
XMPP M. Miller
Internet-Draft Cisco Systems, Inc.
Intended status: Standards Track C. Wallace
Expires: January 5, 2015 Red Hound Software, Inc.
 July 4, 2014

End-to-End Object Encryption and Signatures for the Extensible Messaging
 and Presence Protocol (XMPP)

draft-miller-xmpp-e2e-07

Abstract

 This document defines two methods for securing objects (often
 referred to as stanzas) for the Extensible Messaging and Presence
 Protocol (XMPP), which allows for efficient asynchronous
 communication between two entities, each with might have multiple
 devices operating simultaneously. One is a method to encrypt stanzas
 to provide confidentiality protection; another is a method to sign
 stanzas to provide authentication and integrity protection. This
 document also defines a related protocol for entities to request the
 ephemeral session keys in use.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 5, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Miller & Wallace Expires January 5, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/draft-miller-xmpp-e2e-07
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft XMPP E2E July 2014

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Changes to existing clients 4
3.1. End-point procedures 4
3.2. End-point state . 5

4. Key distribution . 6
5. Key table . 8
6. Encryption . 10
6.1. Determining Support 10
6.2. Encrypting XMPP Stanzas 10
6.2.1. Prerequisites . 10
6.2.2. Process . 11

6.3. Decrypting XMPP Stanzas 13
6.3.1. Protocol Not Understood 13
6.3.2. Process . 13
6.3.3. Insufficient Information 15
6.3.4. Failed Decryption 15
6.3.5. Timestamp Not Acceptable 16
6.3.6. Successful Decryption 17

6.4. Example - Securing a Message 17
7. Signatures . 21
7.1. Determining Support 21
7.2. Signing XMPP Stanzas 22
7.2.1. Process . 22

7.3. Verifying Signed XMPP Stanzas 24
7.3.1. Protocol Not Understood 24
7.3.2. Process . 24
7.3.3. Insufficient Information 25
7.3.4. Failed Verification 26
7.3.5. Timestamp Not Acceptable 26
7.3.6. Successful Verification 27

7.4. Example - Signing a Message 27
8. Requesting Session Keys 30
8.1. Request Process . 30
8.2. Accept Process . 31
8.3. Error Conditions . 33
8.4. Example of Successful Key Request 34

9. Mulitple Operations . 38
10. Inclusion and Checking of Timestamps 38

Miller & Wallace Expires January 5, 2015 [Page 2]

Internet-Draft XMPP E2E July 2014

11. Interaction with Stanza Semantics 39
12. Interaction with Offline Storage 40
13. Mandatory-to-Implement Cryptographic Algorithms 40
14. Security Considerations 40
14.1. Storage of Encrypted Stanzas 40
14.2. Re-use of Session Master Keys 40

15. IANA Considerations . 41
15.1. XML Namespaces Name for e2e Data in XMPP 41

16. References . 42
16.1. Normative References 42
16.2. Informative References 43

Appendix A. Schema for urn:ietf:params:xml:ns:xmpp-e2e:6 43
Appendix B. Acknowledgements 46

 Authors' Addresses . 46

1. Introduction

 End-to-end protection and authentication of traffic sent over the
 Extensible Messaging and Presence Protocol [RFC6120] is a desirable
 goal. Requirements and a threat analysis for XMPP encryption are
 provided in [E2E-REQ]. Many possible approaches to meet those (or
 similar) requirements have been proposed over the years, including
 methods based on PGP, S/MIME, SIGMA, and TLS.

 Most proposals have not been able to support multiple end-points for
 a given recipient. As more devices support XMPP, it becomes more
 desirable to allow an entity to communicate with another in a more
 secure manner, regardless of the number of agents the entity is
 employing. This document specifies an approach for encrypting and
 signing communications between two entities which each might have
 multiple end-points.

 A primary challenge with supporting multiple end-points is key
 distribution. This is complicated by the fact that some end points
 for a given recipient may share keys, some may use different keys,
 some may have no keys and some may not support encryption or
 signature verification at all. To address these differences, this
 specification defines a symmetric key table that is managed via three
 mechanisms that enable a key to be pushed to an end point, to be
 pulled from an originator or negotiated. The key table contains
 named master keys along with meta data describing usage of the key.
 Encrypted XMPP messages use a named master key to encrypt a content
 encryption key. Prior to decrypting a message, recipients of an
 encrypted message will either find the named key present in their key
 table (as the result of an earlier operation) or obtain the key from
 the sender.

https://datatracker.ietf.org/doc/html/rfc6120

Miller & Wallace Expires January 5, 2015 [Page 3]

Internet-Draft XMPP E2E July 2014

 Comments are solicited and should be addressed to XMPP mailing list.
 Information about the XMPP mailing list can be found here:

https://www.ietf.org/mailman/listinfo/xmpp.

2. Terminology

 This document inherits XMPP-related terminology from [RFC6120], JSON
 Web Algorithms (JWA)-related terminology from [JOSE-JWA], JSON Web
 Encryption (JWE)-related terminology from [JOSE-JWE], and JSON Web
 Key (JWK)-related terminology from [JOSE-JWK]. Security-related
 terms are to be understood in the sense defined in [RFC4949].

 The capitalized key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
 "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

3. Changes to existing clients

3.1. End-point procedures

 Existing XMPP clients will need to implement some new procedures in
 order to support end-to-end encryption and authentication. Changes
 for sending clients include:

 o Generating session master keys (SMKs)

 o Storing SMKs for use during active sessions

 o Storing SMKs to provide to peers and to support reading of saved
 messages (may require use of storage key)

 o Accepting requests for SMKs

 o Releasing SMKs to authorized requestors (where requests may be
 received from multiple different resources associated with a
 single peer with each resource using a different means to
 authenticate)

 o Generating content encryption keys (CEK)

 o Using SMK and CEK values to encrypt XMPP stanzas

 o Generating a signing key (optional)

 o Using a signing key to sign XMPP stanzas

 o Generating and using a long term storage key (optional)

https://www.ietf.org/mailman/listinfo/xmpp
https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc2119

Miller & Wallace Expires January 5, 2015 [Page 4]

Internet-Draft XMPP E2E July 2014

 Changes for receiving clients include:

 o Sending requests for SMKs to peers

 o Accepting public key to use when encrypting an SMK from peers

 o Storing SMKs for use when decrypting XMPP stanzas during active
 session

 o Using an SMK to decrypt a CEK used to decrypt XMPP stanzas

 o Storing SMKs retrieved from peers to support reading of saved
 messages (may require use of storage key)

 o Providing indication to users when encryption is in use

 o Retrieving keys required to verify signatures on signed XMPP
 stanzas

 o Verifying signatures and displaying indication of success/failure
 to user

 o Storing keys required to verify signature to support reading of
 saved messages (may require use of storage key)

 o Generating and using a long term storage key (optional)

3.2. End-point state

 End points utilizing end-to-end encryption and signatures are
 required to maintain some new state information, and may find some
 additional information helpful to maintain. New state information
 includes:

 o Session master key table (required)

 o Public/private key store (required)

 o Trust anchor store (optional)

 o Intermediate certification authority (CA) store (optional)

 o Long-term storage key (optional)

 Session master keys (SMKs) are used to encrypt XMPP stanzas. An end-
 point may have many active SMKs at any given point in time, but only
 one SMK active per bare JID (TODO: or should this be per full JID?).
 Each SMK has a name generated by the entity who generated the key.

Miller & Wallace Expires January 5, 2015 [Page 5]

Internet-Draft XMPP E2E July 2014

 The name MUST be unique from the generator's perspective (i.e., full
 JID + SMK name MUST uniquely identify a specific SMK). When a new
 SMK is received, any previous SMK stored for the full JID of the
 entity providing the SMK may be destroyed. Alternatively, previous
 SMKs may be preserved to support future decryption of stored
 messages. This specification places no requirements on handling of
 stored messages. Clients may re-encrypt messages under a long-term
 storage key, store messages as-is encrypted using an SMK or store
 plaintext messages.

 Each end-point must have at least one public/private key pair used
 for SMK distribution.

 A trust anchor store or intermediate CA store may be useful to
 support automated release of encrypted SMKs or to verify signed XMPP
 stanzas.

 A long-term storage key may be used to either encrypt data stored in
 the key table or to re-encrypt encrypted messages prior to storing
 the message for future review.

4. Key distribution

 Several different types of keys are used to support end-to-end
 encryption and signatures. These keys may be distinct from any keys
 used to authenticate to XMPP servers and include the following:

 o Session master key (SMK)

 o Content encryption keys (CEKs) for XMPP stanzas

 o Public/private key pair for SMK distribution

 o Content encryption keys for SMK distribution

 o Public/private key pair for signature generation

 o Trust anchor and intermediate certification authority (CA) public
 keys

 o Long-term storage key

 SMKs are symmetric keys generated by an end-point prior to utilizing
 end-to-end encryption (see Section 6.2.1). SMKs are used to encrypt
 the CEK used to encrypt an XMPP stanza. SMKs are stored in the SMK
 table and may be distributed using one of the following mechanisms:

Miller & Wallace Expires January 5, 2015 [Page 6]

Internet-Draft XMPP E2E July 2014

 o Manually pre-placed at some point prior to using end-to-end
 encryption

 o Released to an end-point upon request after receiving an encrypted
 XMPP stanza

 o Provided to an end-point using an IQ stanza sent prior to sending
 encrypted XMPP stanzas

 CEKs for XMPP stanzas are symmetric keys generated by an end-point to
 encrypt an XMPP stanza (see item 5 in Section 6.2.2). CEKs are
 encrypted using the SMK and included with encrypted XMPP data.

 Public/private key pairs for SMK distribution are asymmetric keys
 that may be generated by an end point, imported into an end point or
 used via a hardware cryptographic module. The public key is
 distributed to XMPP peers for use when distributing SMKs (see step 1
 in Section 8.1). The public key is formatted as a JWK, which may
 include an X.509 certificate. An end-point MUST establish trust in a
 public key prior to releasing an SMK value. Trust establishment
 mechanisms include checking a key thumbprint provided via a trusted
 channel or by validating an X.509 certificate to a trust anchor. The
 public keys may be distributed using one of the following mechanisms:

 o Manually pre-placed prior to using for SMK release (details for
 manual pre-placement are not defined by this specification)

 o Presented when requesting an SMK from a peer after receiving an
 encrypted XMPP stanza from the peer (the peer may store the public
 key for use in providing future encrypted SMK values prior to
 using the SMK to encrypt XMPP stanzas see Section 8.1)

 o Provided upon request in response to an IQ get request in
 preparation for receiving encrypted XMPP stanzas (TODO: define IQ
 for pushing SMK)

 CEKs for SMK distribution are symmetric keys generated by an end-
 point to encrypt an SMK (see item 3 in Section 8.2). CEKs are
 encrypted using the public key used for SMK distribution and included
 with encrypted SMK data.

 Public/private key pairs for SMK distribution are asymmetric keys
 that may be generated by an end point, imported into an end point or
 used via a hardware cryptographic module (see bullet 4 of section 5.1
 in [JOSE-JWE]). The public key is distributed to XMPP peers for use
 when verifying signatures. Trust establishment may be performed by
 checking a key thumbprint provided via a trusted channel or by
 validating an X.509 certificate to a trust anchor.

Miller & Wallace Expires January 5, 2015 [Page 7]

Internet-Draft XMPP E2E July 2014

 Trust anchor and intermediate CA public keys may be used to validate
 X.509 certificates in support of SMK release or verification of
 signatures on signed XMPP stanzas.

 A long-term storage key may be used to encrypt information stored in
 the key table or to re-encrypt encrypted messages prior to storing
 the message for future review. The long-term storage key may be a
 public/private key pair or a symmetric key.

5. Key table

 The conceptual database for long-lived cryptographic keys described
 in [Key-Table] may be suitable for use in storing the SMKs described
 above for use in supporting end-to-end XMPP encryption. The columns
 that the table consists of are listed as follows:

 TODO: figure out whether to read time values from JWKs. If so,
 augment section 8.2.

 AdminKeyName: The AdminKeyName field contains a human-readable
 string meant to identify the key for the user. Implementations
 can use this field to uniquely identify rows in the key table.
 The same string can be used on the local system and peer
 systems, but this is not required.

 LocalKeyName: The LocalKeyName field contains a string identifying
 the key. It can be used to retrieve the key in the local
 database when received in a message. For SMKs, this is the
 value of the 'id' attribute value of the <e2e/> element (see

Section 6.3).

 PeerKeyName: PeerKeyName is not used as the name is the same at each
 end point.

 Peers: This field lists the full JID of each peer systems that has
 this key in their database. The peer name is read from the
 'from' attribute of the wrapping stanza (see Section 6.3).

 Interfaces: This field is not used and must be set to "all".

 Protocol: The Protocol field identifies XMPP the protocol where this
 key may be used to provide cryptographic protection. (TODO:
 registry entry for the protocol?)

 ProtocolSpecificInfo: This field is not used and must be be empty.

 KDF: The KDF field is not used and must be set to "none". (TODO:
 define a use for this field?)

Miller & Wallace Expires January 5, 2015 [Page 8]

Internet-Draft XMPP E2E July 2014

 AlgID: The AlgID field indicates which cryptographic algorithm to be
 used with the security protocol for the specified peer or
 peers. Such an algorithm can be an encryption algorithm and
 mode (e.g., AES-128-CBC), an authentication algorithm (e.g.,
 HMAC-SHA1-96 or AES-128-CMAC), or any other symmetric
 cryptographic algorithm needed by a security protocol. (TODO:
 identify source for algorithm strings)

 Key: The Key field contains a long-lived symmetric cryptographic key
 in the format of a lower-case hexadecimal string. The size of
 the Key depends on the KDF and the AlgID. For instance, a
 KDF=none and AlgID=AES128 requires a 128-bit key, which is
 represented by 32 hexadecimal digits.

 Direction: The Direction field indicates whether this key may be
 used for inbound traffic, outbound traffic, both, or whether
 the key has been disabled and may not currently be used at all.
 The supported values are "in", "out", "both", and "disabled",
 respectively.

 SendLifetimeStart: The SendLifetimeStart field specifies the
 earliest date and time in Coordinated Universal Time (UTC) at
 which this key should be considered for use when sending
 traffic. The format is YYYYMMDDHHSSZ, where four digits
 specify the year, two digits specify the month, two digits
 specify the day, two digits specify the hour, two digits
 specify the minute, and two digits specify the second. The "Z"
 is included as a clear indication that the time is in UTC.

 SendLifeTimeEnd: The SendLifeTimeEnd field specifies the latest date
 and time at which this key should be considered for use when
 sending traffic. The format is the same as the
 SendLifetimeStart field.

 AcceptLifeTimeStart: The AcceptLifeTimeStart field specifies the
 earliest date and time in Coordinated Universal Time (UTC) at
 which this key should be considered for use when processing
 received traffic. The format is YYYYMMDDHHSSZ, where four
 digits specify the year, two digits specify the month, two
 digits specify the day, two digits specify the hour, two digits
 specify the minute, and two digits specify the second. The "Z"
 is included as a clear indication that the time is in UTC.

 AcceptLifeTimeEnd: The AcceptLifeTimeEnd field specifies the latest
 date and time at which this key should be considered for use
 when processing the received traffic. The format of this field
 is identical to the format of AcceptLifeTimeStart.

Miller & Wallace Expires January 5, 2015 [Page 9]

Internet-Draft XMPP E2E July 2014

6. Encryption

6.1. Determining Support

 If an agent supports receiving end-to-end object encryption, it MUST
 advertise that fact in its responses to [XEP-0030] information
 ("disco#info") requests by returning a feature of
 "urn:ietf:params:xml:ns:xmpp-e2e:6:encryption".

 <iq xmlns='jabber:client'
 id='disco1'
 to='romeo@montegue.lit/garden'
 type='result'>
 <query xmlns='http://jabber.org/protocol/disco#info'>
 ...
 <feature xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6:encryption'/>
 ...
 </query>
 </iq>

 To facilitate discovery, an agent SHOULD also include [XEP-0115]
 information in any directed or broadcast presence updates.

6.2. Encrypting XMPP Stanzas

 The process that a sending agent follows for securing stanzas is the
 same regardless of the form of stanza (i.e., <iq/>, <message/>, or
 <presence/>).

6.2.1. Prerequisites

 First, the sending agent prepares and retains the following:

 o The JID of the sender (i.e. its own JID). This SHOULD be the bare
 JID (localpart@domainpart).

 o The JID of the recipient. This SHOULD be the bare JID
 (localpart@domainpart).

 o A Session Master Key (SMK). The SMK MUST have a length at least
 equal to that required by the key wrapping algorithm in use and
 MUST be generated randomly. See [RFC4086] for considerations on
 generating random values.

https://datatracker.ietf.org/doc/html/rfc4086

Miller & Wallace Expires January 5, 2015 [Page 10]

Internet-Draft XMPP E2E July 2014

 o A SMK identifier (SID). The SID MUST be unique for a given
 (sender, recipient, SMK) tuple, and MUST NOT be derived from SMK
 itself.

6.2.2. Process

 For a given plaintext stanza (S), the sending agent performs the
 following:

 1. Ensures the plaintext stanza is fully qualified, including the
 proper namespace declarations (e.g., contains the attribute
 'xmlns' set to the value "jabber:client" for 'jabber:client'
 stanzas defined in [RFC6120]).

 2. Notes the current UTC date and time (N) when this stanza is
 constructed, formatted as described under Section 10.

 3. Constructs a forwarding envelope (M) using a <forwarded/> element
 qualified by the "urn:xmpp:forward:0" namespace (as defined in
 [XEP-0297]) as follows:

 * The child element <delay/> qualified by the "urn:xmpp:delay"
 namespace (as defined in [XEP-0203]) with the attribute
 'stamp' set to the UTC date and time value N

 * The plaintext stanza S

 4. Converts the forwarding envelope (M) to a UTF-8 encoded string
 (M'), optionally removing line breaks and other insignificant
 whitespace between elements and attributes, i.e. M' =
 UTF8-encode(M). We call M' a "stanza-string" because for
 purposes of encryption and decryption it is treated not as XML
 but as an opaque string (this avoids the need for complex
 canonicalization of the XML input).

 5. Generates a Content Master Key (CMK). The CMK MUST have a length
 at least equal to that required by the content encryption
 algorithm in use and MUST be generated randomly. See [RFC4086]
 for considerations on generating random values.

https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc4086

Miller & Wallace Expires January 5, 2015 [Page 11]

Internet-Draft XMPP E2E July 2014

 6. Generates any additional unprotected block cipher factors (IV);
 e.g., initialization vector/nonce. A sending agent MUST ensure
 that no two sets of factors are used with the same CMK, and
 SHOULD NOT reuse such factors for other stanzas.

 7. Performs the message encryption steps from [JOSE-JWE] to generate
 the JWE Header (H), JWE Encrypted Key (E), JWE Ciphertext (C),
 and JWE Integrity Value (I); using the following inputs:

 * The 'alg' property is set to an appropriate key wrapping
 algorithm (e.g., "A256KW" or "A128KW"); recipients use the key
 request process in Section 8 to obtain the SMK.

 * The 'enc' property is set to the intended content encryption
 algorithm.

 * SMK as the key for CMK Encryption.

 * CMK as the JWE Content Master Key.

 * IV as the JWE Initialization Vector.

 * M' as the plaintext content to encrypt.

 8. Constructs an <e2e/> element qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace as follows:

 * The attribute 'type' set to the value "enc".

 * The attribute 'id' set to the identifier value SID.

 * The child element <encheader/> qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace and with XML
 character data as H, encoded base64url as per [RFC4648].

https://datatracker.ietf.org/doc/html/rfc4648

Miller & Wallace Expires January 5, 2015 [Page 12]

Internet-Draft XMPP E2E July 2014

 * The child element <cmk/> qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace and with XML
 character as E, encoded base64url as per [RFC4648].

 * The child element <iv/> qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace and with XML
 character as IV, encoded base64url as per [RFC4648].

 * The child element <data/> qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace and with XML
 character data as C, encoded base64url as per [RFC4648].

 * The child element <mac/> qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace and with XML
 character data as I, encoded base64url as per [RFC4648].

 9. Sends the <e2e/> element as the payload of a stanza that SHOULD
 match the stanza from step 1 in kind (e.g., <message/>), type
 (e.g., "chat"), and addressing (e.g., to="romeo@montague.net"
 from="juliet@capulet.net/balcony"). If the original stanza (S)
 has a value for the 'id' attribute, this stanza MUST NOT use the
 same value for its 'id' attribute.

6.3. Decrypting XMPP Stanzas

6.3.1. Protocol Not Understood

 If the receiving agent does not understand the protocol, it MUST do
 one and only one of the following: (1) ignore the <e2e/> extension,
 (2) ignore the entire stanza, or (3) return a <service-unavailable/>
 error to the sender, as described in [RFC6120].

 NOTE: If the inbound stanza is an <iq/>, the receiving agent MUST
 return an error to the sending agent, to comply with the exchanging
 of IQ stanzas in [RFC6121].

6.3.2. Process

 Upon receipt of an encrypted stanza, the receiving agent performs the
 following:

 1. Determines if a valid SMK is available, associated with the SID
 specified by the 'id' attribute value of the <e2e/> element and

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc6121

Miller & Wallace Expires January 5, 2015 [Page 13]

Internet-Draft XMPP E2E July 2014

 the sending agent JID specified by the 'from' attribute of the
 wrapping stanza. If the receiving agent does not already have
 the SMK, it requests it according to Section 8.

 2. Performs the message decryption steps from [JOSE-JWE] to generate
 the plaintext forwarding envelope string M', using the following
 inputs:

 * The JWE Header (H) from the <encheader/> element's character
 data content.

 * The JWE Encrypted Key (E) from the <cmk/> element's character
 data content.

 * The JWE Initialization Vector/Nonce (I) from the <iv/>
 element's character data content.

 * The JWE Ciphertext (C) from the <data/> element's character
 data content.

 * The JWE Integrity Value (I) from the <mac/> element's
 character data content.

 3. Converts the forwarding envelope UTF-8 encoded string M' into XML
 element (M).

 4. Obtains the UTC date and time (N) from the <delay/> child
 element, and verifies it is within the accepted range, as
 specified in Section 10.

 5. Obtains the plaintext stanza (S), which is a child element node
 of M; the stanza MUST be fully qualified with proper namespace
 declarations for XMPP stanzas, to help distinguish it from other
 content within M.

 .

Miller & Wallace Expires January 5, 2015 [Page 14]

Internet-Draft XMPP E2E July 2014

6.3.3. Insufficient Information

 At step 1, if the receiving agent is unable to obtain the CMK, or the
 receiving agent could not otherwise determine the additional
 information, it MAY return a <bad-request/> error to the sending
 agent (as described in [RFC6120]), optionally supplemented by an
 application-specific error condition element of <insufficient-
 information/>:

 <message xmlns='jabber:client'
 from='juliet@capulet.lit/balcony'
 id='fJZd9WFIIwNjFctT'
 to='romeo@montegue.lit/garden'
 type='chat'>
 <e2e xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'
 id='835c92a8-94cd-4e96-b3f3-b2e75a438f92'>
 <encheader>[XML character data]</encheader>
 <cmk>[XML character data]</cmk>
 <iv>[XML character data]</iv>
 <data>[XML character data]</data>
 <mac>[XML character data]</mac>
 </e2e>
 <error type='modify'>
 <bad-request
 xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
 <insufficient-information
 xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'/>
 </error>
 </message>

 In addition to returning an error, the receiving agent SHOULD NOT
 present the stanza to the intended recipient (human or application)
 and SHOULD provide some explicit alternate processing of the stanza
 (which MAY be to display a message informing the recipient that it
 has received a stanza that cannot be decrypted).

6.3.4. Failed Decryption

 At step 2, if the receiving agent is unable to successfully decrypt
 the stanza, the receiving agent SHOULD return a <bad-request/> error
 to the sending agent (as described in [RFC6120]), optionally
 supplemented by an application-specific error condition element of
 <decryption-failed/> (previously defined in [RFC3923]):

https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc3923

Miller & Wallace Expires January 5, 2015 [Page 15]

Internet-Draft XMPP E2E July 2014

 <message xmlns='jabber:client'
 from='juliet@capulet.lit/balcony'
 id='fJZd9WFIIwNjFctT'
 to='romeo@montegue.lit/garden'
 type='chat'>
 <e2e xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'
 id='835c92a8-94cd-4e96-b3f3-b2e75a438f92'>
 <encheader>[XML character data]</encheader>
 <cmk>[XML character data]</cmk>
 <iv>[XML character data]</iv>
 <data>[XML character data]</data>
 <mac>[XML character data]</mac>
 </e2e>
 <error type='modify'>
 <bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
 <decryption-failed xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'/>
 </error>
 </message>

 In addition to returning an error, the receiving agent SHOULD NOT
 present the stanza to the intended recipient (human or application)
 and SHOULD provide some explicit alternate processing of the stanza
 (which MAY be to display a message informing the recipient that it
 has received a stanza that cannot be decrypted).

6.3.5. Timestamp Not Acceptable

 At step 4, if the stanza is successfully decrypted but the timestamp
 fails the checks outlined in Section 10, the receiving agent MAY
 return a <not-acceptable/> error to the sender (as described in
 [RFC6120]), optionally supplemented by an application-specific error
 condition element of <bad-timestamp/> (previously defined in
 [RFC3923]):

https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc3923

Miller & Wallace Expires January 5, 2015 [Page 16]

Internet-Draft XMPP E2E July 2014

 <message xmlns='jabber:client'
 from='juliet@capulet.lit/balcony'
 id='fJZd9WFIIwNjFctT'
 to='romeo@montegue.lit/garden'
 type='chat'>
 <e2e xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'
 id='835c92a8-94cd-4e96-b3f3-b2e75a438f92'>
 <encheader>[XML character data]</encheader>
 <cmk>[XML character data]</cmk>
 <iv>[XML character data]</iv>
 <data>[XML character data]</data>
 <mac>[XML character data]</mac>
 </e2e>
 <error type='modify'>
 <bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
 <bad-timestamp xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'/>
 </error>
 </message>

6.3.6. Successful Decryption

 If the receiving agent successfully decrypted the payload, it MUST
 NOT return a stanza error.

 If the payload is an <iq/> of type "get" or "set", and the response
 to this <iq/> is of type "error", the receiving agent MUST send the
 encrypted response wrapped in an <iq/> of type "result", to prevent
 exposing information about the payload.

6.4. Example - Securing a Message

 NOTE: unless otherwise indicated, all line breaks are included for
 readability.

 The sending agent begins with the plaintext version of the <message/>
 stanza 'S':

Miller & Wallace Expires January 5, 2015 [Page 17]

Internet-Draft XMPP E2E July 2014

 <message xmlns='jabber:client'
 from='juliet@capulet.lit/balcony'
 to='romeo@montegue.lit'
 type='chat'>
 <thread>35740be5-b5a4-4c4e-962a-a03b14ed92f4</thread>
 <body>
 But to be frank, and give it thee again.
 And yet I wish but for the thing I have.
 My bounty is as boundless as the sea,
 My love as deep; the more I give to thee,
 The more I have, for both are infinite.
 </body>
 </message>

 and the following prerequisites:

 o Sender JID as "juliet@capulet.lit/balcony"

 o Recipient JID as "romeo@montegue.lit"

 o Session Master Key (SMK) as (base64 encoded)
 "xWtdjhYsH4Va_9SfYSefsJfZu03m5RrbXo_UavxxeU8"

 o SMK identifier (SID) as "835c92a8-94cd-4e96-b3f3-b2e75a438f92"

 The sending agent performs steps 1, 2, and 3 from Section 6.2.2 to
 generate the envelope:

Miller & Wallace Expires January 5, 2015 [Page 18]

Internet-Draft XMPP E2E July 2014

 <forwarded xmlns='urn:xmpp:forward:0'>
 <delay xmlns='urn:xmpp:delay'
 stamp='1492-05-12T20:07:37.012Z'/>
 <message xmlns='jabber:client'
 from='juliet@capulet.lit/balcony'
 to='romeo@montegue.lit'
 type='chat'>
 <thread>35740be5-b5a4-4c4e-962a-a03b14ed92f4</thread>
 <body>
 But to be frank, and give it thee again.
 And yet I wish but for the thing I have.
 My bounty is as boundless as the sea,
 My love as deep; the more I give to thee,
 The more I have, for both are infinite.
 </body>
 </message>
 </forwarded>

 Then the sending agent performs steps 4 through 7 (with Content
 Master Key as "LViSXX0Jx-I3v1zY1-KcGeivmWKuq0QE_71ywQGU6OhlM2NoQo1zHi
 77zI3ieIUh7Wb1S3kXmNily0_FZoIG7A", base64url encoded) to generate the
 [JOSE-JWE] outputs:

 JWE Header

 {
 "alg":"A256KW",
 "enc":"A256CBC+HS512",
 "kid":"835c92a8-94cd-4e96-b3f3-b2e75a438f92"
 }

 JWE Encrypted Key

 2tsmGH-WQdBxxJEs3d6LB2ovK6e1_9C1ogizJ9c6OvLmC6IeilHZ2Mimq2AElgI
 ploz0VQv5LOH9ST93WvvhVzMHSfx0Cwl0

 JWE Initialization Vector

 ncOH4MsHT9HlJxnirx4qwg

Miller & Wallace Expires January 5, 2015 [Page 19]

Internet-Draft XMPP E2E July 2014

 JWE Ciphertext

 FkFc4xGTVkjn7ojtS0SUY8IWfqsQKEIAlvLaBKieqVX1PAlq1ZjPp4TZC2I2eh7
 01Lef3iRuNZd1nlgP2aREyHYCpE3FAelUoVG90B1FrJMnDUKAka7eb6GImamWPf
 9onV-m5-GcUpejO9f1oPi-rwHzp475UPdAeKq5Z4zds8yXhQP-XyJbCPTtM-UQC
 2-_q-3EKBHC4jM3qWDxVJ0JbIif3fCVRowzJh4AOB84YrfvkgUjMItqQPg2H6QB
 NqGUspLI634lM8R-mhGciDZX2Jh_nKoXLAf5GCnvL9PlI7OdFqocPBIIPpjNrgX
 _Z4PFjeq7ILx98GhVkryLYU9HVOFPCYci-lF9nfw1geliLfkoj5QZyi4J2SOtYa
 O_zPmQvCXaUREqPf5UDAlgvc50a4ByYnNbkWSbhZ5Z388s8ELzPSE9XypdgP-1c
 SyRke7V8iGe4eHNsm01TgWILYOFK4mYAM52OTitJxmQtmRp6izY5ZFdH9f_WdoB
 1RXmGEZydvL-estcjx5ghsV3gktedIl0HA4R_M_N5TFIwv7hiisyRLi2aQtyFbE
 7pZ6Oz-cYsLc4qFfXbb13U9a2-Byul8hm_E2b3m4GMhmsCiROm-uht9Ek4h9BIx
 FhDKPr-htOXc93-uQNZlAQfkITAKlJfQ

 JWE Integrity Value

 Aj8lKdPMDE4U82UAhDJBaRrl3USmuzS2hfFOe_OBEv8

 Then the sending agent performs steps 8 and 9, and sends the
 following:

Miller & Wallace Expires January 5, 2015 [Page 20]

Internet-Draft XMPP E2E July 2014

 <message xmlns='jabber:client'
 from='juliet@capulet.lit/balcony'
 id='fJZd9WFIIwNjFctT'
 to='romeo@montegue.lit'
 type='chat'>
 <e2e xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'
 type='enc'
 id='835c92a8-94cd-4e96-b3f3-b2e75a438f92'>
 <encheader>
 eyJhbGciOiJBMjU2S1ciLCJlbmMiOiJBMjU2Q0JDK0hTNTEyIiwia2lkI
 joiODM1YzkyYTgtOTRjZC00ZTk2LWIzZjMtYjJlNzVhNDM4ZjkyIn0
 </encheader>
 <cmk>
 2tsmGH-WQdBxxJEs3d6LB2ovK6e1_9C1ogizJ9c6OvLmC6IeilHZ2Mimq
 2AElgIploz0VQv5LOH9ST93WvvhVzMHSfx0Cwl0
 </cmk>
 <iv>
 ncOH4MsHT9HlJxnirx4qwg
 </iv>
 <data>
 FkFc4xGTVkjn7ojtS0SUY8IWfqsQKEIAlvLaBKieqVX1PAlq1ZjPp4TZC
 2I2eh701Lef3iRuNZd1nlgP2aREyHYCpE3FAelUoVG90B1FrJMnDUKAka
 7eb6GImamWPf9onV-m5-GcUpejO9f1oPi-rwHzp475UPdAeKq5Z4zds8y
 XhQP-XyJbCPTtM-UQC2-_q-3EKBHC4jM3qWDxVJ0JbIif3fCVRowzJh4A
 OB84YrfvkgUjMItqQPg2H6QBNqGUspLI634lM8R-mhGciDZX2Jh_nKoXL
 Af5GCnvL9PlI7OdFqocPBIIPpjNrgX_Z4PFjeq7ILx98GhVkryLYU9HVO
 FPCYci-lF9nfw1geliLfkoj5QZyi4J2SOtYaO_zPmQvCXaUREqPf5UDAl
 gvc50a4ByYnNbkWSbhZ5Z388s8ELzPSE9XypdgP-1cSyRke7V8iGe4eHN
 sm01TgWILYOFK4mYAM52OTitJxmQtmRp6izY5ZFdH9f_WdoB1RXmGEZyd
 vL-estcjx5ghsV3gktedIl0HA4R_M_N5TFIwv7hiisyRLi2aQtyFbE7pZ
 6Oz-cYsLc4qFfXbb13U9a2-Byul8hm_E2b3m4GMhmsCiROm-uht9Ek4h9
 BIxFhDKPr-htOXc93-uQNZlAQfkITAKlJfQ
 </data>
 <mac>
 Aj8lKdPMDE4U82UAhDJBaRrl3USmuzS2hfFOe_OBEv8
 </mac>
 </e2e>
 </message>

7. Signatures

7.1. Determining Support

 If an agent supports receiving end-to-end object signatures, it MUST
 advertise that fact in its responses to [XEP-0030] information
 ("disco#info") requests by returning a feature of
 "urn:ietf:params:xml:ns:xmpp-e2e:6:signatures".

Miller & Wallace Expires January 5, 2015 [Page 21]

Internet-Draft XMPP E2E July 2014

 <iq xmlns='jabber:client'
 id='disco1'
 to='romeo@montegue.lit/garden'
 type='result'>
 <query xmlns='http://jabber.org/protocol/disco#info'>
 ...
 <feature xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6:signatures'/>
 ...
 </query>
 </iq>

 To facilitate discovery, an agent SHOULD also include [XEP-0115]
 information in any directed or broadcast presence updates.

7.2. Signing XMPP Stanzas

 The basic process that a sending agent follows for authenticating
 stanzas is the same regardless of the kind of stanza (i.e., <iq/>,
 <message/>, or <presence/>).

7.2.1. Process

 For a given plaintext stanza (S), the sending agent performs the
 following:

 1. Ensures the plaintext stanza is fully qualified, including the
 proper namespace declarations (e.g., contains the attribute
 'xmlns' set to the value "jabber:client" for 'jabber:client'
 stanzas defined in [RFC6120]).

 2. Notes the current UTC date and time (N) when this stanza is
 constructed, formatted as described under Section 10.

 3. Constructs a forwarding envelope (M) using a <forwarded/> element
 qualified by the "urn:xmpp:forward:0" namespace (as defined in
 [XEP-0297]) as follows:

 * The child element <delay/> qualified by the "urn:xmpp:delay"
 namespace (as defined in [XEP-0203]) with the attribute
 'stamp' set to the UTC date and time value N

 * The plaintext stanza S

https://datatracker.ietf.org/doc/html/rfc6120

Miller & Wallace Expires January 5, 2015 [Page 22]

Internet-Draft XMPP E2E July 2014

 4. Converts the forwarding envelope (M) to a UTF-8 encoded string
 (M'), optionallly removing line breaks and other insignificant
 whitespace between elements and attributes, i.e. M' =
 UTF8-encode(M). We call M' a "stanza-string" because for
 purposes of encryption and decryption it is treated not as XML
 but as an opaque string (this avoids the need for complex
 canonicalization of the XML input).

 5. Chooses a private asymmetric key (PK) for which the sending agent
 has published the corresponding public key to the intended
 recipients.

 6. Performs the message signatures steps from [JOSE-JWS] to generate
 the JWS Header (H) and JWS Signature (I); using the following
 inputs:

 * The 'alg' property is set to an appropriate signature
 algorithm for PK (e.g., "R256").

 * M' as the JWS Payload.

 7. Constructs an <e2e/> element qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace as follows:

 * The attribute 'type' set to the value "sig"

 * The child element <sigheader/> qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace and with XML
 character data as H, encoded base64url as per [RFC4648].

 * The child element <data/> qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace and with XML
 character data as M', encoded base64url as per [RFC4648].

 * The child element <sig/> qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace and with XML
 character data as I, encoded base64url as per [RFC4648].

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648

Miller & Wallace Expires January 5, 2015 [Page 23]

Internet-Draft XMPP E2E July 2014

 8. Sends the <e2e/> element as the payload of a stanza that SHOULD
 match the stanza from step 1 in kind (e.g., <message/>), type
 (e.g., "chat"), and addressing (e.g., to="romeo@montegue.lit"
 from="juliet@capulet.lit/balcony"). If the original stanza (S)
 has a value for the 'id' attribute, this stanza SHOULD NOT use
 the same value for its "id" attribute.

7.3. Verifying Signed XMPP Stanzas

7.3.1. Protocol Not Understood

 If the receiving agent does not understand the protocol, it MUST do
 one and only one of the following: (1) ignore the <e2e/> extension,
 (2) ignore the entire stanza, or (3) return a <service-unavailable/>
 error to the sender, as described in [RFC6120].

 NOTE: If the inbound stanza is an <iq/>, the receiving agent MUST
 return an error to the sending agent, to comply with the exchanging
 of IQ stanzas in [RFC6121].

7.3.2. Process

 Upon receipt of a signed stanza, the receiving agent performs the
 following:

 1. Ensures it has appropriate materials to verify the signature,
 which generally means ensuring that it possesses one or more
 public keys for the sending agent (if one is not provided as part
 of the JWS Header).

 2. Performs the message validation steps from [JOSE-JWS], with the
 following inputs:

 * The JWS Header H from the <sigheader/> element's character
 data content.

 * The JWS payload M' from the <data/> element's character data
 content.

 * The JWS Signature from the <sig/> element's character data
 content.

https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc6121

Miller & Wallace Expires January 5, 2015 [Page 24]

Internet-Draft XMPP E2E July 2014

 3. Converts the forwarding envelope UTF-encoded string M' into XML
 element M.

 4. Obtains the UTC date and time N from the <delay/> child element,
 and verifies it is within the accepted range, as specified in

Section 10.

 5. Obtains the plaintext stanza S, which is a child element node of
 M; the stanza MUST be fully qualified with the proper namespace
 declrations from XMPP stanzas, to help distinguish it from other
 content within M.

7.3.3. Insufficient Information

 At step 1, if the receiving agent does not have the key used to sign
 the stanza, or the receiving agent could not otherwise determine it,
 it MAY return a <bad-request/> error to the sending agent (as
 described in [RFC6120]), optionally supplemented by an application-
 specific error condition element of <insufficient-information/>:

 <message xmlns='jabber:client'
 from='juliet@capulet.lit/balcony'
 id='fJZd9WFIIwNjFctT'
 to='romeo@montegue.lit/garden'
 type='chat'>
 <e2e xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'
 type='sig'>
 <sigheader>[XML character data]</sigheader>
 <data>[XML character data]</data>
 <sig>[XML character data]</sig>
 </e2e>
 <error type='modify'>
 <bad-request
 xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
 <insufficient-information
 xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'/>
 </error>
 </message>

 In addition to returning an error, the receiving agent SHOULD NOT
 present the stanza to the intended recipient (human or application)
 and SHOULD provide some explicit alternate processing of the stanza
 (which MAY be to display a message informing the recipient that it
 has received a stanza that cannot be verified).

https://datatracker.ietf.org/doc/html/rfc6120

Miller & Wallace Expires January 5, 2015 [Page 25]

Internet-Draft XMPP E2E July 2014

7.3.4. Failed Verification

 At step 2, if the receiving agent is unable to successfully verify
 the stanza, the receiving agent SHOULD return a <bad-request/> error
 to the sending agent (as described in [RFC6120]), optionally
 supplemented by an application-specific error condition element of
 <verification-failed/>:

 <message xmlns='jabber:client'
 from='juliet@capulet.lit/balcony'
 id='fJZd9WFIIwNjFctT'
 to='romeo@montegue.lit/garden'
 type='chat'>
 <e2e xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'
 type='sig'>
 <sigheader>[XML character data]</sigheader>
 <data>[XML character data]</data>
 <sig>[XML character data]</sig>
 </e2e>
 <error type='modify'>
 <bad-request
 xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
 <verification-failed
 xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'/>
 </error>
 </message>

 In addition to returning an error, the receiving agent SHOULD NOT
 present the stanza to the intended recipient (human or application)
 and SHOULD provide some explicit alternate processing of the stanza
 (which MAY be to display a message informing the recipient that it
 has received a stanza that cannot be verified).

7.3.5. Timestamp Not Acceptable

 At step 4, if the stanza is successfully verified but the timestamp
 fails the checks outlined in Section 10, the receiving agent MAY
 return a <not-acceptable/> error to the sender (as described in
 [RFC6120]), optionally supplemented by an application-specific error
 condition element of <bad-timestamp/> (previously defined in
 [RFC3923]):

https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc3923

Miller & Wallace Expires January 5, 2015 [Page 26]

Internet-Draft XMPP E2E July 2014

 <message xmlns='jabber:client'
 from='juliet@capulet.lit/balcony'
 id='fJZd9WFIIwNjFctT'
 to='romeo@montegue.lit/garden'
 type='chat'>
 <e2e xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'
 type='sig'>
 <sigheader>[XML character data]</sigheader>
 <data>[XML character data]</data>
 <sig>[XML character data]</sig>
 </e2e>
 <error type='modify'>
 <not-acceptable
 xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
 <bad-timestamp
 xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'/>
 </error>
 </message>

7.3.6. Successful Verification

 If the receiving agent successfully verified the payload, it SHOULD
 NOT return a stanza error. However, if the signed stanza is an <iq/>
 of type "get" or "set", the response MAY be sent unsigned if the
 receiving agent does not have an appropriate public-private key-pair.

 Otherwise, the receiving agent SHOULD send the <iq/> response signed
 as per Section 7.2.1, with the 'type' attribute set to the value
 "result", even if the response to the signed <iq/> stanza is of type
 "error". The error applies to the signed stanza, not the wrapping
 stanza.

7.4. Example - Signing a Message

 NOTE: unless otherwise indicated, all line breaks are included for
 readability.

 The sending agent beings with the plaintext version of <message/>
 stanza 'S':

Miller & Wallace Expires January 5, 2015 [Page 27]

Internet-Draft XMPP E2E July 2014

 <message xmlns='jabber:client'
 from='juliet@capulet.lit/balcony'
 to='romeo@montegue.lit'
 type='chat'>
 <thread>35740be5-b5a4-4c4e-962a-a03b14ed92f4</thread>
 <body>
 But to be frank, and give it thee again.
 And yet I wish but for the thing I have.
 My bounty is as boundless as the sea,
 My love as deep; the more I give to thee,
 The more I have, for both are infinite.
 </body>
 </message>

 Then the sending agent performs steps 1, 2, and 3 from Section 7.2.1
 generate the envelope M:

 <forwarded xmlns='urn:xmpp:forward:0'>
 <delay xmlns='urn:xmpp:delay'
 stamp='1492-05-12T20:07:37.012Z'/>
 <message xmlns='jabber:client'
 from='juliet@capulet.lit/balcony'
 to='romeo@montegue.lit'
 type='chat'>
 <thread>35740be5-b5a4-4c4e-962a-a03b14ed92f4</thread>
 <body>
 But to be frank, and give it thee again.
 And yet I wish but for the thing I have.
 My bounty is as boundless as the sea,
 My love as deep; the more I give to thee,
 The more I have, for both are infinite.
 </body>
 </message>
 </forwarded>

 Then the sending agent performs steps 4, 5, and 6 to generate the
 [JOSE-JWS] outputs:

 JWS Header (before base64url encoding)

 {
 "alg":"RS512",
 "kid":"juliet@capulet.lit"
 }

Miller & Wallace Expires January 5, 2015 [Page 28]

Internet-Draft XMPP E2E July 2014

 JWS Payload

 PGZvcndhcmRlZCB4bWxucz0idXJuOnhtcHA6Zm9yd2FyZDowIj48ZGVsYXkgeG1
 sbnM9InVybjp4bXBwOmRlbGF5IiBzdGFtcD0iMTQ5Mi0wNS0xMlQyMDowNzozNy
 4wMTJaIi8-PG1lc3NhZ2UgeG1sbnM9ImphYmJlcjpjbGllbnQiIGZyb209Imp1b
 GlldEBjYXB1bGV0LmxpdC9iYWxjb255IiB0bz0icm9tZW9AbW9udGVndWUubGl0
 IiB0eXBlPSJjaGF0Ij48dGhyZWFkPjM1NzQwYmU1LWI1YTQtNGM0ZS05NjJhLWE
 wM2IxNGVkOTJmNDwvdGhyZWFkPjxib2R5PkJ1dCB0byBiZSBmcmFuaywgYW5kIG
 dpdmUgaXQgdGhlZSBhZ2Fpbi4gQW5kIHlldCBJIHdpc2ggYnV0IGZvciB0aGUgd
 GhpbmcgSSBoYXZlLiBNeSBib3VudHkgaXMgYXMgYm91bmRsZXNzIGFzIHRoZSBz
 ZWEsIE15IGxvdmUgYXMgZGVlcDsgdGhlIG1vcmUgSSBnaXZlIHRvIHRoZWUsIFR
 oZSBtb3JlIEkgaGF2ZSwgZm9yIGJvdGggYXJlIGluZmluaXRlLjwvYm9keT48L2
 1lc3NhZ2U-PC9mb3J3YXJkZWQ-

 JWS Signature

 YPfGouD50j0C_C-RneawG0jxXWDXgBkN3FJz6eaBFIPCh3hopiwtwKir7Yamvgt
 OrqhXx2pcu-70caGi6mKKLWvpdwdJ3nEnhdjPOd3CmLdaK_PBAMtIt8d3155hdl
 qNxSMsJN7PxmNLNwJhbksAsI-2TcCQsuxdIPXh6hcqBm44BpVio6AoRPqwF06XZ
 MMBMOMnEFcV6Ht20wCK1BEGgOmN3KYPbwKeTctG8HKPAh25_K66aEXT66lI19uW
 j1fGFJ79QQHUhc5y9pSKmpK7HKruPMRyrvpzBSfUhcb62nLXhM-LzY5taaDECzi
 fCi-IxySBtJJtPCqYAYW_IbrRFg

 Then the sending agent performs steps 7 and 8 and sends the
 following:

Miller & Wallace Expires January 5, 2015 [Page 29]

Internet-Draft XMPP E2E July 2014

 <message xmlns='jabber:client'
 from='juliet@capulet.lit/balcony'
 id='6aAWpciGV98qaegk'
 to='romeo@montegue.lit'
 type='cat'>
 <e2e xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'
 type='sig'>
 <sigheader>
 eyJhbGciOiJSUzUxMiIsImtpZCI6Imp1bGlldEBjYXB1bGV0LmxpdCJ9
 </sigheader>
 <data>
 PGZvcndhcmRlZCB4bWxucz0idXJuOnhtcHA6Zm9yd2FyZDowIj48ZGVsY
 XkgeG1sbnM9InVybjp4bXBwOmRlbGF5IiBzdGFtcD0iMTQ5Mi0wNS0xMl
 QyMDowNzozNy4wMTJaIi8-PG1lc3NhZ2UgeG1sbnM9ImphYmJlcjpjbGl
 lbnQiIGZyb209Imp1bGlldEBjYXB1bGV0LmxpdC9iYWxjb255IiB0bz0i
 cm9tZW9AbW9udGVndWUubGl0IiB0eXBlPSJjaGF0Ij48dGhyZWFkPjM1N
 zQwYmU1LWI1YTQtNGM0ZS05NjJhLWEwM2IxNGVkOTJmNDwvdGhyZWFkPj
 xib2R5PkJ1dCB0byBiZSBmcmFuaywgYW5kIGdpdmUgaXQgdGhlZSBhZ2F
 pbi4gQW5kIHlldCBJIHdpc2ggYnV0IGZvciB0aGUgdGhpbmcgSSBoYXZl
 LiBNeSBib3VudHkgaXMgYXMgYm91bmRsZXNzIGFzIHRoZSBzZWEsIE15I
 GxvdmUgYXMgZGVlcDsgdGhlIG1vcmUgSSBnaXZlIHRvIHRoZWUsIFRoZS
 Btb3JlIEkgaGF2ZSwgZm9yIGJvdGggYXJlIGluZmluaXRlLjwvYm9keT4
 8L21lc3NhZ2U-PC9mb3J3YXJkZWQ-
 </data>
 <sig>
 YPfGouD50j0C_C-RneawG0jxXWDXgBkN3FJz6eaBFIPCh3hopiwtwKir7
 YamvgtOrqhXx2pcu-70caGi6mKKLWvpdwdJ3nEnhdjPOd3CmLdaK_PBAM
 tIt8d3155hdlqNxSMsJN7PxmNLNwJhbksAsI-2TcCQsuxdIPXh6hcqBm4
 4BpVio6AoRPqwF06XZMMBMOMnEFcV6Ht20wCK1BEGgOmN3KYPbwKeTctG
 8HKPAh25_K66aEXT66lI19uWj1fGFJ79QQHUhc5y9pSKmpK7HKruPMRyr
 vpzBSfUhcb62nLXhM-LzY5taaDECzifCi-IxySBtJJtPCqYAYW_IbrRFg
 </sig>
 </e2e>
 </message>

8. Requesting Session Keys

 Because of the dynamic nature of XMPP stanza routing, the protocol
 does not exchange session keys as part of the encrypted stanza.
 Instead, a separate protocol is used by receiving agents to request a
 particular session key from the sending agent.

8.1. Request Process

 Before a SMK can be requested, the receiving agent MUST have at least
 one public key for which it also has the private key. The public
 key(s) are provided to the sending agent as part of this process.

Miller & Wallace Expires January 5, 2015 [Page 30]

Internet-Draft XMPP E2E July 2014

 To request a SMK, the receiving agent performs the following:

 1. Constructs a [JOSE-JWK] JWK Set (KS), containing information
 about each public key the requesting agent wishes to use. Each
 key SHOULD include a value for the property 'kid' which uniquely
 identifies it within the context of all provided keys. Each key
 MUST include a value for the property 'kid' if any two keys use
 the same algorithm.

 2. Constructs a <keyreq/> element qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace as follows:

 * The attribute 'id' set to the SMK identifier value SID.

 * The child element <pkey/> qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace and with XML
 character data as KS, encoded base64url as per [RFC4648].

 3. Sends the <keyreq/> element as the payload of an <iq/> stanza
 with the attribute 'type' set to "get", the attribute 'to' set to
 the full JID of the original encrypted stanza's sender, and the
 attribute 'id' set to an opaque string value the receiving agent
 uses to track the <iq/> response.

8.2. Accept Process

 If the sending agent approves the request, it performs the following
 steps:

 1. Generate a JSON Web Key (JWK) representing the symmetric SMK
 (according to [JOSE-JWK]):

 * The "kty" parameter MUST be "oct".

 * The "kid" parameter MUST be the SID.

https://datatracker.ietf.org/doc/html/rfc4648

Miller & Wallace Expires January 5, 2015 [Page 31]

Internet-Draft XMPP E2E July 2014

 * The "k" parameter MUST be the SMK, encoded as base64url.

 * The "alg" parameter, if present, MUST be set to the algorithm
 in use for encrypting messages from Section 6.2.

 * The "use" parameter, if present, MUST be set to "enc".

 2. Chooses a key (PK) from the keys provided via KS, and notes its
 identifier value 'kid'.

 3. Protects the SMK using the process outlined in [JOSE-KEYPROTECT]
 to generate the JWE Header (H), JWE Encrypted Key (E), JWE
 Initialization Vector (IV), JWE Ciphertext (C), and JWE Integrity
 Value (I); using the following inputs:

 * The 'alg' property is set to an algorithm appropriate for the
 chosen PK (e.g., "RSA-OAEP" for a "RSA" key).

 * The 'enc' property is set to the intended content encryption
 algorithm.

 * A randomly generated CMK. See [RFC4086] for considerations on
 generating random values.

 * A randomly generated initialization vector. See [RFC4086] for
 considerations on generating random values.

 * SMK, formatted as a JWK as above.

 4. Constructs a <keyreq/> element qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace as follows:

 * The attribute 'id' set to the SMK Identifier (SID).

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4086

Miller & Wallace Expires January 5, 2015 [Page 32]

Internet-Draft XMPP E2E July 2014

 * The child element <encheader/> qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace and with XML
 character data as H, encoded base64url as per [RFC4648].

 * The child element <cmk/> qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace and with XML
 character data as E, encoded base64url as per [RFC4648].

 * The child element <iv/> qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace and with XML
 character data as IV, encoded base64url as per [RFC4648].

 * The child element <data/> qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace and with XML
 character data as C, encoded base64url as per [RFC4648].

 * The child element <mac/> qualified by the
 "urn:ietf:params:xml:ns:xmpp-e2e:6" namespace and with XML
 character data as I, encoded base64url as per [RFC4648].

 5. Sends the <keyreq/> element as the payload of an <iq/> stanza
 with the attribute 'type' set to "result", the attribute 'to' set
 to the full JID from the request <iq/>'s 'from' attribute, and
 the attribute 'id' set to the value of the request <iq/>'s 'id'
 attribute.

8.3. Error Conditions

 If the sending agent does not approve the request, it sends an <iq/>
 stanza of type "error" and containing the reason for denying the
 request:

 o <forbidden/>: the key request is made by an entity that is not
 authorized to decrypt stanzas from the sending agent and/or for
 the indicated SID.

 o <item-not-found/>: the requested SID is no longer valid.

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648

Miller & Wallace Expires January 5, 2015 [Page 33]

Internet-Draft XMPP E2E July 2014

 o <not-acceptable/>: the key request did not contain any keys the
 sending agent understands.

8.4. Example of Successful Key Request

 NOTE: unless otherwise indicated, all line breaks are included for
 readability.

 To begin a key request, the receiving agent performs step 1 from
Section 8.1 to generate the [JOSE-JWK]:

 {
 "keys": [{
 "kty":"RSA",
 "kid":"romeo@montegue.lit/garden",
 "n":"vtqejkMF01h8oKEaHfHEYO0C2jM7eISbbSvNs0SNItYWO6GbjpJf
 N4ldXw2vpVRdysnwU3zk6o2_SD0YCH1WgeuI0QK1knMTDdNSXx52e1c4BTw
 hlA8iHuutTWmpBqesn1GNZmqB3jYsJOkVBYwCJtkB9APaBvk0itlRtizjCf
 1HHnau7nGStyshgu8-srxi_d8rC5TTLSB_zT1i6fP8fwDloemXOtC0U65by
 5P-1ZHxaf_bD8fpjps6gwSgdkZKMJAI0bOWZWuMpp2ntqa0wLB7Ndxb2Ijr
 eog_s5ssAoSiXDVdoswSbp36ZP-1lnCk2j-vZ4qbhaFg5bZtgt-gwQ",
 "e":"AQAB"
 }]
 }

 Then the receiving agent performs step 2 to generate the <keyreq/>:

 <keyreq xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'
 id='835c92a8-94cd-4e96-b3f3-b2e75a438f92'>
 <pkey>
 eyJrZXlzIjpbeyJrdHkiOiJSU0EiLCJraWQiOiJyb21lb0Btb250ZWd1ZS5
 saXQvZ2FyZGVuIiwibiI6InZ0cWVqa01GMDFoOG9LRWFIZkhFWU8wQzJqTT
 dlSVNiYlN2TnMwU05JdFlXTzZHYmpwSmZONGxkWHcydnBWUmR5c253VTN6a
 zZvMl9TRDBZQ0gxV2dldUkwUUsxa25NVERkTlNYeDUyZTFjNEJUd2hsQThp
 SHV1dFRXbXBCcWVzbjFHTlptcUIzallzSk9rVkJZd0NKdGtCOUFQYUJ2azB
 pdGxSdGl6akNmMUhIbmF1N25HU3R5c2hndTgtc3J4aV9kOHJDNVRUTFNCX3
 pUMWk2ZlA4ZndEbG9lbVhPdEMwVTY1Ynk1UC0xWkh4YWZfYkQ4ZnBqcHM2Z
 3dTZ2RrWktNSkFJMGJPV1pXdU1wcDJudHFhMHdMQjdOZHhiMklqcmVvZ19z
 NXNzQW9TaVhEVmRvc3dTYnAzNlpQLTFsbkNrMmotdlo0cWJoYUZnNWJadGd
 0LWd3USIsImUiOiJBUUFCIn1dfQ
 </pkey>
 </keyreq>

 Then the receiving agent performs step 3 and sends the following:

Miller & Wallace Expires January 5, 2015 [Page 34]

Internet-Draft XMPP E2E July 2014

 <iq xmlns='jabber:client'
 from='romeo@montegue.lit/garden'
 id='xdJbWMA+'
 to='juliet@capulet.lit/balcony'
 type='get'>
 <keyreq xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'
 id='835c92a8-94cd-4e96-b3f3-b2e75a438f92'>
 <pkey>
 eyJrZXlzIjpbeyJrdHkiOiJSU0EiLCJraWQiOiJyb21lb0Btb250ZWd1Z
 S5saXQvZ2FyZGVuIiwibiI6InZ0cWVqa01GMDFoOG9LRWFIZkhFWU8wQz
 JqTTdlSVNiYlN2TnMwU05JdFlXTzZHYmpwSmZONGxkWHcydnBWUmR5c25
 3VTN6azZvMl9TRDBZQ0gxV2dldUkwUUsxa25NVERkTlNYeDUyZTFjNEJU
 d2hsQThpSHV1dFRXbXBCcWVzbjFHTlptcUIzallzSk9rVkJZd0NKdGtCO
 UFQYUJ2azBpdGxSdGl6akNmMUhIbmF1N25HU3R5c2hndTgtc3J4aV9kOH
 JDNVRUTFNCX3pUMWk2ZlA4ZndEbG9lbVhPdEMwVTY1Ynk1UC0xWkh4YWZ
 fYkQ4ZnBqcHM2Z3dTZ2RrWktNSkFJMGJPV1pXdU1wcDJudHFhMHdMQjdO
 ZHhiMklqcmVvZ19zNXNzQW9TaVhEVmRvc3dTYnAzNlpQLTFsbkNrMmotd
 lo0cWJoYUZnNWJadGd0LWd3USIsImUiOiJBUUFCIn1dfQ
 </pkey>
 </keyreq>
 </iq>

 If the sending agent accepts this key request, it performs step 1
 from Section 8.2 to generate JWK representation of the SMK:

 {
 "kty":"oct",
 "kid":"835c92a8-94cd-4e96-b3f3-b2e75a438f92",
 "k":"xWtdjhYsH4Va_9SfYSefsJfZu03m5RrbXo_UavxxeU8"
 }

 Then the sending agent performs steps 2 and 3 to generate the
 protected SMK:

 JWE Header (before base64url encoding)

 {
 "alg":"RSA-OAEP",
 "kid":"romeo@montegue.lit/garden",
 "enc":"A256CBC+HS512",
 "cty":"application/jwk+json"
 }

Miller & Wallace Expires January 5, 2015 [Page 35]

Internet-Draft XMPP E2E July 2014

 JWE Encrypted Key

 hKUOpAif76c-hmRwEphVB9wXjloLpwu75x98MSWyCBtfUgmopk93ttUXoZ4AAIk
 rZJOtrPUqPZwYHjay3ggfgjVljJ_KGhgqI5cScIzaAQs0Pxep6FnrsnUrw09Sjv
 2VRXOay4guMQnbQo0ibpifBxeuL9MJ_vdeb_BdSE8YZ4iTfMb7GT35gZC9NgweX
 3fiTEo2LjY8hEV3DHud5LlNZzYp9kLmAUZNIwGu7LtYyI4F7NnOv9oLx1HtmfE3
 _skkYtQoKMvMewLkIO88h325qCpWFdrLwPp63betCmewDJPaBdrp91rLchkXVo-
 d2ueKkb59TxWjMx7esBdaxCAcDQ

 JWE Initialization Vector

 Ggiego8UiSsj7GgY94qOng

 JWE Ciphertext

 4vIGDz9Hm6X4lSo9JoA6ZzS0KitztLGAiMUs3RTviFO09choPhxJNlOj8KX8QIL
 u4zZ-ytCnG-yzNx5SsT8KEQJhIf6_9yWplxpX173k6ZJV-sXGd4Mj9u7N0IqWQL
 K5DMytv7XopsZsR9QFCDNGew

 JWE Integrity Value

 3GuaasWV0XGTBbRtNP6OQ14_cHL-ZJC1naDtU6EIecw

 Then the sending agent performs step 4 to generate the <keyreq/>
 response:

Miller & Wallace Expires January 5, 2015 [Page 36]

Internet-Draft XMPP E2E July 2014

 <keyreq xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'
 id='835c92a8-94cd-4e96-b3f3-b2e75a438f92'>
 <encheader>
 eyJhbGciOiJSU0EtT0FFUCIsImtpZCI6InJvbWVvQG1vbnRlZ3VlLmxpdC9
 nYXJkZW4iLCJlbmMiOiJBMjU2Q0JDK0hTNTEyIiwiY3R5IjoiYXBwbGljYX
 Rpb24vandrK2pzb24ifQ
 </encheader>
 <cmk>
 hKUOpAif76c-hmRwEphVB9wXjloLpwu75x98MSWyCBtfUgmopk93ttUXoZ4
 AAIkrZJOtrPUqPZwYHjay3ggfgjVljJ_KGhgqI5cScIzaAQs0Pxep6Fnrsn
 Urw09Sjv2VRXOay4guMQnbQo0ibpifBxeuL9MJ_vdeb_BdSE8YZ4iTfMb7G
 T35gZC9NgweX3fiTEo2LjY8hEV3DHud5LlNZzYp9kLmAUZNIwGu7LtYyI4F
 7NnOv9oLx1HtmfE3_skkYtQoKMvMewLkIO88h325qCpWFdrLwPp63betCme
 wDJPaBdrp91rLchkXVo-d2ueKkb59TxWjMx7esBdaxCAcDQ
 </cmk>
 <iv>
 Ggiego8UiSsj7GgY94qOng
 </iv>
 <data>
 4vIGDz9Hm6X4lSo9JoA6ZzS0KitztLGAiMUs3RTviFO09choPhxJNlOj8KX
 8QILu4zZ-ytCnG-yzNx5SsT8KEQJhIf6_9yWplxpX173k6ZJV-sXGd4Mj9u
 7N0IqWQLK5DMytv7XopsZsR9QFCDNGew
 </data>
 <mac>
 3GuaasWV0XGTBbRtNP6OQ14_cHL-ZJC1naDtU6EIecw
 </mac>
 </keyreq>

 Then the sending agent performs step 5 and sends the following:

Miller & Wallace Expires January 5, 2015 [Page 37]

Internet-Draft XMPP E2E July 2014

 <iq xmlns='jabber:client'
 from='juliet@capulet.lit/balcony'
 id='xdJbWMA+'
 to='romeo@montegue.lit/garden'
 type='result'>
 <keyreq xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'
 id='835c92a8-94cd-4e96-b3f3-b2e75a438f92'>
 <encheader>
 eyJhbGciOiJSU0EtT0FFUCIsImtpZCI6InJvbWVvQG1vbnRlZ3VlLmxpdC9
 nYXJkZW4iLCJlbmMiOiJBMjU2Q0JDK0hTNTEyIiwiY3R5IjoiYXBwbGljYX
 Rpb24vandrK2pzb24ifQ
 </encheader>
 <cmk>
 hKUOpAif76c-hmRwEphVB9wXjloLpwu75x98MSWyCBtfUgmopk93ttUXoZ4
 AAIkrZJOtrPUqPZwYHjay3ggfgjVljJ_KGhgqI5cScIzaAQs0Pxep6Fnrsn
 Urw09Sjv2VRXOay4guMQnbQo0ibpifBxeuL9MJ_vdeb_BdSE8YZ4iTfMb7G
 T35gZC9NgweX3fiTEo2LjY8hEV3DHud5LlNZzYp9kLmAUZNIwGu7LtYyI4F
 7NnOv9oLx1HtmfE3_skkYtQoKMvMewLkIO88h325qCpWFdrLwPp63betCme
 wDJPaBdrp91rLchkXVo-d2ueKkb59TxWjMx7esBdaxCAcDQ
 </cmk>
 <iv>
 Ggiego8UiSsj7GgY94qOng
 </iv>
 <data>
 4vIGDz9Hm6X4lSo9JoA6ZzS0KitztLGAiMUs3RTviFO09choPhxJNlOj8KX
 8QILu4zZ-ytCnG-yzNx5SsT8KEQJhIf6_9yWplxpX173k6ZJV-sXGd4Mj9u
 7N0IqWQLK5DMytv7XopsZsR9QFCDNGew
 </data>
 <mac>
 3GuaasWV0XGTBbRtNP6OQ14_cHL-ZJC1naDtU6EIecw
 </mac>
 </keyreq>
 </iq>

9. Mulitple Operations

 The individual processes for encrypting and signing can be nested;
 the output of each process a complete stanza that could then be
 performed with the other. An implementation MUST be able to process
 one level of nesting (e.g., an encrypted stanza nested within a
 signed stanza), and SHOULD handle multiple levels within reasonable
 limits for the receiving agent.

10. Inclusion and Checking of Timestamps

 Timestamps are included to help prevent replay attacks. All
 timestamps MUST conform to [XEP-0082] and be presented as UTC with no
 offset, and SHOULD include the seconds and fractions of a second to

Miller & Wallace Expires January 5, 2015 [Page 38]

Internet-Draft XMPP E2E July 2014

 three digits. Absent a local adjustment to the sending agent's
 perceived time or the underlying clock time, the sending agent MUST
 ensure that the timestamps it sends to the receiver increase
 monotonically (if necessary by incrementing the seconds fraction in
 the timestamp if the clock returns the same time for multiple
 requests). The following rules apply to the receiving agent:

 o It MUST verify that the timestamp received is within an acceptable
 range of the current time. It is RECOMMENDED that implementations
 use an acceptable range of five minutes, although implementations
 MAY use a smaller acceptable range.

 o It SHOULD verify that the timestamp received is greater than any
 timestamp received in the last 10 minutes which passed the
 previous check.

 o If any of the foregoing checks fails, the timestamp SHOULD be
 presented to the receiving entity (human or application) marked as
 "old timestamp", "future timestamp", or "decreasing timestamp",
 and the receiving entity MAY return a stanza error to the sender.

 Note the foregoing assumes the stanza is received while the receiving
 agent is online; see Section 12 for offline storage considerations.

11. Interaction with Stanza Semantics

 The following limitations and caveats apply:

 o Undirected <presence/> stanzas SHOULD NOT be encrypted. Such
 stanzas are delivered to anyone the sender has authorized, and can
 generate a large volume of key requests.

 o Undirected <presence/> stanzas MAY be signed. However, note that
 signatures significantly increase the size of a stanza kind that
 is often multiplexed across to many XMPP entities; this could have
 large impacts on bandwidth and latency.

 o Stanzas directed to multiplexing services (e.g., multi-user chat)
 SHOULD NOT be encrypted, unless the sender has established an
 acceptable trust relationship with the multiplexing service.

Miller & Wallace Expires January 5, 2015 [Page 39]

Internet-Draft XMPP E2E July 2014

12. Interaction with Offline Storage

 The server makes its best effort to deliver stanzas. When the
 receiving agent is offline at the time of delivery, the server might
 store the message until the recipient is next online (offline storage
 does not apply to <iq/> or <presence/> stanzas, only <message/>
 stanzas). The following need to be considered:

 o If the sending agent is not also online when the message is
 delivered to the receiving agent from offline storage, then the
 decryption process fails for insufficient information as described
 in Section 6.3.3.

 o When performing the timestamp checks in Section 10, if the server
 includes delayed delivery data as specified in [XEP-0203] for when
 the server received the message, then the receiving agent SHOULD
 use the delayed delivery timestmap rather than the current time.

13. Mandatory-to-Implement Cryptographic Algorithms

 All algorithms that MUST be implemented for [JOSE-JWE] and [JOSE-JWS]
 also MUST be implemented for this specification. However, this
 specification further mandates the use of the following:

 o MUST implement the "RSA1_5" JWE algorithm.

 o MUST implement the "RS256" JWS algorithm.

14. Security Considerations

14.1. Storage of Encrypted Stanzas

 The recipient's server might store any <message/> stanzas received
 until the recipient is next available; this duration could be
 anywhere from a few minutes to several months.

14.2. Re-use of Session Master Keys

 A sender SHOULD NOT use the same SMK for stanzas intended for
 different recipients, as determined by the localpart and domainpart
 of the recipient's JID.

 A sender MAY re-use a SMK for several stanzas to the same recipient.
 In this case, the SID remains the same, but the sending agent MUST

Miller & Wallace Expires January 5, 2015 [Page 40]

Internet-Draft XMPP E2E July 2014

 generate a new CMK and IV for each encrypted stanza. The sender
 SHOULD periodically generate a new SMK (and its associated SID);
 however, this specification does not mandate any specific algorithms
 or processes.

 In the case of <message/> stanzas, a sending agent might generate a
 new SMK each time it generates a new ThreadID, as outlined in
 [XEP-0201].

15. IANA Considerations

15.1. XML Namespaces Name for e2e Data in XMPP

 A number of URN sub-namespaces of encrypted and/or signed content for
 the Extensible Messaging and Presence Protocol (XMPP) is defined as
 follows.

 URI: urn:ietf:params:xml:ns:xmpp-e2e:6

 Specification: RFC XXXX

 Description: This is an XML namespace name of encrypted and/or
 signed content for the Extensible Messaging and Presence Protocol
 as defined [[this document]].

 Registrant Contact: IESG, <iesg@ietf.org>

 URI: urn:ietf:params:xml:ns:xmpp-e2e:6:encryption

 Specification: RFC XXXX

 Description: This is an XML namespace name signalling support for
 encrypted content for the Extensible Messaging and Presence
 Protocol as defined [[this document]].

 Registrant Contact: IESG, <iesg@ietf.org>

 URI: urn:ietf:params:xml:ns:xmpp-e2e:6:signatures

 Specification: RFC XXXX

 Description: This is an XML namespace name signalling support for
 signed content for the Extensible Messaging and Presence Protocol
 as defined [[this document]].

 Registrant Contact: IESG, <iesg@ietf.org>

Miller & Wallace Expires January 5, 2015 [Page 41]

Internet-Draft XMPP E2E July 2014

16. References

16.1. Normative References

 [E2E-REQ] Saint-Andre, P., "Requirements for End-to-End Encryption
 in the Extensible Messaging and Presence Protocol (XMPP)",

draft-saintandre-xmpp-e2e-requirements-01 (work in
 progress), March 2010.

 [JOSE-JWA]
 Jones, M., "JSON Web Algorithms (JWA)", draft-ietf-jose-

json-web-algorithms-11 (work in progress), May 2013.

 [JOSE-JWE]
 Jones, M., Rescola, E., and J. Hildebrand, "JSON Web
 Encryption (JWE)", draft-ietf-jose-json-web-encryption-11
 (work in progress), May 2013.

 [JOSE-JWK]
 Jones, M., "JSON Web Key (JWK)", draft-ietf-jose-json-web-

key-11 (work in progress), December 2012.

 [JOSE-JWS]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", draft-ietf-jose-json-web-signature-11
 (work in progress), May 2013.

 [JOSE-KEYPROTECT]
 Miller, M., "Using JSON Web Encryption (JWE) for
 Protecting JSON Web Key (JWK) Objects", draft-miller-jose-

jwe-protected-jwk-00 (work in progress), February 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2", RFC
4949, August 2007.

 [RFC6120] Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, March 2011.

 [RFC6121] Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Instant Messaging and Presence", RFC

6121, March 2011.

https://datatracker.ietf.org/doc/html/draft-saintandre-xmpp-e2e-requirements-01
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-11
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-11
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-encryption-11
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-11
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-11
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-signature-11
https://datatracker.ietf.org/doc/html/draft-miller-jose-jwe-protected-jwk-00
https://datatracker.ietf.org/doc/html/draft-miller-jose-jwe-protected-jwk-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc6121
https://datatracker.ietf.org/doc/html/rfc6121

Miller & Wallace Expires January 5, 2015 [Page 42]

Internet-Draft XMPP E2E July 2014

 [XEP-0030]
 Eatmon, R., Hildebrand, J., Millard, P., and P. Saint-
 Andre, "Service Discovery", XSF XEP 0030, June 2006.

 [XEP-0082]
 Saint-Andre, P., "XMPP Date and Time Profiles", XSF XEP
 0082, May 2003.

 [XEP-0115]
 Hildebrand, J., Troncon, R., and P. Saint-Andre, "Entity
 Capabilities", XSF XEP 0115, February 2008.

 [XEP-0203]
 Saint-Andre, P., "Delayed Delivery", XSF XEP 0203,
 September 2009.

 [XEP-0297]
 Wild, M. and K. Smith, "Stanza Forwarding", XSF XEP 0297,
 July 2012.

16.2. Informative References

 [RFC3923] Saint-Andre, P., "End-to-End Signing and Object Encryption
 for the Extensible Messaging and Presence Protocol
 (XMPP)", RFC 3923, October 2004.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", RFC 4086, June 2005.

 [XEP-0201]
 Saint-Andre, P., Paterson, I., and K. Smith, "Best
 Practices for Message Threads", XSF XEP 0203, November
 2010.

 [Key-Table]
 Housley, R., Polk, T., Hartman, S., and D. Zhang,
 "Database of Long-Lived Symmetric Cryptographic Keys",
 December 2013.

Appendix A. Schema for urn:ietf:params:xml:ns:xmpp-e2e:6

 The following XML schema is descriptive, not normative.

 <?xml version='1.0' encoding='UTF-8'?>

 <xs:schema
 xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:ietf:params:xml:ns:xmpp-e2e:6'

https://datatracker.ietf.org/doc/html/rfc3923
https://datatracker.ietf.org/doc/html/rfc4086

Miller & Wallace Expires January 5, 2015 [Page 43]

Internet-Draft XMPP E2E July 2014

 xmlns='urn:ietf:params:xml:ns:xmpp-e2e:6'
 elementFormDefault='qualified'>

 <xs:element name='e2e'>
 <xs:complexType>
 <xs:attribute name='id' type='xs:string' use='optional'/>
 <xs:attribute name='type'use='required'>
 <xs:simpleType>
 <xs:restriction base='xs:NMTOKEN'>
 <xs:enumeration value='enc'/>
 <xs:enumeration value='sig'/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:sequence>
 <xs:element ref='header' minOccurs='1' maxOccurs='1'/>
 <xs:element ref='cmk' minOccurs='1' maxOccurs='1'/>
 <xs:element ref='iv' minOccurs=1' maxOccurs='1'/>
 <xs:element ref='data' minOccurs='1' maxOccurs='1'/>
 <xs:element ref='mac' minOccurs='1' maxOccurs='1'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='keyreq'>
 <xs:complexType>
 <xs:attribute name='id' type='xs:string' use='required'/>
 <xs:sequence>
 <xs:element ref='pkey' minOccurs='0' maxOccurs='1'/>
 <xs:element ref='header' minOccurs='0' maxOccurs='1'/>
 <xs:element ref='cmk' minOccurs='1' maxOccurs='1'/>
 <xs:element ref='iv' minOccurs=1' maxOccurs='1'/>
 <xs:element ref='data' minOccurs='1' maxOccurs='1'/>
 <xs:element ref='mac' minOccurs='1' maxOccurs='1'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='cmk'>
 <xs:complexType>
 <xs:simpleType>
 <xs:extension base='xs:string'>
 </xs:extension>
 </xs:simpleType>
 </xs:complexType>
 </xs:element>

 <xs:element name='iv'>

Miller & Wallace Expires January 5, 2015 [Page 44]

Internet-Draft XMPP E2E July 2014

 <xs:complexType>
 <xs:simpleType>
 <xs:extension base='xs:string'>
 </xs:extension>
 </xs:simpleType>
 </xs:complexType>
 </xs:element>

 <xs:element name='data'>
 <xs:complexType>
 <xs:simpleType>
 <xs:extension base='xs:string'>
 </xs:extension>
 </xs:simpleType>
 </xs:complexType>
 </xs:element>

 <xs:element name='encheader'>
 <xs:complexType>
 <xs:simpleType>
 <xs:extension base='xs:string'>
 </xs:extension>
 </xs:simpleType>
 </xs:complexType>
 </xs:element>

 <xs:element name='mac'>
 <xs:complexType>
 <xs:simpleType>
 <xs:extension base='xs:string'>
 </xs:extension>
 </xs:simpleType>
 </xs:complexType>
 </xs:element>

 <xs:element name='pkey'>
 <xs:complexType>
 <xs:simpleType>
 <xs:extension base='xs:string'>
 </xs:extension>
 </xs:simpleType>
 </xs:complexType>
 </xs:element>

 <xs:element name='sigheader'>
 <xs:complexType>
 <xs:simpleType>
 <xs:extension base='xs:string'>

Miller & Wallace Expires January 5, 2015 [Page 45]

Internet-Draft XMPP E2E July 2014

 </xs:extension>
 </xs:simpleType>
 </xs:complexType>
 </xs:element>

 <xs:element name='bad-timestamp' type='empty'/>
 <xs:element name='decryption-failed' type='empty'/>
 <xs:element name='insufficient-information' type='empty'/>
 <xs:element name='verification-failed' type='empty'/>

 <xs:simpleType name='empty'>
 <xs:restriction base='xs:string'>
 <xs:enumeration value=''/>
 </xs:restriction>
 </xs:simpleType>

 </xs:schema>

Appendix B. Acknowledgements

 Thanks to Richard Barnes, Andrew Biggs, and Ben Schumacher for their
 feedback.

Authors' Addresses

 Matthew Miller
 Cisco Systems, Inc.
 1899 Wynkoop Street, Suite 600
 Denver, CO 80202
 USA

 Phone: +1-303-308-3204
 Email: mamille2@cisco.com

 Carl Wallace
 Red Hound Software, Inc.

 Email: carl@redhoundsoftware.com

Miller & Wallace Expires January 5, 2015 [Page 46]

