk may contain child elements or CDATA sections as necessary in
 order to convey the desired information from the sender to the
 recipient. The session is closed at the node's request by sending a
 closing </stream> tag to the host.

 Thus a node's session with a host can be seen as two open-ended XML
 documents that are built up through the accumulation of the XML
 chunks that are sent over the course of the session (one from the
 node to the host and one from the host to the node), and the root
 <stream/> element may be considered the document entity for those
 streams. In essence, then, an XML stream acts as an envelope for all
 the XML chunks sent during a session. We can represent this
 graphically as follows:

Miller & Saint-Andre Expires May 4, 2003 [Page 11]

Internet-Draft XMPP Core November 2002

 |-------------------|
<stream>
<message to=''>
<body/>
</message>

<presence to=''>
<show/>
</presence>

<iq to=''>
<query/>
</iq>

</stream>

4.2 Restrictions

 XML streams are used to transport a subset of XML. Specifically, XML
 streams SHOULD NOT contain processing instructions, non-predefined
 entities (as defined in Section 4.6 of [1]), comments, or DTDs. Any
 such XML data SHOULD be ignored.

4.3 Stream Attributes

 The attributes of the stream element are as follows (we now
 generalize the endpoints by using the terms "initiating entity" and
 "receiving entity"):

 o to -- The 'to' attribute should be used only in the XML stream
 from the initiating entity to the receiving entity, and must be
 set to the JID of the receiving entity. There should be no 'to'
 attribute set in the XML stream by which the receiving entity
 replies to the initiating entity; however, if a 'to' attribute is
 included, it SHOULD be ignored by the receiving entity.

 o from -- The 'from' attribute should be used only in the XML stream
 from the receiving entity to the initiating entity, and must be
 set to the JID of the receiving entity granting access to the
 initiating entity. There should be no 'from' attribute on the XML
 stream sent from the initiating entity to the receiving entity;
 however, if a 'from' attribute is included, it SHOULD be ignored
 by the receiving entity.

 o id -- The 'id' attribute should be used only in the XML stream

Miller & Saint-Andre Expires May 4, 2003 [Page 12]

Internet-Draft XMPP Core November 2002

 from the receiving entity to the initiating entity. This
 attribute is a unique identifier created by the receiving entity
 to function as a session key for the initiating entity's session
 with the receiving entity. There should be no 'id' attribute on
 the XML stream sent from the initiating entity to the receiving
 entity; however, if an 'id' attribute is included, it SHOULD be
 ignored by the receiving entity.

 We can summarize these values as follows:

 | initiating to receiving | receiving to initiating
 --
 to | JID of receiver | ignored
 from | ignored | JID of receiver
 id | ignored | session key

4.4 Namespace Declarations

 The stream element may also contain namespace declarations as defined
 in [11].

 A stream namespace declaration is REQUIRED in both XML streams. A
 compliant entity must accept any namespace prefix on the <stream/>
 element; however, for historical reasons some entities may accept
 only a 'stream' prefix, resulting in use of a <stream:stream/>
 element as the stream root. The value of the stream namespace MUST
 be "http://etherx.jabber.org/streams".

 A default namespace declaration ('xmlns') is REQUIRED and is used in
 both XML streams in order to scope the allowable first-level children
 of the root stream element for both streams. This namespace
 declaration must be the same for the initiating stream and the
 responding stream so that both streams are scoped consistently.

 XML streams function as containers for any XML chunks sent
 asynchronously between network endpoints. It should be possible to
 scope an XML stream with any default namespace declaration, i.e., it
 should be possible to send any properly-namespaced XML chunk over an
 XML stream. However, for historical reasons existing implementations
 will support only the following default namespaces:

 o jabber:client -- this default namespace is declared when the
 stream is used for communications between a node and a host

 o jabber:server -- this default namespace is declared when the
 stream is used for communications between two hosts

Miller & Saint-Andre Expires May 4, 2003 [Page 13]

Internet-Draft XMPP Core November 2002

 o jabber:component:accept or jabber:component:connect -- one of
 these default namespaces is declared when the stream is used for
 communications between a host and a trusted service

 This document addresses the jabber:client and jabber:server
 namespaces only (indeed these two namespaces have identical schemas).
 The jabber:component:* namespaces are outside the scope of this
 document.

4.5 Stream Errors

 The root stream element MAY contain an error child element (e.g.,
 <stream:error/> if the stream namespace prefix is 'stream'). The
 error child is used to signify that a stream-level error has
 occurred. Examples include the sending of invalid XML, the shutdown
 of a host, an internal server error such as the shutdown of a session
 manager, and an attempt by a node to authenticate as the same
 resource that is currently connected. If an error occurs at the
 level of the stream, the entity (initiating entity or receiving
 entity) that detects the error should send a stream error to the
 other entity specifying why the streams are being closed and then
 send a closing </stream> tag. XML of the following form is sent
 within the context of an existing stream:

 <stream:stream ...>
 ...
 <stream:error>
 Error message (e.g., "Invalid XML")
 </stream:error>
 </stream:stream>

4.6 Example

 The following is a simple stream-based session of a node on a host
 (where the NODE lines are sent from the node to the host, and the
 HOST lines are sent from the host to the node):

Miller & Saint-Andre Expires May 4, 2003 [Page 14]

Internet-Draft XMPP Core November 2002

 A simple session:

 NODE: <?xml version='1.0'?>
 <stream:stream
 to='host'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>
 HOST: <?xml version='1.0'?>
 <stream:stream
 from='host'
 id='id_123456789'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>
 NODE: <message from='node@host' to='receiving-ID'>
 NODE: <body>Watson come here, I need you!</body>
 NODE: </message>
 HOST: <message from='receiving-ID' to='node@host'>
 HOST: <body>I'm on my way!</body>
 HOST: </message>
 NODE: </stream:stream>
 HOST: </stream:stream>

 These are in actuality a sending stream and a receiving stream, which
 can be viewed a-chronologically as two XML documents:

 NODE: <?xml version='1.0'?>
 <stream:stream
 to='host'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>
 NODE: <message from='node@host' to='receiving-ID'>
 NODE: <body>Watson come here, I need you!</body>
 NODE: </message>
 NODE: </stream:stream>

 HOST: <?xml version='1.0'?>
 <stream:stream
 from='host'
 id='id_123456789'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>
 HOST: <message from='receiving-ID' to='node@host'>
 HOST: <body>I'm on my way!</body>
 HOST: </message>
 HOST: </stream:stream>

Miller & Saint-Andre Expires May 4, 2003 [Page 15]

Internet-Draft XMPP Core November 2002

 A session gone bad:

 NODE: <?xml version='1.0'?>
 <stream:stream
 to='host'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>
 HOST: <?xml version='1.0'?>
 <stream:stream
 from='host'
 id='id_123456789'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>
 NODE: <message><body>Bad XML, no closing body tag!</message>
 HOST: <stream:error>Invalid XML</stream:error>
 HOST: </stream:stream>

Miller & Saint-Andre Expires May 4, 2003 [Page 16]

Internet-Draft XMPP Core November 2002

5. Stream Authentication

 XMPP includes two methods for enforcing authentication at the level
 of XML streams. When one entity is already known to another (i.e.,
 there is an existing trust relationship between the entities such as
 that established when a node registers with a host or an
 administrator configures a host to trust a service), the preferred
 method for authenticating streams between the two entities uses an
 XMPP adaptation of the Simple Authentication and Security Layer
 (SASL) [10]. When there is no existing trust relationship between
 the two entities, such trust MAY be established based on existing
 trust in DNS; the authentication method used when two such entities
 are hosts is the server dialback protocol that is native to XMPP.
 Both of these methods are described in this section.

5.1 SASL Authentication

5.1.1 Overview

 The Simple Authentication and Security Layer (SASL) provides a
 generalized method for adding authentication support to connection-
 based protocols. XMPP uses a generic XML namespace profile for SASL
 that conforms to section 4 ("Profiling Requirements") of [10] (the
 namespace identifier for this protocol is http://www.iana.org/

assignments/sasl-mechanisms). If an entity (node, host, or service)
 is capable of authenticating by means of SASL, it MUST include the
 agreed-upon SASL namespace within the opening root stream tag it uses
 to initiate communications.

 The following example shows the use of SASL in node authentication
 with a host, for which the steps involved are as follows:

 1. The node requests SASL authentication by including the
 appropriate namespace declaration (xmlns:sasl='http://
 www.iana.org/assignments/sasl-mechanisms') in the opening XML
 stream header sent to the host.

 2. The host includes the xmlns:sasl namespace declaration in the XML
 stream header sent in reply to the node.

 3. The host responds with a list of available SASL authentication
 mechanisms, each of which is a <mechanism/> element included as a
 child within a <mechanisms/> container element that is sent as a
 first-level child of the root <stream/> element.

 4. The node selects a mechanism by sending a <sasl:auth/> element to
 the host; this element MAY optionally contain character data.

http://www.iana.org/assignments/sasl-mechanisms
http://www.iana.org/assignments/sasl-mechanisms

Miller & Saint-Andre Expires May 4, 2003 [Page 17]

Internet-Draft XMPP Core November 2002

 5. If necessary, the host challenges the node by sending a
 <sasl:challenge/> element to the node; this element MAY
 optionally contain character data.

 6. The node responds to challenge by sending a <sasl:response/>
 element to the host; this element MAY optionally contain
 character data.

 7. If necessary, the host sends more challenges and the node sends
 more responses.

 This series of challenge/response pairs continues until one of three
 things happens:

 o The node aborts the handshake by sending a <sasl:abort/> element
 to the host.

 o The host reports failure by sending a <sasl:failure/> element to
 the node.

 o The host reports success by sending a <sasl:success/> element to
 the node; this element MAY optionally contain character data.

 Any character data contained within these elements MUST be encoded
 using base64.

5.1.2 Example

 The following example shows the data flow for a node authenticating
 with a host using SASL.

 Step 1: Node initiates stream to host:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns:sasl='http://www.iana.org/assignments/sasl-mechanisms'
 to='capulet.com'
 version='1.0'>

Miller & Saint-Andre Expires May 4, 2003 [Page 18]

Internet-Draft XMPP Core November 2002

 Step 2: Host responds with a stream tag sent to the node:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns:sasl='http://www.iana.org/assignments/sasl-mechanisms'
 id='12345678'
 version='1.0'>

 Step 3: Host informs node of available authentication mechanisms:

 <sasl:features>
 <mechanisms xmlns='http://www.iana.org/assignments/sasl-mechanisms'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 </mechanisms>
 <starttls xmlns='http://www.ietf.org/rfc/rfc2246.txt'/>
 </sasl:features>

 Step 4: Node selects an authentication mechanism:

 <sasl:auth mechanism='DIGEST-MD5'/>

 Step 5: Host sends a challenge to the node:

 <sasl:challenge>
 cmVhbG09ImNhdGFjbHlzbS5jeCIsbm9uY2U9Ik9BNk1HOXRFUUdtMmhoIi
 xxb3A9ImF1dGgiLGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1kNS1zZXNz
 </sasl:challenge>

 Step 6: Node responds to the challenge:

 <sasl:response>
 dXNlcm5hbWU9InJvYiIscmVhbG09ImNhdGFjbHlzbS5jeCIsbm9uY2U9Ik
 9BNk1HOXRFUUdtMmhoIixjbm9uY2U9Ik9BNk1IWGg2VnFUclJrIixuYz0w
 MDAwMDAwMSxxb3A9YXV0aCxkaWdlc3QtdXJpPSJqYWJiZXIvY2F0YWNseX
 NtLmN4IixyZXNwb25zZT1kMzg4ZGFkOTBkNGJiZDc2MGExNTIzMjFmMjE0
 M2FmNyxjaGFyc2V0PXV0Zi04
 </sasl:response>

 Step 7: Host sends another challenge to the node:

 <sasl:challenge>
 cnNwYXV0aD1lYTQwZjYwMzM1YzQyN2I1NTI3Yjg0ZGJhYmNkZmZmZA==
 </sasl:challenge>

Miller & Saint-Andre Expires May 4, 2003 [Page 19]

Internet-Draft XMPP Core November 2002

 Step 8: Node responds to the challenge:

 <sasl:response/>

 Step 9: Host informs node of successful authentication:

 <sasl:success/>

 Step 9 (alt): Host informs node of failed authentication:

 <sasl:failure/>

5.2 Dialback Authentication

 XMPP includes a protocol-level method for verifying that a connection
 between two hosts may be trusted. The method is called dialback and
 is used only within XML streams that are declared under the
 "jabber:server" namespace.

 The purpose of the dialback protocol is to make server spoofing more
 difficult, and thus to make it more difficult to forge XML chunks.
 Dialback is not intended as a mechanism for securing or encrypting
 the streams between servers, only for helping to prevent the spoofing
 of a hostname and the sending of false data from it. Dialback is
 made possible by the existence of DNS, since one host can verify that
 another host which is connecting to it is authorized to represent a
 given host on the Jabber network. All DNS host resolutions must
 first resolve the host using an SRV [12] record of _jabber._tcp.host.
 If the SRV lookup fails, the fallback is a normal A lookup to
 determine the IP address, using the jabber-server port of 5269
 assigned by the Internet Assigned Numbers Authority [6].

 Note that the method used to generate and verify the keys used in the
 dialback protocol must take into account the hostnames being used,
 along with a secret known only by the receiving host and the random
 id per stream. Generating unique but verifiable keys is important to
 prevent common man-in-the-middle attacks and host spoofing.

 In the description that follows we use the following terminology:

 o Originating Host -- the host that is attempting to establish a
 connection between the two hosts

 o Receiving Host -- the host that is trying to authenticate that the
 Originating Host represents the Jabber host which it claims to be

 o Authoritative Host -- the host which is given when a DNS lookup is

Miller & Saint-Andre Expires May 4, 2003 [Page 20]

Internet-Draft XMPP Core November 2002

 performed on the name that the Originating Host initially gave;
 for simple environments this will be the Originating Host, but it
 could be a separate machine in the Originating Host's network

 The following is a brief summary of the order of events in dialback:

 1. Originating Host establishes a connection to Receiving Host.

 2. Originating Host sends a 'key' value over the connection to
 Receiving Host.

 3. Receiving Host establishes a connection to Authoritative Host.

 4. Receiving Host sends the same 'key' value to Authoritative Host.

 5. Authoritative Host replies that key is valid or invalid.

 6. Receiving Host tells Originating Host whether it is authenticated
 or not.

 We can represent this flow of events graphically as follows:

Miller & Saint-Andre Expires May 4, 2003 [Page 21]

Internet-Draft XMPP Core November 2002

 Originating Receiving
 Host Host
 ----------- ---------
 | |
 | establish connection |
 | ----------------------> |
 | |
 | send stream header |
 | ----------------------> |
 | |
 | establish connection |
 | <---------------------- |
 | |
 | send stream header |
 | <---------------------- |
 | | Authoritative
 | send dialback key | Host
 | ----------------------> | -------------
 | | |
 | establish connection |
 | ----------------------> |
 | |
 | send stream header |
 | ----------------------> |
 | |
 | send stream header |
 | <---------------------- |
 | |
 | send dialback key |
 | ----------------------> |
 | |
 | validate dialback key |
 | <---------------------- |
 |
 | report dialback result |
 | <---------------------- |
 | |

5.2.1 Dialback Protocol

 The traffic sent between the hosts is as follows:

 1. Originating Host establishes connection to Receiving Host

 2. Originating Host sends a stream header to Receiving Host (the
 'to' and 'from' attributes are not required):

Miller & Saint-Andre Expires May 4, 2003 [Page 22]

Internet-Draft XMPP Core November 2002

 <stream:stream
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'>

 Note: the value of the xmlns:db namespace declaration indicates
 to Receiving Host that the Originating Host supports dialback.

 3. Receiving Host sends a stream header back to Originating Host
 (the 'to' and 'from' attributes are not required):

 <stream:stream
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'
 id='457F9224A0...'>

 4. Originating Host sends a dialback key to Receiving Host:

 <db:result
 to='Receiving Host'
 from='Originating Host'>
 98AF014EDC0...
 </db:result>

 Note: this key is not examined by Receiving Host, since the
 Receiving Host does not keep information about Originating Host
 between sessions.

 5. Receiving Host now establishes a connection back to Originating
 Host, getting the Authoritative Host.

 6. Receiving Host sends Authoritative Host a stream header (the
 'to' and 'from' attributes are not required):

 <stream:stream
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'>

 7. Authoritative Host sends Receiving Host a stream header:

 <stream:stream
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'
 id='1251A342B...'>

Miller & Saint-Andre Expires May 4, 2003 [Page 23]

Internet-Draft XMPP Core November 2002

 8. Receiving Host sends Authoritative Host a chunk indicating it
 wants Authoritative Host to verify a key:

 <db:verify
 from='Receiving Host'
 to='Originating Host'
 id='457F9224A0...'>
 98AF014EDC0...
 </db:verify>

 Note: passed here are the hostnames, the original identifier
 from Receiving Host's stream header to Originating Host in step
 2, and the key Originating Host gave Receiving Host in step 3.
 Based on this information and shared secret information within
 the 'Originating Host' network, the key is verified. Any
 verifiable method can be used to generate the key.

 9. Authoritative Host sends a chunk back to Receiving Host
 indicating whether the key was valid or invalid:

 <db:result
 from='Originating Host'
 to='Receiving Host'
 type='valid'
 id='457F9224A0...'/>

 or

 <db:result
 from='Originating Host'
 to='Receiving Host'
 type='invalid'
 id='457F9224A0...'/>

 10. Receiving Host informs Originating Host of the result:

 <db:result
 from='Receiving Host'
 to='Originating Host'
 type='valid'/>

 Note: At this point the connection has either been validated via
 a type='valid', or reported as invalid. Once the connection is
 validated, data can be sent by the Originating Host and read by
 the Receiving Host; before that, all data chunks sent to
 Receiving Host SHOULD be dropped. As a final guard against
 domain spoofing, the Receiving Host MUST verify that all XML
 chunks received from the Originating Host include a 'from'

Miller & Saint-Andre Expires May 4, 2003 [Page 24]

Internet-Draft XMPP Core November 2002

 attribute and that from address of each chunk includes the
 validated domain. In addition, all XML chunks of type message,
 presence, and IQ MUST include a 'to' attribute.

Miller & Saint-Andre Expires May 4, 2003 [Page 25]

Internet-Draft XMPP Core November 2002

6. Core Data Elements

6.1 Overview

 The core data elements for XMPP communications are <message/>,
 <presence/>, and <iq/>. These data elements are sent as direct
 (depth=1) children of the root <stream/> element and are scoped by
 one of the default namespaces identified in Section 4.4.

6.2 Common Attributes

 Four attributes are common to message, presence, and IQ chunks.
 These are defined below.

6.2.1 to

 The 'to' attribute specifies the JID of the intended recipient for
 the chunk. A chunk SHOULD possess a 'to' attribute. A chunk sent
 from a node to a host for handling by that host (e.g., presence sent
 to the host for broadcasting to other entities) MAY legitimately lack
 a 'to' attribute.

6.2.2 from

 The 'from' attribute specifies the JID of the sender.

 A node MUST NOT include a 'from' attribute on the chunks it sends to
 a host; if a host receives a chunk from a node and the chunk
 possesses a 'from' attribute, it must ignore the value of the 'from'
 attribute. A host MUST stamp chunks received from a node with the
 user@host/resource (full JID) of the connected resource that
 generated the chunk.

 A host MUST include a 'from' attribute on chunks it routes to other
 hosts. The domain identifier of the JID contained in the 'from'
 attribute MUST match the hostname of the host as communicated in the
 dialback negotiation (or a subdomain thereof).

6.2.3 id

 The optional 'id' attribute may be used to track chunks sent and
 received. The 'id' attribute is generated by the sender. An 'id'
 attribute included in an IQ request of type "get" or "set" SHOULD be
 returned to the sender in any IQ response of type "result" or "error"
 generated by the recipient of the request. A recipient of a message
 or presence chunk MAY return that 'id' in any replies, but is not
 required to do so.

Miller & Saint-Andre Expires May 4, 2003 [Page 26]

Internet-Draft XMPP Core November 2002

6.2.4 type

 The 'type' attribute specifies detailed information about the purpose
 or context of the message, presence, or IQ chunk. The particular
 allowable values for the 'type' attribute vary depending on whether
 the chunk is a message, presence, or IQ, and thus are specified in
 the following sections.

6.3 Message Chunks

 Message chunks in the 'jabber:client' or 'jabber:server' namespace
 are used to "push" information to another entity. Common uses in the
 context of instant messaging include single messages, messages sent
 in the context of a chat conversation, messages sent in the context
 of a multi-user chat room, headlines, and errors. These messages
 types are identified more fully below.

6.3.1 Types of Message

 The 'type' attribute of a message chunk is optional and specifies the
 conversational context of the message. The sending of a message
 chunk without a 'type' attribute signals that the message chunk is a
 single message. However, the 'type' attribute may also have one of
 the following values:

 o chat -- The message is sent in the context of a one-to-one chat
 conversation.

 o groupchat -- The message is sent in the context of a multi-user
 chat environment.

 o headline -- The message is generated by an automated service that
 delivers content (news, sports, market information, etc.).

 o error - A message returned to a sender specifying an error
 associated with a previous message sent by the sender (for a full
 list of error messages, see error codes (Appendix A))

 For detailed information about these message types, refer to XMPP IM
 [2].

6.3.2 Children

 If a message chunk in the 'jabber:client' or 'jabber:server'
 namespace has no 'type' attribute or has a 'type' attribute with a
 value of "chat", "groupchat", or "headline", it MAY contain zero or
 one of each of the following child elements (which MUST NOT contain
 mixed content):

Miller & Saint-Andre Expires May 4, 2003 [Page 27]

Internet-Draft XMPP Core November 2002

 o body -- The textual contents of the message; normally included but
 not required. The <body/> element MUST NOT have any attributes.

 o subject -- The subject of the message. The <subject/> element
 MUST NOT have any attributes.

 o thread -- A random string that is generated by the sender and that
 MAY be copied back in replies; it is used for tracking a
 conversation thread. The <thread/> element MUST NOT have any
 attributes.

 If the message chunk is of type "error", it MUST include an <error/>
 child, which in turn MUST possess a 'code' attribute corresponding to
 one of the standard error codes (Appendix A) and MAY also contain
 PCDATA corresponding to a natural-language description of the error.
 An <error/> child MUST NOT be included if the chunk type is anything
 other than "error".

 As described under extended namespaces (Section 6.6), a message chunk
 MAY also contain any properly-namespaced child element (other than
 the core data elements, stream elements, or defined children
 thereof).

6.4 Presence Chunks

 Presence chunks are used in the 'jabber:client' or 'jabber:server'
 namespace to express an entity's current availability status (offline
 or online, along with various sub-states of the latter) and to
 communicate that status to other entities. They are also used to
 negotiate and manage subscriptions to the presence of other entities.

6.4.1 Types of Presence

 The 'type' attribute of a presence chunk is optional. A presence
 chunk that does not have a 'type' attribute is used to signal that
 the sender is online and available for communication. If included,
 the 'type' attribute specifies the availability state of the sender,
 a request to manage a subscription to another entity's presence, a
 request for another entity's current presence, or an error related to
 a previously-sent presence chunk. The 'type' attribute may have one
 of the following values:

 o unavailable -- Signals that the entity is no longer available for
 communication.

 o subscribe -- The sender wishes to subscribe to the recipient's
 presence.

Miller & Saint-Andre Expires May 4, 2003 [Page 28]

Internet-Draft XMPP Core November 2002

 o subscribed -- The sender has allowed the recipient to receive
 their presence.

 o unsubscribe -- A notification that an entity is unsubscribing from
 another entity's presence.

 o unsubscribed -- The subscription request has been denied or a
 previously-granted subscription has been cancelled.

 o probe -- A request for an entity's current presence.

 o error -- An error has occurred regarding processing or delivery of
 a previously-sent presence chunk.

 Information about the subscription model used within XMPP may be
 found in [2].

6.4.2 Children

 If a presence chunk possesses no 'type' attribute, it MAY contain
 zero or one of each of the following child elements (for historical
 reasons the <status/> child MAY be sent in a presence chunk of type
 "subscribe"):

 o show -- Describes the availability status of an entity or specific
 resource. The value SHOULD be one of the following (values other
 than these four MAY be ignored; additional availability types
 should be defined through a properly-namespaced child element of
 the presence chunk):

 * away -- The entity or resource is temporarily away.

 * chat -- The entity or resource is actively interested in
 chatting.

 * xa -- The entity or resource is away for an extended period (xa
 = "eXtended Away").

 * dnd -- The entity or resource is busy (dnd = "Do Not Disturb").

 o status -- An optional natural-language description of availability
 status. Normally used in conjunction with the show element to
 provide a detailed description of an availability state (e.g., "In
 a meeting").

 o priority -- A non-negative integer representing the priority level
 of the connected resource, with zero as the lowest priority.

Miller & Saint-Andre Expires May 4, 2003 [Page 29]

Internet-Draft XMPP Core November 2002

 If the presence chunk is of type "error", it MUST include an <error/>
 child, which in turn MUST possess a 'code' attribute corresponding to
 one of the standard error codes (Appendix A) and MAY also contain
 PCDATA corresponding to a natural-language description of the error.
 An <error/> child MUST NOT be included if the chunk type is anything
 other than "error".

 As described under extended namespaces (Section 6.6), a presence
 chunk MAY also contain any properly-namespaced child element (other
 than the core data elements, stream elements, or defined children
 thereof).

6.5 IQ Chunks

6.5.1 Overview

 Info/Query, or IQ, is a simple request-response mechanism. Just as
 HTTP is a request-response medium, IQ chunks in the 'jabber:client'
 or 'jabber:server' namespace enable an entity to make a request of,
 and receive a response from, another entity. The data content of the
 request and response is defined by the namespace declaration of a
 direct child element of the iq element.

 Most IQ interactions follow a common pattern of structured data
 exchange such as get/result or set/result:

 Requesting Responding
 Entity Entity
 ---------- ----------
 | |
 | <iq type="get"> |
 | ---------------------> |
 | |
 | <iq type="result"> |
 | <--------------------- |
 | |
 | <iq type="set"> |
 | ---------------------> |
 | |
 | <iq type="result"> |
 | <--------------------- |
 | |

6.5.2 Types of IQ

 The 'type' attribute of an IQ chunk is REQUIRED. The 'type'
 attribute specifies a distinct step within a request-response

Miller & Saint-Andre Expires May 4, 2003 [Page 30]

Internet-Draft XMPP Core November 2002

 interaction. The value SHOULD be one of the following (all other
 values MAY be ignored):

 o get -- The chunk is a request for information.

 o set -- The chunk provides required data, sets new values, or
 replaces existing values.

 o result -- The chunk is a response to a successful get or set
 request.

 o error -- An error has occurred regarding processing or delivery of
 a previously-sent get or set.

6.5.3 Children

 An IQ chunk contains no children in the 'jabber:client' or
 'jabber:server' namespace since it is a vessel for XML in another
 namespace. As described under extended namespaces (Section 6.6), an
 IQ chunk MAY contain any properly-namespaced child element (other
 than the core data elements, stream elements, or defined children
 thereof).

 If the IQ chunk is of type "error", it MUST include an <error/>
 child, which in turn MUST possess a 'code' attribute corresponding to
 one of the standard error codes (Appendix A) and MAY also contain
 PCDATA corresponding to a natural-language description of the error.
 An <error/> child MUST NOT be included if the chunk type is anything
 other than "error".

6.6 Extended Namespaces

 While the core data elements defined in this document provide a basic
 level of functionality for messaging and presence, XMPP uses XML
 namespaces to extend the core data elements for the purpose of
 providing additional functionality. Thus a message, presence, or IQ
 chunk may house one or more optional child elements containing
 content that extends the meaning of the message (e.g., an encrypted
 form of the message body as described in Appendix C). This child
 element MAY be any element (other than the core data elements, stream
 elements, or defined children thereof). The child element MUST
 possess an 'xmlns' namespace declaration (other than the stream
 namespace and the default namespace) that defines all data contained
 within the child element.

 Support for any given extended namespace is OPTIONAL on the part of
 any implementation. If an entity does not understand such a

Miller & Saint-Andre Expires May 4, 2003 [Page 31]

Internet-Draft XMPP Core November 2002

 namespace, it must ignore the associated XML data. If an entity
 receives an IQ chunk in a namespace it does not understand, the
 entity SHOULD return an IQ chunk of type "error" with an error
 element of code 400 (bad request). If an entity receives a message
 or presence chunk that contains XML data in an extended namespace it
 does not understand, the portion of the chunk that is in the unknown
 namespace SHOULD be ignored. If an entity receives a message chunk
 without a <body/> element but containing only a child element bound
 by a namespace it does not understand, it MUST ignore that chunk.

Miller & Saint-Andre Expires May 4, 2003 [Page 32]

Internet-Draft XMPP Core November 2002

7. XML Usage within XMPP

7.1 Overview

 In essence, XMPP core consists of three interrelated parts:

 1. XML streams (Section 4), which provide a stateful means for
 transporting data in an asynchronous manner from one entity to
 another

 2. stream authentication using SASL authentication (Section 5.1) or
 the dialback protocol (Section 5.2)

 3. core data elements (Section 6) (message, presence, and iq), which
 provide a framework for communications between entities

 XML [1] is used to define each of these protocols, as described in
 detail in the following sections.

 In addition, XMPP contains protocol extensions (such as extended
 namespaces) that address the specific functionality required to
 create a basic instant messaging and presence application; these non-
 core protocol extensions are defined in XMPP IM [2].

7.2 Namespaces

 XML Namespaces [11] are used within all XMPP-compliant XML to create
 strict boundaries of data ownership. The basic function of
 namespaces is to separate different vocabularies of XML elements that
 are structurally mixed together. Ensuring that XMPP-compliant XML is
 namespace-aware enables any XML to be structurally mixed with any
 data element within XMPP. This feature is relied upon frequently
 within XMPP to separate the XML that is processed by different
 services. Mainly for historical reasons, the default namespace for
 XMPP data chunks MUST be one of the namespaces identified in Section

4.4.

 Additionally, XMPP is more strict about namespace prefixes than the
 XML namespace specification requires.

7.3 Validation

 A host is not responsible for validating the XML elements forwarded
 to a node; an implementation MAY choose to provide only validated
 data elements but is NOT REQUIRED to do so. Nodes and services
 SHOULD NOT rely on the ability to send data which does not conform to
 the schemas, and SHOULD ignore any non-conformant elements or
 attributes on the incoming XML stream.

Miller & Saint-Andre Expires May 4, 2003 [Page 33]

Internet-Draft XMPP Core November 2002

7.4 Character Encodings

 Software implementing XML streams MUST support the UTF-8 and UTF-16
 encodings for received data. Software MUST NOT attempt to use any
 other encoding for transmitted data. The encodings of the transmit
 and receive streams are independent. Software may select either UTF-
 8 or UTF-16 for the transmitted stream, and should deduce the
 encoding of the received stream as described in [1].

7.5 Inclusion of Text Declaration

 An application MAY send a text declaration. Applications MUST follow
 the rules in [1] concerning the circumstances in which a text
 declaration is included.

Miller & Saint-Andre Expires May 4, 2003 [Page 34]

Internet-Draft XMPP Core November 2002

8. IANA Considerations

 The IANA registers "jabber-client" and "jabber-server" as GSS-API
 [14] service names, as specified in Section 6.1.1.

Miller & Saint-Andre Expires May 4, 2003 [Page 35]

Internet-Draft XMPP Core November 2002

9. Internationalization Considerations

 o A node SHOULD include an xml:lang declaration on the stream:stream
 it initiates to a host, denoting the node's default (preferred)
 language.

 o If the host detects an xml:lang declaration on the stream:stream
 from a node, it SHOULD remember that value.

 o If a host does not receive an xml:lang from a node, it SHOULD have
 a configurable default locale that it remembers instead.

 o For all chunks, if the node does not send an xml:lang attribute on
 the root tag of the packet, the server SHOULD apply its remembered
 value.

 o If a node does send an xml:lang attribute on a chunk, the server
 MUST NOT modify or delete it.

 o A host SHOULD include an xml:lang declaration on the stream:stream
 with which it replies to a node, denoting the host's default
 (preferred) language.

Miller & Saint-Andre Expires May 4, 2003 [Page 36]

Internet-Draft XMPP Core November 2002

10. Security Considerations

10.1 Node-to-Host Communications

 The SASL protocol for authenticating XML streams negotiated between a
 node and a host (defined under Section 5.1 above) provides a reliable
 mechanism for validating that a node connecting to a host is who it
 claims to be.

 The IP address and method of access of nodes MUST NOT be made
 available by a host, nor are any connections other than the original
 host connection required. This helps protect the node's host from
 direct attack or identification by third parties.

 End-to-end encryption of message bodies and presence status
 information MAY be effected through use of OpenPGP [13]; for details,
 see Appendix C.

10.2 Host-to-Host Communications

 It is OPTIONAL for any given host to communicate with other hosts,
 and host-to-host communications MAY be disabled by the administrator
 of any given deployment.

 If two hosts would like to enable communications between themselves,
 they MUST form a relationship of trust at some level, either based on
 trust in DNS or based on a pre-existing trust relationship (e.g.,
 through exchange of certificates). If two hosts have a pre-existing
 trust relationship, they MAY use SASL Authentication (Section 5.1)
 for the purpose of authenticating each other. If they do not have a
 pre-existing relationship, they MUST use the Dialback Protocol
 (Section 5.2), which provides a reliable mechanism for preventing the
 spoofing of hosts.

10.3 Use of SASL

 Although service provisioning is a policy matter, at a minimum, all
 implementations MUST provide the SASL DIGEST-MD5 mechanism for
 authentication.

Miller & Saint-Andre Expires May 4, 2003 [Page 37]

Internet-Draft XMPP Core November 2002

References

 [1] World Wide Web Consortium, "Extensible Markup Language (XML)
 1.0 (Second Edition)", W3C xml, October 2000, <http://

www.w3.org/TR/2000/REC-xml-20001006>.

 [2] Miller, J. and P. Saint-Andre, "XMPP Instant Messaging (draft-
miller-xmpp-im-02, work in progress)", November 2002.

 [3] Day, M., Aggarwal, S., Mohr, G. and J. Vincent, "A Model for
 Presence and Instant Messaging", RFC 2779, February 2000,
 <http://www.ietf.org/rfc/rfc2779.txt>.

 [4] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [5] University of Southern California, "Transmission Control
 Protocol", RFC 793, September 1981, <http://www.ietf.org/rfc/

rfc0793.txt>.

 [6] Internet Assigned Numbers Authority, "Internet Assigned Numbers
 Authority", January 1998, <http://www.iana.org/>.

 [7] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396, August
 1998, <http://www.ietf.org/rfc/rfc2396.txt>.

 [8] Harrenstien, K., Stahl, M. and E. Feinler, "DoD Internet host
 table specification", RFC 952, October 1985.

 [9] Braden, R., "Requirements for Internet Hosts - Application and
 Support", STD 3, RFC 1123, October 1989.

 [10] Myers, J., "Simple Authentication and Security Layer (SASL)",
RFC 2222, October 1997.

 [11] World Wide Web Consortium, "Namespaces in XML", W3C xml-names,
 January 1999, <http://www.w3.org/TR/1999/REC-xml-names-

19990114/>.

 [12] Gulbrandsen, A. and P. Vixie, "A DNS RR for specifying the
 location of services (DNS SRV)", RFC 2052, October 1996.

 [13] Elkins, M., Del Torto, D., Levien, R. and T. Roessler, "MIME
 Security with OpenPGP", RFC 3156, August 2001.

 [14] Linn, J., "Generic Security Service Application Program
 Interface, Version 2", RFC 2078, January 1997.

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
https://datatracker.ietf.org/doc/html/draft-miller-xmpp-im-02
https://datatracker.ietf.org/doc/html/draft-miller-xmpp-im-02
https://datatracker.ietf.org/doc/html/rfc2779
http://www.ietf.org/rfc/rfc2779.txt
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
http://www.ietf.org/rfc/rfc0793.txt
http://www.ietf.org/rfc/rfc0793.txt
http://www.iana.org/
https://datatracker.ietf.org/doc/html/rfc2396
http://www.ietf.org/rfc/rfc2396.txt
https://datatracker.ietf.org/doc/html/rfc952
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc2222
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
https://datatracker.ietf.org/doc/html/rfc2052
https://datatracker.ietf.org/doc/html/rfc3156
https://datatracker.ietf.org/doc/html/rfc2078

Miller & Saint-Andre Expires May 4, 2003 [Page 38]

Internet-Draft XMPP Core November 2002

Authors' Addresses

 Jeremie Miller
 Jabber Software Foundation
 1899 Wynkoop Street, Suite 600
 Denver, CO 80202
 US

 EMail: jeremie@jabber.org
 URI: http://www.jabber.org/people/jer.php

 Peter Saint-Andre
 Jabber Software Foundation
 1899 Wynkoop Street, Suite 600
 Denver, CO 80202
 US

 EMail: stpeter@jabber.org
 URI: http://www.jabber.org/people/stpeter.php

http://www.jabber.org/people/jer.php
http://www.jabber.org/people/stpeter.php

Miller & Saint-Andre Expires May 4, 2003 [Page 39]

Internet-Draft XMPP Core November 2002

Appendix A. Standard Error Codes

 A standard error element is used for failed processing of XML chunks.
 This element is a child of the failed chunk and MUST include a 'code'
 attribute corresponding to one of the following error codes.

 o 302 (Redirect) - Whereas HTTP contains eight different codes for
 redirection, XMPP contains only one (which is intended to stand
 for any redirection error). However, code 302 is being reserved
 for future functionality and is not implemented at this time.

 o 400 (Bad Request) - Code 400 is used to inform a sender that a
 request could not be understood by the recipient. This might be
 generated when, for example, an entity sends a message that does
 not have a 'to' attribute.

 o 401 (Unauthorized) - Code 401 is used to inform nodes that they
 have provided incorrect authorization information, e.g., an
 incorrect password or unknown username when attempting to
 authenticate with a host.

 o 402 (Payment Required) - Code 402 is being reserved for future
 use.

 o 403 (Forbidden) - Code 403 is used to inform an entity that the
 its request was understood but that the recipient is refusing to
 fulfill it, e.g., if a node attempts to set information associated
 with another node.

 o 404 (Not Found) - Code 404 is used to inform a sender that no
 recipient was found matching the JID to which an XML chunk was
 sent, e.g., if a sender has attempted to send a message to a JID
 that does not exist. (Note: if the host of the intended recipient
 cannot be reached, an error code from the 500 series must be
 sent).

 o 405 (Not Allowed) - Code 405 is used when the action requested is
 not allowed for the JID identified by the 'from' address, e.g., if
 a node attempts to set the time or version of a host.

 o 406 (Not Acceptable) - Code 406 is used when an XML chunk is for
 some reason not acceptable to a host or other entity. This might
 be generated when, for example, a node attempts to register with a
 host using an empty password.

 o 407 (Registration Required) - Code 407 is used when a message or
 request is sent to a service that requires prior registration,
 e.g., if a node attempts to send a message through a gateway to a

Miller & Saint-Andre Expires May 4, 2003 [Page 40]

Internet-Draft XMPP Core November 2002

 foreign messaging system without having first registered with that
 gateway.

 o 408 (Request Timeout) - Code 408 is returned when a recipient does
 not produce a response within the time that the sender was
 prepared to wait.

 o 500 (Internal Server Error) - Code 500 is used when a host or
 service encounters an unexpected condition which prevents it from
 handling an XML chunk from a sender, e.g., if an authentication
 request is not handled by a host because the password could not be
 retrieved.

 o 501 (Not Implemented) - Code 501 is used when the recipient does
 not support the functionality being requested by a sender, e.g.,
 if a node attempts to register with a host that does not allow
 registration.

 o 502 (Remote Server Error) - Code 502 is used when delivery of an
 XML chunk fails because of an inability to reach the intended
 remote host or service, e.g., because a remote host's hostname
 could not be resolved.

 o 503 (Service Unavailable) - Code 503 is used when a sender
 requests a service that a recipient is temporarily unable to
 offer.

 o 504 (Remote Server Timeout) - Code 504 is used when attempts to
 contact a remote host timeout, e.g., if an incorrect hostname is
 specified.

Miller & Saint-Andre Expires May 4, 2003 [Page 41]

Internet-Draft XMPP Core November 2002

Appendix B. Formal Definitions

B.1 streams namespace

B.1.1 DTD

 <?xml version='1.0' encoding='UTF-8'?>
 <!ELEMENT stream (#PCDATA | error?)*>
 <!ATTLIST stream
 to CDATA #REQUIRED
 from CDATA #IMPLIED
 id CDATA #IMPLIED>
 <!ELEMENT error (#PCDATA)>

B.1.2 Schema

Miller & Saint-Andre Expires May 4, 2003 [Page 42]

Internet-Draft XMPP Core November 2002

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://etherx.jabber.org/streams'
 xmlns='http://etherx.jabber.org/streams'
 elementFormDefault='qualified'>

 <xsd:element name='stream'>
 <xsd:complexType mixed='true'>
 <xsd:element ref='error' minOccurs='0' maxOccurs='1'/>
 <xsd:choice>
 <xsd:any
 namespace='jabber:client'
 maxOccurs='1'/>
 <xsd:any
 namespace='jabber:component:accept'
 maxOccurs='1'/>
 <xsd:any
 namespace='jabber:component:connect'
 maxOccurs='1'/>
 <xsd:any
 namespace='jabber:server'
 maxOccurs='1'/>
 <xsd:any
 namespace='http://www.iana.org/assignments/sasl-mechanisms'
 maxOccurs='1'/>
 </xsd:choice>
 <xsd:attribute name='to' type='xsd:string' use='optional'/>
 <xsd:attribute name='from' type='xsd:string' use='optional'/>
 <xsd:attribute name='id' type='xsd:string' use='optional'/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='error' type='xsd:string'/>

 </xsd:schema>

B.2 sasl namespace

B.2.1 DTD

 The DTD for the sasl: namespace is as follows:

Miller & Saint-Andre Expires May 4, 2003 [Page 43]

Internet-Draft XMPP Core November 2002

 <?xml version='1.0' encoding='UTF-8'?>
 <!ELEMENT mechanisms (mechanism)*>
 <!ELEMENT mechanism (#PCDATA)>
 <!ATTLIST mechanism name CDATA #REQUIRED>
 <!ELEMENT auth (#PCDATA)>
 <!ATTLIST auth name CDATA #REQUIRED>
 <!ELEMENT challenge (#PCDATA)>
 <!ELEMENT response (#PCDATA)>
 <!ELEMENT abort (#PCDATA)>
 <!ELEMENT success (#PCDATA)>
 <!ELEMENT failure (#PCDATA)>

B.2.2 Schema

Miller & Saint-Andre Expires May 4, 2003 [Page 44]

Internet-Draft XMPP Core November 2002

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.iana.org/assignments/sasl-mechanisms'
 xmlns='http://www.iana.org/assignments/sasl-mechanisms'
 elementFormDefault='qualified'>

 <xsd:element name='mechanisms'>
 <xsd:complexType>
 <xsd:sequence minOccurs='0' maxOccurs='unbounded'>
 <xsd:element ref='mechanism'/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='mechanism'>
 <xsd:complexType mixed='true'>
 <xsd:attribute name='name' type='xsd:string' use='optional'/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='auth'>
 <xsd:complexType mixed='true'>
 <xsd:attribute name='name' type='xsd:string' use='optional'/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name='challenge' type='xsd:string'/>
 <xsd:element name='response' type='xsd:string'/>
 <xsd:element name='abort' type='xsd:string'/>
 <xsd:element name='success' type='xsd:string'/>
 <xsd:element name='failure' type='xsd:string'/>

 </xsd:schema>

B.3 jabber:client namespace

 Note: the formal definition for the 'jabber:server' namespace is
 identical to that for the 'jabber:client' namespace.

B.3.1 DTD

 <?xml version='1.0' encoding='UTF-8'?>
 <!ELEMENT message ((body? | subject? | thread? |
 error? | (#PCDATA))*)>

 <!ATTLIST message
 to CDATA #IMPLIED

Miller & Saint-Andre Expires May 4, 2003 [Page 45]

Internet-Draft XMPP Core November 2002

 from CDATA #IMPLIED
 id CDATA #IMPLIED
 type (chat | groupchat | headline | error) #IMPLIED
 >

 <!ELEMENT body (#PCDATA)>
 <!ELEMENT subject (#PCDATA)>
 <!ELEMENT thread (#PCDATA)>

 <!ELEMENT presence ((show? | status? | priority? | error?)*)>

 <!ATTLIST presence
 to CDATA #IMPLIED
 from CDATA #IMPLIED
 id CDATA #IMPLIED
 type (subscribe | subscribed | unsubscribe |
 unsubscribed | unavailable | error) #IMPLIED
 >

 <!ELEMENT show (#PCDATA)>
 <!ELEMENT status (#PCDATA)>
 <!ELEMENT priority (#PCDATA)>

 <!ELEMENT iq (error | (#PCDATA))*>

 <!ATTLIST iq
 to CDATA #IMPLIED
 from CDATA #IMPLIED
 id CDATA #IMPLIED
 type (get | set | result | error) #REQUIRED
 >

 <!ELEMENT error (#PCDATA)>
 <!ATTLIST error code CDATA #REQUIRED>

B.3.2 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'
 elementFormDefault='qualified'>

 <xsd:element name='message'>
 <xsd:complexType mixed='true'>
 <xsd:choice>

Miller & Saint-Andre Expires May 4, 2003 [Page 46]

Internet-Draft XMPP Core November 2002

 <xsd:element ref='body' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='subject' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='thread' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='error' minOccurs='0' maxOccurs='1'/>
 <xsd:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xsd:choice>
 <xsd:attribute name='to' type='xsd:string' use='optional'/>
 <xsd:attribute name='from' type='xsd:string' use='optional'/>
 <xsd:attribute name='id' type='xsd:string' use='optional'/>
 <xsd:attribute name='type' use='optional' default='normal'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:NCName'>
 <xsd:enumeration value='normal'/>
 <xsd:enumeration value='chat'/>
 <xsd:enumeration value='groupchat'/>
 <xsd:enumeration value='headline'/>
 <xsd:enumeration value='error'/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='body' type='xsd:string'/>

 <xsd:element name='subject' type='xsd:string'/>

 <xsd:element name='thread' type='xsd:string'/>

 <xsd:element name='presence'>
 <xsd:complexType>
 <xsd:choice>
 <xsd:element ref='show' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='status' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='priority' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='error' minOccurs='0' maxOccurs='1'/>
 <xsd:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xsd:choice>
 <xsd:attribute name='to' type='xsd:string' use='optional'/>
 <xsd:attribute name='from' type='xsd:string' use='optional'/>
 <xsd:attribute name='id' type='xsd:string' use='optional'/>
 <xsd:attribute name='type' use='optional'>

Miller & Saint-Andre Expires May 4, 2003 [Page 47]

Internet-Draft XMPP Core November 2002

 <xsd:simpleType>
 <xsd:restriction base='xsd:string'>
 <xsd:enumeration value='unavailable'/>
 <xsd:enumeration value='subscribe'/>
 <xsd:enumeration value='subscribed'/>
 <xsd:enumeration value='unsubscribe'/>
 <xsd:enumeration value='unsubscribed'/>
 <xsd:enumeration value='error'/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='show'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:string'>
 <xsd:enumeration value='away'/>
 <xsd:enumeration value='chat'/>
 <xsd:enumeration value='xa'/>
 <xsd:enumeration value='dnd'/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

 <xsd:element name='status' type='xsd:string'/>

 <xsd:element name='priority' type='xsd:nonNegativeInteger'/>

 <xsd:element name='iq'>
 <xsd:complexType mixed='true'>
 <xsd:choice>
 <xsd:element ref='error' minOccurs='0' maxOccurs='1'/>
 <xsd:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xsd:choice>
 <xsd:attribute name='to' type='xsd:string' use='optional'/>
 <xsd:attribute name='from' type='xsd:string' use='optional'/>
 <xsd:attribute name='id' type='xsd:string' use='optional'/>
 <xsd:attribute name='type' use='required'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:string'>
 <xsd:enumeration value='get'/>
 <xsd:enumeration value='set'/>
 <xsd:enumeration value='result'/>
 <xsd:enumeration value='error'/>

Miller & Saint-Andre Expires May 4, 2003 [Page 48]

Internet-Draft XMPP Core November 2002

 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='error'>
 <xsd:complexType>
 <xsd:attribute
 name='code'
 type='xsd:nonNegativeInteger'
 use='required'/>
 </xsd:complexType>
 </xsd:element>

 </xsd:schema>

Miller & Saint-Andre Expires May 4, 2003 [Page 49]

Internet-Draft XMPP Core November 2002

Appendix C. OpenPGP Usage

 This section is non-normative. It describes an end-to-end encryption
 and signing method currently in use within the Jabber community. It
 is not recommended as a complete solution for encrypting streams or
 for guaranteeing the privacy of messages or presence. When this
 method is used, replay attacks are possible on presence chunks and
 also on messages for which the recipient is not mentioned in the
 message body. Key exchange may rely on the web of trust model used
 on the OpenPGP keys network. There is no method to check a
 fingerprint or ownership of a key other than checking the user IDs on
 a key.

 All operations described herein may be completed using standard
 OpenPGP software. All program output is US-ASCII armored output with
 the headers removed, which allows for straightforward encapsulation
 of the program output directly in XML chunks. It is assumed that all
 keys are exchanged using OpenPGP key servers; for example, the key of
 another user may be retrieved automatically when a signed presence
 chunk is received from that user.

C.1 Signing Presence

 Signing enables a sender to verify that they sent a certain block of
 text. As applied within the Jabber community, the <status/> child of
 a presence chunk is signed and sent as extended presence information
 in the 'jabber:x:signed' namespace. Because signing requires a block
 of text, a signed presence chunk MUST contain a <status/> child
 element that is non-empty (i.e., contains text.

 When signing presence, the sender MUST use the private key which is
 the same KeyID as the one they wish to use for encrypted messages.
 This is because there is no feature negotiation related to message
 encryption; the only indicator that another user encrypts is or her
 messages is that one receives signed presence chunks from that user.

 As shown in the following example, the only presence information that
 is signed is the CDATA of the <status> element.

Miller & Saint-Andre Expires May 4, 2003 [Page 50]

Internet-Draft XMPP Core November 2002

 <presence
 from='romeo@montague.net/orchard'
 to='juliet@capulet.com/balcony'>
 <status>Online</status>
 <x xmlns='jabber:x:signed'>
 iQA/AwUBOjU5dnol3d88qZ77EQI2JACfRngLJ045brNnaCX78ykKNUZaTIoAoPHI
 2uJxPMGR73EBIvEpcv0LRSy+
 =45f8
 </x>
 </presence>

C.2 Encrypting Messages

 Encryption enables the sender to encrypt a message sent to a specific
 recipient. This is accomplished by sending the encrypted form of the
 CDATA from the <body/> child in second child that is scoped by the
 'jabber:x:encrypted' namespace. Because a block of text is
 necessary, the message chunk MUST contain a <body/> child element
 that is non-empty (i.e., that contains some CDATA text). It is
 considered polite to include a message <body/> informing the
 recipient that the message is encrypted. The public key used for
 message encryption should match the KeyID used for signing presence.
 The actual data that is encrypted is what would be the CDATA of the
 <body> element if the message were not encrypted.

Miller & Saint-Andre Expires May 4, 2003 [Page 51]

Internet-Draft XMPP Core November 2002

 <message
 from='juliet@capulet.com/balcony'
 to='romeo@montague.net/orchard'>
 <body>This message is encrypted.</body>
 <x xmlns='jabber:x:encrypted'>
 qANQR1DBwU4DX7jmYZnncmUQB/9KuKBddzQH+tZ1ZywKK0yHKnq57kWq+RFtQdCJ
 WpdWpR0uQsuJe7+vh3NWn59/gTc5MDlX8dS9p0ovStmNcyLhxVgmqS8ZKhsblVeu
 IpQ0JgavABqibJolc3BKrVtVV1igKiX/N7Pi8RtY1K18toaMDhdEfhBRzO/XB0+P
 AQhYlRjNacGcslkhXqNjK5Va4tuOAPy2n1Q8UUrHbUd0g+xJ9Bm0G0LZXyvCWyKH
 kuNEHFQiLuCY6Iv0myq6iX6tjuHehZlFSh80b5BVV9tNLwNR5Eqz1klxMhoghJOA
 w7R61cCPt8KSd8Vcl8K+StqOMZ5wkhosVjUqvEu8uJ9RupdpB/4m9E3gOQZCBsmq
 OsX4/jJhn2wIsfYYWdqkbNKnuYoKCnwrlmn6I+wX72p0R8tTv8peNCwK9bEtL/XS
 mhn4bCxoUkCITv3k8a+Jdvbov9ucduKSFuCBq4/l0fpHmPhHQjkFofxmaWJveFfF
 619NXyYyCfoLTmWk2AaTHVCjtKdf1WmwcTa0vFfk8BuFHkdah6kJJiJ7w/yNwa/E
 O6CMymuZTr/LpcKKWrWCt+SErxqmq8ekPI8h7oNwMxZBYAa7OJ1rXWKNgL9pDtNI
 824Mf0mXj7q5N1eMHvX1QEoKLAda/Ae3TTEevOyeUK1DEgvxfM2KRZ11RzU+XtIE
 My/bJk7EycAw8P/QKyeNlO1fxP58VEd6Gb8NCPqKOYn/LKh1O+c20ZNVEPFM4bNV
 XA4hB4UtFF7Ao8kpdlrUqdKyw4lEtnmdemYQ6+iIIVPEarWl9PxOMY90KAnZrSAq
 bt9uRY/1rPgelRaWblMKvxgpRO8++Y8VjdEyGgMOXxOiE851Ve72ftGzkSxDH8mW
 TgY3pf2aATmBp3lagQ1COkGS/xupovT5AQPA3RzbCxDvc6s6eGYKmVVQVj5vmSj1
 WULad5MB9KT1DzCm6FOSy063nWGBYYMWiejRvGLpo1j4eAnj0qOt7rTWmgv3RkYF
 Oin0vDOhW7aC
 =CvnG
 </x>
 </message>

Miller & Saint-Andre Expires May 4, 2003 [Page 52]

Internet-Draft XMPP Core November 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Miller & Saint-Andre Expires May 4, 2003 [Page 53]

