
Secure Inter-Domain Routing M. Reynolds
Internet-Draft S. Kent
Intended status: Standards Track BBN
Expires: April 24, 2011 October 21, 2010

Local Trust Anchor Management for the Resource Public Key Infrastructure
 <draft-reynolds-rpki-ltamgmt-02.txt>

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on April 24, 2011.

Copyright and License Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Reynolds, et al Expires April 24, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/draft-reynolds-rpki-ltamgmt-02.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft RPKI Local TA Management October 2010

Abstract

 This document describes a facility to enable a relying party (RP) to
 manage trust anchors (TAs) in the context of the Resource Public Key
 Infrastructure (RPKI). It is common to allow an RP to import TA
 material in the form of self-signed certificates. The facility
 described in this document allows an RP to impose constraints on such
 TAs. Because this mechanism is designed to operate in the RPKI
 context, the relevant constraints are the RFC 3779 extensions that
 bind address spaces and/or autonomous system (AS) numbers to
 entities. The primary motivation for this facility is to enable an RP
 to ensure that resource allocation information that it has acquired
 via some trusted channel is not overridden by the information
 acquired from the RPKI repository system or by the putative TAs that
 the RP imports. Specifically, the mechanism allows an RP to specify a
 set of bindings between public key identifiers and RFC 3779 extension
 data and will override any conflicting bindings expressed via the
 putative TAs and the certificates downloaded from the RPKI repository
 system. Although this mechanism is designed for local use by an RP,
 an entity that is accorded administrative control over a set of RPs
 may use this mechanism to convey its view of the RPKI to a set of RPs
 within its jurisdiction. The means by which this latter use case is
 effected is outside the scope of this document.

Table of Contents

1 Introduction . 4
1.1 Terminology . 5

2 Overview of Certificate Processing 5
2.1 Target Certificate Processing 5
2.2 Perforation . 5
2.3 TA Re-parenting . 6
2.4 Paracertificates . 6

3 Format of the constraints file 8
3.1 Relying party subsection 8
3.2 Flags subsection . 8
3.3 Tags subsection . 9

3.3.1 Xvalidity_dates tag 10
3.3.2 Xcrldp tag . 10
3.3.3 Xcp tag . 11
3.3.4 Xaia tag . 11

3.4 Blocks subsection . 12
4 Certificate Processing Algorithm 13

4.1 Proofreading algorithm 14
4.2 TA processing algorithm 15

4.2.1 Preparatory processing (stage 0) 16

https://datatracker.ietf.org/doc/html/rfc3779
https://datatracker.ietf.org/doc/html/rfc3779

Reynolds, et al Expires April 24, 2011 [Page 2]

Internet-Draft RPKI Local TA Management October 2010

4.2.2 Target processing (stage 1) 17
4.2.3 Ancestor processing (stage 2) 18
4.2.4 Tree processing (stage 3) 20
4.2.5 TA re-parenting (stage 4) 21

4.3 Discussion . 21
5 Implications for Path Discovery 21

5.1 Two answers . 22
5.2 One answer . 22
5.3 No answer . 22

6 Implications for Revocation 23
6.1 No state bits set . 23
6.2 ORIGINAL state bit set 23
6.3 PARA state bit set 23
6.4 Both ORIGINAL and PARA state bits set 24

7 Security Considerations 25
8 IANA Considerations . 25
9 Acknowledgements . 25
10 References . 25

10.1 Normative References 25
10.2 Informative References 26

 Authors' Addresses . 26
Appendix A: Sample Constraints File 27

Reynolds, et al Expires April 24, 2011 [Page 3]

Internet-Draft RPKI Local TA Management October 2010

1 Introduction

 The Resource Public Key Infrastructure (RPKI) [I-D.sidr-arch] is a
 PKI in which certificates are issued to facilitate management of IP
 addresses and autonomous system number resources. Such resources are
 expressed in the form of X.509v3 "resource" certificates with
 extensions as defined by RFC 3779 [I-D.sidr-res-cert-prof].
 Validation of a resource certificate is preceded by path discovery.
 Path discovery is effected by constructing a certificate path
 (upward) from a target certificate to a trust anchor. Path validation
 proceeds from the TA in question to the target certificate, using the
 public key from each certificate along the path to verify the
 signature of its subordinate certificate. In the RPKI it is
 anticipated that one or more putative TAs, aligned with the resource
 allocation hierarchy, will be available in the form of self-signed
 certificates configured by an RP. There are circumstances under which
 an RP may wish to override the resource specifications obtained
 through the RPKI distributed repository system [I-D.sidr-repos-
 struct]. This document describes a mechanism by which an RP may
 override any conflicting information expressed via the putative TAs
 and the certificates downloaded from the RPKI repository system.

 To effect this local control, this document calls for a relying party
 to specify a set of bindings between public key identifiers and
 resources (IP resources and/or AS number resources) through a text
 file known as a constraints file. The constraints expressed in this
 file then take precedence over any competing claims expressed by
 resource certificates acquired from the distributed repository
 system. (The means by which a relying party acquires the key
 identifier and the RFC 3779 extension data used to populate the
 constraints file is outside the scope of this document.) The relying
 party also may use a local publication point (the root of a local
 directory tree that is made available as if it were a remote
 repository) as a source of certificates and CRLs (and other RPKI
 signed objects, e.g. ROAs and manifests) that do not appear in the
 RPKI repository system.

 In order to allow reuse of existing, standard path validation
 mechanisms, the RP-imposed constraints are realized by having the RP
 itself represented as the only TA known in the local certificate
 validation context. To ensure that all RPKI certificates can be
 validated relative to this TA, this RP TA certificate must contain
 all-encompassing resource allocations, i.e. 0/0 for IPv4, 0::/0 for
 IPv6 and 0-4294967295 for AS numbers. Thus, a conforming
 implementation of this mechanism must be able to cause a self-signed
 certification authority (CA) certificate to be created with a locally
 generated key pair. It also must be able to issue CA certificates
 subordinate to this TA. Finally, a conforming implementation of this

https://datatracker.ietf.org/doc/html/rfc3779
https://datatracker.ietf.org/doc/html/rfc3779

Reynolds, et al Expires April 24, 2011 [Page 4]

Internet-Draft RPKI Local TA Management October 2010

 mechanism must process the constraints file and modify certificates
 as needed in order to enforce the constraints asserted in the file.

 The remainder of this document describes in detail the types of
 certificate modification that may occur, the semantics of the
 constraints file, and the implications of certificate modification on
 path discovery and revocation.

1.1 Terminology

 It is assumed that the reader is familiar with the terms and concepts
 described in "Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile" [RFC5280] and "X.509
 Extensions for IP Addresses and AS Identifiers" [RFC3779].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

2 Overview of Certificate Processing

 The fundamental aspect of the facility described in this document is
 one of certificate modification. The constraints file, described in
 more detail in the next section, contains assertions about resources
 that are to be specially processed. As a result of this processing,
 certificates in the local copy of the RPKI repository are transformed
 into new certificates satisfying the resource constraints so
 specified. This enables the RP to override conflicting assertions
 about resource holdings as acquired from the RPKI repository system.
 Three forms of certificate modification can occur.

2.1 Target Certificate Processing

 If a certificate is acquired from the RPKI repository system and it's
 SKI is listed in the constraints file, it will be reissued directly
 under the RP TA certificate, with (possibly) modified RFC 3779
 extensions. The modified extensions will include any RFC 3779 data
 expressed in the constraints file. In Section 4.2, target certificate
 processing corresponds to stage one of the algorithm.

2.2 Perforation

 Any certificate acquired from the RPKI repository that contains an
RFC 3779 extension that intersects the resource data in the

 constraints file will be reissued directly under the RP TA, with
 modified RFC 3779 extensions. We refer to the process of modifying
 the RFC 3779 extension in an affected certificate as "perforation"
 (because the process will create "holes" in these extensions). The

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc3779
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3779
https://datatracker.ietf.org/doc/html/rfc3779
https://datatracker.ietf.org/doc/html/rfc3779
https://datatracker.ietf.org/doc/html/rfc3779
https://datatracker.ietf.org/doc/html/rfc3779

Reynolds, et al Expires April 24, 2011 [Page 5]

Internet-Draft RPKI Local TA Management October 2010

 modified extensions will exclude any RFC 3779 data expressed in the
 constraints file. In the certificate processing algorithm described
 in Section 4.2, perforation corresponds to stage two of the algorithm
 ("ancestor processing") and also to stage three of the algorithm
 ("tree processing").

2.3 TA Re-parenting

 For consistency, all valid, self-signed certificates that would have
 been regarded as TAs in the public RPKI certificate hierarchy, e.g.
 self-signed certificates issued by IANA or the RIRs, will be re-
 issued under the RP TA certificate. This processing is done even
 though all but one of these certificates might not intersect any
 resources specified in the constraints file. We refer to this
 reissuance as "re-parenting" since the Issuer (parent) of the
 certificate has been changed. In the certificate processing algorithm
 described in Section 4.2, TA re-parenting corresponds to stage four
 of the algorithm.

2.4 Paracertificates

 If a certificate is subject to any of the three forms of processing
 just described, that certificate will be referred to as an "original"
 certificate and the processed (output) certificate will be referred
 to as a paracertificate. When an original certificate is transformed
 into a paracertificate all the fields and extensions from the
 original certificate will be retained, except as indicated in Table
 1, below.

https://datatracker.ietf.org/doc/html/rfc3779

Reynolds, et al Expires April 24, 2011 [Page 6]

Internet-Draft RPKI Local TA Management October 2010

 Original Certificate Field Action

 Version unchanged
 Serial number created per note A
 Signature replaced if needed
 with RP's signing alg
 Issuer replaced with RP's name
 Validity dates replaced per note B
 Subject unchanged
 Subject public key info unchanged
 Extensions
 Subject key identifier unchanged
 Key usage unchanged
 Basic constraints unchanged
 CRL distribution points replaced per note B
 Certificate policy replaced per note B
 Authority info access replaced per note B
 Authority key ident replaced with RP's
 IP address block modified as described
 AS number block modified as described
 Subject info access unchanged
 All other extensions unchanged
 Signature Algorithm same as above
 Signature value new

 Table 1 Certificate Field Modifications

 Note A. The serial number will be created by concatenating the
 current time (the number of seconds since Jan 1, 1970) with a count
 of the certificates created in the current run.

 Note B. These fields are derived (as described in section 3.3 below)
 from parameters in the constraints file (if present); otherwise, they
 take on values from the certificates from which the paracertificates
 are derived.

Reynolds, et al Expires April 24, 2011 [Page 7]

Internet-Draft RPKI Local TA Management October 2010

3 Format of the constraints file

 This section describes a general model for the syntax of the
 constraints file. The model described below is nominal;
 implementations need not match details of this model as presented,
 but the external behavior of implementations MUST correspond to the
 externally observable characteristics of this model in order to be
 compliant.

 The constraints file consists of four logical subsections: the
 replying party subsection, the flags subsection, the tags subsection
 and the blocks subsection. The relying party subsection and the
 blocks subsection are REQUIRED and MUST be present; the flags and
 tags subsections are OPTIONAL. Each subsection is described in more
 detail below. Note that the semicolon (;) character acts as the
 comment character, to enable annotating constraints files. All
 characters from a semicolon to the end of that line are ignored. In
 addition, lines consisting only of whitespace are ignored. The
 subsections MUST occur in the order indicated. An example constraints
 file is given in Appendix A.

3.1 Relying party subsection

 The relying party subsection is a REQUIRED subsection of the
 constraints file. It MUST be the first subsection of the constraints
 file, and it MUST consist of two lines of the form:

 PRIVATEKEYMETHOD value [... value]
 TOPLEVELCERTIFICATE value

 The first line provides guidance to the certificate processing
 algorithm on the method that will be used to gain access to the RP's
 private key. This line consists of the string literal
 PRIVATEKEYMETHOD, followed by one or more whitespace delimited string
 values. These values are passed to the certificate processing
 algorithm as described below. Note that this entry, as for all
 entries in the constraints file, is case sensitive.

 The second line of this subsection consists of the string literal
 TOPLEVELCERTIFICATE, followed by exactly one string value. This value
 is the name of a file containing the relying party's TA certificate.
 The file name is passed to the certificate processing algorithm as
 described below.

3.2 Flags subsection

 The flags subsection of the constraints file is an OPTIONAL
 subsection. If present it MUST immediately follow the relying party

Reynolds, et al Expires April 24, 2011 [Page 8]

Internet-Draft RPKI Local TA Management October 2010

 subsection. The flags subsection consists of one or more lines of the
 form

 CONTROL flagname booleanvalue

 Each such line is referred to as a control line. Each control line
 MUST contain exactly three whitespace delimited strings. The first
 string MUST be the literal CONTROL. The second string MUST be one of
 the following three literals:

 resource_nounion
 intersection_always
 treegrowth

 The third string denotes a boolean value, and MUST be one of the
 literals TRUE or FALSE. Control flags influence the global operation
 of the certificate processing algorithm; the semantics of the flags
 is described in detail in Section 4.2. Note that each flag has a
 default value, so that if the corresponding CONTROL line does not
 appear in the constraints file, the algorithm flag is considered to
 take the corresponding default value. The default value for each flag
 is FALSE. Thus, if any flag is not named in a control line it takes
 the value FALSE. Further, if the flags subsection is absent, all
 three flags take the value FALSE.

3.3 Tags subsection

 The tags subsection is an OPTIONAL subsection in the constraints
 file. If present it MUST immediately follow the relying party
 subsection (if the flags subsection is absent) or the flags
 subsection (if it is present). The tags subsection consists of one or
 more lines of the form

 TAG tagname tagvalue [... tagvalue]

 Each such line is referred to as a tag line. Each tag line MUST
 consist of at least three whitespace delimited string values, the
 first of which must be the literal TAG. The second string value gives
 the name of the tag, and subsequent string(s) give the value(s) of
 the tag. The tag name MUST be one of the following four string
 literals:

 Xvalidity_dates
 Xcrldp
 Xcp
 Xaia

 The purpose of the tag lines is to provide an indication of the means

Reynolds, et al Expires April 24, 2011 [Page 9]

Internet-Draft RPKI Local TA Management October 2010

 by which paracertificate fields, specifically those indicated above
 under "Note B", are constructed. Each tag has a default, so that if
 the corresponding tag line is not present in the constraints file,
 the default behavior is used when constructing the paracertificates.
 The syntax and semantics of each tag line is described next.

 Note that the tag lines are considered to be global; the action of
 each tag line (or the default action, if that tag line is not
 present) applies to all paracertificates that are created as part of
 the certificate processing algorithm.

3.3.1 Xvalidity_dates tag

 This tag line is used to control the value of the notBefore and
 notAfter fields in paracertificates. If this tag line is specified
 and there is a single tagvalue which is the literal string C, the
 paracertificate validity interval is copied from the original
 certificate validity interval from which it is derived. If this tag
 is specified and there is a single tagvalue which is the literal
 string R, the paracertificate validity interval is copied from the
 validity interval of the relying party's top level (TA) certificate.
 If this tag is specified and the tagvalue is neither of these
 literals, then exactly two tagvalues MUST be specified. Each must be
 a Generalized Time string of the form YYYYMMDDHHMMSSZ. The first
 tagvalue is assigned to the notBefore field and the second tagvalue
 is assigned to the notAfter field. It MUST be the case that the
 tagvalues may be parsed as valid Generalized Time strings such that
 notBefore is less than notAfter, and also such that notAfter
 represents a time in the future (i.e., the paracertificate has not
 already expired).

 If this tag line is not present in the constraints file the default
 behavior is to copy the validity interval from the original
 certificate to the corresponding paracertificate.

3.3.2 Xcrldp tag

 This tag line is used to control the value of the CRL distribution
 point extension in paracertificates. If this tag line is specified
 and there is a single tagvalue that is the string literal C, the
 CRLDP of the paracertificate is copied from the CRLDP of the original
 certificate from which it is derived. If this tag line is specified
 and there is a single tagvalue that is the string literal R, the
 CRLDP of the paracertificate is copied from the CRLDP of the RP's top
 level certificate. If this tag line is specified and there is a
 single tagvalue that is not one of these two reserved literals, or if
 there is more than one tagvalue, then each tagvalue is interpreted as
 a URL that will be placed in the CRLDP sequence in the

Reynolds, et al Expires April 24, 2011 [Page 10]

Internet-Draft RPKI Local TA Management October 2010

 paracertificate.

 If this tag line is not present in the constraints file the default
 behavior is to copy the CRLDP from the original certificate to the
 corresponding paracertificate.

3.3.3 Xcp tag

 This tag line is used to control the value of the policyQualifierId
 field in paracertificates. If this tag line is specified there MUST
 be exactly one tagvalue. If the tagvalue is the string literal C, the
 paracertificate value is copied from the value in the corresponding
 original certificate. If the tagvalue is the string literal R, the
 paracertificate value is copied from the value in the RP's top level
 TA certificate. If the tagvalue is the string literal D, the
 paracertificate value is set to the default OID. If the tagvalue is
 not one of these reserved string literals, then the tagvalue MUST be
 an OID specified using the standard dotted notation. The value in the
 paracertificate's policyQualifierId field is set to this OID. Note
 the RFC 5280 specifies that only a single policy may be specified in
 a certificate, so only a single tagvalue is permitted in this tag
 line, even though the CertificatePolicy field is an ASN.1 sequence.

 If this tag line is not specified the default behavior is to use the
 default OID in creating the paracertificate.

 This option permits the RP to convert a value of the
 policyQualifierId field in a certificate (that would not be in
 conformance with the RPKI CP) to a conforming value in the
 paracertificate. This conversion enables use of RPKI validation
 software that checks the policy field against that specified in the
 RPKI CP [ID.sidr-res-cert-prof].

3.3.4 Xaia tag

 This tag line is used to control the value of the Authority
 Information Access (AIA) extension in the paracertificate. If this
 tag line is present then it MUST have exactly one tagvalue. If this
 tagvalue is the string literal C, then the AIA field in the
 paracertificate is copied from the AIA field in the original
 certificate from which it is derived. If this tag line is present and
 the tagvalue is not the reserved string literal, then the tagvalue
 MUST be a URL. This URL is set as the AIA extension of the
 paracertificates that are created.

 If this tag line is not specified the default behavior is to use copy
 the AIA field from the original certificate to the AIA field of the
 paracertificate.

https://datatracker.ietf.org/doc/html/rfc5280

Reynolds, et al Expires April 24, 2011 [Page 11]

Internet-Draft RPKI Local TA Management October 2010

3.4 Blocks subsection

 The blocks subsection is a REQUIRED subsection of the constraints
 file. If the tags subsection is present, the blocks subsection MUST
 appear immediately after it. If the tags subsection is absent, but
 the flags subsection is present, the block subsection MUST appear
 immediately after it. Otherwise, the blocks subsection MUST appear
 immediately after the relying party subsection. The blocks subsection
 consists of one or more blocks, known as target blocks. A target
 block is used to specify an association between a certificate (given
 by a hash of its public key information) and a set of resource
 assertions. Each target block contains four regions, an SKI region,
 an IPv4 region, an IPv6 region and an AS number region. All regions
 are REQUIRED to be present in a target block.

 The SKI region contains a single line beginning with the string
 literal SKI and followed by forty hexadecimal characters giving the
 subject key identifier of a certificate, known as the target
 certificate. The hex character string MAY contain embedded whitespace
 or colon characters (included to improve readability), which are
 ignored. The IPv4 region consists of a line containing only the
 string literal IPv4. This line is followed by zero or more lines
 containing IPv4 prefixes in the format described in RFC 3779. The
 IPv6 region consists of a line containing only the string literal
 IPv6, followed by zero or more lines containing IPv6 prefixes using
 the format described in RFC 3513. (The presence of the IPv4 and IPv6
 literals is to simplify parsing of the constraints file.) Finally,
 the AS number region consists of a line containing only the string
 literal AS#, followed by zero or more lines containing AS numbers
 (one per line). The AS numbers are specified in decimal notation as
 recommended in RFC 5396. A target block is terminated by either the
 end of the constraints file, or by the beginning of the next target
 block, as signaled by its opening SKI region line. An example target
 block is shown below. See also the complete constraints file example
 given in Appendix A. Note that whitespace, as always, is ignored.

 SKI 00:12:33:44:00:BA:BA:DE:EB:EE:00:99:88:77:66:55:44:33:22:11
 IPv4
 10.2.3/24
 10.8/16
 IPv6
 1:2:3:4:5:6/112
 AS#
 123
 567

 The blocks subsection MUST contain at least one target block. Note
 that it is OPTIONAL that the SKI refer to a certificate that is known

https://datatracker.ietf.org/doc/html/rfc3779
https://datatracker.ietf.org/doc/html/rfc3513
https://datatracker.ietf.org/doc/html/rfc5396

Reynolds, et al Expires April 24, 2011 [Page 12]

Internet-Draft RPKI Local TA Management October 2010

 or resolvable within the context of the local RPKI repository. Also,
 there is no REQUIRED or implied ordering of target blocks within the
 block subsection. As a result of the fact that blocks may occur in
 any order, it MAY result that the outcome of processing a constraints
 file depends on the order in which target blocks occur within the
 constraints file. The next section of this document contains a
 detailed description of the certificate processing algorithm.

4 Certificate Processing Algorithm

 The section describes the certificate processing algorithm through
 which paracertificates are created from original certificates in the
 local RPKI repository. For the purposes of describing this algorithm,
 it will be assumed that certificates may be persistently associated
 with state (or metadata) information. This state information will be
 further construed as having the form of any array of named bits that
 are associated with each certificate. No specific implementation of
 this functionality is mandated by this document. Any implementation
 that provides the indicated functionality is acceptable, and need not
 actually consist of a bit field associated with each certificate.

 The state bits used in certificate processing are

 NOCHAIN
 ORIGINAL
 PARA
 TARGET

 If the NOCHAIN bit is set, this indicates that a full path between
 the given certificate and a TA has not yet been discovered. If the
 ORIGINAL bit is set, this indicates that the certificate is question
 has been processed by some part of the processing algorithm described
 in Section 4.2. If it was processed as part of stage one processing,
 as described in section 4.2.2, the TARGET bit will also be set.
 Finally, any paracertificate will have the PARA bit set.

 At the beginning of algorithm processing each certificate in the
 local RPKI repository has the ORIGINAL, PARA and TARGET bits clear.
 If a certificate has a complete, validated path to a TA, or is itself
 a TA, then that certificate will have the NOCHAIN bit clear,
 otherwise it will have the NOCHAIN bit set. As the certificate
 processing algorithm is executed, the bit state of original
 certificates may changed. In addition, since the certificate
 processing algorithm may also be creating paracertificates, it is
 responsible for actively setting or clearing the state of these four
 bits on those paracertificates.

 The certificate processing algorithm consists of two sub-algorithms:

Reynolds, et al Expires April 24, 2011 [Page 13]

Internet-Draft RPKI Local TA Management October 2010

 "proofreading" and "TA processing". Conceptually, the proofreading
 sub-algorithm performs syntactic checks on the constraints file,
 while the TA processing sub-algorithm performs the actual certificate
 transformation processing. If the proofreading sub-algorithm does not
 succeed in parsing the constraints file, the TA processing sub-
 algorithm is not executed. Note also that if the constraints file is
 not present, neither sub-algorithm is executed and the local RPKI
 repository is not modified. Each of the constituent algorithms will
 now be described in detail.

4.1 Proofreading algorithm

 The goal of the proofreading algorithm is to check the constraints
 file for syntactic errors, such as missing REQUIRED subsections, or
 malformed addresses such as 1.2.300/24. It also performs a set of
 heuristic checks, such as checking for prefixes that are too large
 (larger than /8). The proofreading algorithm SHOULD also examine
 resource regions (IPv4, IPv6 and AS# regions) within the blocks
 subsection, and reorder such resources within a region in ascending
 numeric order. On encountering any error the proofreading algorithm
 SHOULD provide an error message indicating the line on which the
 error occurred as well as informative text that is sufficiently
 descriptive as to allow the user to identify and correct the error.
 An implementation of the proofreading algorithm MUST NOT assume that
 is has access to the local RPKI repository (even read-only access).
 An implementation of the proofreading algorithm MUST NOT alter the
 local RPKI repository in any way; it also MUST NOT change any of the
 state/metadata information associated with certificates in that
 repository. (Recall that the processing described here is creating a
 copy of that local repository.) Finally, the proofreading algorithm
 MAY produce a transformed output file containing the same syntactic
 information as in the text version of the constraints file, so long
 as the format of the transformed file is understood by the TA
 processing algorithm.

 The proofreading algorithm performs the following syntactic checks on
 the constraints file. It checks for the presence of the REQUIRED
 relying party subsection and the REQUIRED blocks subsection. It
 checks that the order of the two, three or four subsections is as
 stated above. It checks that the relying party subsection conforms to
 the specification given in section 3.1 above. If present, it checks
 that the tags and flags subsections conform to the specifications in
 sections 3.2 and 3.3 above. It then checks the blocks subsection. It
 splits the blocks subsection into constituent target blocks, as
 delimited by the SKI region line(s), and verifies that at least one
 target block is present. It verifies that each SKI region line
 contains exactly forty hexadecimal digits and contains no additional
 characters other than whitespace or colon characters. For each target

Reynolds, et al Expires April 24, 2011 [Page 14]

Internet-Draft RPKI Local TA Management October 2010

 block, it then verifies the presence of the IPv4, IPv6 and AS#
 regions, and also verifies that at least one such resource is
 present. For each IPv4 prefix, IPv6 prefix and autonomous system
 number given, it checks that the indicated resource is syntactically
 valid according to the appropriate RFC definition, as described in

section 3.4. It also verifies that no IPv4 resource has a prefix
 larger than /8. The proofreading algorithm SHOULD performing
 reordering within each of the three resource regions so that stated
 resource occur in ascending numerical order. If the proofreading
 algorithm has performed any reordering of information it MAY
 overwrite the constraints file. If it does so, however, it MUST
 preserve all information contained within the file, including
 information that is not parsed (such as comments). If the
 proofreading algorithm has performed any reordering of information
 but has not overwritten the constraints file, it MAY produce a
 transformed output file, as described above. If the proofreading
 algorithm has performed any reordering of information, but has
 neither overwritten the constraints file nor produced a transformed
 output file, it MUST provide an error message to the user indicating
 what reordering was performed.

4.2 TA processing algorithm

 The TA processing algorithm acts on the constraints file (or the
 output file produced by the proofreading algorithm) and the contents
 of the local RPKI repository to produce paracertificates for the
 purpose of enforcing the resource allocations as expressed in the
 constraints file. The TA processing algorithm operates in five
 stages, a preparatory stage (stage 0), target processing (stage 1),
 ancestor processing (stage 2), tree processing (state 3) and TA re-
 parenting (stage 4). Conceptually, during the preparatory stage the
 constraints (or proofreader output) file is read and a set of
 internal RP, tag and flag variables are set based on the contents of
 that file. (If the constraint file has not specified one or more of
 the tags and/or flags, those tags and flags are set to default
 values). During target processing all certificates specified by a
 target block are processed, and the resources for those certificates
 are (potentially) expanded; for each target found a new
 paracertificate is manufactured with its various fields set, as shown
 in Table 1, using the values of the internal variables set in the
 preparatory stage and also, of course, the fields of the original
 certificate (and, potentially, fields of the RP's TA certificate). In
 stage 2 (ancestor) processing, all ancestors of the each target
 certificate are found, and the claimed resources are then removed
 (perforated). A new paracertificate with these diminished resources
 is crafted, with its fields generated based on internal variable
 settings, original certificate field values, and, potentially, the
 fields of the RP's TA certificate. In tree processing (stage 3), the

Reynolds, et al Expires April 24, 2011 [Page 15]

Internet-Draft RPKI Local TA Management October 2010

 entire local RPKI repository is searching for any other certificates
 that have resources that intersect a target resource, and that were
 not otherwise processed during a preceding stage. Perforation is
 again performed for any such intersecting certificates, and
 paracertificates created as in stage 2. Finally, in the fourth and
 last stage, TA re-parenting, any TA certificates in the local RPKI
 repository that have not already been processed are now re-parented
 under the RP's TA certificate. This transformation will create
 paracertificates; however, these paracertificates may have RFC 3779
 resources that were not altered during algorithm processing. The
 final output of algorithm processing will be threefold. First, the
 state/metadata information on some (original) certificates in the
 repository MAY be altered. Second, paracertificates will be created,
 with the appropriate metadata, and entered into the repository.
 Finally, the TA processing algorithm SHOULD produce a human readable
 log of its actions, indicating which paracertificates were created
 and why. The remainder of this section describes the processing
 stages of the algorithm in detail.

4.2.1 Preparatory processing (stage 0)

 During preparatory processing, the constraints file, or the
 corresponding output file of the proofreader algorithm, is read.
 Internal variables are set corresponding to each tag and flag, if
 present, or to their defaults, if absent. Internal variables are also
 set corresponding to the PRIVATEKEYMETHOD value string(s) and the
 TOPLEVELCERTIFICATE string. The TA processing algorithm is queried to
 determine if it supports the indicated private key access
 methodology. This query is performed in an implementation-specific
 manner. In particular, an implementation is free to vacuously return
 success to this query. The TA processing algorithm next uses the
 value string for the TOPLEVELCERTIFICATE to locate this certificate,
 again in an implementation=specific manner. The certificate in
 question may already be present in the local RPKI repository, or it
 may be located elsewhere. The implementation is also free to create
 the top level certificate at this time, and then assign to this
 newly-created certificate the name indicated. It is necessary only
 that, at the conclusion of this processing, a valid trust anchor
 certificate for the relying party has been created or otherwise
 obtained.

 Some form of access to the RP's private key and top level certificate
 are required for subsequent correct operation of the algorithm.
 Therefore, stage 0 processing MUST terminate if one or both
 conditions are not satisfied. In the error case, the implementation
 SHOULD provide an error message of sufficient detail that the user
 can correct the error(s). If stage 0 processing does not succeed, no
 further stages of TA processing are executed.

https://datatracker.ietf.org/doc/html/rfc3779

Reynolds, et al Expires April 24, 2011 [Page 16]

Internet-Draft RPKI Local TA Management October 2010

4.2.2 Target processing (stage 1)

 During target processing, the TA processing algorithm reads all
 target blocks in the constraints file or corresponding proofreader
 output file. It then processes each target block in the order
 specified in the file. In the description that follows, except where
 noted, the operation of the algorithm on a single target block will
 be described. Note, however, that all stage 1 processing is executed
 before any processing in subsequent stages is performed.

 The algorithm first obtains the SKI region of the target block. It
 then locates, in an implementation-dependent manner, the certificate
 the SKI extension field of which contains that value. Note that if
 paracertificates have been created by virtue of previous target
 blocks being processed, those paracertificates are not searched in
 attempting to locate a certificate with a matching SKI; only original
 certificates are searched. If more than one original certificate is
 found matching this SKI, there are two possible scenarios. If a
 resource holder has two certificates issued by the same CA, with
 overlapping validity intervals and the same key, but distinct subject
 names (typically, by virtue of the SerialNumber parts being
 different), then these two certificates are both consider to be
 (distinct) targets, and are both processed. If, however, a resource
 holder has certificates issued by two different CAs, containing
 different resources, but using the same key, there is no unambiguous
 method to decide which of the certificates is intended as the target.
 In this latter case the algorithm MUST issue a warning to that
 effect, mark the target block in question as unavailable for
 processing by subsequent stages and proceed to the next target block.
 If no certificate is found then the algorithm SHOULD issue a warning
 to that effect and proceed to process the next target block.

 If a single original certificate is found matching the indicated SKI,
 then the algorithm takes the following actions. First, it sets the
 ORIGINAL state bit for the certificate found. Second, it sets the
 TARGET state bit for the certificate found. Third, it extracts the

RFC 3779 resources from the certificate. If the global
 resource_nounion flag is TRUE, it compares the extracted certificate
 resources with the resources specified in the constraints file. If
 the two resource sets are different, the algorithm SHOULD issue a
 warning noting the difference. An output resource set is then formed
 that is identical to the resource set extracted from the certificate.
 If, however, the resource_nounion flag is FALSE, then the output
 resource set is calculated by forming the union of the resources
 extracted from the certificate and the resources specified for this
 target block in the constraints file. A paracertificate is then
 constructed according to Table 1, using fields from the original
 certificate, the tags that had been set during stage 0, and, if

https://datatracker.ietf.org/doc/html/rfc3779

Reynolds, et al Expires April 24, 2011 [Page 17]

Internet-Draft RPKI Local TA Management October 2010

 necessary, fields from the RP's TA certificate. The RFC 3779
 resources of the paracertificate are equated to the derived output
 resource set. The PARA state bit is set for the newly created
 paracertificate.

4.2.3 Ancestor processing (stage 2)

 The goal of ancestor processing is to discover all ancestors of
 target certificates and remove from those ancestors the resources
 specified in the target blocks corresponding to the targets being
 processed. Note that it is possible that, for a given chain from a
 target certificate to a trust anchor, another target might be
 encountered. This is handled by removing all the target resources of
 all descendents. The set of all targets that are descendants of the
 given certificate is formed. The union of all the target resources of
 the corresponding target blocks is computed, and this union in then
 removed from the shared ancestor.

 In detail, the algorithm is as follows. First, all original target
 certificates processed during stage 1 processing are collected.
 Second, any such certificates that have the NOCHAIN state bit set are
 eliminated from the collection. (Note that, as a result of
 eliminating such certificates, the resulting collection may be empty,
 in which case this stage of algorithm processing terminates, and
 processing advances to stage 3.) Next, it is RECOMMENDED that the
 collection be sorted. Sorting is performed in an effort to eliminate
 any order dependencies in processing. It does this by rearranging the
 processing of certificates such that if A is an ancestor of B, B is
 processed before A. Sorting proceeds as follows. The collection is
 traversed and any certificate in the collection that is visited as a
 result of path discovery is temporarily marked. After the traversal,
 all unmarked certificates are moved to the beginning of the
 collection. The remaining marked certificates are unmarked, and a
 traversal again performed through this sub-collection of previously
 marked certificates. The sorting algorithm proceeds iteratively until
 all certificates have been sorted or until a predetermined fixed
 number of iterations has been performed. (Eight is suggested as a
 munificent value for the upper bound, since the number of sorting
 steps need should be no greater than the maximum depth of the tree).
 Finally, the ancestor processing algorithm is applied in turn to each
 certificate in the remaining sorted collection. Note that all stage 2
 processing is completed before any stage 3 processing.

 If an implementation does not perform sorting, as described above,
 then it MUST provide for conflict detection and notification. In
 particular, if a certificate is encountered two or more times during
 any part of the processing algorithm, and the modifications dictated
 by the processing algorithm are in conflict, the implementation MUST

https://datatracker.ietf.org/doc/html/rfc3779

Reynolds, et al Expires April 24, 2011 [Page 18]

Internet-Draft RPKI Local TA Management October 2010

 refrain from processing that certificate. Further, the implementation
 MUST present the user with an error message that contains enough
 detail that the user can locate the directives in the constraints
 file that are creating the conflict. For example, during one stage of
 the processing algorithm it may be directed that resources R1 be
 added to a certificate C, while during a different stage of the
 processing algorithm it may be directed that resources R2 be removed
 from certificate C. If the resource sets R1 and R2 have a non-empty
 intersection, that is a conflict.

 After sorting (if implemented) is complete, two levels of nested
 iteration are performed. The outer iteration is effected over all
 certificates in the collection; the inner iteration is over all
 ancestors of the designated certificate being processed. The first
 certificate in the collection is chosen, and a resource set R is
 initialized based on the resources of the target block for that
 certificate (since the certificate is in collection, it must be a
 target certificate, and thus correspond to a target block). The
 parent of the certificate is then located using ordinary path
 discovery over original certificates only. The ancestor's certificate
 resources A are then extracted. These resources are then perforated
 with respect to R. That is, an output set of resources is created by
 forming the intersection I of A and R, and then taking the set
 difference A - I as the output resources. A paracertificate is then
 created containing resources tat are these output resources, and
 containing other fields and extensions from the original certificate
 (and possibly the RP's TA certificate) according to the procedure
 given in Table 1. The PARA state bit is set on this paracertificate
 and the ORIGINAL state bit is set on A. If A is also a target
 certificate, as indicated by its TARGET state bit being set, then
 there will already have been a paracertificate created for it. This
 previous paracertificate is destroyed in favor of the newly created
 paracertificate. In this case also, the set R is augmented by adding
 into it the set of resources of the target block for A. The algorithm
 then proceeds to process the parent of A. This inner iteration
 continues until the self-signed certificate at the root of the path
 is encountered and processed. The outer iteration then continues by
 clearing R and proceeding to the next certificate in the target
 collection.

 Note that ancestor processing has the potential for order dependency
 as mentioned earlier in this document. If the sorting algorithm fails
 to completely process the collection of target certificates because
 the allotted maximum number of iterations has been realized, it may
 be the case that an ancestor of a certificate logically occurs before
 that certificate in the collection. The algorithm SHOULD warn the
 user in case the sorting procedure fails to converge. In addition,
 whenever an existing paracertificate is replaced by a newly created

Reynolds, et al Expires April 24, 2011 [Page 19]

Internet-Draft RPKI Local TA Management October 2010

 paracertificate during ancestor processing, the algorithm SHOULD
 alert the user, and SHOULD log sufficient detail such that the user
 is able to determine which resources were perforated from the
 original certificate in order to create the (new) paracertificate.

4.2.4 Tree processing (stage 3)

 The goal of tree processing is to locate other certificates the
 resources of which might conflict with the resources allocated to a
 target by virtue of their being mentioned in the constraints file. In
 this stage of processing, certificates that are not ancestors of any
 target are considered. In detail, the algorithm used is as follows.
 First, all target certificates are again collected. Second, all
 target certificates that have the NOCHAIN state bit set are
 eliminated from this collection. Third, if the intersection_always
 global flag is set, those target blocks that occur in the constraints
 file, but that did not correspond to a certificate in the local
 repository, are also added to the collection. In tree processing,
 unlike ancestor processing, this collection is not sorted. An
 iteration is now performed over each certificate (or set of target
 block resources) in the collection. Note that the collection may be
 empty, in which case this stage of algorithm processing terminates,
 and processing advances to stage 4. Note also that all stage 3
 processing is performed before any stage 4 processing.

 Given a certificate or target resource block, each top level original
 TA certificate is examined. If that TA certificate has an
 intersection with the target block resources, then the certificate is
 perforated with respect to those resources. A paracertificate is
 created based on the contents of the original certificate (and
 possibly the RP's TA certificate, as indicated in Table 1) using the
 perforated resources. The ORIGINAL state bit is set on the original
 certificate processed in this manner, and the PARA state bit is set
 on the paracertificate just created. An inner iteration then begins
 on the descendants of the original certificate just processed. There
 are two ways in which this iteration may proceed. If the treegrowth
 global flag is clear, then examination of the children proceeds until
 all children are exhausted, or until one child is found with
 intersecting resources. If the treegrowth global flag is set, all
 children are examined. Since a transfer of resources may be in
 process such that more than one child possesses intersecting
 resources, it is RECOMMENDED that the treegrowth flag be set. The
 inner iteration proceeds until all descendants have been examined and
 no further intersecting resources are found. The outer iteration then
 continues with the next certificate or target resource block in the
 collection. Note that unlike ancestor processing, there is no concept
 of a potentially cumulating resource collection R; only the resources
 in the target block are used for perforation.

Reynolds, et al Expires April 24, 2011 [Page 20]

Internet-Draft RPKI Local TA Management October 2010

4.2.5 TA re-parenting (stage 4)

 In the final stage of TA algorithm processing, all TA certificates
 (other than the RP's TA certificate) that have not already been
 processed in a previous stage are now processed. It will be the case
 that all such unprocessed TA certificates have no intersection with
 any target resource blocks. As such, in creating the corresponding
 paracertificates, the output resource set is identical to the input
 resource set. Other transformations as described in Table 1 are
 performed. The original TA certificates have the ORIGINAL state bit
 set; the newly created paracertificates have the PARA state bit set.
 Note that once stage four processing is completely, only a single TA
 certificate will remain in an unprocessed state, namely the relying
 party's own TA certificate.

4.3 Discussion

 The algorithm described in this document effectively creates two
 coexisting certificate hierarchies: the original certificate
 hierarchy and the paracertificate hierarchy. Note that original
 certificates are not removed during any of the processing described
 in the previous section. Some original certificates may move from
 having no state bits set (or only the NOCHAIN state bit set) to
 having one or both of the ORIGINAL and TARGET state bits set. In
 addition, the NOCHAIN state bit will still be set if it was set
 before any processing. The paracertificate hierarchy, however, is
 intended to supersede the original hierarchy for the purposes of ROA
 validation. The presence of two hierarchies has implications for the
 handling of path discovery, and also for the handling of revocation.
 If one thinks of a certificate as being "named" by its SKI, then
 there can now be two certificates with the same name, one an original
 certificate and the other a paracertificate. The next two sections
 discuss the implications of this duality in detail. Before
 proceeding, it is worth noting that even without the existence of the
 paracertificate hierarchy, cases may exist in which two or more
 original certificates have the same SKI. As noted earlier, in Section

4.2.2, these cases may be subdivided into the case in which such
 certificates are distinguishable by virtue of having different
 subject names, but identical issuers and resource sets, versus all
 other cases. In the distinguishable case, the path discovery
 algorithm treats the original certificates as separate certificates,
 and processes them separately. In all other cases, the original
 certificates should be treated as indistinguishable, and path
 validation should fail.

5 Implications for Path Discovery

 Path discovery proceeds from a child certificate C by asking for a

Reynolds, et al Expires April 24, 2011 [Page 21]

Internet-Draft RPKI Local TA Management October 2010

 parent certificate P such that the AKI of C is equal to the SKI of P.
 With one hierarchy this question would produce at most one answer.
 With two hierarchies, the original certificate hierarchy and the
 paracertificate hierarchy, the question may produce two answers, one
 answer, or no answer. Each of these cases is considered in turn.

5.1 Two answers

 In this case, it SHOULD be the case that one of the matches is a
 certificate with the ORIGINAL state bit set and the PARA state bit
 clear, while the other match inversely has the ORIGINAL state bit
 clear and the PARA state bit set. If any other combination of
 ORIGINAL and PARA state bits obtains, the path discovery algorithm
 MUST alert the user. In addition, the path discovery algorithm SHOULD
 refrain from attempting to make a choice as to which of the two
 certificates is the putative parent. In the no-error case, with the
 state bits are as indicated, the certificate with the PARA state bit
 set is chosen as the parent P. Note this means, in effect, that all
 children of the original certificate have been re-parented under the
 paracertificate.

5.2 One answer

 If the matching certificate has neither the ORIGINAL state bit set
 nor the PARA state bit set, this certificate is the parent. If the
 matching certificate has the PARA state bit set but the ORIGINAL
 state bit not set, this certificate is the parent. (This situation
 would arise, for example, if the original certificate had been
 revoked by its issuer but the paracertificate had not been revoked by
 the RP.) If the matching certificate has the ORIGINAL state bit set
 but the PARA state bit not set, this is not an error but it is a
 situation in which path discovery MUST be forced to fail. The parent
 P MUST be set to NULL, and the NOCHAIN state bit must be set on C and
 all its descendants; the user SHOULD be warned. Even if the RP has
 revoked the paracertificate, the original certificate MAY persist.
 Forcing path discovery to unsuccessfully terminate is a reflection of
 the RP's preference for path discovery to fail as opposed to using
 the original hierarchy. Finally, if the matching certificate has both
 the ORIGINAL and PARA state bits set, this is an error. The parent P
 MUST be set to NULL, and the user MUST be warned.

5.3 No answer

 This situation occurs when C has no parent in either the original
 hierarchy or the paracertificate hierarchy. In this case the parent P
 is NULL and path discovery terminates unsuccessfully. The NOCHAIN
 state bit must be set on C and all its descendants.

Reynolds, et al Expires April 24, 2011 [Page 22]

Internet-Draft RPKI Local TA Management October 2010

6 Implications for Revocation

 In a standard implementation of revocation in a PKI, a valid CRL
 names a (sibling) certificate by serial number. That certificate is
 revoked and is purged from the local RPKI repository. In the
 mechanism described in this document, the original certificate
 hierarchy and the paracertificate hierarchy are closely related. It
 can thus be asked how revocation is handled in the presence of these
 two hierarchies, in particular with regard to whether changes in one
 of the hierarchies triggers corresponding changes in the other
 hierarchy. There are four cases.

6.1 No state bits set

 If the CRL names a certificate that has neither the ORIGINAL state
 bit set nor the PARA state bit set, revocation proceeds normally. All
 children of the revoked certificate have their state modified so that
 the NOCHAIN state bit is set.

6.2 ORIGINAL state bit set

 If the CRL names a certificate with the ORIGINAL state bit set and
 the PARA state bit clear, then this certificate is revoked as usual.
 If this original certificate also has the TARGET state bit set, then
 the corresponding paracertificate (if it exists) is not revoked; if
 this original certificate has the TARGET state bit clear, then the
 corresponding paracertificate is revoked as well. Note that since all
 the children of the original certificate have been re-parented to be
 children of the corresponding paracertificate, as described above,
 the revocation algorithm MUST NOT set the NOCHAIN state bit on these
 children unless the paracertificate is also revoked. Note also that
 if the original certificate is revoked but the paracertificate is not
 revoked, the paracertificate retains its PARA state bit. This is to
 ensure that path discovery proceeds preferentially through the
 paracertificate hierarchy, as described above.

6.3 PARA state bit set

 If the CRL names a certificate with the PARA state bit set and the
 ORIGINAL state bit clear, this CRL must have been issued, perforce,
 by the RP itself. This is because all the paracertificates are
 children of the RP's TA certificate. (Recall that a TA is not revoked
 via a CRL; it is merely removed from the repository.) The
 paracertificate is revoked and all children of the paracertificate
 have the NOCHAIN state bit set. No action is taken on the
 corresponding original certificate; in particular, its ORIGINAL state
 bit is not cleared.

Reynolds, et al Expires April 24, 2011 [Page 23]

Internet-Draft RPKI Local TA Management October 2010

 Note that the serial numbers of paracertificates are synthesized
 according to the procedure given in Table 1, rather than being
 assigned by an algorithm under the control of the (original) issuer.

6.4 Both ORIGINAL and PARA state bits set

 This is an error. The revocation algorithm MUST alert the user and
 take no further action.

Reynolds, et al Expires April 24, 2011 [Page 24]

Internet-Draft RPKI Local TA Management October 2010

7 Security Considerations

 The goal of the algorithm described in this document is to enable an
 RP to impose its own constraints on its view of the RPKI, which
 itself is a security function. An RP using a constraints file is
 trusting the assertions made in that file. Errors in the constraints
 file used by an RP can undermine the security offered by the RPKI, to
 that RP. In particular, since the paracertificate hierarchy is
 intended to trump the original certificate hierarchy for the purposes
 of path discovery, an improperly constructed paracertificate
 hierarchy could validate origin attestations that would otherwise be
 invalid, or could declare as invalid origin attestations that would
 otherwise be valid. As a result, an RP must carefully consider the
 security implications of the constraints file being used.

8 IANA Considerations

 [Note to IANA, to be removed prior to publication: there are no IANA
 considerations stated in this version of the document.]

9 Acknowledgements

 The authors would like to acknowledge the significant contributions
 of Charles Gardiner, who was the original author of an internal
 version of this document, and who contributed significantly to its
 evolution into the current version.

10 References

10.1 Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3513] Hinden, R., and S. Deering, "Internet Protocol Version 6
 (IPv6) Addressing Architecture", RFC 3513, April 2003.

 [RFC3779] Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP
 Addresses and AS Identifiers", RFC 3779, June 2004.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation
 List (CRL) Profile", RFC 5280, May 2008.

 [RFC5396] Huston, G., and G. Michaelson, "Textual Representation of
 Autonomous System (AS) Numbers", RFC 5396, December 2008.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3513
https://datatracker.ietf.org/doc/html/rfc3779
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5396

Reynolds, et al Expires April 24, 2011 [Page 25]

Internet-Draft RPKI Local TA Management October 2010

 [I-D. sidr-arch]
 Lepinski, M. and S. Kent, "An Infrastructure to Support
 Secure Internet Routing", draft-ietf-sidr-arch-11.txt
 (work in progress), September 2010.

 [I-D. sidr-repos-struct]
 Huston, G., Loomans, R., and G. Michaelson, "A Profile
 for Resource Certificate Policy Structure", draft-ietf-

sidr-repos-struct-05.txt (work in progress), October
 2010.

 [I-D. sidr-res-cert-prof]
 Huston, G., Michaelson, G., and R. Loomans, "A Profile
 for X.509 PKIX Resource Certificates", draft-ietf-sidr-

res-certs-19.txt (work in progress), October 2010.

10.2 Informative References

 None.

Authors' Addresses

 Stephen Kent
 BBN Technologies
 10 Moulton St.
 Cambridge, MA 02138

 Email: kent@bbn.com

 Mark Reynolds
 BBN Technologies
 10 Moulton St.
 Cambridge, MA 02138

 Email: mreynold@bbn.com

https://datatracker.ietf.org/doc/html/draft-ietf-sidr-arch-11.txt
https://datatracker.ietf.org/doc/html/draft-ietf-sidr-repos-struct-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-sidr-repos-struct-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-sidr-res-certs-19.txt
https://datatracker.ietf.org/doc/html/draft-ietf-sidr-res-certs-19.txt

Reynolds, et al Expires April 24, 2011 [Page 26]

Internet-Draft RPKI Local TA Management October 2010

Appendix A: Sample Constraints File

 ;
 ; Sample constraints file for TBO LTA Test Corporation.
 ;
 ; TBO manages its own local (10.x.x.x) address space
 ; via the target blocks in this file.
 ;

 ;
 ; Relying party subsection. TBO uses ssh-agent as
 ; a software cryptographic agent.
 ;

 PRIVATEKEYMETHOD OBO(ssh-agent)
 TOPLEVELCERTIFICATE tbomaster.cer

 ;
 ; Flags subsection
 ;
 ; Always use the resources in this file to augment
 ; certificate resources.
 ; Always process resource conflicts in the tree, even
 ; if the target certificate is missing.
 ; Always search the entire tree.
 ;

 CONTROL resource_nounion FALSE
 CONTROL intersection_always TRUE
 CONTROL treegrowth TRUE

 ;
 ; Tags subsection
 ;
 ; Copy the original cert's validity dates.
 ; Use the default policy OID.
 ; Use our own CRLDP.
 ; Use our own AIA.
 ;

 TAG Xvalidity_dates C
 TAG Xcp D
 TAG Xcrldp rsync://tbo_lta_test.com/pub/CRLs
 TAG Xaia rsync://tbo_lta_test.com/pub/repos

 ;
 ; Block subsection

Reynolds, et al Expires April 24, 2011 [Page 27]

Internet-Draft RPKI Local TA Management October 2010

 ;

 ;
 ; First block: TBO corporate
 ;

 SKI 00112233445566778899998877665544332211
 IPv4
 10.2.3/24
 10.8/16
 IPv6
 2000:2:3:4:5:6/112
 AS#
 60123
 5507

 ;
 ; Second block: TBO LTA Test enforcement division
 ;

 SKI 653420AF758421CF600029FF857422AA6833299F
 IPv4
 10.2.8/24
 10.47/16
 IPv6
 AS#
 60124

 ;
 ; Third block: TBO LTA Test Acceptance Corporation
 ; Quality financial services since sometime
 ; late yesterday.
 ;

 SKI 19:82:34:90:8b:a0:9c:ef:00:af:a0:98:23:09:82:4b:ef:ab:98:09
 IPv4
 10.3.3/24
 IPv6
 AS#
 60125

 ; End of TBO constraints file

Reynolds, et al Expires April 24, 2011 [Page 28]

