
NVO3 WG E. Nordmark
Internet-Draft C. Appanna
Intended status: Standards Track A. Lo
Expires: January 2, 2017 Arista Networks
 S. Boutros
 A. Dubey
 VMware
 Jul 2016

Layer-Transcending Traceroute for Overlay Networks like VXLAN
draft-nordmark-nvo3-transcending-traceroute-03

Abstract

 Tools like traceroute have been very valuable for the operation of
 the Internet. Part of that value comes from being able to display
 information about routers and paths over which the user of the tool
 has no control, but the traceroute output can be passed along to
 someone else that can further investigate or fix the problem.

 In overlay networks such as VXLAN and NVGRE the prevailing view is
 that since the overlay network has no control of the underlay there
 needs to be special tools and agreements to enable extracting traces
 from the underlay. We argue that enabling visibility into the
 underlay and using existing tools like traceroute has been overlooked
 and would add value in many deployments of overlay networks.

 This document specifies an approach that can be used to make
 traceroute transcend layers of encapsulation including details for
 how to apply this to VXLAN. The technique can be applied to other
 encapsulations used for overlay networks. It can also be implemented
 using current commercial silicon.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Nordmark, et al. Expires January 2, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft LTTON Jul 2016

 This Internet-Draft will expire on January 2, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Nordmark, et al. Expires January 2, 2017 [Page 2]

Internet-Draft LTTON Jul 2016

Table of Contents

1. Introduction . 4
2. Solution Overview . 5
3. Goals and Requirements . 6
4. Definition Of Terms . 7
5. Example Topologies . 7
6. Controlling and selecting ttl behavior 11
7. Introducing a ttl copyin flag in the encapsulation header . . 11
8. Encapsulation Behavior . 12
9. Decapsulating Behavior . 15
10. Other ICMP errors . 16
11. Downstream Egress Paths Object 16
12. Security Considerations 19
13. IANA Considerations . 19
14. Acknowledgements . 19
15. References . 20
15.1. Normative References 20
15.2. Informative References 20

 Authors' Addresses . 22

Nordmark, et al. Expires January 2, 2017 [Page 3]

Internet-Draft LTTON Jul 2016

1. Introduction

 Tools like traceroute have been very valuable for the operation of
 the Internet. Part of that value comes from being able to display
 information about routers and paths over which the user of the tool
 has no control, but the traceroute output can be passed along to
 someone else that can further investigate or fix the problem. The
 output of traceroute can be included in an email or a trouble ticket
 to report the problem. This provide a lot more information than the
 mere indication that A can't communicate with B, in particular when
 the failures are transient. The ping tool provides some of the same
 benefits in being able to return ICMP errors such as host unreachable
 messages.

 This document shows how those tools can be used to gather information
 for both the overlay and underlay parts of an end-to-end path by
 providing the option to have some packets use a uniform time-to-live
 (ttl) model for the tunnels, and associated ICMP error handling.
 These changes are limited to the tunnel ingress and egress points.

 The desire to make traceroute provide useful information for overlay
 network is not an argument against also using a layered approach for
 OAM as specified in e.g., [I-D.tissa-lime-yang-oam-model]. Such
 approaches are quite appropriate for continuos monitoring at
 different layers and across different domains. A layer transcending
 traceroute complements the ability to do layered and/or continuos
 monitoring.

 The traceroute tool relies on receiving ICMP errors [RFC0792] in
 combination with using different IP time-to-live values. That
 results in the packet making it further and further towards the
 destination with ICMP ttl exceeded errors being received from each
 hop. That provides the user the working path even if the packets are
 black holed eventually, and also provides any errors like ICMP host
 unreachable. The fundamental assumption is that the ttl is
 decremented for each hop and that the resulting ICMP ttl exceeded
 errors are delivered back to the host.

 When some encapsulation is used to tunnel packets there is an
 architectural question how those tunnels should be viewed from the
 rest of the network. Different models were described first for
 diffserv in [RFC2983] and then applied to MPLS in [RFC3270] and
 expanded to MPLS ttl handling in [RFC3443] and those models apply to
 other forms of direct or indirect IP in IP tunnels. Those RFCs
 define two models for ttl that are of interest to us:

 o A pipe model, where the tunnel is invisible to the rest of the
 network in that it looks like a direct connection between the

https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc3270
https://datatracker.ietf.org/doc/html/rfc3443

Nordmark, et al. Expires January 2, 2017 [Page 4]

Internet-Draft LTTON Jul 2016

 tunnel ingress and egress.

 o A uniform model, where the ttl decrements uniformly for hops
 outside and inside the tunnel.

 The tunneling mechanisms discussed in NVO3 (such as VXLAN [RFC7348],
 NVGRE [I-D.sridharan-virtualization-nvgre], GENEVE
 [I-D.gross-geneve], and GUE [I-D.herbert-gue]), have either been
 specified to provide the pipe model of a tunnel or are silent on the
 setting of the outer ttl. Those protocols can be extended to have an
 optional uniform tunnel model when the payload is IP, following the
 same model as in [RFC3443]. Note that these encapsulations carry
 Ethernet frames hence are not even aware that the payload is IP.
 However, IP is the bulk of what is carried over such tunnels and the
 ingress NVE can inspect the IP part of the Ethernet frame.

 However, for general application traffic the pipe model is fine and
 might even be expected by some applications. In general, when the
 source and destination IP are in the same IP subnet the ttl should
 not be decremented. Thus it makes sense to have a way to selectively
 enable the uniform model perhaps based on some method to identify
 packets associated with traceroute or some marker in the packet
 itself that the traceroute tool can set.

2. Solution Overview

 The pieces needed to accomplish this are:

 o One or more ways to select the uniform model packets at the tunnel
 ingress.

 o Tunnel ingress copying out the original ttl from a selected packet
 to the outer IP header, and then doing a check and decrement of
 that ttl.

 o If that ttl check results in ttl expiry at the tunnel ingress,
 then deliver an ICMP ttl exceeded packet back to the host.

 o A mechanism by which the tunnel egress knows which packets should
 have uniform model, for instance a bit in the encapsulation
 header.

 o The tunnel egress copying in the ttl (for identified packets) from
 the outer header to the inner IP header, then doing a check and
 decrement of that ttl.

https://datatracker.ietf.org/doc/html/rfc7348
https://datatracker.ietf.org/doc/html/rfc3443

Nordmark, et al. Expires January 2, 2017 [Page 5]

Internet-Draft LTTON Jul 2016

 o If ttl check results in ttl expiry at the tunnel egress, then
 deliver an ICMP error back to the original host (or, perhaps
 better, to tunnel ingress the same way as underlay routers do).

 o IP routers in the underlay will deliver any ICMP errors to the
 source IP address of the packet. For tunneled packets that will
 be the tunnel ingress. Hence the tunnel ingress needs to be able
 to take such ICMP errors and form corresponding ICMP errors that
 are sent back to the host. The requirement in [RFC1812] ensures
 that the ICMP errors will contain enough headers to form such an
 ICMP error. It has been noted that there are routers in the
 Internet which decades later fail to conform to that aspect of
 [RFC1812].

 The idea to reflect (some) ICMP errors from inside a tunnel back to
 the original source goes back to IPv6 in IPv4 encapsulation as
 specified in [RFC1933] and [RFC2473]. However, those drafts did not
 advocate using a uniform ttl model for the tunnels but did handle
 ICMP packet too big and other unreachable messages. Those drafts
 specify how to reflect ICMP errors received from underlay routers to
 ICMP errors sent to the original host. The addition of handling ICMP
 ttl exceeded errors for uniform tunnel model is straight forward.

 The information carried in the ICMP errors are quite limited - the
 original packet plus an ICMP type and code. However, there are
 extension mechanisms specified in [RFC4884] and used for MPLS in
 [RFC4950] which include TLVs with additional information. If there
 are additional information to include for overlay networks that
 information could be added by defining new ICMP Extensions Objects
 based on [RFC4884]. An example of such an extension for ECMP
 information is included in this document.

3. Goals and Requirements

 The following goals and requirements apply:

 o No changes needed in the underlay.

 o Optional changes on the decapsulating end.

 o ECMP friendly. If the underlay employs equal cost multipath
 routing then one should be able to use this mechanism to trace the
 same path as a given TCP or UDP flow is using. In addition, one
 should be able to explore different ECMP paths by varying the IP
 addresses and port numbers in the packets originated by traceroute
 on the host.

https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc1933
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc4884
https://datatracker.ietf.org/doc/html/rfc4950
https://datatracker.ietf.org/doc/html/rfc4884

Nordmark, et al. Expires January 2, 2017 [Page 6]

Internet-Draft LTTON Jul 2016

 o Provide output which makes it possible to compare a regular
 overlay traceroute with the layer-transcending output.

4. Definition Of Terms

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The terminology such as NVE, and TS are used as specified in
 [RFC7365]:

 o Network Virtualization Edge (NVE): An NVE is the network entity
 that sits at the edge of an underlay network and implements L2
 and/or L3 network virtualization functions.

 o Tenant System (TS): A physical or virtual system that can play the
 role of a host or a forwarding element such as a router, switch,
 firewall, etc.

 o Virtual Access Points (VAPs): A logical connection point on the
 NVE for connecting a Tenant System to a virtual network.

 o Virtual Network (VN): A VN is a logical abstraction of a physical
 network that provides L2 or L3 network services to a set of Tenant
 Systems.

 o Virtual Network Context (VN Context) Identifier: Field in an
 overlay encapsulation header that identifies the specific VN the
 packet belongs to.

 We use the VTEP term in [RFC7348] as synonymous with NVE, and VNI as
 synonymous to VN Context Identifier.

5. Example Topologies

 The following example topologies illustrate different cases where we
 want a tracing capability. The examples are for overlay technologies
 such as VXLAN which provide a layer 2 overlay on IP. The cases for
 layer 3 overlay on top of IP are simpler and not shown in this
 document.

 The VXLAN term VTEP is used as synonymous to NVO3's NVE term.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7365
https://datatracker.ietf.org/doc/html/rfc7348

Nordmark, et al. Expires January 2, 2017 [Page 7]

Internet-Draft LTTON Jul 2016

 ----------- -----------
H1		H2
1.0.1.1		1.0.1.2
 ----------- -----------
 | |
 | |
 ----------- ----------- -----------
VtepA		R1		VtepB
2.0.1.1	--	2.0.1.2		2.0.2.1
		2.0.2.2	--	
 ----------- ----------- -----------

 Simple L2 overlay

 The figure above shows two hosts connected using an underlay which
 provides a layer two service. Thus H1 and H2 are in the same subnet
 and unaware of the existence of the underlay. Thus a normal ping or
 traceroute would not be able to provide any information about the
 nature of a failure; either packets get through or they do not. When
 the packets get through traceroute would output something like:

 traceroute to 1.0.1.2 (1.0.1.2), 30 hops max, 60 byte packets
 1 1.0.2.1 (1.0.2.1) 1.104 ms 1.235 ms 1.729 ms

 In this case it would be desirable to be able to traceroute from H1
 to H2 (and vice versa) and observe VtepA, R1, VtepB and H2. Thus in
 the case of packets getting through traceroute would output:

 traceroute to 1.0.1.2 (1.0.1.2), 30 hops max, 60 byte packets
 1 2.0.1.1 (2.0.1.1) 1.104 ms 1.235 ms 1.729 ms
 2 2.0.1.2 (2.0.1.2) 2.106 ms 2.007 ms 2.156 ms
 3 2.0.2.1 (2.0.2.1) 35.034 ms 24.490 ms 21.626 ms
 4 1.0.1.2 (1.0.1.2) 40.830 ms 44.694 ms 75.620 ms

 Note that the underlay and overlay might exist in completely separate
 addressing domains. Thus H1 might not be able to reach any of the
 underlay addresses. And the underlay IP addresses might overlap the
 overlay IP addresses. For example, it would be completely valid to
 see e.g. VtepA having the same IP address as H1. The user of this
 tool need to understand that the utility of the traceroute output is
 to get information to determine whether the issue is in the underlay
 or overlay, and be able to pass the underlay information to the
 operator of the underlay.

 In overlay networks without any ARP/ND optimizations ARP/ND packets
 would be flooded between the tunnel endpoints. Thus if there is some
 communication failure between H1 and H2, then H1 above might not have

Nordmark, et al. Expires January 2, 2017 [Page 8]

Internet-Draft LTTON Jul 2016

 an ARP entry for H2. This results in traceroute not being able to
 output any data. This implies that in order to use traceroute to
 trouble shoot the issue one would need some workaround, such as
 installing some temporary ARP entries on the hosts.

 ----------- ----------- ----------- -----------
H1		R2		R3		H4
1.0.1.1		1.0.2.2	--	1.0.2.3		
		1.0.1.2		1.0.3.3	--	1.0.3.4
 ----------- ----------- ----------- -----------
 | |
 | |
 ----------- ----------- -----------
VtepA		R1		VtepB
2.0.1.1	--	2.0.1.2		2.0.2.1
		2.0.2.2	--	
 ----------- ----------- -----------

 L2 overlay as part of larger network

 The figure above has a overlay router the nexthop as seen by H1. In
 this case a normal overlay traceroute would be able to display the
 overlay path i.e.

 traceroute to H4, 30 hops max, 60 byte packets
 1 R2
 2 R3
 3 H4

 The layer-transcending traceroute would show the combination of the
 underlay and overlay paths i.e.,

 traceroute to H4, 30 hops max, 60 byte packets
 1 VtepA
 2 R1
 3 VtepB
 4 R2
 5 R3
 6 H4

Nordmark, et al. Expires January 2, 2017 [Page 9]

Internet-Draft LTTON Jul 2016

 ----------- ------------------- -----------
 | H1 | | R5 | | H6 |
 | 1.0.1.1 | | | | |
 | | | 1.0.1.2 1.0.5.5 | | 1.0.5.6 |
 ----------- |-----------------| -----------
 | | | | | |
 | | | | | |
 ----------- ----------- |-----------------| ----------- -----------
VtepA		R1		VtepB VtepC		R6		VtepD
2.0.1.1	-	2.0.1.2		2.0.2.1 3.0.1.1	-	3.0.1.2		
		2.0.2.2	-			3.0.2.2	-	3.0.3.1
 ----------- ----------- ------------------- ----------- -----------

 Multiple L2 overlays in path

 The figure above has multiple overlay network segments, that are
 connected in one router which provides the tunnel endpoints for both
 overlay segments plus routing for the overlay. A more general
 picture would be to have an overlay routed path between the two NVEs
 e.g., VtepB and VtepC connected to different routers in the overlay.
 However, such a drawing in ASCII art doesn't fit on the page.

 An normal overlay traceroute in the above topology would show the
 overlay router i.e.,

 traceroute to H6, 30 hops max, 60 byte packets
 1 R5
 2 H6

 The layer-transcending traceroute would show the combination of the
 underlay and overlay paths i.e.,

 traceroute to H6, 30 hops max, 60 byte packets
 1 VtepA
 2 R1
 3 VtepB
 4 R5
 5 VtepC
 6 R6
 7 VtepD
 8 H6

 Note that the R3 device, which include VtepB and VtepC, appears as
 three hops in the traceroute output. That is needed to be able to
 correlate the output with the overlay output which has R3. That
 correlation would be hard if the R3 device only appeared as VtepB in
 the LTTON output. The three-hop representation also stays invariant
 whether or not the NVEs and overlay router are implemented by a

Nordmark, et al. Expires January 2, 2017 [Page 10]

Internet-Draft LTTON Jul 2016

 single device or multiple devices.

6. Controlling and selecting ttl behavior

 The network admin needs to be able to control who can use the layer
 transcending traceroute, since the operator might not want to
 disclose the underlay topology to all its users all the time. There
 are different approaches for this such as designating particular
 ports (Virtual Access Points in NVO3 terminology) on a NVE to have
 uniform ttl tunnel model. We have found it useful to be able to
 enable this capability on a per port and/or virtual network basis, in
 addition to having a global setting per NVE.

 When enabled on the NVEs the user on the TS needs to be able to
 control which traffic is subject to which tunnel mode. The normal
 traffic would use the pipe ttl tunnel model and only explicit trace
 applications are likely to want to use the uniform ttl tunnel model.
 Hence it makes sense to use some marker in the packets sent by the TS
 to select those packets for uniform model on the NVE. Such a
 mechanism should usable so that the user can perform both a regular
 traceroute and a LTTON.

 Potentially different fields in the packets originated by traceroute
 on the TS can be used to mark the packets for uniform ttl tunnel
 model. However, many of those fields such as source and destination
 port numbers and protocol might be used in hashing for ECMP. The
 marking that can be used without impacting ECMP is the DSCP field in
 the packet. That field can be set with an option (--tos) in at least
 some existing traceroute implementations.

 Note that when DSCP is used for such marking it is a configured
 choice subject to agreement between the operator of the TS and NVE.
 The matching on the NVE should ignore the ECN bits as to not
 interfere with ECN.

 However, the DSCP value used in the overlay might have an impact on
 the forwarding of the packets. In such a case one can use an
 alternative selector such as the UDP source port number. That has
 the downside of affecting the has values used for ECMP and link
 aggregation port selection.

7. Introducing a ttl copyin flag in the encapsulation header

 When this approach is applied to VXLAN [RFC7348] the decapsulating
 NVE has to be able to identify packets that have to be processed in
 the uniform ttl tunnel model way. For that purpose we define a new

https://datatracker.ietf.org/doc/html/rfc7348

Nordmark, et al. Expires January 2, 2017 [Page 11]

Internet-Draft LTTON Jul 2016

 flag which is sent by the encapsulating NVE on selected packets, and
 is used by the decapsulating NVE to perform the ttl copyin, decrement
 and check.

 In addition to the one I-flag defined in [RFC7348] we define a new
 T-flag to capture this the trace behavior at the decapsulating tunnel
 endpoint.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |R|R|R|R|I|R|R|T| Reserved |
 +-+
 | VXLAN Network Identifier (VNI) | Reserved |
 +-+

 New fields:

 T-flag: When set indicates that decapsulator should take the
 outer ttl and copy it to the inner ttl, and then check
 and decrement the resulting ttl.

8. Encapsulation Behavior

 If the uniform ttl model is enabled for the input, and the received
 naked packet matches the selector, then the ingress NVE will perform
 these additional operations as part of encapsulating an IPv4 or IPv6
 packet:

 o Examine the IPv4 TTL (or IPv6 hopcount, respectively) on receipt
 and if 1 or less, then drop the packet and send an ICMPv4 (or
 ICMPv6) ttl exceeded back to the original host. Since the NVE is
 operating on a L2 packet, it might not have any layer 3 interfaces
 or routes for the originating host. Thus it sends the packet back
 to the source L2 address of the packet back out the ingress port -
 without any IP address lookup.

 o If ttl did not expire, then decrement the above ttl/hopcount and
 place it in the outer IP header. Encapsulate and send the packet
 as normal.

 o If some other errors prevent sending the packet (such as unknown
 VN Context Id, no flood list configured), then the NVE SHOULD send
 an ICMP host unreachable back to the host.

 The ingress NVE will receive ICMP errors from underlay routers and
 the egress NVE; whether due to ttl exceeded or underlay issues such

https://datatracker.ietf.org/doc/html/rfc7348

Nordmark, et al. Expires January 2, 2017 [Page 12]

Internet-Draft LTTON Jul 2016

 as host unreachable, or packet too big errors. The NVE should take
 such errors, and in addition to any local syslog etc, generate an
 ICMP error sent back to the host. The principle for this is
 specified in [RFC1933] and [RFC2473]. Just like in those
 specifications, for the inner and outer IP header could be off
 different version. A common case of that might be an IPv6 overlay
 with an IPv4 underlay. That case requires some changes in the ICMP
 type and code values in addition to recreating the packets. The
 place where LTTON differs from those specifications is that there is
 an NVO3 header and (for L2 over L3) and L2 header in the packet.

 The figures below show an example of ICMP header re-generation at
 VtepA for the case of IPv6 overlay with IPv4 underlay. The case of
 IPv4 over IPv4 is similar and simpler since the ICMP header is the
 same for both overlay and underlay. The example uses VXLAN
 encapsulation to provide the concrete details, but the approach
 applies to other NVO3 proposals.

https://datatracker.ietf.org/doc/html/rfc1933
https://datatracker.ietf.org/doc/html/rfc2473

Nordmark, et al. Expires January 2, 2017 [Page 13]

Internet-Draft LTTON Jul 2016

 +--------------+
 | IPv4 Header |
 | src = R1 |
 | dst = VtepA |
 +--------------+
 | ICMPv4 |
 | Header |
 | type = X |
 | code = Y |
 - - +--------------+
 | IPv4 Header |
 | src = VtepA |
 IPv4 | dst = VtepB |
 +--------------+
 Packet | UDP |
 | dst = VXLAN |
 in +--------------+
 | Ethernet |
 Error | DA = H2 mac |
 | SA = H1 mac |
 +--------------+ - -
 | IPv6 |
 | src = H1 ipv6|
 | dst = H2 ipv6| Original IPv6
 +--------------+ Packet.
 | Transport | Used to
 | Header | generate an
 +--------------+ ICMPv6
 | | error message
 ~ Data ~ back to the source.
 | |
 - - +--------------+ - -

 ICMPv4 Error Message Returned to Encapsulating Node

 The above underlay ICMPv4 is used to form an overlay ICMPv6 packet by
 extracting the Ethernet DA from the inner Ethernet SA, and forming an
 IPv6 header where the source address is based on the source address
 of the ICMPv4 error. The ICMPv6 type and code values are set based
 on the ICMPv4 type and code values.

Nordmark, et al. Expires January 2, 2017 [Page 14]

Internet-Draft LTTON Jul 2016

 +--------------+
 | Ethernet |
 | DA = H1 mac | From ICMPv4 packet
 | SA = VtepA | in error
 +--------------+
 | IPv6 Header |
 | src = ::R1 | 96 zeros + IPv4 address
 | dst = H1 ipv6|
 +--------------+
 | ICMPv6 |
 | Header |
 | type = X' | Type and code mapped
 | code = Y' | from v4 to v6 values
 - - +--------------+ - -
 | IPv6 |
 IPv6 | src = H1 ipv6|
 | dst = H2 ipv6| Unmodified from
 Packet +--------------+ ICMPv4 error
 | Transport |
 in | Header |
 +--------------+
 Error | |
 ~ Data ~
 | |
 - - +--------------+ - -

 Generated ICMPv6 Error Message for Overlay Source

 In the case of IPv6 over IPv4 the above example setting of the IPv6
 source address results in this type of traceroute output:

 traceroute to 2000:0:0:40::2, 30 hops max, 80 byte packets
 1 ::2.0.1.1 (::2.0.1.1) 1.231 ms 1.004 ms 1.126 ms
 2 ::2.0.1.2 (::2.0.1.2) 1.994 ms 2.301 ms 2.016 ms
 3 ::2.0.2.1 (::2.0.2.1) 18.846 ms 30.582 ms 19.776 ms
 4 2000:0:0:40::2 (2000:0:0:40::2) 48.964 ms 60.131 ms 53.895 ms

9. Decapsulating Behavior

 If this uniform ttl model is enabled on the decapsulating NVE, and
 the overlay header indicates that uniform ttl model applies (the
 T-bit in the case of VXLAN), then the NVE will perform these
 additional operations as part of decapsulating a packet where the
 inner packet is an IPv4 or IPv6 packet:

 o Examine the outer IPv4 TTL (or outer IPv6 hopcount, respectively)
 on receipt and if 1 or less, then drop the packet and send an

Nordmark, et al. Expires January 2, 2017 [Page 15]

Internet-Draft LTTON Jul 2016

 outer ICMPv4 (or ICMPv6) ttl exceeded back to the source of the
 outer packet i.e., the ingress NVE. This ICMP packet should look
 the same as an ICMP error generated by an underlay router, and the
 requirement in [RFC1812] on the size of the packet in error
 applies.

 o If ttl did not expire, then decrement the above ttl/hopcount and
 place it in the inner IP header. If the inner IP header is IPv4
 then update the IPv4 header checksum. Then decapsulate and send
 the packet as for other decapsulated packets.

 o If some other errors prevent sending the packet (such as unknown
 VN Context Id), then the NVE SHOULD send an ICMP host unreachable
 instead of a ttl exceeded error.

10. Other ICMP errors

 The technique for selecting ttl behavior specified in this draft can
 also be used to trigger other ICMPv4 and ICMPv6 errors. For example,
 [RFC1933] specifies how ICMP packet too big from underlay routers can
 be used to report over ICMP packet too big errors to the original
 source. Other errors that are more specific to the overlay protocol
 might also be useful, such as not being able to find a VNI ID for the
 incoming port,vlan, or not being able to flood the packet if the
 packet is a Broadcast, Unknown unicast, or Multicast packet.

11. Downstream Egress Paths Object

 The Downstream Egress Paths Object MAY be appended to the ICMP Time
 Exceeded and Destination Unreachable messages. A single instance of
 the Downstream Egress Paths Object represents the egress paths at the
 router that sends the ICMP message. The Downstream Egress Paths
 Object must be preceded by an ICMP Extension Structure Header and an
 ICMP Object Header. Both are defined in [RFC4884]. The format
 follows closely [RFC4379] with some generalizations for Multipath
 types.

 Class-Num = TBA by IANA, Downstream Egress Paths Class

 C-Type = 1.

 If the replying router is the destination of the echo request, then a
 Downstream Egress Paths Object SHOULD NOT be included in the ICMP
 Error message. Otherwise the replying router MAY append a Downstream
 Egress Paths Object for all interfaces over which the echo request
 packet could be forwarded.

https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc1933
https://datatracker.ietf.org/doc/html/rfc4884
https://datatracker.ietf.org/doc/html/rfc4379

Nordmark, et al. Expires January 2, 2017 [Page 16]

Internet-Draft LTTON Jul 2016

 The Object Length is K*N + M*N, where M is the Multipath Length for
 each egress path, M may not be the same for different paths. Values
 for K are found in the description of Address Type below.

 The Downstream Egress Paths Object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Path-1 MTU | Address Type | Reserved |
 +-+
 | Downstream IP Address (4 or 16 octets) |
 +-+
 | Downstream Interface Address (4 or 16 octets) |
 +-+
 | MultipathType | Multipath Length | Reserved |
 +-+
 . .
 . (Multipath Information) .
 . .
 +-+
 ~ ~
 ~ ~
 +-+
 | Path-N MTU | Address Type | Reserved |
 +-+
 | Downstream IP Address (4 or 16 octets) |
 +-+
 | Downstream Interface Address (4 or 16 octets) |
 +-+
 | MultipathType | Multipath Length | Reserved |
 +-+
 . .
 . (Multipath Information) .
 . .
 +-+

 Downstream Egress Paths Object

 Maximum Transmission Unit (MTU):
 The MTU is the size in octets of the largest IP frame that fits on
 the downstream interface.

 Address Type:
 The Address Type indicates if the interface is numbered or
 unnumbered. It also determines the length of the Downstream IP
 Address and Downstream Interface fields. The resulting total for
 the initial part of the one path of the downstream Egress Paths

Nordmark, et al. Expires January 2, 2017 [Page 17]

Internet-Draft LTTON Jul 2016

 Object is listed in the table below as "K Octets".

 The Address Type is set to one of the following values:

 Type # Address Type K Octets
 ------ ------------ --------
 1 IPv4 Numbered 16
 2 IPv4 Unnumbered 16
 3 IPv6 Numbered 40
 4 IPv6 Unnumbered 28

 Downstream IP Address and Downstream Interface Address:
 IPv4 addresses and interface indices are encoded in 4 octets; IPv6
 addresses are encoded in 16 octets.

 If the interface to the downstream router has a unique IP address
 (e.g., it is numbered and not a LAG), then the Address Type MUST
 be set to IPv4 or IPv6, the Downstream IP Address MUST be set to
 either the downstream router's Router ID or the interface address
 of the downstream router, and the Downstream Interface Address
 MUST be set to the downstream router's interface address.

 If the interface to the downstream router does not have a unique
 IP address (e.g., it is is unnumbered or a LAG), the Address Type
 MUST be IPv4 Unnumbered or IPv6 Unnumbered, the Downstream IP
 Address MUST be the downstream router's Router ID or the interface
 address of the downstream router, and the Downstream Interface
 Address MUST be set to the index assigned by the upstream router
 to the interface.

 Multipath Type:
 The following Multipath Types are defined:

 Key Type Multipath Information
 --- ---------------- ---------------------
 0 no multipath Empty (Multipath Length = 0)
 1 MAC SA/DA Inner MAC in tunnel payload
 2 IP Src/Dest Inner IP src/dest in tunnel payload
 3 L4 src port L4 src ports in tunnel payload
 4 L4 src port range low/high L4 src port pairs

 Type 0 indicates that all packets will be forwarded out this one
 interface.

Nordmark, et al. Expires January 2, 2017 [Page 18]

Internet-Draft LTTON Jul 2016

 Types 1 through 4 specify that the supplied Multipath Information
 will serve to exercise this path.

 Multipath Length:
 The length in octets of the Multipath Information.

 Multipath Information:
 The Multipath Information encodes L4 source ports that will
 exercise this path. The Multipath Information depends on the
 Multipath Type. The contents of the field are shown in the table
 above. For Type 4, ranges indicated by L4 source port pairs MUST
 NOT overlap and MUST be in ascending sequence.

12. Security Considerations

 The considerations in [I-D.ietf-nvo3-security-requirements] apply.

 In addition, the use of the uniform ttl tunnel model will result in
 ICMP errors being generated by underlay routers and consumed by NVEs.
 That resents an attack vector which does not exist in a pipe ttl
 tunnel model. However, ICMP errors should be rate limited [RFC1812].
 Implementations should also take appropriate measures in rate
 limiting the input rate for ICMP errors that are processed by limited
 CPU resources.

 Some implementations might handle the trace packets (with uniform ttl
 model) in software while the pipe ttl model packets can be handled in
 hardware. In such a case the implementation should have mechanisms
 to avoid starvation of limited CPU resources due to these packets.

13. IANA Considerations

 TBD

14. Acknowledgements

 The authors acknowledge the helpful comments from David Black and
 Diego Garcia del Rio.

15. References

https://datatracker.ietf.org/doc/html/rfc1812

Nordmark, et al. Expires January 2, 2017 [Page 19]

Internet-Draft LTTON Jul 2016

15.1. Normative References

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, DOI 10.17487/RFC0792, September 1981,

 <http://www.rfc-editor.org/info/rfc792>.

 [RFC1812] Baker, F., Ed., "Requirements for IP Version 4 Routers",
RFC 1812, DOI 10.17487/RFC1812, June 1995,

 <http://www.rfc-editor.org/info/rfc1812>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
 eXtensible Local Area Network (VXLAN): A Framework for
 Overlaying Virtualized Layer 2 Networks over Layer 3
 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
 <http://www.rfc-editor.org/info/rfc7348>.

 [RFC7365] Lasserre, M., Balus, F., Morin, T., Bitar, N., and Y.
 Rekhter, "Framework for Data Center (DC) Network
 Virtualization", RFC 7365, DOI 10.17487/RFC7365,
 October 2014, <http://www.rfc-editor.org/info/rfc7365>.

15.2. Informative References

 [I-D.gross-geneve]
 Gross, J., Sridhar, T., Garg, P., Wright, C., Ganga, I.,
 Agarwal, P., Duda, K., Dutt, D., and J. Hudson, "Geneve:
 Generic Network Virtualization Encapsulation",

draft-gross-geneve-02 (work in progress), October 2014.

 [I-D.herbert-gue]
 Herbert, T., Yong, L., and O. Zia, "Generic UDP
 Encapsulation", draft-herbert-gue-03 (work in progress),
 March 2015.

 [I-D.ietf-nvo3-security-requirements]
 Hartman, S., Zhang, D., Wasserman, M., Qiang, Z., and M.
 Zhang, "Security Requirements of NVO3",

draft-ietf-nvo3-security-requirements-07 (work in
 progress), June 2016.

 [I-D.sridharan-virtualization-nvgre]
 Garg, P. and Y. Wang, "NVGRE: Network Virtualization using

https://datatracker.ietf.org/doc/html/rfc792
http://www.rfc-editor.org/info/rfc792
https://datatracker.ietf.org/doc/html/rfc1812
http://www.rfc-editor.org/info/rfc1812
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7348
http://www.rfc-editor.org/info/rfc7348
https://datatracker.ietf.org/doc/html/rfc7365
http://www.rfc-editor.org/info/rfc7365
https://datatracker.ietf.org/doc/html/draft-gross-geneve-02
https://datatracker.ietf.org/doc/html/draft-herbert-gue-03
https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-security-requirements-07

Nordmark, et al. Expires January 2, 2017 [Page 20]

Internet-Draft LTTON Jul 2016

 Generic Routing Encapsulation",
draft-sridharan-virtualization-nvgre-08 (work in

 progress), April 2015.

 [I-D.tissa-lime-yang-oam-model]
 Senevirathne, T., Finn, N., Kumar, D., Salam, S., Wu, Q.,
 and Z. Wang, "Generic YANG Data Model for Operations,
 Administration, and Maintenance (OAM)",

draft-tissa-lime-yang-oam-model-06 (work in progress),
 August 2015.

 [RFC1933] Gilligan, R. and E. Nordmark, "Transition Mechanisms for
 IPv6 Hosts and Routers", RFC 1933, DOI 10.17487/RFC1933,
 April 1996, <http://www.rfc-editor.org/info/rfc1933>.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473,
 December 1998, <http://www.rfc-editor.org/info/rfc2473>.

 [RFC2983] Black, D., "Differentiated Services and Tunnels",
RFC 2983, DOI 10.17487/RFC2983, October 2000,

 <http://www.rfc-editor.org/info/rfc2983>.

 [RFC3270] Le Faucheur, F., Wu, L., Davie, B., Davari, S., Vaananen,
 P., Krishnan, R., Cheval, P., and J. Heinanen, "Multi-
 Protocol Label Switching (MPLS) Support of Differentiated
 Services", RFC 3270, DOI 10.17487/RFC3270, May 2002,
 <http://www.rfc-editor.org/info/rfc3270>.

 [RFC3443] Agarwal, P. and B. Akyol, "Time To Live (TTL) Processing
 in Multi-Protocol Label Switching (MPLS) Networks",

RFC 3443, DOI 10.17487/RFC3443, January 2003,
 <http://www.rfc-editor.org/info/rfc3443>.

 [RFC4379] Kompella, K. and G. Swallow, "Detecting Multi-Protocol
 Label Switched (MPLS) Data Plane Failures", RFC 4379,
 DOI 10.17487/RFC4379, February 2006,
 <http://www.rfc-editor.org/info/rfc4379>.

 [RFC4884] Bonica, R., Gan, D., Tappan, D., and C. Pignataro,
 "Extended ICMP to Support Multi-Part Messages", RFC 4884,
 DOI 10.17487/RFC4884, April 2007,
 <http://www.rfc-editor.org/info/rfc4884>.

 [RFC4950] Bonica, R., Gan, D., Tappan, D., and C. Pignataro, "ICMP
 Extensions for Multiprotocol Label Switching", RFC 4950,
 DOI 10.17487/RFC4950, August 2007,
 <http://www.rfc-editor.org/info/rfc4950>.

https://datatracker.ietf.org/doc/html/draft-sridharan-virtualization-nvgre-08
https://datatracker.ietf.org/doc/html/draft-tissa-lime-yang-oam-model-06
https://datatracker.ietf.org/doc/html/rfc1933
http://www.rfc-editor.org/info/rfc1933
https://datatracker.ietf.org/doc/html/rfc2473
http://www.rfc-editor.org/info/rfc2473
https://datatracker.ietf.org/doc/html/rfc2983
http://www.rfc-editor.org/info/rfc2983
https://datatracker.ietf.org/doc/html/rfc3270
http://www.rfc-editor.org/info/rfc3270
https://datatracker.ietf.org/doc/html/rfc3443
http://www.rfc-editor.org/info/rfc3443
https://datatracker.ietf.org/doc/html/rfc4379
http://www.rfc-editor.org/info/rfc4379
https://datatracker.ietf.org/doc/html/rfc4884
http://www.rfc-editor.org/info/rfc4884
https://datatracker.ietf.org/doc/html/rfc4950
http://www.rfc-editor.org/info/rfc4950

Nordmark, et al. Expires January 2, 2017 [Page 21]

Internet-Draft LTTON Jul 2016

Authors' Addresses

 Erik Nordmark
 Arista Networks
 Santa Clara, CA
 USA

 Email: nordmark@arista.com

 Chandra Appanna
 Arista Networks
 Santa Clara, CA
 USA

 Email: achandra@arista.com

 Alton Lo
 Arista Networks
 Santa Clara, CA
 USA

 Email: altonlo@arista.com

 Sami Boutros
 VMware

 Email: sboutros@vmware.com

 Ankur Dubey
 VMware

 Email: adubey@vmware.com

Nordmark, et al. Expires January 2, 2017 [Page 22]

