
Network Working Group R. Trace
Internet-Draft A. Foresti
Expires: December 17, 2012 S. Singhal
 O. Mazahir
 H. Nielsen
 B. Raymor
 R. Rao
 G. Montenegro
 Microsoft
 June 15, 2012

HTTP Speed+Mobility
draft-montenegro-httpbis-speed-mobility-02

Abstract

 This document describes "HTTP Speed+Mobility," a proposal for HTTP
 2.0 that emphasizes performance improvements and security while at
 the same time accounting for the important needs of mobile devices
 and applications. The proposal starts from both the Google SPDY
 protocol and the work the IETF has done around WebSockets. The
 proposal is not a final product but rather is intended to form a
 baseline for working group discussion.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 17, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

Trace, et al. Expires December 17, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft HTTP Speed+Mobility June 2012

 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Overview . 5
1.1.1. Maintain existing HTTP semantics 6
1.1.2. Layered Architecture 6
1.1.3. Use of Existing standards 6
1.1.4. Client is in control of content 7
1.1.5. Network Cost and Power 8

1.2. Definitions . 9
1.3. Protocol Overview . 10
1.3.1. Connection Management 12

1.4. Proxies . 12
2. Negotiation . 13
3. Session layer and Framing 15
3.1. Opening and Closing Sessions 15
3.2. Origin of Multiplexed Content 15
3.3. WebSocket Framing Protocol 16
3.4. Closing HTTP Speed+Mobility Sessions 17

4. Streams Layer . 18
4.1. Stream Management . 18
4.1.1. Stream Creation 18
4.1.2. Stream Data Exchange 18
4.1.3. Stream Half-Close 19
4.1.4. Stream Close . 19
4.1.5. Error Handling . 19

4.2. Stream Control Frames 20
4.2.1. SYN_STREAM . 20
4.2.2. SYN_REPLY . 21
4.2.3. RST_STREAM . 22
4.2.4. CREDIT_UPDATE . 23

4.3. Data Frames . 24
4.4. Name/Value Header Block 24
4.5. Compression . 25

5. Flow Control . 27
5.1. Stream Priority . 27
5.2. Credit Control . 27
5.3. Credit Control Declaration 27

http://trustee.ietf.org/license-info

Trace, et al. Expires December 17, 2012 [Page 2]

Internet-Draft HTTP Speed+Mobility June 2012

5.4. Credit Balance Updates 28
5.5. Turning Credit Control Off for a Stream 29
5.6. Increasing and Decreasing Stream Credit 29
5.7. Implementation Guidance and Considerations 29

6. General Notes . 31
6.1. HTTP Layering . 31
6.2. Relationship to SPDY 31
6.3. Server Push . 31
6.4. Open Issues . 31
6.4.1. Flow Control . 32
6.4.2. Streams Issues . 32

7. Acknowledgements . 33
8. References . 34
8.1. Normative References 34
8.2. Informative References 34

 Authors' Addresses . 35

Trace, et al. Expires December 17, 2012 [Page 3]

Internet-Draft HTTP Speed+Mobility June 2012

1. Introduction

 Over the course of its almost two decades of existence, the HTTP
 protocol has enabled the web to experience phenomenal growth and
 change the world in more ways than its creators might have imagined.
 HTTP's designers got many design principles right, including
 simplicity and robustness. These characteristics allow billions of
 devices to support and use HTTP in a multitude of communication
 scenarios. However, it is time to improve upon HTTP 1.1.

 Improving HTTP starts with speed. Web sites have become complex. A
 single site could comprise hundreds of different elements (from
 images to videos to ads to news feeds and so on) that need to get
 retrieved by the client before the page can be fully displayed.
 Users expect all of this to happen securely and instantly across all
 their devices and applications. In many scenarios, HTTP fails to
 meet these expectations. Speed improvements need to apply not only
 for browsers but also for apps. More and more, apps are how people
 access web services, in addition to their browser. A key attribute
 of mobile applications is that they may access only a subset of the
 web site's data, relying on local application logic to process the
 data and create a presentation and interaction layer.

 The design of HTTP--how every application and service on the web
 communicates today--can positively impact user experience,
 operational and environmental costs, and even the battery life of the
 devices you carry around. Improving HTTP should also ensure great
 battery life and low network cost on constrained devices. People and
 their apps should stay in control of network access. Finally, to
 achieve rapid adoption, HTTP 2.0 needs to retain as much
 compatibility as possible with the existing Web infrastructure. Done
 right, HTTP 2.0 can help people connect their devices and
 applications to the Internet fast, reliably, and securely over a
 number of diverse networks, with great battery life and low cost.

 At the core of the speed problem is that HTTP does not allow for out-
 of-order or interleaved responses. This requires the establishment
 of multiple TCP connections for concurrency (pipelining is formally
 supported by the protocol but is seldom implemented in practice).
 The overhead in terms of additional round trips and dealing with TCP
 slow start causes a significant performance penalty. This leads to a
 variety of issues, such as additional round trips for connection
 setup, slow-start delays, and potentially connection rationing: the
 client may not be able to dedicate many connections to any single
 server, and the server needs to protect itself from denial-of-service
 attacks. As a result, users are often disappointed in the perceived
 performance of websites.

Trace, et al. Expires December 17, 2012 [Page 4]

Internet-Draft HTTP Speed+Mobility June 2012

 Improving HTTP should also make mobile apps and devices better. When
 HTTP was first developed, mobile communication was virtually non-
 existent, but today the mobile Web is an integral and fast-growing
 part of the Web. The different conditions on mobile communications
 require rethinking of how protocols work. For example, people want
 their mobile devices to have better battery life. HTTP 2.0 can help
 decrease the power consumption of network access. Mobile devices
 also give people a choice of networks with different costs and
 bandwidth limits. Embedded sensors and clients face similar issues.
 Mobile considerations require that HTTP be network efficient while
 simultaneously being sensitive to the limited power, computation, and
 connectivity capabilities of the client device. To support mobile
 devices, HTTP needs to be able to "scale down" to allow clients to
 control the level of data received, the format of that data, and even
 the timing of that data.

1.1. Overview

 This draft describes our proposal for "HTTP Speed+Mobility". The
 approach targets broad HTTP applicability while emphasizing
 performance improvements and accounting for the important needs of
 mobile devices and applications.

 The proposal's intended outcome is a protocol that can be quickly and
 widely adopted in the industry, and start delivering real value to
 end users without imposing undue burden on hardware and software
 vendors, as well as administrators of legacy equipment. Implementers
 should also find it easy to understand due to the familiarity of some
 of its key concepts, which are aligned with innovations that were
 adopted in recent IETF specifications like WebSockets. Most
 important, the proposal seeks to establish a baseline for working
 group discussion on the potential improvements that would define HTTP
 2.0.

 This HTTP Speed+Mobility proposal adheres to the following
 principles:

 o Maintain existing HTTP semantics. The request-response nature of
 the HTTP protocol and semantics of its messages as they traverse
 diverse networks must be preserved. Any deviation from this
 principle would represent a major extension to HTTP and should be
 treated as such (see section 2.1 in [I-D.iab-extension-recs]).

 o Maintain the integrity of the layered architecture.

 o Use existing standards when available to make it easy for the
 protocol to work with the current web infrastructure including
 switches, routers, proxies, load balancers, security systems, DNS

Trace, et al. Expires December 17, 2012 [Page 5]

Internet-Draft HTTP Speed+Mobility June 2012

 servers, and NATs. For example, the proposal reuses the
 WebSockets handshake and framing mechanism to establish a
 bidirectional link that is compatible with existing proxies and
 connection models.

 o Be as broadly applicable and flexible as the current protocol, and
 keep the client in control of content. For example, the proposal
 does not mandate the use of TLS or compression, leaving those
 features up to the client to negotiate based on its specific
 security, computation, and communication needs.

 o Account for the needs of modern mobile clients, including power
 efficiency and connectivity through costed networks.

 These principles are described in more detail below.

1.1.1. Maintain existing HTTP semantics

 HTTP at its core is a simple request-response protocol. The working
 group has clearly stated that it is a goal to preserve the semantics
 of HTTP. Thus, we believe that the request-response nature of the
 HTTP protocol must be preserved. The core HTTP 2.0 protocol should
 focus on optimizing these HTTP semantics, while improving the
 transport via a new multiplexing layer. Additional capabilities that
 introduce new communication models like unrequested responses should
 be treated in a different specification and explored separately from
 this proposal.

1.1.2. Layered Architecture

 HTTP relies on an in-order, reliable transport to ensure delivery of
 application data. TCP has almost exclusively provided the reliable,
 ordered delivery of HTTP messages from one computer to another since
 its inception. TCP accounts for adverse network conditions such as
 congestion, or other unpredictable network behavior. Any HTTP 2.0
 proposal should leverage the reliable transport and not attempt to
 replicate functions generally accepted as addressed by other layers.

 Conversely, any proposals for enhancing functionality typically
 provided by other layers of the networking stack (e.g., congestion
 control provided by the transport layer) should be brought to the
 attention of, and discussed in, proper IETF forums (e.g., TCPM WG).

1.1.3. Use of Existing standards

 HTTP 2.0 should prefer models that are compatible with the existing
 Internet and, where possible, reuse existing protocol mechanisms.
 One primary example is in protocol negotiation where the WG should

Trace, et al. Expires December 17, 2012 [Page 6]

Internet-Draft HTTP Speed+Mobility June 2012

 avoid a proliferation of methods, and instead use the HTTP 1.1
 Upgrade header similar to how it is used in the WebSocket protocol.
 This will help HTTP 2.0 to be readily deployed on the existing
 Internet, and maintain compatibility with existing web sites and
 client environments (such as some educational networks).

1.1.4. Client is in control of content

 HTTP is used in a vast array of scenarios and a variety of network
 architectures. There is no "one size fits all" deployment of HTTP.
 For example, at times it may not be optimal to use compression in
 certain environments. For constrained sensors from the "Internet of
 things" scenario, resources may be at a premium. Having a high
 performance but flexible HTTP 2.0 solution will enable
 interoperability for a wider variety of scenarios. There also may be
 aspects of security that are not appropriate for all implementations.
 Encryption must be optional to allow HTTP 2.0 to meet certain
 scenarios and regulations. HTTP 2.0 is a universal replacement for
 HTTP 1.X, and there are some instances in which imposing TLS is not
 required (or allowed). For example, a sizable portion of HTTP
 requests and responses actually happen in "backend" scenarios, in
 which the messages are transported over physically trusted
 infrastructure between endpoints owned by the same organization.
 Furthermore, a "random thought of the day" web service or a sensor
 spewing out a temperature reading every few seconds may choose not to
 use TLS. In such situations, it may not be worth the additional
 expense of deploying TLS, nor might it be desirable to hinder caching
 of the content by encrypting it end-to-end.

 Because of the variety of clients on the Internet and the number of
 connection scenarios, clients are in the best position to define what
 content is downloaded. The browser or app has firsthand information
 on what the app is currently doing and what data is already locally
 available. For example, most of the browsers in use today have
 powerful caches that should be leveraged to store web elements that
 change infrequently.

 In addition to browsers, apps increasingly originate HTTP requests.
 The content retrieved by apps is usually different from that
 downloaded by browsers; in fact, multiple apps may access the same
 content for different purposes. Each app may access different
 subsets of the server content, with different priorities, and in
 different sequences according to their own rendering requirements and
 user interaction models. The server cannot always know the needs or
 intents of a particular application.

 HTTP 2.0 proposals should not force the browser or app to download
 content that has not been requested and that is already cached.

Trace, et al. Expires December 17, 2012 [Page 7]

Internet-Draft HTTP Speed+Mobility June 2012

 Furthermore, the client must have the option to decline unwanted or
 unneeded content. Clients need the ability to inform the server
 about cached elements that do not need to be downloaded. Ideally
 this feedback from the client to the server would allow for
 incremental approval of content to enable an efficient "push"
 extension to deliver the right content, with the right security and
 with the right formatting.

1.1.5. Network Cost and Power

 Any new protocol for transporting HTTP data on the Internet must also
 take into account the types of systems and devices that use HTTP and
 how they are connected to the Internet. The growth of the Internet
 of the next decade (and longer) will be fueled by mobile apps and
 mobile devices, as well as by the cheap, limited-capability devices
 envisioned by the "Internet of Things." For all these devices, speed
 is only one design tenet: considerations about battery life,
 bandwidth limitations, processor and memory constraints, and various
 policy mandates will also challenge designers and users. For
 instance, the user of a device connected over mobile broadband may
 need to minimize the amount of data sent in order to conserve
 bandwidth, minimize power usage and monetary cost of communication.
 Furthermore, transmitting the same amount of data may have radically
 different power implications depending on how the transfer is
 structured: for example, when operating over a mobile broadband
 interface it is more efficient to use a single larger transfer than
 to space out the transmission in multiple smaller transfers.
 Multiple transfers may cause multiple radio transitions between low
 and high powered states, causing additional battery drain.

 In short, the choice among speed, cost, and power is not a simple
 one. At times, speed may be the most important consideration. Other
 times, bandwidth cost or battery life may be the deciding factor.
 HTTP 2.0 must allow developers to optimize for the specific
 constraints of their problem space (which might change over time)
 rather than imposing a monolithic solution to a generic problem. For
 example, server push is a good optimization for many scenarios where
 content updates to web pages revisited over time are infrequent, the
 client has plenty of bandwidth as well as the needed processing power
 to either handle the updates instantly, or cache them for later
 processing. On the other hand, it is not likely to be appropriate in
 situations where content is being transmitted over a costed link.
 Neither will it be when the client is running several applications
 that use network bandwidth concurrently, and bursty, server-initiated
 content transmissions would interfere with their smooth operation.
 Rather than forcing developers to choose between using all the
 features of HTTP 2.0 or sticking with HTTP 1.1, it would be better to
 provide mechanisms for developers to fine tune the capabilities of

Trace, et al. Expires December 17, 2012 [Page 8]

Internet-Draft HTTP Speed+Mobility June 2012

 HTTP 2.0 to a specific set of requirements.

 In summary, the goals of higher speed, lower cost and lower power may
 often be aligned. For instance, having less data sent on the wire
 will allow pages to load faster, allow the radio to power down sooner
 and consume less bandwidth. But given the variety of the scenarios
 where HTTP 2.0 will be used, this will not always be the case. For
 example, a device whose battery is about to run out, whose
 communication monetary costs are prohibitive, or whose cache is near
 capacity can provide a better user experience by disabling a
 capability that consumes bandwidth with potentially unwanted content,
 while continuing to use other optimizations available in HTTP 2.0.
 Accordingly, the working group should consider power and cost as well
 as speed.

1.2. Definitions

 client: A program that establishes HTTP Speed+Mobility connections
 for the purpose of sending requests.

 connection: A TCP layer virtual circuit established between two
 programs for the purpose of communication.

 frame: A header-prefixed sequence of bytes sent over a HTTP Speed+
 Mobility WebSocket.

 message: The basic unit of HTTP communication, consisting of a
 structured sequence of octets matching the syntax defined in
 [RFC2616] and transmitted via a connection.

 request: An HTTP request message, as defined in [RFC2616].

 response: An HTTP response message, as defined in [RFC2616].

 server: An application program that accepts connections in order to
 service requests by sending back responses. Any given program may
 be capable of being both a client and a server; our use of these
 terms refers only to the role being performed by the program for a
 particular connection, rather than to the program's capabilities
 in general. Likewise, any server may act as an origin server,
 proxy, gateway, or tunnel, switching behavior based on the nature
 of each request.

 origin server: As defined in [RFC2616] section 1.3, a server on
 which a given resource resides or is to be created.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616#section-1.3

Trace, et al. Expires December 17, 2012 [Page 9]

Internet-Draft HTTP Speed+Mobility June 2012

 origin: As defined in [RFC6454] section 3.2, a representation of a
 security principal. Roughly speaking, two URIs are part of the
 same origin if they have the same scheme, host, and port.

 user agent: The client that initiates a request. These are often
 browsers, editors, spiders (web-traversing robots), or other end
 user tools.

 proxy: An intermediary program that acts as both a server and a
 client for the purpose of making requests on behalf of other
 clients. Requests are serviced internally or by passing them on,
 with possible translation, to other servers. A proxy MUST
 implement both the client and server requirements of this
 specification. A "transparent proxy" is a proxy that does not
 modify the request or response beyond what is required for proxy
 authentication and identification. A "non-transparent proxy" is a
 proxy that modifies the request or response in order to provide
 some added service to the user agent, such as group annotation
 services, media type transformation, protocol reduction, or
 anonymity filtering. Except where either transparent or non-
 transparent behavior is explicitly stated, the HTTP proxy
 requirements apply to both types of proxies.

 endpoint: Either the client or server of a connection.

 receiver: Endpoint receiving network data in a HTTP Speed+Mobility
 session. This can be either the client or the server.

 sender: Endpoint sending network data in a HTTP Speed+Mobility
 session. This can be either the client or the server.

 session: A single channel between a client and server over which
 there will be multiplexed HTTP requests and responses.

 session error: An error on the HTTP Speed+Mobility session.

 stream: A bi-directional flow of bytes across a virtual channel
 within a HTTP Speed+Mobility session.

 stream error: An error on an individual stream.

1.3. Protocol Overview

 HTTP Speed+Mobility is a proposal for an HTTP 2.0 transport protocol
 that includes multiplexing HTTP content for improving transmission of
 HTTP content and efficient use of TCP connections.

 This protocol comprises four parts:

https://datatracker.ietf.org/doc/html/rfc6454#section-3.2

Trace, et al. Expires December 17, 2012 [Page 10]

Internet-Draft HTTP Speed+Mobility June 2012

 1. Negotiation: Setting up a session (Handshake) is the WebSocket
 Upgrade with additional headers.

 2. Session Layer: This defines maintenance and framing of a HTTP
 Speed+Mobility session and is defined as a WebSocket extension
 [RFC6455].

 3. Multiplexing Layer: This defines the framing and maintenance for
 multiplexing HTTP requests over a single HTTP Speed+Mobility
 session. This proposal borrows from the SPDY
 [I-D.mbelshe-httpbis-spdy] stream semantics and is defined as a
 WebSocket extension.

 4. HTTP layering: This proposal borrows from the SPDY
 [I-D.mbelshe-httpbis-spdy] proposal.

 The WebSocket protocol [RFC6455] provides a standards-based model for
 establishing a bi-directional session between a client and a server
 across the web. The RFC describes the following:

 o A mechanism to create a session between a client and a server
 (Upgrade) and optionally secure the session using TLS

 o A light-weight framing model to send data asynchronously and bi-
 directionally within the session

 o A set of control messages to keep the session alive (PING-PONG),
 and to close the session (CLOSE)

 o An extension model to optionally layer semantics such as
 multiplexing and compression

 In keeping with the principle to leverage existing standards where
 possible, this HTTP Speed+Mobility proposal uses WebSockets as the
 session layer between the client and the server. Using WebSockets as
 a session layer has some advantages. First, we do not have to invent
 a new set of control messages, since we can use the ones defined by
 the WebSocket standard. Second, clients and servers have the
 flexibility to decide whether they want to use TLS or not.

 Using WebSockets also makes it easy to enable multiplexing within the
 session. In fact, this proposal takes the concept of streams and the
 stream related control messages, and models them as a WebSocket
 extension.

 Furthermore, this proposal specifies a simple receive buffer
 management scheme based on a credit control mechanism.

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455

Trace, et al. Expires December 17, 2012 [Page 11]

Internet-Draft HTTP Speed+Mobility June 2012

 Finally, this proposal regards server push as being outside of the
 scope of HTTP 2.0 itself, because it is not in line with existing
 HTTP semantics. Having said that, given the benefits of populating
 the client cache proactively, we believe that the Working Group
 should create a specification separate from HTTP 2.0 to define such a
 solution.

1.3.1. Connection Management

 By default, and because it reuses the WebSocket handshake, HTTP
 Speed+Mobility uses port 80 for unsecured connections and port 443
 for connections tunneled over Transport Layer Security (TLS)
 [RFC2818].

 Clients SHOULD attempt to use a single HTTP Speed+Mobility connection
 to a given origin server. The server MUST be able to handle multiple
 connections from the same client and MUST be able to handle
 concurrent establishments and disconnects.

1.4. Proxies

 Based on the existing Internet, proxies are an important
 consideration for any HTTP 2.0 proposal. There are many cases where
 the presence of a proxy (both explicit and transparent) will impede
 negotiation of any new protocol. In existing environments, the only
 reliable method of traversing proxies with non-HTTP 1.x
 communications is by tunneling over TLS / SSL.

 However, given the importance of HTTP 2.0 and the desire to continue
 to use proxies, we believe that proxies will eventually adopt HTTP
 2.0 and will support communication without TLS, although such
 adoption may take a long time.

 WebSockets provides the best of both environments. WebSockets may be
 negotiated over a secure tunnel to traverse an incompatible proxy or
 may be used in the clear, when appropriate, with a proxy that
 understands HTTP 2.0.

https://datatracker.ietf.org/doc/html/rfc2818

Trace, et al. Expires December 17, 2012 [Page 12]

Internet-Draft HTTP Speed+Mobility June 2012

2. Negotiation

 HTTP Speed+Mobility negotiates a session using the WebSockets
 handshake based on HTTP Upgrade. To advertise support for the HTTP
 2.0 extension, the client request MUST include the "x-httpsm"
 extension token in the |Sec-WebSocket-Extensions| header in its
 opening handshake:

 GET /default.htm HTTP/1.1
 Host: server.example.com
 Upgrade: websocket
 Connection: Upgrade, X-InitialCreditBalance
 Origin: http://example.com
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Sec-WebSocket-Version: 13
 Sec-WebSocket-Extensions: x-httpsm
 X-InitialCreditBalance: 131072

 To accept the HTTP 2.0 extension requested by the client, the server
 MUST include the "x-httpsm" extension token in the |Sec-WebSocket-
 Extensions| header in its opening handshake. Otherwise, the client
 MUST fail the WebSocket connection:

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade, X-InitialCreditBalance
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Extensions: x-httpsm
 X-InitialCreditBalance: 65536

 The Sec-WebSocket-Extensions defines the version of the protocol.
 For incompatible future revisions to the protocol, the extension name
 will need to be revised.

 This draft defines a new header to declare the initial credit balance
 for endpoints that need to use flow control. This header is defined
 in Section 5.3 below.

 HTTP Speed+Mobility may be extended to allow for new negotiated
 options by adding new headers to the upgrade exchange.

 When the negotiation of HTTP Speed+Mobility is successful, the server
 MUST respond to the GET request with a SYN_REPLY message with an
 Stream ID of 1, containing the response to the original GET request.
 Any required data frames for this response MUST be identified with
 the stream ID of 1. For more information on SYN_REPLY see

Section 4.2.2 below.

Trace, et al. Expires December 17, 2012 [Page 13]

Internet-Draft HTTP Speed+Mobility June 2012

 For more details on WebSockets, refer to [RFC6455].

Trace, et al. Expires December 17, 2012 [Page 14]

https://datatracker.ietf.org/doc/html/rfc6455

Internet-Draft HTTP Speed+Mobility June 2012

3. Session layer and Framing

 At the end of the WebSockets upgrade as described above, the bi-
 directional WebSocket between the client and the server becomes the
 new session layer. The session layer for HTTP Speed+Mobility uses
 the WebSocket base framing protocol for both data frames and control
 frames.

3.1. Opening and Closing Sessions

 One of the motivations for a multiplexing solution is to have a more
 efficient use of the TCP transport. Implementations should minimize
 the number of connections to reduce the impact of TCP slow start and
 to avoid latency from creating new connections. Ideally there will
 be a single session between a client and a server. An implementation
 SHOULD use this session to multiplex the maximum amount of data
 between the two endpoints. Implementations MAY create multiple
 simultaneous sessions between two endpoints.

 For best performance, it is expected that a client will not close
 open TCP connections until it is certain that it no longer has use
 for it (e.g., the user closes the HTTP app or navigates away from all
 web pages referencing a connection), or until the server closes the
 connection. Servers SHOULD leave connections open for as long as
 possible, but MAY terminate idle connections if necessary.

3.2. Origin of Multiplexed Content

 A single session MAY contain HTTP content from multiple origins. A
 client implementation SHOULD only multiplex requests destined to
 multiple origins into a single connection under the following
 conditions:

 o Anonymous / Clear: For sessions that do not require authentication
 or SSL/TLS, implementations MAY multiplex content to multiple
 origins in the same session. This is the primary use case for
 sending requests to a Proxy.

 o Basic / Digest Authentication: For sessions to an origin server
 that requires per-request authentication, implementations MAY
 multiplex content to multiple origins.

 o Multi-Part Authentication (e.g., Kerberos): To be done.

 o For a secure connection, if the client provides a Server Name
 Indication (SNI) extension during the TLS handshake then all
 subsequent SYN_STREAM messages (see Section 4.2.1) on that
 connection MUST specify a Host specification that exactly matches

Trace, et al. Expires December 17, 2012 [Page 15]

Internet-Draft HTTP Speed+Mobility June 2012

 the server name provided in the Server Name Indication (SNI)
 (Section 3.1 of [RFC4366]). If the server receives a SYN_STREAM
 with a non-matching Host specification then it MUST respond with a
 400 Bad Request. If the client receives a SYN_STREAM with a non-
 matching Host specification then it MUST issue a stream error.

3.3. WebSocket Framing Protocol

 This specification defines the x-httpsm WebSocket extension to enable
 multiplexing of HTTP content within a single WebSocket session. Once
 the upgrade is accepted, the client and server can exchange framed
 messages using the WebSockets framing protocol. The standard
 WebSocket frame from [RFC6455] is included for reference.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-------+-+-------------+-------------------------------+
 |F|R|R|R| opcode|M| Payload len | Extended payload length |
 |I|S|S|S| (4) |A| (7) | (16/64) |
 |N|V|V|V| |S| | (if payload len==126/127) |
 | |1|2|3| |K| | |
 +-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +
 | Extended payload length continued, if payload len == 127 |
 + - - - - - - - - - - - - - - - +-------------------------------+
 | |Masking-key, if MASK set to 1 |
 +-------------------------------+-------------------------------+
 | Masking-key (continued) | Payload Data |
 +-------------------------------- - - - - - - - - - - - - - - - +
 : Payload Data continued ... :
 + - +
 | Payload Data continued ... |
 +---+

 The payload data for this extension is multiplexed streams as defined
 in Section 4 below.

 The x-httpsm extension defines 4 extension opcodes to establish and
 maintain streams:

 (opcode TBD) - SYN_STREAM: See Section 4.2.1.

 (opcode TBD) - SYN_REPLY: See Section 4.2.2.

 (opcode TBD) - RST_STREAM: See Section 4.2.3.

 (opcode TBD) - CREDIT_UPDATE: See Section 4.2.4.

https://datatracker.ietf.org/doc/html/rfc4366#section-3.1
https://datatracker.ietf.org/doc/html/rfc6455

Trace, et al. Expires December 17, 2012 [Page 16]

Internet-Draft HTTP Speed+Mobility June 2012

3.4. Closing HTTP Speed+Mobility Sessions

 Closing a session uses the standard WebSocket close handshake as
 defined in [RFC6455].

 For best performance, it is expected that clients will not close open
 TCP connections until the user closes the HTTP app or navigates away
 from all web pages referencing a connection, or until the server
 closes the connection. Servers are encouraged to leave connections
 open for as long as possible, but can terminate idle connections if
 necessary.

Trace, et al. Expires December 17, 2012 [Page 17]

https://datatracker.ietf.org/doc/html/rfc6455

Internet-Draft HTTP Speed+Mobility June 2012

4. Streams Layer

 Once the session is established, HTTP Speed+Mobility allows creating
 streams to send and receive HTTP data. The stream operations and
 semantics are borrowed from SPDY. As noted earlier, WebSockets is
 the protocol used for framing data that is sent and received within
 the session (and consequently each stream). Stream operations (such
 as SYN_STREAM) are implemented as a WebSocket extension.

4.1. Stream Management

4.1.1. Stream Creation

 A stream is created by sending a SYN_STREAM (Section 4.2.1). The
 first stream is created by the GET request that initiates the upgrade
 to HTTP Speed+Mobility and will have a stream ID of 1. Each
 subsequent SYN_STREAM sent by the client will increment the stream ID
 by 1. Stream IDs do not wrap; when a client or server cannot create
 a new stream id without exceeding a 32 bit value, it MUST NOT create
 a new stream.

 If a server receives a SYN_STREAM with a stream id which is less than
 any previously received SYN_STREAM, it MUST issue a session error
 (Section 4.1.5.1) with the status PROTOCOL_ERROR.

 It is a protocol error to send two SYN_STREAMs with the same
 stream-ID. If a recipient receives a second SYN_STREAM for the same
 stream, it MUST issue a stream error (Section 4.1.5.2) with the
 status code PROTOCOL_ERROR.

 Upon receipt of a SYN_STREAM, the recipient can reject the stream by
 sending a stream error (Section 4.1.5.2) with the error code
 REFUSED_STREAM. Note, however, that the creating endpoint may have
 already sent additional frames for that stream which cannot be
 immediately stopped.

 Once the stream is created, the creator may immediately send data
 frames for that stream, without needing to wait for the recipient to
 acknowledge.

 Both endpoints can send data on the stream.

4.1.2. Stream Data Exchange

 Once a stream is created, it can be used to send arbitrary amounts of
 data. Generally this means that a series of data frames will be sent
 on the stream until a frame containing the FLAG_FIN flag is set. The
 FLAG_FIN can be set on a SYN_STREAM (Section 4.2.1), SYN_REPLY

Trace, et al. Expires December 17, 2012 [Page 18]

Internet-Draft HTTP Speed+Mobility June 2012

 (Section 4.2.2), or a data (Section 4.3) frame. Once the FLAG_FIN
 has been sent, the stream is considered to be half-closed.

4.1.3. Stream Half-Close

 When one side of the stream sends a frame with the FLAG_FIN flag set,
 the stream is half-closed from that endpoint. The sender of the
 FLAG_FIN MUST NOT send further frames on that stream. When both
 sides have half-closed, the stream is closed.

 If an endpoint receives a data frame after the stream is half-closed
 from the sender (e.g. the endpoint has already received a prior frame
 for the stream with the FIN flag set), it MUST send a RST_STREAM to
 the sender with the status STREAM_ALREADY_CLOSED.

4.1.4. Stream Close

 There are 3 ways that streams can be terminated:

 Normal termination: Normal stream termination occurs when both
 sender and recipient have half-closed the stream by sending a
 FLAG_FIN.

 Abrupt termination: Either the client or server can send a
 RST_STREAM at any time. A RST_STREAM contains an error code to
 indicate the reason for failure. When a RST_STREAM is sent from
 the stream originator, it indicates a failure to complete the
 stream and that no further data will be sent on the stream. When
 a RST_STREAM is sent from the stream recipient, the sender, upon
 receipt, should stop sending any data on the stream. The stream
 recipient should be aware that there is a race between data
 already in transit from the sender and the time the RST_STREAM is
 received. See Stream Error Handling (Section 4.1.5.2).

 TCP connection teardown: If the TCP connection is torn down while
 un-closed streams exist, then the endpoint must assume that the
 stream was abnormally interrupted and may be incomplete.

 If an endpoint receives a data frame after the stream is closed, it
 must send a RST_STREAM to the sender with the status PROTOCOL_ERROR.

4.1.5. Error Handling

 The framing layer has only two types of errors, and they are always
 handled consistently. Any reference in this specification to "issue
 a session error" refers to Section 4.1.5.1. Any reference to "issue
 a stream error" refers to Section 4.1.5.2.

Trace, et al. Expires December 17, 2012 [Page 19]

Internet-Draft HTTP Speed+Mobility June 2012

4.1.5.1. Session Error Handling

 A session error is any error which prevents further processing of the
 session layer or which corrupts the session compression state. When
 a session error occurs, the endpoint encountering the error MUST send
 a WebSockets CLOSE [RFC6455].

4.1.5.2. Stream Error Handling

 A stream error is an error related to a specific stream-id which does
 not affect processing of other streams at the session layer. Upon a
 stream error, the endpoint MUST send a RST_STREAM (Section 4.2.3)
 frame which contains the stream id of the stream where the error
 occurred and the error status which caused the error. After sending
 the RST_STREAM, the stream is closed to the sending endpoint. After
 sending the RST_STREAM, if the sender receives any frames other than
 a RST_STREAM for that stream id, it will result in sending additional
 RST_STREAM frames. An endpoint MUST NOT send a RST_STREAM in
 response to an RST_STREAM, as doing so would lead to RST_STREAM
 loops. Sending a RST_STREAM does not cause the HTTP Speed+Mobility
 session to be closed.

 If an endpoint has multiple RST_STREAM frames to send in succession
 for the same stream-id and the same error code, it MAY coalesce them
 into a single RST_STREAM frame.

4.2. Stream Control Frames

 In Speed+Mobility four new opcodes are introduced:

 o SYN_STREAM

 o SYN_REPLY

 o RST_STREAM

 o CREDIT_UPDATE

 In addition, all frames in HTTP Speed+Mobility include a 32-bit
 stream identifier in the Extension data.

4.2.1. SYN_STREAM

 The SYN_STREAM control frame is used to initiate a new stream and
 send the headers for a request. SYN_STREAM is specified as the
 extension opcode in the WebSocket frame. The SYN_STREAM Extension
 data is carried in the WebSocket payload:

https://datatracker.ietf.org/doc/html/rfc6455

Trace, et al. Expires December 17, 2012 [Page 20]

Internet-Draft HTTP Speed+Mobility June 2012

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 | Stream-ID |
 +---+
 | Flags | Pri | Unused |
 +---+
 | Length of name |
 +---+
 | Name |
 +---+
 | Length of value |
 +---+
 | Value |
 +---+
 | (repeats) |
 +---+

 Flags: Flags related to this frame. Valid flags are:

 0x01 = FLAG_FIN: marks this frame as the last frame to be
 transmitted on this stream and puts the sender in the half-closed
 (Section 4.1.3) state.

 0x02 = FLAG_NO_HEADER_COMPRESSION: indicates the Name/Value header
 block is not compressed.

 Priority: A 3-bit priority (Section 5.1) field.

 Unused: 21 bits of unused space, reserved for future use.

 Name/Value Header Block: A set of name/value pairs carried as part of
 the SYN_STREAM. See Section 4.4.

4.2.2. SYN_REPLY

 The SYN_REPLY control frame indicates the acceptance of a stream
 creation by the recipient of a SYN_STREAM control frame. SYN_REPLY
 is specified as the extension opcode in the WebSocket frame. The
 SYN_REPLY Extension data is carried in the WebSocket payload:

Trace, et al. Expires December 17, 2012 [Page 21]

Internet-Draft HTTP Speed+Mobility June 2012

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 | Stream-ID |
 |---------------+---|
 | Flags | Unused |
 +---------------+---+
 | Length of name |
 +---+
 | Name |
 +---+
 | Length of value |
 +---+
 | Value |
 +---+
 | (repeats) |
 +---+

 Flags: Flags related to this frame. Valid flags are:

 0x01 = FLAG_FIN: marks this frame as the last frame to be
 transmitted on this stream and puts the sender in the half-closed
 (Section 4.1.3) state.

 0x02= FLAG_NO_HEADER_COMPRESSION: indicates the Name/Value header
 block is not compressed.

 Name/Value Header Block: A set of name/value pairs carried as part of
 the SYN_STREAM. See Section 4.4.

4.2.3. RST_STREAM

 The RST_STREAM control frame allows for abnormal termination of a
 stream. When sent by the creator of a stream, it indicates the
 creator wishes to cancel the stream. When sent by the recipient of a
 stream, it indicates an error or that the recipient did not want to
 accept the stream, so the stream should be closed. RST_STREAM is
 specified as the extension opcode in the WebSocket frame. The
 RST_STREAM Extension data is carried in the WebSocket payload:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 | Stream-ID |
 +-------------------------------+-------------------------------+
 | Status Code |
 +-------------------------------+

Trace, et al. Expires December 17, 2012 [Page 22]

Internet-Draft HTTP Speed+Mobility June 2012

 Status code (16 bits): An indicator for why the stream is being
 terminated. The following status codes are defined:

 1 - PROTOCOL_ERROR: This is a generic error, and should only be used
 if a more specific error is not available.

 2 - INVALID_STREAM: This is returned when a frame is received for a
 stream which is not active.

 3 - REFUSED_STREAM: Indicates that the stream was refused before any
 processing has been done on the stream.

 5 - CANCEL: Used by the creator of a stream to indicate that the
 stream is no longer needed.

 6 - INTERNAL_ERROR: This is a generic error which can be used when
 the implementation has internally failed, not due to anything in
 the protocol.

 7 - FLOW_CONTROL_ERROR: The endpoint detected that its peer violated
 the flow control protocol.

 8 - STREAM_IN_USE: The endpoint received a SYN_REPLY for a stream
 already open.

 9 - STREAM_ALREADY_CLOSED: The endpoint received a data or SYN_REPLY
 frame for a stream which is half closed.

 Note: 0 is not a valid status code for a RST_STREAM.

 After receiving a RST_STREAM on a stream, the recipient must not send
 additional frames for that stream, and the stream moves into the
 closed state.

4.2.4. CREDIT_UPDATE

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 | Stream-ID |
 +---+
 | Credit-Addition |
 +---+

 Credit-Addition: The value, in bytes, that the recipient must add to
 the stream's credit balance. The value ranges from 0 to 4294967295
 (0xffffffff) inclusive. 4294967295 (0xffffffff) is a special value
 that designates "infinite" (see Section 5.5).

Trace, et al. Expires December 17, 2012 [Page 23]

Internet-Draft HTTP Speed+Mobility June 2012

4.3. Data Frames

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 | Stream-ID |
 +---------------+---+
 | Flags |
 +---------------+

 Stream data frames are modeled as WebSocket binary data frames with
 extension data:

 Flags: Flags related to this frame. Valid flags are:

 0x01 = FLAG_FIN: signifies that this frame represents the last frame
 to be transmitted on this stream. See Stream Close
 (Section 4.1.4) below.

 Data frame processing requirements:

 If an endpoint receives a data frame for a stream-id which is not
 open, it MUST send issue a stream error (Section 4.1.5.2) with the
 error code INVALID_STREAM for the stream-id.

 If the endpoint which created the stream receives a data frame
 before receiving a SYN_REPLY on that stream, it is a protocol
 error, and the recipient MUST issue a stream error
 (Section 4.1.5.2) with the status code PROTOCOL_ERROR for the
 stream-id.

4.4. Name/Value Header Block

 The Name/Value Header Block is found in the SYN_STREAM and SYN_REPLY
 control frames, and shares a common format:

 +------------------------------------+
 | Number of Name/Value pairs (int32) |
 +------------------------------------+
 | Length of name (int32) |
 +------------------------------------+
 | Name (string) |
 +------------------------------------+
 | Length of value (int32) |
 +------------------------------------+
 | Value (string) |
 +------------------------------------+
 | (repeats) |

Trace, et al. Expires December 17, 2012 [Page 24]

Internet-Draft HTTP Speed+Mobility June 2012

 Number of Name/Value pairs: The number of repeating name/value pairs
 following this field.

 List of Name/Value pairs:

 Length of Name: a 32-bit value containing the number of octets in
 the name field.

 Name: 0 or more octets, 8-bit sequences of data, excluding 0.

 Length of Value: a 32-bit value containing the number of octets in
 the value field.

 Value: 0 or more octets, 8-bit sequences of data, excluding 0.

 Each header name must have at least one value. Header names are
 encoded using the US-ASCII character set and must be all lower case.
 The length of each name must be greater than zero. A recipient of a
 zero-length name MUST issue a stream error (Section 4.1.5.2) with the
 status code PROTOCOL_ERROR for the stream-id.

 Duplicate header names are not allowed. To send two identically
 named headers, send a header with two values, where the values are
 separated by a single NUL (0) byte. A header value can either be
 empty (e.g. the length is zero) or it can contain multiple, NUL-
 separated values, each with length greater than zero. The value
 never starts nor ends with a NUL character. Recipients of illegal
 value fields MUST issue a stream error (Section 4.1.5.2) with the
 status code PROTOCOL_ERROR for the stream-id.

4.5. Compression

 The Name/Value Header Block is a section of the SYN_STREAM and
 SYN_REPLY frames used to carry header meta-data. This block MAY be
 compressed using zlib compression. Within this specification, any
 reference to 'zlib' is referring to the ZLIB Compressed Data Format
 Specification Version 3.3 as part of [RFC1950].

 For each HEADERS compression instance, the initial state is
 initialized using the dictionary specified in
 [I-D.mbelshe-httpbis-spdy] section 2.6.10.1.

 Implementations MUST support header compression as specified in
 [I-D.mbelshe-httpbis-spdy] except for the following.

 Throughout this document, header compression is enabled by default.
 However, either the client or the server MAY opt out of using
 compression when transmitting headers. This opt out model is

https://datatracker.ietf.org/doc/html/rfc1950

Trace, et al. Expires December 17, 2012 [Page 25]

Internet-Draft HTTP Speed+Mobility June 2012

 described with added flags in the SYN_STREAM, HEADERS and SYN_REPLY
 frames.

Trace, et al. Expires December 17, 2012 [Page 26]

Internet-Draft HTTP Speed+Mobility June 2012

5. Flow Control

5.1. Stream Priority

 Each stream has a 3-bit priority field where 7 represents the highest
 priority and 0 represents the lowest priority. The stream priority
 is specified in the SYN_STREAM and cannot be re-specified for the
 lifetime of the stream.

 When selecting data to send, the sender SHOULD select the data from
 the highest priority stream that has data ready for transmission. If
 multiple streams of the same priority have data ready for
 transmission then the sender SHOULD be fair in sending data between
 those streams. See Section 5.7.

5.2. Credit Control

 Credit control is used by memory-sensitive endpoints to advertise
 their limited buffering capability. This is to prevent the sender
 from sending too much data, in a given time interval, thus causing
 the recipient's buffers to overflow.

 An endpoint MAY demand that its peer honor credit control. An
 endpoint MUST honor the credit control if the peer demands it.

Section 5.3 explains how an endpoint demands credit control.

 Credit control is directional and is demanded by an endpoint to
 control how much its peer can send.

 An endpoint that is honoring its peer's credit control will maintain
 a credit balance, for each stream, that controls how much data the
 endpoint can send to its peer. The credit balance is always in units
 of bytes. The demanding endpoint will send CREDIT_UPDATE messages,
 for a given stream, to update how much data the honoring peer is
 allowed to send. The credit balance applies to the data payload of
 data frames. Credit control is applied on an HTTP S+M per-hop basis.

5.3. Credit Control Declaration

 During the HTTP S+M handshake, an endpoint MAY demand that the peer
 honor credit control when sending data, for all streams, on that
 connection. If the endpoint does not demand credit control, then it
 MUST NOT send CREDIT_UPDATE messages.

 Credit control is demanded by specifying an HTTP header in the GET
 that upgrades the HTTP/1.1 connection to HTTP S+M. The header name is
 "X-InitialCreditBalance". The header value indicates the initial
 credit balance that the peer has for sending data on streams. The

Trace, et al. Expires December 17, 2012 [Page 27]

Internet-Draft HTTP Speed+Mobility June 2012

 header value is a base-10 number ranging from 0 to 4294967294
 (0xfffffffe), inclusive. If the header is not present then that
 indicates the endpoint does not advertise credits and will never send
 CREDIT_UPDATE messages on that connection.

 In the following example, the client does not advertise flow control
 because it wants uninhibited responses throughput. Thus the server
 will send data frames to the client without credit tracking.
 However, the server indicates an initial credit balance of 64KB,
 which means the client will keep track of the CREDIT_UPDATE messages
 from the server to know when it can send data frames for a given
 stream.

 Upgrade Request:

 GET / default.htm HTTP/1.1
 Host: server.example.com
 Upgrade: websocket
 Connection: Upgrade
 Origin: http://example.com
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Sec-WebSocket-Version: 13
 Sec-WebSocket-Extensions: x-httpsm

 Upgrade Response:

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade, X-InitialCreditBalance
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Extensions: x-httpsm
 X-InitialCreditBalance: 65536

5.4. Credit Balance Updates

 If an endpoint is honoring credit control then the endpoint MUST
 maintain a credit balance for each of the streams on that connection.
 The client MUST NOT send more data than there is credit available.
 Upon sending a data frame, the endpoint MUST decrement the credit
 balance by the number of bytes in the payload of the data frame.
 Upon receipt of a CREDIT_UPDATE message, the endpoint MUST increment
 the credit balance by the amount indicated in the CREDIT_UPDATE
 message. If the resultant sum exceeds 4294967294 (0xfffffffe) then
 that is a stream error. The demanding endpoint knows the initial
 credit balance and the amount of data received thus far so it MUST
 NOT emit a CREDIT_UPDATE message that would cause the credit balance
 to exceed 4294967294 (0xfffffffe).

Trace, et al. Expires December 17, 2012 [Page 28]

Internet-Draft HTTP Speed+Mobility June 2012

5.5. Turning Credit Control Off for a Stream

 If an endpoint demanded credit control then all streams start with
 the specified initial credit balance. Any time, before having sent a
 frame with FLAG_FIN set on the stream, the demanding endpoint MAY
 emit an "infinite" CREDIT_UPDATE message to terminate any further
 credit control on that stream. Upon sending an "infinite"
 CREDIT_UPDATE, the sender MUST NOT send any more CREDIT_UPDATE
 messages for that stream. Upon receipt of an "infinite"
 CREDIT_UPDATE message, the sender has an unlimited number of credits.

5.6. Increasing and Decreasing Stream Credit

 An endpoint MAY increase the credit available to the peer by
 specifying a value in the CREDIT_UPDATE message that is larger than
 how much data was sent by the peer or consumed. For example, having
 demanded an initial credit balance of 64KB, the endpoint may send a
 CREDIT_UPDATE of 512KB for a newly created stream shortly after
 creation, thus increasing the available credit for that stream to
 576KB.

 An endpoint MAY replenish less credit by specifying a value in the
 CREDIT_UPDATE message that is smaller than how much data was actually
 consumed. For example, after demanding an initial credit balance of
 64KB and upon receiving 40KB of data, the endpoint may not send back
 a CREDIT_UPDATE message thus forcing the available credit down to
 24KB. Note that it is not possible for an endpoint to revoke credit
 that it already advertised to the peer.

5.7. Implementation Guidance and Considerations

 This document does not mandate a specific algorithm for selecting
 data to send from amongst multiple streams. The exact logic used
 will be implementation-specific. Within a priority level, the
 implemented algorithm should try to be fair to avoid one or more
 streams from monopolizing the send opportunities and hence starving
 the other streams. One such solution would be to implement a Deficit
 Round Robin scheme within a priority class and have a higher priority
 always preempt a lower priority.

 This document does not mandate a specific algorithm for deciding when
 to send CREDIT_UPDATE messages. For example, a simple implementation
 may always emit a CREDIT_UPDATE immediately upon consuming the
 received data. Another implementation may coalesce multiple
 CREDIT_UPDATE messages into one. Yet another implementation may
 delay emitting a CREDIT_UPDATE message until a specific time or the
 next set of received data, whichever comes first, to reduce packet
 chatter.

Trace, et al. Expires December 17, 2012 [Page 29]

Internet-Draft HTTP Speed+Mobility June 2012

 This document does not mandate a specific algorithm for adjusting the
 credit balance. For example, implementations may monitor their
 memory state to determine when they can afford to increase or reduce
 the credit balance. Other implementations may also interface with
 the lower stack layers (e.g., TCP) to compute bandwidth-delay-
 products to tune the credit balance. Some implementations (e.g.,
 devices) may be very constrained and may not have any logic to tune
 the credit balance.

Trace, et al. Expires December 17, 2012 [Page 30]

Internet-Draft HTTP Speed+Mobility June 2012

6. General Notes

6.1. HTTP Layering

 This proposal adopts the HTTP integration model used by SPDY. The
 request-response semantics would be the same as well as stateless
 authentication.

 This proposal does not support some HTTP concepts as documented in
 [RFC2616] including Chunked Encoding and HTTP trailers.

 While not addressed in this proposal, stateful authentication is
 something that will be addressed at a later date

6.2. Relationship to SPDY

 This proposal borrows on many of the concepts of the SPDY proposal.
 There are some key areas where we differ from SPDY as outlined below.

 Much of where HTTP Speed+Mobility differs from SPDY are a result of
 its relationship with WebSockets where we use the existing standard
 for the following:

 Negotiation: Uses WebSockets Upgrade. This also negotiates streams
 settings and version allowing the simplification of the streams
 frames

 Session Framing: Defined as a WebSockets Extension. Allows reuse of
 the length and opcode data to simplify the streams frames.

 Lastly, this document simplifies the number of messages in the
 streams layer.

6.3. Server Push

 Server push is a new concept introduced in [I-D.mbelshe-httpbis-spdy]
 wherein a server pushes content to a client even if the client may
 not have requested it. This is an area that requires significant
 working group discussion. Given the principle around maintaining
 existing HTTP semantics, we are not documenting it here and would
 like to see the working group document this separately from HTTP 2.0.

6.4. Open Issues

 There are a number of open issues that are still under investigation.
 This is by no means a complete list of discussions around HTTP 2.0
 but simply the current list of issues that the authors of this
 document wanted to explore further.

https://datatracker.ietf.org/doc/html/rfc2616

Trace, et al. Expires December 17, 2012 [Page 31]

Internet-Draft HTTP Speed+Mobility June 2012

6.4.1. Flow Control

 Describe how intermediaries may add/ adjust credit control
 parameters.

 Deeper investigation into frame buffering requirements.

 What to do if a control frame is too big. What to do in the case of
 a buffer overrun.

 Do we want to add the ability to change priority on a stream?

6.4.2. Streams Issues

 Do we need to negotiate maximum streams in the Upgrade header?

Trace, et al. Expires December 17, 2012 [Page 32]

Internet-Draft HTTP Speed+Mobility June 2012

7. Acknowledgements

 Thanks to the following individuals who provided helpful feedback and
 contributed to discussions on this document: Dave Thaler, Ivan
 Pashov, Jitu Padhye, Jean Paoli, Michael Champion, NK Srinivas,
 Sharad Agarwal and Rob Mauceri.

 This document incorporates materials from [I-D.mbelshe-httpbis-spdy].

Trace, et al. Expires December 17, 2012 [Page 33]

Internet-Draft HTTP Speed+Mobility June 2012

8. References

8.1. Normative References

 [RFC1950] Deutsch, L. and J-L. Gailly, "ZLIB Compressed Data Format
 Specification version 3.3", RFC 1950, May 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366, April 2006.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 December 2011.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, December 2011.

 [I-D.mbelshe-httpbis-spdy]
 Belshe, M. and R. Peon, "SPDY Protocol",

draft-mbelshe-httpbis-spdy-00 (work in progress),
 February 2012.

8.2. Informative References

 [I-D.iab-extension-recs]
 Carpenter, B., Aboba, B., and S. Cheshire, "Design
 Considerations for Protocol Extensions",

draft-iab-extension-recs-14 (work in progress), June 2012.

https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/draft-mbelshe-httpbis-spdy-00
https://datatracker.ietf.org/doc/html/draft-iab-extension-recs-14

Trace, et al. Expires December 17, 2012 [Page 34]

Internet-Draft HTTP Speed+Mobility June 2012

Authors' Addresses

 Rob Trace
 Microsoft

 Email: Rob.Trace@microsoft.com

 Adalberto Foresti
 Microsoft

 Email: aforesti@microsoft.com

 Sandeep Singhal
 Microsoft

 Email: Sandeep.Singhal@microsoft.com

 Osama Mazahir
 Microsoft

 Email: OsamaM@microsoft.com

 Henrik Frystyk Nielsen
 Microsoft

 Email: HenrikN@microsoft.com

 Brian Raymor
 Microsoft

 Email: Brian.Raymor@microsoft.com

 Ravi Rao
 Microsoft

 Email: RaviRao@microsoft.com

Trace, et al. Expires December 17, 2012 [Page 35]

Internet-Draft HTTP Speed+Mobility June 2012

 Gabriel Montenegro
 Microsoft

 Email: Gabriel.Montenegro@microsoft.com

Trace, et al. Expires December 17, 2012 [Page 36]

