
Workgroup: Network Working Group

Internet-Draft: draft-nottingham-link-hint-03

Published: 23 July 2023

Intended Status: Informational

Expires: 24 January 2024

Authors: M. Nottingham

HTTP Link Hints

Abstract

This memo specifies "HTTP Link Hints", a mechanism for annotating

Web links to HTTP(S) resources with information that otherwise might

be discovered by interacting with them.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-nottingham-link-hint/.

information can be found at https://mnot.github.io/I-D/.

Source for this draft and an issue tracker can be found at https://

github.com/mnot/I-D/labels/link-hint.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 24 January 2024.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-nottingham-link-hint/
https://datatracker.ietf.org/doc/draft-nottingham-link-hint/
https://mnot.github.io/I-D/
https://github.com/mnot/I-D/labels/link-hint
https://github.com/mnot/I-D/labels/link-hint
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Notational Conventions

2. HTTP Link Hints

3. Pre-Defined HTTP Link Hints

3.1. allow

3.2. formats

3.3. links

3.4. accept-post

3.5. accept-patch

3.6. accept-ranges

3.7. accept-prefer

3.8. precondition-req

3.9. auth-schemes

3.10. status

4. Security Considerations

5. IANA Considerations

5.1. HTTP Link Hint Registry

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Representing Link Hints in Link Headers

Appendix B. Acknowledgements

Author's Address

1. Introduction

HTTP [RFC7230] clients can discover a variety of information about a

resource by interacting with it. For example, the methods supported

can be learned through the Allow response header field, and the need

for authentication is conveyed with a 401 Authentication Required

status code.

Often, it can be beneficial to know this information before

interacting with the resource; not only can such knowledge save time

(through reduced round trips), but it can also affect the choices

available to the code or user driving the interaction.

¶

¶

¶

https://trustee.ietf.org/license-info

For example, a user interface that presents the data from an HTTP-

based API might need to know which resources the user has write

access to, so that it can present the appropriate interface.

This specification defines a vocabulary of "HTTP link hints" that

allow such metadata about HTTP resources to be attached to Web links

[RFC8288], thereby making it available before the link is followed.

It also establishes a registry for future hints.

Hints are just that -- they are not a "contract", and are to only be

taken as advisory. The runtime behaviour of the resource always

overrides hinted information.

For example, a client might receive a hint that the PUT method is

allowed on all "widget" resources. This means that generally, the

client can PUT to them, but a specific resource might reject a PUT

based upon access control or other considerations.

More fine-grained information might also be gathered by interacting

with the resource (e.g., via a GET), or by another resource

"containing" it (such as a "widgets" collection) or describing it

(e.g., one linked to it with a "describedby" link relation).

There is not a single way to carry hints in a link; rather, it is

expected that this will be done by individual link serialisations

(see [RFC8288], Section 3.4.1). However, Appendix A does recommend

how to include link hints in the existing Link HTTP header field.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. HTTP Link Hints

A HTTP link hint is a (key, value) tuple that describes the target

resource of a Web link [RFC8288], or the link itself. The value's

canonical form is a JSON [RFC8259] data structure specific to that

hint.

Typically, link hints are serialised in links as target attributes

([RFC8288], Section 3.4.1).

In JSON-based formats, this can be achieved by simply serialising

link hints as an object; for example:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

In other link formats, this requires a mapping from the canonical

JSON data model. One such mapping is described in Appendix A for the

Link HTTP header field.

The information in a link hint SHOULD NOT be considered valid for

longer than the freshness lifetime ([RFC7234], Section 4.2) of the

representation that the link occurred within, and in some cases, it

might be valid for a considerably shorter period.

Likewise, the information in a link hint is specific to the link it

is attached to. This means that if a representation is specific to a

particular user, the hints on links in that representation are also

specific to that user.

3. Pre-Defined HTTP Link Hints

3.1. allow

Hint Name: allow

Description: Hints the HTTP methods that can be used to interact

with the target resource; equivalent to the Allow HTTP response

header.

Content Model: array (of strings)

Specification: [this document]

Content MUST be an array of strings, containing HTTP methods

([RFC7231], Section 4).

3.2. formats

Hint Name: formats

{

 "_links": {

 "self": {

 "href": "/orders/523",

 "hints": {

 "allow": ["GET", "POST"],

 "accept-post": {

 "application/example+json":

 {}

 }

 }

 }

 }

}

¶

¶

¶

¶

* ¶

*

¶

* ¶

* ¶

¶

* ¶

Description: Hints the representation type(s) that the target

resource can produce and consume, using the GET and PUT (if

allowed) methods respectively.

Content Model: object

Specification: [this document]

Content MUST be an object, whose keys are media types ([RFC7231],

Section 3.1.1.1), and values are objects.

The object MAY have a "links" member, whose value is an object

representing links (in the sense of [RFC8288]) whose context is any

document that uses that format. Generally, this will be schema or

profile ([RFC6906]) information. The "links" member has the same

format as the "links" hint.

Furthermore, the object MAY have a "deprecated" member, whose value

is either true or false, indicating whether support for the format

might be removed in the near future.

All other members of the object are under control of the

corresponding media type's definition.

3.3. links

Hint Name: links

Description: Hints at links whose context is the target resource.

Content Model: object

Specification: [this document]

The "links" hint contains links (in the sense of [RFC8288]) whose

context is the hinted target resource, which are stable for the

lifetime of the hint.

Content MUST be an object, whose member names are link relations

([RFC8288]) and values are objects that MUST have an "href" member

whose value is a URI-reference ([RFC3986], using the original link

as the base for resolution) for the link hint's target resource, and

MAY itself contain link hints, serialised as the value for a "hints"

member.

For example:

*

¶

* ¶

* ¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

3.4. accept-post

Hint Name: accept-post

Description: Hints the POST request format(s) that the target

resource can consume.

Content Model: object

Specification: [this document]

Content MUST be an object, with the same constraints as for

"formats".

When this hint is present, "POST" SHOULD be listed in the "allow"

hint.

3.5. accept-patch

Hint Name: accept-patch

Description: Hints the PATCH [RFC5789] request format(s) that the

target resource can consume; equivalent to the Accept-Patch HTTP

response header.

Content Model: array (of strings)

Specification: [this document]

Content MUST be an array of strings, containing media types

([RFC7231], Section 3.1.1.1).

When this hint is present, "PATCH" SHOULD be listed in the "allow"

hint.

3.6. accept-ranges

Hint Name: accept-ranges

"links": {

 "edit-form": {

 "href": "./edit",

 "hints": {

 "formats": {

 "application/json": {}

 }

 }

 }

}

¶

* ¶

*

¶

* ¶

* ¶

¶

¶

* ¶

*

¶

* ¶

* ¶

¶

¶

* ¶

Description: Hints the range-specifier(s) available for the

target resource; equivalent to the Accept-Ranges HTTP response

header [RFC7233].

Content Model: array (of strings)

Specification: [this document]

Content MUST be an array of strings, containing HTTP range-

specifiers ([RFC7233], Section 3.1).

3.7. accept-prefer

Hint Name: accept-prefer

Description: Hints the preference(s) [RFC7240] that the target

resource understands (and might act upon) in requests.

Content Model: array (of strings)

Specification: [this document]

Content MUST be an array of strings, contain preferences ([RFC7240],

Section 2). Note that, by its nature, a preference can be ignored by

the server.

3.8. precondition-req

Hint Name: precondition-req

Description: Hints that the target resource requires state-

changing requests (e.g., PUT, PATCH) to include a precondition,

as per [RFC7232], to avoid conflicts due to concurrent updates.

Content Model: array (of strings)

Specification: [this document]

Content MUST be an array of strings, with possible values "etag" and

"last-modified" indicating type of precondition expected.

See also the 428 Precondition Required status code ([RFC6585]).

3.9. auth-schemes

Hint Name: auth-schemes

Description: Hints that the target resource requires

authentication using the HTTP Authentication Framework [RFC7235].

Content Model: array (of objects)

*

¶

* ¶

* ¶

¶

* ¶

*

¶

* ¶

* ¶

¶

* ¶

*

¶

* ¶

* ¶

¶

¶

* ¶

*

¶

* ¶

Specification: [this document]

Content MUST be an array of objects, each with a "scheme" member

containing a string that corresponds to a HTTP authentication scheme

([RFC7235]), and optionally a "realms" member containing an array of

zero to many strings that identify protection spaces that the

resource is a member of.

For example:

3.10. status

Hint Name: status

Description: Hints the status of the target resource.

Content Model: string

Specification: [this document]

Content MUST be a string; possible values are:

"deprecated" - indicates that use of the resource is not

recommended, but it is still available.

"gone" - indicates that the resource is no longer available;

i.e., it will return a 410 Gone HTTP status code if accessed.

4. Security Considerations

Clients need to exercise care when using hints. For example, a naive

client might send credentials to a server that uses the auth-req

hint, without checking to see if those credentials are appropriate

for that server.

5. IANA Considerations

5.1. HTTP Link Hint Registry

This specification defines the HTTP Link Hint Registry. See

Section 2 for a general description of the function of link hints.

* ¶

¶

¶

 {

 "auth-req": [

 {

 "scheme": "Basic",

 "realms": ["private"]

 }

]

 }

¶

* ¶

* ¶

* ¶

* ¶

¶

*

¶

*

¶

¶

¶

[RFC2119]

[RFC3986]

[RFC5789]

Link hints are generic; that is, they are potentially applicable to

any HTTP resource, not specific to one application of HTTP, nor to

one particular format. Generally, they ought to be information that

would otherwise be discoverable by interacting with the resource.

Hint names MUST be composed of the lowercase letters (a-z), digits

(0-9), underscores ("_") and hyphens ("-"), and MUST begin with a

lowercase letter.

Hint content MUST be described in terms of JSON values ([RFC8259],

Section 3).

Hint semantics SHOULD be described in terms of the framework defined

in [RFC8288].

New hints are registered using the Expert Review process described

in [RFC8126] to enforce the criteria above. Requests for

registration of new resource hints are to use the following

template:

Hint Name: [hint name]

Description: [a short description of the hint's semantics]

Content Model: [valid JSON value types; see RFC627 Section 2.1]

Specification: [reference to specification document]

Initial registrations are enumerated in Section 3. The "rel", "rev",

"hreflang", "media", "title", and "type" hint names are reserved, so

as to avoid potential clashes with link serialisations.

6. References

6.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

Dusseault, L. and J. Snell, "PATCH Method for HTTP", RFC

5789, DOI 10.17487/RFC5789, March 2010, <https://www.rfc-

editor.org/rfc/rfc5789>.

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc5789
https://www.rfc-editor.org/rfc/rfc5789

[RFC6585]

[RFC7230]

[RFC7231]

[RFC7232]

[RFC7233]

[RFC7234]

[RFC7235]

[RFC7240]

[RFC8174]

[RFC8259]

Nottingham, M. and R. Fielding, "Additional HTTP Status

Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,

<https://www.rfc-editor.org/rfc/rfc6585>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/rfc/rfc7230>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/rfc/rfc7231>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Conditional Requests", RFC

7232, DOI 10.17487/RFC7232, June 2014, <https://www.rfc-

editor.org/rfc/rfc7232>.

Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,

"Hypertext Transfer Protocol (HTTP/1.1): Range Requests",

RFC 7233, DOI 10.17487/RFC7233, June 2014, <https://

www.rfc-editor.org/rfc/rfc7233>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014, <https://

www.rfc-editor.org/rfc/rfc7234>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Authentication", RFC 7235,

DOI 10.17487/RFC7235, June 2014, <https://www.rfc-

editor.org/rfc/rfc7235>.

Snell, J., "Prefer Header for HTTP", RFC 7240, DOI

10.17487/RFC7240, June 2014, <https://www.rfc-editor.org/

rfc/rfc7240>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

https://www.rfc-editor.org/rfc/rfc6585
https://www.rfc-editor.org/rfc/rfc7230
https://www.rfc-editor.org/rfc/rfc7231
https://www.rfc-editor.org/rfc/rfc7231
https://www.rfc-editor.org/rfc/rfc7232
https://www.rfc-editor.org/rfc/rfc7232
https://www.rfc-editor.org/rfc/rfc7233
https://www.rfc-editor.org/rfc/rfc7233
https://www.rfc-editor.org/rfc/rfc7234
https://www.rfc-editor.org/rfc/rfc7234
https://www.rfc-editor.org/rfc/rfc7235
https://www.rfc-editor.org/rfc/rfc7235
https://www.rfc-editor.org/rfc/rfc7240
https://www.rfc-editor.org/rfc/rfc7240
https://www.rfc-editor.org/rfc/rfc8174

[RFC8288]

[RFC6906]

[RFC8126]

RFC8259, December 2017, <https://www.rfc-editor.org/rfc/

rfc8259>.

Nottingham, M., "Web Linking", RFC 8288, DOI 10.17487/

RFC8288, October 2017, <https://www.rfc-editor.org/rfc/

rfc8288>.

6.2. Informative References

Wilde, E., "The 'profile' Link Relation Type", RFC 6906,

DOI 10.17487/RFC6906, March 2013, <https://www.rfc-

editor.org/rfc/rfc6906>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Appendix A. Representing Link Hints in Link Headers

A link hint can be represented in a Link header ([RFC8288], Section

3) as a link-extension.

When doing so, the JSON of the hint's content SHOULD be normalised

to reduce extraneous spaces (%x20), and MUST NOT contain horizontal

tabs (%x09), line feeds (%x0A) or carriage returns (%x0D). When they

are part of a string value, these characters MUST be escaped as

described in [RFC8259] Section 7; otherwise, they MUST be discarded.

Furthermore, if the content is an array or an object, the

surrounding delimiters MUST be removed before serialisation. In

other words, the outermost object or array is represented without

the braces ("{}") or brackets ("[]") respectively, but this does not

apply to inner objects or arrays.

For example, the two JSON values below are those of the fictitious

"example" and "example1" hints, respectively:

In a Link header, they would be serialised as:

A more complex, single value for "example":

¶

¶

¶

¶

"The Example Value"

1.2

¶

¶

Link: </>; rel="sample"; example="The Example Value";

 example1=1.2

¶

¶

https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8288
https://www.rfc-editor.org/rfc/rfc8288
https://www.rfc-editor.org/rfc/rfc6906
https://www.rfc-editor.org/rfc/rfc6906
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126

would be serialised as:

Appendix B. Acknowledgements

Thanks to Jan Algermissen, Mike Amundsen, Bill Burke, Graham Klyne,

Leif Hedstrom, Jeni Tennison, Erik Wilde and Jorge Williams for

their suggestions and feedback.

Author's Address

Mark Nottingham

Email: mnot@mnot.net

URI: https://www.mnot.net/

[

 "foo",

 -1.23,

 true,

 ["charlie", "bennet"],

 {"cat": "thor"},

 false

]

¶

¶

Link: </>; rel="sample"; example="\"foo\", -1.23, true,

 [\"charlie\", \"bennet\"], {"cat": \"thor\"}, false"

¶

¶

mailto:mnot@mnot.net
https://www.mnot.net/

	HTTP Link Hints
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions

	2. HTTP Link Hints
	3. Pre-Defined HTTP Link Hints
	3.1. allow
	3.2. formats
	3.3. links
	3.4. accept-post
	3.5. accept-patch
	3.6. accept-ranges
	3.7. accept-prefer
	3.8. precondition-req
	3.9. auth-schemes
	3.10. status

	4. Security Considerations
	5. IANA Considerations
	5.1. HTTP Link Hint Registry

	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Representing Link Hints in Link Headers
	Appendix B. Acknowledgements
	Author's Address

