
HyBi Working Group L. Stout, Ed.
Internet-Draft &yet
Intended status: Standards Track J. Moffitt
Expires: February 20, 2014 E. Cestari
 cstar industries
 August 19, 2013

An XMPP Sub-protocol for WebSocket
draft-moffitt-xmpp-over-websocket-04

Abstract

 This document defines a binding for the XMPP protocol over a
 WebSocket transport layer. A WebSocket binding for XMPP provides
 higher performance than the current HTTP binding for XMPP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 20, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Stout, et al. Expires February 20, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft XMPP over WebSocket August 2013

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. XMPP Sub-Protocol . 3
3.1. Handshake . 3
3.2. Messages . 4
3.3. XMPP Stream Setup . 4
3.4. Stream Errors . 4
3.5. Closing the Connection 5
3.6. Stanzas . 6
3.7. Stream Restarts . 6
3.8. Pings and Keepalives 6
3.9. Use of TLS . 6
3.10. Stream Management . 7

4. Discovering Connection Method 7
5. Security Considerations 7
6. IANA Considerations . 8
7. Informative References 8

 Authors' Addresses . 9

1. Introduction

 Applications using XMPP (see [RFC6120] and [RFC6121]) on the Web
 currently make use of BOSH (see [XEP-0124] and [XEP-0206]), an XMPP
 binding to HTTP. BOSH is based on the HTTP long polling technique,
 and it suffers from high transport overhead compared to XMPP's native
 binding to TCP. In addition, there are a number of other known
 issues with long polling [RFC6202], which have an impact on BOSH-
 based systems.

 It would be much better in most circumstances to avoid tunneling XMPP
 over HTTP long polled connections and instead use the XMPP protocol
 directly. However, the APIs and sandbox that browsers have provided
 do not allow this. The WebSocket protocol [RFC6455] now exists to
 solve these kinds of problems. The WebSocket protocol is a bi-
 directional protocol that provides a simple message-based framing
 layer over raw sockets and allows for more robust and efficient
 communication in web applications.

 The WebSocket protocol enables two-way communication between a client
 and a server, effectively emulating TCP at the application layer and
 therefore overcoming many of the problems with existing long-polling
 techniques for bidirectional HTTP. This document defines a WebSocket
 sub-protocol for the Extensible Messaging and Presence Protocol
 (XMPP).

https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc6121
https://datatracker.ietf.org/doc/html/rfc6202
https://datatracker.ietf.org/doc/html/rfc6455

Stout, et al. Expires February 20, 2014 [Page 2]

Internet-Draft XMPP over WebSocket August 2013

2. Terminology

 The basic unit of framing in the WebSocket protocol is called a
 message. In XMPP, the basic unit is the stanza, which is a subset of
 the first-level children of each document in an XMPP stream (see

Section 9 of [RFC6120]). XMPP also has a concept of messages, which
 are stanzas whose top-level element name is message. In this
 document, the word "message" will mean a WebSocket message, not an
 XMPP message stanza (see Section 3.2).

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. XMPP Sub-Protocol

3.1. Handshake

 The XMPP sub-protocol is used to transport XMPP over a WebSocket
 connection. The client and server agree to this protocol during the
 WebSocket handshake (see Section 1.3 of [RFC6455]).

 During the WebSocket handshake, the client MUST include the |Sec-
 WebSocket-Protocol| header in its handshake, and the value |xmpp|
 MUST be included in the list of protocols. The reply from the server
 MUST also contain |xmpp| in its own |Sec-WebSocket-Protocol| header
 in order for an XMPP sub-protocol connection to be established.

 Once the handshake is complete, WebSocket messages sent or received
 will conform to the protocol defined in the rest of this document.

 C: GET /xmpp-websocket HTTP/1.1
 Host: example.com
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Origin: http://example.com
 ...
 Sec-WebSocket-Protocol: xmpp
 Sec-WebSocket-Version: 13

 S: HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 ...
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Protocol: xmpp

https://datatracker.ietf.org/doc/html/rfc6120#section-9
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6455#section-1.3

Stout, et al. Expires February 20, 2014 [Page 3]

Internet-Draft XMPP over WebSocket August 2013

 [WebSocket connection established]

 C: <stream:stream xmlns:stream="http://etherx.jabber.org/streams"
 xmlns="jabber:client"
 to="example.com"
 version="1.0">

3.2. Messages

 Data frame messages in the XMPP sub-protocol MUST be of the text type
 and contain UTF-8 encoded data. The close control frame's contents
 are specified in Section 3.5. Control frames other than close are
 not restricted.

 Unless noted in text, the word "message" will mean a WebSocket
 message composed of text data frames.

3.3. XMPP Stream Setup

 The first message sent after the handshake is complete MUST be an
 XMPP opening stream tag as defined in XMPP [RFC6120] or an XML text
 declaration (see Section 4.3.1 of [W3C.REC-xml-20081126]) followed by
 an XMPP opening stream tag. The stream tag MUST NOT be closed (i.e.
 the closing </stream:stream> tag should not appear in the message) as
 it is the start of the client's outgoing XML. The '<' character of
 the tag or text declaration MUST be the first character of the text
 payload.

 The server MUST respond with a message containing an error (see
Section 3.4), its own opening stream tag, or an XML text declaration

 followed by an opening stream tag.

 Except in the case of certain stream errors (see Section 3.4), the
 opening stream tag, <stream:stream>, MUST appear in a message by
 itself.

3.4. Stream Errors

 Stream level errors in XMPP are terminal. Should such an error
 occur, the server MUST send the stream error as a complete element in
 a message to the client.

 If the error occurs during the opening of a stream, the stream error
 message MUST start with an opening stream tag (see Section 4.7.1 of
 [RFC6120]) and end with a closing stream tag.

https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc6120#section-4.7.1
https://datatracker.ietf.org/doc/html/rfc6120#section-4.7.1

Stout, et al. Expires February 20, 2014 [Page 4]

Internet-Draft XMPP over WebSocket August 2013

 After the stream error and closing stream tag have been sent, the
 server MUST close the connection as in Section 3.5.

3.5. Closing the Connection

 Either the server or the client may close the connection at any time.
 Before closing the connection, the closing party SHOULD close the
 XMPP stream, if it has been established, by sending a message with
 the closing </stream:stream> tag. The XMPP stream is considered
 closed when a corresponding </stream:stream> tag is received from the
 other party.

 If a client closes the WebSocket connection without closing the XMPP
 stream after having enabled stream management (see Section 3.10), the
 server SHOULD keep the XMPP session alive for a period of time based
 on server policy, as specified in [XEP-0198].

 To initiate closing the WebSocket connection, the closing party MUST
 send a normal WebSocket close message with an empty body. The
 connection is considered closed when a matching close message is
 received (see Section 1.4 of [RFC6455]).

 Except in the case of certain stream errors (see Section 3.4), the
 closing stream tag, </stream:stream>, MUST appear in a message by
 itself.

 An example of ending an XMPP over WebSocket session by first closing
 the XMPP stream layer and then the WebSocket connection layer:

 Client (XMPP WSS) Server
	</stream:stream>	
	------------------------------------>	
	</stream:stream>	
	<------------------------------------	
	(XMPP Stream Closed)	
+-------------------------------------+		
WS CLOSE FRAME		
-->		
WS CLOSE FRAME		
<--		
(Connection Closed)		
 +---+

https://datatracker.ietf.org/doc/html/rfc6455#section-1.4

Stout, et al. Expires February 20, 2014 [Page 5]

Internet-Draft XMPP over WebSocket August 2013

3.6. Stanzas

 Each XMPP stanza MUST be sent in its own message. A stanza MUST NOT
 be split over multiple messages. All first level children of the
 <stream:stream> element MUST be treated the same as stanzas (e.g.
 <stream:features> and <stream:error>).

3.7. Stream Restarts

 After successful SASL authentication, an XMPP stream needs to be
 restarted. In these cases, as soon as the message is sent (or
 received) containing the success indication, both the server and
 client streams are implicitly closed, and new streams need to be
 opened. The client MUST open a new stream as in Section 3.3 and MUST
 NOT send a closing stream tag.

 S: <success xmlns="urn:ietf:params:xml:ns:xmpp-sasl" />

 [Streams implicitly closed]

 C: <stream:stream xmlns:stream="http://etherx.jabber.org/streams"
 xmlns="jabber:client"
 to="example.com"
 version="1.0">

3.8. Pings and Keepalives

 XMPP servers send whitespace pings as keepalives between stanzas, and
 XMPP clients can do the same as these extra whitespace characters are
 not significant in the protocol. Servers and clients SHOULD use
 WebSocket ping control frames instead for this purpose.

 In some cases, the WebSocket connection might be served by an
 intermediary connection manager and not the XMPP server. In these
 situations, the use of WebSocket ping messages are insufficient to
 test that the XMPP stream is still alive. Both the XMPP Ping
 extension [XEP-0199] and the XMPP Stream Management extension
 [XEP-0198] provide mechanisms to ping the XMPP server, and either
 extension (or both) MAY be used to determine the state of the
 connection.

3.9. Use of TLS

Stout, et al. Expires February 20, 2014 [Page 6]

Internet-Draft XMPP over WebSocket August 2013

 TLS cannot be used at the XMPP sub-protocol layer because the sub-
 protocol does not allow for raw binary data to be sent. Instead,
 enabling TLS SHOULD be done at the WebSocket layer using secure
 WebSocket connections via the |wss| URI scheme. (See Section 10.6 of
 [RFC6455]).

 Because TLS is to be provided outside of the XMPP sub-protocol layer,
 a server MUST NOT advertise TLS as a stream feature (see Section 4.6
 of [RFC6120]), and a client MUST ignore any advertised TLS stream
 feature, when using the XMPP sub-protocol.

3.10. Stream Management

 In order to alleviate the problems of temporary disconnections, the
 XMPP Stream Management extension [XEP-0198] MAY be used to confirm
 when stanzas have been received by the server.

 In particular, the use of session resumption in [XEP-0198] MAY be
 used to allow for recreating the same stream session state after a
 temporary network unavailability or after navigating to a new URL in
 a browser.

4. Discovering Connection Method

 The XMPP extension Discovering Alternate XMPP Connection Methods
 [XEP-0156] provides a mechanism to discover the additional
 information needed to connect to an XMPP server outside of the
 procedure defined in in Section 3 of [RFC6120].

 For the XMPP over Websocket connection type, the connection method
 name "_xmpp-client-websocket" is used to specify a URI for the
 server's WebSocket connection endpoint.

 An example entry advertising that the URI "wss://example.com/xmpp" is
 an XMPP over WebSocket endpoint, using a DNS TXT record as specified
 in [XEP-0156]:

 _xmppconnect IN TXT "_xmpp-client-websocket=wss://example.com/xmpp"

 Implementation Note: A server is able to expose both BOSH [XEP-0206]
 and WebSocket endpoints over the registered port 5280, using the URI
 path and connection upgrade headers to determine which transport to
 serve.

5. Security Considerations

https://datatracker.ietf.org/doc/html/rfc6455#section-10.6
https://datatracker.ietf.org/doc/html/rfc6455#section-10.6
https://datatracker.ietf.org/doc/html/rfc6120#section-4.6
https://datatracker.ietf.org/doc/html/rfc6120#section-4.6
https://datatracker.ietf.org/doc/html/rfc6120#section-3

Stout, et al. Expires February 20, 2014 [Page 7]

Internet-Draft XMPP over WebSocket August 2013

 Since application level TLS cannot be used (see Section 3.9),
 applications which need to protect the privacy of the XMPP traffic
 need to do so at the WebSocket or other appropriate layer.

 The Security Considerations for both WebSocket (See Section 10 of
 [RFC6455] and XMPP (See Section 13 of [RFC6120]) apply to the
 WebSocket XMPP sub-protocol.

6. IANA Considerations

 This specification requests IANA to register the WebSocket XMPP sub-
 protocol under the "WebSocket Subprotocol Name" Registry with the
 following data:

 Subprotocol Identifier: xmpp

 Subprotocol Common Name: WebSocket Transport for the Extensible
 Messaging and Presence Protocol (XMPP)

 Subprotocol Definition: RFC XXXX

 [[NOTE TO RFC EDITOR: Please change XXXX to the number assigned to
 this document upon publication.]]

7. Informative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6120] Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, March 2011.

 [RFC6121] Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Instant Messaging and Presence", RFC

6121, March 2011.

 [RFC6202] Loreto, S., Saint-Andre, P., Salsano, S., and G. Wilkins,
 "Known Issues and Best Practices for the Use of Long
 Polling and Streaming in Bidirectional HTTP", RFC 6202,
 April 2011.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC
6455, December 2011.

 [W3C.REC-xml-20081126]
 Sperberg-McQueen, C., Yergeau, F., Paoli, J., Bray, T.,
 and E. Maler, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-

https://datatracker.ietf.org/doc/html/rfc6455#section-10
https://datatracker.ietf.org/doc/html/rfc6455#section-10
https://datatracker.ietf.org/doc/html/rfc6120#section-13
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc6121
https://datatracker.ietf.org/doc/html/rfc6121
https://datatracker.ietf.org/doc/html/rfc6202
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455

Stout, et al. Expires February 20, 2014 [Page 8]

Internet-Draft XMPP over WebSocket August 2013

 xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126>.

 [XEP-0124]
 Paterson, I., Smith, D., Saint-Andre, P., and J. Moffitt,
 "Bidirectional-streams Over Synchronous HTTP (BOSH)", XSF
 XEP 0124, July 2010.

 [XEP-0156]
 Hildebrand, J. and P. Saint-Andre, "Discovering
 Alternative XMPP Connection Methods", XSF XEP 0156, June
 2007.

 [XEP-0198]
 Karneges, J., Saint-Andre, P., Hildebrand, J., Forno, F.,
 Cridland, D., and M. Wild, "Stream Management", XSF XEP
 0198, June 2011.

 [XEP-0199]
 Saint-Andre, P., "XMPP Ping", XSF XEP 0199, June 2009.

 [XEP-0206]
 Paterson, I. and P. Saint-Andre, "XMPP Over BOSH", XSF XEP
 0206, July 2010.

Authors' Addresses

 Lance Stout (editor)
 &yet

 Email: lance@andyet.net

 Jack Moffitt

 Email: jack@metajack.im

 Eric Cestari
 cstar industries

 Email: eric@cestari.info

http://www.w3.org/TR/2008/REC-xml-20081126

Stout, et al. Expires February 20, 2014 [Page 9]

