
INTERNET-DRAFT R. Fernando
Intended Status: Informational J. Medved
Expires: April 11, 2013 D. Ward
 Cisco

 A. Atlas
 B. Rijsman
 Juniper Networks
 October 11, 2012

IRS Framework Requirements
draft-rfernando-irs-framework-requirement-00

Abstract

 The Interface to Routing System (IRS) allows an application to
 programmatically query and modify the state of the network. This
 document defines the requirements for IRS with appropriate
 reasoning where required.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the

R. Fernando, et. al. Expires April 11, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

INTERNET DRAFT IRS Framework Requirements October 8, 2012

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1 Introduction . 3
1.1 Terminology . 3

2. IRS Overview . 4
3. IRS Framework Terminology 4
4. IRS Framework Design Objectives 7
5. IRS Framework Requirements 9
5.1 General Assumptions . 9
5.2 Transport Requirements 10
5.3 Identity Requirements 11
5.4 Message Encoding Requirements 12
5.5 Message Exchange Pattern Requirements 13
5.6 API Method Requirements 15
5.7 Service and SDM Requirements 16
5.7 Security Requirements 18
5.8 Performance and Scale Requirements 19
5.9 Availability Requirements 20
5.10 Application Programmability Requirements 20
5.11 Operational Requirements 21

6 Security Considerations . 21
7 Acknowledgements . 22
8. References . 22
8.1 Normative References 22

 Authors' Addresses . 22

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

R. Fernando, et. al. Expires April 11, 2013 [Page 2]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

1 Introduction

 Routers, switches and network appliances that form today's network
 infrastructure maintain state at various layers of detail and
 function. For example, each router has a Routing Information Base
 (RIB), and the routing protocols (OSPF, ISIS, BGP, etc.) each
 maintain protocol state and information about the state of the
 network.

 IRS [IRS-FRMWK] defines a standard interface through well defined
 APIs to access this information. The information collected by an
 application could be used to influence the routing system in
 conjunction with user defined policies in a feedback loop.

 IRS enables this feedback loop so that applications can not only
 collect information but also use them to influence the network. The
 goal is to facilitate control and diagnosis of the routing
 infrastructure, as well as enable sophisticated applications to be
 built on top of today's network infrastructure.

 Over time applications would evolve and with it their requirements
 too. IRS MUST be extensible so that future requirements can be
 easily factored in. IRS should be modular and extensible. It should
 be simple to understand and friendly to application developers.

 This document describes some of these requirements in detail taking
 into consideration the use cases described in [2]. Particular
 attention is paid to API and the application consumption model so
 that it is developer friendly.

 This document's scope is purely to collect and document requirements
 for the IRS framework. This could serve three purposes:

 a. To help the stakeholders (equipment vendors, application
 programmers or interested IETF participants), to arrive at a common
 understanding of the important elements of IRS.

 b. To provide requirements to the designers of IRS framework on the
 different aspects of the framework that needs consideration in the
 design process.

 c. To allow the stakeholders to evaluate technology choices that are
 suitable for IRS, to identify gaps in them and to help evolve them to
 suite IRS's needs.

1.1 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

R. Fernando, et. al. Expires April 11, 2013 [Page 3]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. IRS Overview

 IRS provides a standard interface for applications to read and
 write state in a network device. Since the application and the
 network device could reside in different physical nodes, IRS could
 be viewed as a distributed client-server system.

 IRS can also be viewed as a "framework" that helps reduce the
 "start up" cost in developing network based applications. A
 framework codifies a set of principles, patterns and software
 artifacts that allow application developers to quickly develop new
 applications.

 Instead of designing each application from scratch, the IRS
 framework provides a set of infrastructure that abstracts the
 application indepedent mechanisms. This approach enhances software
 agility, reusability and portability.

 This document aims at making sure that the requirements of the IRS
 framework are well articulated by describing its high level
 objectives, the concepts and components involved, how they are
 related and what their requirements are.

3. IRS Framework Terminology

 Before we delve into the details of the IRS framework, it might
 help to establish some basic terminology.

 Service: For the purposes of IRS, a service refers to a set of
 related state access functions together with the policies that
 control its usage. For instance, 'RIB service' could be an example
 of a service that gives access to state held in a device's RIB.

 Server: Is a system that implements one or more services so that
 other client systems can call them through well defined interfaces.
 A server can export multiple services. A server is typically a
 network device.

 Client: Is a system that calls a service implemented by a server
 through the well defined interface. A client can make use of
 multiple services from many servers. A client is typically a
 network application.

 Participants: The server and client are collectively called the

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

R. Fernando, et. al. Expires April 11, 2013 [Page 4]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

 participants of a service.

 Transport: Is any mode of communication on an end-to-end basis
 between the server and client that allows them to exchange data. In
 principle, the transport hides the topology and other network
 properties from the participants of a service.

 Messages: Messages are logical chunks of data that are exchanged
 between service participants.

 Message Exchange Pattern: Is a categorization of different ways in
 which messages could be exchanged between service participants.
 MEPs specify the sequence, order, direction and cardinality of
 messages exchanged. Request-response and asynchronous notifications
 are examples of MEPs. MEPs are also sometimes referred to as the
 session protocol.

 Message Data Model: The schema representing the structure of
 messages being exchanged between the service participants. The MDMs
 can specify certain constraints such as the data type, length,
 format and allowed values of fields in messages.

 Message Encoding: The "wire" representation of messages exchanged
 between service participants.

 API Method: Is an application level procedure or a function that is
 invoked by the client to query or modify the state held in the
 server.

 Service Scope: Is the functional scope of a service. The service
 scope is established during the service definition phase.

 Service Data Model: The schema representing the conceptual
 structure of the state held in the server for a given service. The
 SDMs can specify certain constraints such as the data type, length,
 format and allowed values for fields representing the state. They
 also describe the relationship between the state.

 Modeling Language: Is a language that defines schema for Message
 Data Models and Service Data Models.

 Namespaces: Allows a method for uniquely identifying and scoping of
 schemas declared for messages and services. Namespace is an
 important consideration when defining services and messages.

 Service State or State: Is the general data held by the server for
 a given service.

R. Fernando, et. al. Expires April 11, 2013 [Page 5]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

 State Element: A programmable state present in the server. State
 Element could vary in granularity.

 State Identifier: A unique identity for the state element. The
 identifier is derived from the SDM and uses the same naming
 convention as the SDM. State Identifier can be viewed as the 'key'
 for the state.

 State Value or 'value: This is a value that is assigned to a
 particular state identifier (key). The state is referred using the
 State Identifier or 'key' in operations that sets or transfers the
 value of the state.

 State Owner: Identity of the client that was the source of a state
 held in the server.

 State lifetime: The duration up to which the state is maintained in
 the server.

 Datastore: This is the physical mechanism used to store a service's
 state.

 Capabilities: Capabilities represents the functionality supported
 by a server including the services supported and exported to
 clients.

 Authentication: Mechanism that allows a server to recognize the
 identity of a client.

 Authorization: Determination of what an authenticated client is
 allowed to do.

 Confidentiality: Specifies if data remains confidential while in
 transit between service participants.

 Policy: For the purposes of this document, a policy is an explicit
 user configurable modification to the default behavior of the
 system. The enforcement could be conditional; they could become
 effective only when certain conditions are met.

 As can be seen, there are many aspects to be considered in designing
 the IRS framework. The next section decribes the broad objectives of
 the framework and breaks down the concerns so that each's
 requirements can be individually examined.

R. Fernando, et. al. Expires April 11, 2013 [Page 6]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

4. IRS Framework Design Objectives

 The goal is to provide a framework with the infrastructural
 components needed to develop intelligent applications that control
 the network. These are some of the core guiding principles and
 objectives that should be kept in mind when designing that
 framework.

 a. Requirements Driven: The design of the framework should be
 pragmatic and requirements driven. Having adequate provisions to
 meet the needs of current applications yet making key aspects
 extensible to meet future needs should be the goal.

 b. Simple to Program: The success of any architectural framework
 depends on the how simple it is to understand and implement
 against. When presented with multiple choices to perform a
 function, choosing one of them instead of supporting all of them
 might lead to simpler design. In doing so, the design should
 consider the most important requirements and the most common
 deployment scenarios.

 c. Standards Based: The need for a standards-based approach to
 network programmability has been recognized by many standardization
 groups including IETF. All aspects of IRS should be open standards
 based. However, IRS should specify mechanisms to extend it in vendor
 specific manner. The aspects of IRS that could be extended should
 be identified in this document and should be supported by an
 implementation.

 d. Design for Scale and Performance: The design should meet current
 and future performance and scale needs. It goes without saying that
 scale and performance should be key criteria for making design
 choices. There are well understood design patterns that allow us to
 compose a scalable, high performing system.

 e. Extensible: IRS will be deployed in environments whose
 requirements evolve over time. Hence the system should be designed
 with provisions that will allow significant enhancements to be added
 to meet specified future goals and requirements. An extensible and
 future-proof design will drive better adoption as it is a promise
 against future technology churn.

 f. Promote Reuse: Reuse in this context refers to using existing
 tools, technologies and mechanisms instead of inventing them from
 scratch. It also refers to reusing a network device's current set
 of capabilities that applications could harness without reinventing
 them from scratch.

R. Fernando, et. al. Expires April 11, 2013 [Page 7]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

 g. Promote Portability: Portability refers to the ease with which
 software written for one device or environment can be moved to work
 seamlessly with another device or environment to achieve similar
 functionality. A fundamental requirement for IRS is to achieve
 predictive and consistent behavior when applications are migrated
 from one platform or environment to another.

 h. Security: IRS could be deployed in environments where it might be
 subjected to threats and denial-of-service attacks that might cause
 intentional damage to the functioning of a network. This could be
 in the form of loss of service, degradation of performance, loss of
 confidentiality, etc. Therefore, the security aspects should be
 carefully thought through when designing IRS.

 i. Separation of concerns: The components of the system should be
 decoupled from each other as much as possible to achieve clear
 separation of concerns. This modularity would allow for
 interchangeable design and implementation choices that address the
 individual components requirements.

 j. Robustness: Robustness is the ability of a system to operate in
 the face of failures and errors. It is also its ability to correctly
 and predictably recover from such errors and to settle to a known
 state. Since applications that use the IRS framework are remote and
 would be controlling the entire network, ensuring fault tolerance
 is an important consideration.

 Most of these requirements cut across all the components of the
 system and hence should be kept in mind while designing each
 component and the system as a whole.

R. Fernando, et. al. Expires April 11, 2013 [Page 8]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

5. IRS Framework Requirements

 This section is divided into multiple sub-sections, each dealing with
 a specific consideration of IRS framework design. As we list the
 requirements under each subsection, we'll annotate each requirement
 with what high level objectives they meet. A reason for creating the
 requirement is additionally provided where appropriate.

5.1 General Assumptions

 This section captures the general, high level assumptions of the IRS
 framework. Since the design choices for the IRS framework are many,
 some simplifying assumptions could make the framework requirements
 more tangible and useful.

 +--------+ +--------+ +-----------+
 | Client | ... | Client | | Client |
 +--------+ +--------+ +-----------+
 ^ ^ ^ ^
 | | | |
 | | | |
 | | | IRS |
 | | +-------------+ |
 | | | |
 | | IRS | |
 | +---+ | | IRS
 | | | |
 | IRS | | |
 +------------------+ | | |
 | | | |
 V V V V
 +-----------+ +-----------+
 | Server | | Server |
 +-----------+ +-----------+

 G.1 Programmatic access to the state held in a network device is
 provided to an application by exposing a set of API's from the
 device to the application. Due to this characteristic, IRS is a
 client-server protocol/framework. IRS must provide mechanisms for the
 client to discover services that a server provides.

 G.2 The client can use the API's provided by the server to
 programmatically add, modify, delete and query state held in the
 server. Additionally clients can register for certain events and be
 notified when those events occur.

R. Fernando, et. al. Expires April 11, 2013 [Page 9]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

 G.3 The client and the server communicate using a simple transport
 connection. The client initiates the transport connection to the
 server. The server does not know the number and timing of the
 connections from its clients.

 G.4 A service provides access to the state held in the server
 structured according to the SDM of that service. A service allows
 a client the ability to manipulate the service state.

 G.5 The IRS MUST define a data model to describe the SDMs supported
 in the server and MUST define a data modeling language to formally
 describe that data model. IRS MUST specify the mapping from the
 service data model to the message data model and subsequently to the
 client API.

5.2 Transport Requirements

 The transport layer provides connectivity between the client and the
 server. This section details the transport requirements.

 T.1 There should exist a default transport connection between the
 client and the server for communication. This control connection is
 point-to-point and should provide in-order and reliable delivery of
 data in both directions. The simplest IRS setup will only have a
 single transport session between the participants.

 T.2 Depending on the data being exchanged, there could be additional
 transport connections between the client and server defined in
 future. The characteristics of these additional transport
 connections will be dictated by the requirements that create them.

 T.3 The transport connection between the client and server should
 have mechanisms to support authentication, authorization and
 optionally provide confidentiality of data exchanged between the
 client and the server. See 'Security Requirements' for more details.

 T.4 A client could connect to multiple servers. Similarly, a server
 could accept connections from multiple clients.

 T.5 The exact technology used for the transport layer should be
 replaceable. There should be a single mandatory transport that
 should be supported by all participants. This requirement will
 ensure that there is always an interoperable transport mechanism
 between any client and any server.

 T.6 Clients and servers by default communicate using a point-to-point
 transport connection.

R. Fernando, et. al. Expires April 11, 2013 [Page 10]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

 T.7 Point-to-multipoint transport are mainly used to scale the system
 by avoiding ingress replication when the same message has to be
 delivered to multiple receivers. P2MP transport would work hand-in-
 hand with a P2MP MEP. The subject of P2MP transport and P2MP MEP is
 for future work.

 T.8 Once the transport connection is up, it is desirable to keep it
 up and use it to perform multiple operations. This requirement
 ensures that the system scales by amortizing the session setup
 cost across multiple operations. Session down events do not have
 an impact on the state maintained by the server.

 T.9 After the transport connection comes up, the participants
 exchange capabilities and other session parameters before exchanging
 service related messages.

 T.10 Messages pertaining to multiple services could be exchanged over
 a single transport connection.

 T.11 The "default" transport connection between the client and server
 is purely for control plane message exchanges. Data plane packets
 are not expected to be sent over this "default" connection. When
 required, data plane 'punt' and 'inject' packets between
 participants could be designed as a service in itself that sets
 up a 'punt-inject-transport' that processes the right
 characteristics.

 T.12 For operational reasons, there MUST be a need to identify a
 transport connection failure. To satisfy this requirement, transport
 level keep-alives could be used. If the underlying transport
 connection does not provide a keep-alive mechanism, it should be
 provided at the IRS protocol level. For example, if TCP is used as a
 transport, TCP keep-alives could be used to detect transport
 session failures.

5.3 Identity Requirements

 IRS could be used in a multi-domain distributed environment.
 Therefore a fool-proof way to ascertain the identity of clients is of
 utmost importance. Identity provides authenticated access to clients
 to state held by the server.

 I.1 Each client should have a unique identity that can be verified by
 the server. The authentication could be direct or through an
 identity broker.

 I.2 The server should use the client's identity to track state

R. Fernando, et. al. Expires April 11, 2013 [Page 11]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

 provided by the client. State ownership enables the multiple
 clients to edit their shared state. This is useful during client
 death or disconnection when state owned by one client might be
 delegated to another client that shares the same identity.

 I.3 The client's identity should be independent of the location or
 the network address of the physical node in which it is hosted. This
 allows the client to move between physical nodes. It also allows a
 standby client to take over when the primary fails and allows shared
 state editing by multiple clients as discussed in I.2.

 I.4 A client that reboots or reconnects after a disconnection MUST
 have the same identity if it wishes to continue to operate on the
 state that it previously injected.

 I.5 A clients ability to operate on a state held by the server is
 expressed at the granularity of a service. A service could be
 read-only or read-write by a client possessing a particular
 identity.

 I.6 A policy on the server could dictate the services that could be
 exposed to clients. Upon identity verification, the authorized
 services are exported to the client by capability announcement.

 I.7 A client can edit (write, delete) only the state that was
 injected by it or other clients with the same shared identity.
 Therefore, two conditions must be met for a client to edit a state
 through a session. First, the client should receive capability from
 the server that it has 'edit' permissions for the service in
 question, and, secondly, the state that it edits should be its
 own state.

 I.8 When there is a single client and it dies, operational provisions
 should be made to garbage collect its state by a client that
 shares the original clients identity.

 I.9 The server retains the client's identity till all of its state is
 purged from the server.

5.4 Message Encoding Requirements

 Clients and servers communicate by exchanging messages between them.
 Message encoding is the process of converting information content in
 a message to a form that can be transferred between them.

 ME.1 Every message between the client and the server is encoded in a

R. Fernando, et. al. Expires April 11, 2013 [Page 12]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

 transport independent frame format.

 ME.2 Each message is serialized on the senders side and de-serialized
 on the receivers side. The technology used for encoding and
 decoding messages could be negotiated between the client and the
 server.

 ME.3 A mandatory default encoding standard should be specified and
 implemented by all IRS participants. This ensures that there is
 an interoperable default encoding mechanism between any client
 and any server.

 ME.4 The mandatory encoding technology chosen should be well
 supported by a developer community and should be standards based.
 Availability of tools and language bindings should be one of the
 criteria in selecting the mandatory encoding technology.

 ME.5 If multiple message encoding is supported in the framework, the
 encoding used for the current session should be configured using
 a policy on the server side and negotiated using capabilities. Note
 that currently there is no requirement to support multiple encoding
 schemes.

 ME.6 The message encoding standard should be language and platform
 neutral. It should provide tools to express fields in messages
 platform independent IDL based language.

 ME.7 The encoding/decoding mechanism should be fast and efficient. It
 should allow for operation on legacy equipment.

 ME.8 The encoding scheme should allow for optional fields and
 backward compatibility. It should be independent of the transport and
 the message exchange pattern used.

 ME.9 Human readability of messages exchanged on the wire might be a
 goal but it is secondary to efficiency needs.

5.5 Message Exchange Pattern Requirements

 Message exchange patterns form the basis for all service level
 activities. MEPs create a pattern of message exchanges that any task
 can be mapped to whether initiated by a client or the server. This
 section provides the requirements for MEPS.

 MEP.1 IRS defines three types of messages between the client and the
 server. First, capabilities need to be exchanged on session

R. Fernando, et. al. Expires April 11, 2013 [Page 13]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

 establishment. Second, API commands send down from client to server
 to add, delete, modify and query state. And third, asynchronous
 notifications from server to client when interesting state
 changes occur.

 MEP.2 The above message exchanges can be satisfied by two message
 exchange patterns. Capabilities and asynchronous notifications can be
 satisfied by one-way unsolicited fire and forget message. API
 commands can be satisfied using a request-response message exchange.
 The base IRS framework should thus support at least these two MEPs.

 MEP.3 For a request-response MEP, the server should acknowledge every
 request message from the client with a response message.

 MEP.4 The response message in a request-response MEP should indicate
 that the server has received the message, done some basic sanity
 checking on its contents and has accepted the message. The
 arrival of a response does not mean all post processing of the
 message has completed.

 MEP.5 The response message should indicate an error and carry error
 information if there was a failure to process the request. The
 error code should be accompanied by a descriptive reason for
 the failure.

 MEP.6 Error codes should indicate to the client which layer generated
 that error (transport, message parsing, schema validation,
 application level failure, etc). IRS framework should specify a
 standard set of error codes.

 MEP.7 The request-response messages should be asynchronous. That is,
 the client should not stop-and-wait for one message to be
 acknowledged before it transmits the next request.

 MEP.8 To satisfy MEP.5, there needs to be a mechanism such as a
 message-id, carried in the response that helps the sender correlate
 the response message to its original request.

 MEP.9 The response messages need not arrive in the order in which the
 request was transmitted.

 MEP.10 The request message should carry an application cookie that
 should be returned back to it in the corresponding response.

 MEP.11 Besides the request-response MEP, there is a need for a fire
 and forget MEP. Asynchronous notifications from the server to the
 client could be carried using this MEP. Fire and forget MEPs can be
 used in both client-to-server and server-to-client directions.

R. Fernando, et. al. Expires April 11, 2013 [Page 14]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

 MEP.12 The fire-and-forget MEP does not carry a message-id but it
 should carry a cookie that can be set by the sender and
 processed by the receiver. The cookie could help the receiver
 of the message to use the message for its intended purpose.

5.6 API Method Requirements

 API methods specify the exact operation that one participant intends
 to perform. This section outlines the requirements for API methods.

 A.1 The IRS framework should provide for a simple set of API methods,
 invoked from the client to the server. These methods should allow
 to add, modify, query and delete of state that the server maintains.

 A.2 The IRS framework should provide for two methods, subscribe and
 unsubscribe, that the client can use to express its interest in
 specific state changes in the server.

 A.3 The API methods discussed in A.1 and A.2 should be transported
 in a request-response MEP from the client to the server.

 A.4 The API framework should provide for a single notify method from
 the server to the client when interested state changes occur. The
 notification method should be transported in a fire-and-forget MEP
 from the server to the client.

 A.5 The framework should define a set of base API methods for
 manipulating state. These should be generic and should not service
 specific.

 A.6 All API methods that affect the state in the server should be
 idempotent. That is, the final state on the server should be
 independent of the number of times a state change method with the
 same parameters was invoked by the client.

 A.7 All API methods should support a batched mode for efficiency
 purposes. In this mode multiple state entries are transmitted in a
 single message with a single operation such as add, delete, etc. For
 methods described in A.1 and A.2 which elicit a response, the failure
 mechanism that is specific to a subset of state in the batch should
 be devised. Notify method should also support a batched mode.

 A.8 Since the API methods are primarily oriented towards state
 transfer between the client and server, there should be a
 identifier (or a key) to uniquely identify the state being
 addressed.

R. Fernando, et. al. Expires April 11, 2013 [Page 15]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

 A.9 API methods that refer to value of a particular state should
 carry the state identifier (key) as well as the its value. For
 instance, during a state add operation, both the identifier (key) and
 the value should be passed down from the client to the server.

 A.10 Besides the basic API methods that are common to all services,
 a server could support proprietary methods or service specific
 methods. The framework should devise a mechanism to express
 these methods and their semantics through a modelling language
 or otherwise. The ability to support additional API methods
 should be conveyed to the client through the capability message.

 A.11 Transactions allow a set of operations to be completed atom(all
 or nothing) and that the end result is consistent. This might be a
 requirement for some network applications and the framework designers
 should keep this requirement in mind during the design phase.

5.7 Service and SDM Requirements

 S.1 Each service is associated with a service data model that defines
 the type and structure of the state pertaining to that service. IRS
 should provide mechanisms to manage the state held in the server in
 accordance to the SDM.

 S.2 The data model should have the ability to express one-to-one,
 one-to-many and hierarchical relationships between entities.

 S.3 The base IRS API methods should allow a client to add, modify,
 query and delete state information.

 S.4 Neither the transport or the MEP should have any bearing on the
 structure of the state being transferred. Each service module in
 the server would be responsible for interpreting the structure of
 the state being transferred corresponding to the SDM.

 S.5 A client, after proper identification, could operate on multiple
 'services' that are exported to it. A client could have read-only
 or read-write access to a service. This is expressed by exchanging
 capability information with the client.

 S.6 The arrangement and structure of state (SDM) should be expressed
 in a network friendly data modelling language.

 S.7 Service data model once defined should be able to be extended.
 Service data models should be able to express mandatory and optional
 elements. If should also have the ability to express exceptions

R. Fernando, et. al. Expires April 11, 2013 [Page 16]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

 for unsupported elements in the model. These are requirements for
 the modelling language.

 S.8 For every service that it wishes to expose to a client, the
 server should send capabilities that indicate the service data model,
 any exceptions to it and the optional features of the data model
 that it supports.

 S.9 A service data model could be dependent on another SDM and
 should have the ability to refer to state elements in another
 service data model.

 S.10 A state element expressed in a data model could be writeable by
 a client or purely readable. Readable state elements are populated
 and managed by the server and clients don't have the ability to
 write their value. Routing next-hops added by a client is an
 example of read-write state. Statistics associated with that
 next-hop is an example of read-only state. The modelling language
 should have the ability to express this constraint.

 S.11 Query and notification API should be able to carry both read-
 only as well as read-write state.

 S.12 Besides specifying a SDM, a service should also specify the
 interesting state changes that clients can subscribe to for
 notifications.

 S.13 A client which is authenticated to access a service (either
 read-only or read-write) can subscribe to state change events.

 S.14 A subscribe method should optionally have a filter associated.
 This increases the efficiency by filtering out events that the
 client is not interested in. The notification filter should have
 the ability to express state identifiers and wildcards for
 values.

 S.15 The base API operations should be generic and allow a client to
 operate on multiple services with the same set of methods. Each
 service dictates its one schema or SDM.

 S.16 IRS protocol should allow a server to export standard services
 as well as vendor proprietary services. A namespace scheme should be
 devised to recognize standard and proprietary services.

 S.17 The server should indicate to the client the availability of
 infrastructure to manage the state that it maintains. This
 includes but not limited to the availability of persistent store,
 the availability of timer to clean up state after a specified

R. Fernando, et. al. Expires April 11, 2013 [Page 17]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

 timeout, the ability to clean up state on the occurrence of an
 event, etc. Equipped with this information, the client is
 responsible for the lifetime of the state.

 S.18 Each state should have a set of meta data associated with
 it. This includes the state's owner, the state's lifetime
 attributes, a creation and modification timestamp, etc. This
 information would aid in the debugging of the system. An
 authenticated client that is exposed to a service should also
 have access to the meta data associated with that service's
 state.

5.7 Security Requirements

 Security requirements should be thought through up front to avoid
 expensive rework to the framework. Adding security requirements once
 the system is designed could be an expensive and painful process.
 This section calls out some security concerns to be kept in mind
 while designing the framework.

 SEC.1 Every client should be authenticated and associated with an
 identity. A secure mechanism to uniquely identify a client such
 as certificates should be adopted.

 SEC.2 Every client should have an authorized role whereby only
 certain state can be accessed and only certain operations can be
 performed by that client. To keep the model simple and
 applications portable, authorization should be at a per service
 level and not on individual state element level.

 SEC.3 The framework should provide for information confidentiality
 and information integrity as options.

 SEC.4 Every state maintained by the server should be tagged with the
 client's identity as well as meta-data to indicate last access
 and last modifications time-stamps. This ensures accountability
 and helps auditing the system.

 SEC.5 The framework designers are strongly encouraged to provide
 mechanisms to "hook" into third-party security infrastructure to
 achieve these security goals whenever possible. This keeps
 applications programmers free of security concerns and yet
 provides a flexible, configurable and well integrated security
 model.

R. Fernando, et. al. Expires April 11, 2013 [Page 18]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

5.8 Performance and Scale Requirements

 Performance requirements are usually weaved in with the functional
 requirements of a system. They feature in every decision made to
 fulfill the systems requirements. Performance and scale are a complex
 function of many things. Hence performance requirements cannot be
 precisely quantified by a single number. This section lays out some
 common sense guidelines that should be kept in mind while designing
 the system from a scale and performance standpoint.

 PS.1 The request-response MEP should be asynchronous. This ensures
 that a system is not stuck waiting for a response and makes the
 entire system more responsive and increases concurrency between
 operations.

 PS.2 When applicable, messages should carry application level cookies
 that enable an application to quickly lookup the context
 necessary to process a message. The management of the cookie is
 the applications responsibility.

 PS.3 The framework should allow for bulk operations which amortizes
 the communication and messaging costs.

 PS.4 Provide for a binary encoding option for messages between the
 participants.

 PS.5 Provide for a non-encrypted transport between the service
 participants.

 PS.6 Provide for message prioritization.

 PS.7 Multiple operations could be completed with one transport
 session.

 PS.8 Keep the server as stateless with respect to the number and
 location of each client.

 PS.9 For notifications, support filtered subscription.

 PS.10 If a client requires to re-synchronize state with the server,
 device a mechanism to do this efficiently without transferring
 all the state between them.

 PS.11 Allow clients that perform infrequent operations to disconnect
 their transport connection without cleaning up their state.

 PS.12 Create the basic necessary mechanisms in the framework and
 build everything else as a service if possible.

R. Fernando, et. al. Expires April 11, 2013 [Page 19]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

5.9 Availability Requirements

 The ability of the system to withstand operational failures and
 function in a predictable manner is called availability. A few
 guidelines that are important are,

 A.1 Provide a 'superuser' identity that is capable of changing
 security policies, clearing state and perform other actions that
 override client initiated actions in the system.

 A.2 Handle session disconnection and client deaths gracefully. These
 should have the least impact on the system.

 A.3 Log client connections and disconnections and provide this as a
 well known service to authenticated users.

 A.4 Notify clients of message processing and other errors through
 error codes in messages.

 A.5 Have a mechanism to gracefully terminate the session between the
 client and the server.

 A.6 Provide a mechanism for authenticated clients to query the load
 attributes of the system, both instantaneous and running average.
 Provide this as a service.

5.10 Application Programmability Requirements

 The framework should pay particular attention the the requirements of
 application programmers. A well written framework should improve the
 productivity of programmers and shorten the time to make an
 application. This section has some issues to consider when devising
 the framework from an applications standpoint.

 AP.1 A client programming framework should allow applications writers
 to focus on the app functionality rather than mechanisms required to
 communicate with the server.

 AP.2 The application once written to certain requirements should be
 portable to other identical environments. The framework should
 not have fine grained data access controls as this would lead to
 a poorly written application with portability issues.

 AP.3 The framework should be devised in a manner that it is possible
 to automate code generation and constraint checking in popular
 programming languages. Generated code can then be used readily by

R. Fernando, et. al. Expires April 11, 2013 [Page 20]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

 application programmers instead of dealing with the nitty-gritties of
 the system.

 AP.4 Define a common repository for SDMs from which clients can
 obtain the SDMs they are interested in and automatically generate
 most of the boilerplate code.

 AP.5 Provisions should be made for debugging & troubleshooting tools
 that includes message trace, call traces, access to relevant
 server traces and logs, packet decode tools to trace & decode
 messages on the wire, consistency checkers of state inserted into
 a server.

 AP.6 The toolset should have a general portion (for common functions,
 such as session management) and SDM-specific portions (for
 example, a flag to control generation of debug code in code
 generated for a particular SDM).

 AP.7 The framework should define SDMs and MDMs in a language neutral
 format so as to enable code generation in multiple programming
 languages.

5.11 Operational Requirements

 O.1 There is a need to identify operational performance parameters of
 the system and provide mechanisms to retrieve them from a running
 system.

 O.2 Provide a way to upgrade a service independently of the other
 services. This modularity allows uninterrupted operation of the
 all but one service which is being upgraded.

 O.3 Provide a detailed workflow for bringing about a new service.
 This workflow will start with the need to introduce a new service and
 address the following: How SDMs defined? Where are they
 standardized? How are new entities (MEPs, transport, encoding)
 introduced? What are the tools and workflow involved to develop and
 operationalize a service. The intent is to introduce a level of
 understanding about stakeholders responsibilities.

 O.4 Provide mechanisms and methodologies to test a new service before
 deployment.

6 Security Considerations

 See "Security Requirements", section 5.7 above.

R. Fernando, et. al. Expires April 11, 2013 [Page 21]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

7 Acknowledgements

 Thanks to the following people for reviewing and providing feedback:
 Alexander Clemm, John McDowell.

8. References

8.1 Normative References

 [IRS-FRMWK] A. Atlas, T. Nadeau, D. Ward, "Interface to the Routing
 System Framework", draft-ward-irs-framework-00

Authors' Addresses

 Rex Fernando, Ed.
 170 W Tasman Dr,
 San Jose, CA 95134

 EMail: rex@cisco.com

 Jan Medved
 Cisco Systems
 170 W Tasman Dr,
 San Jose, CA 95134

 Email: jmedved@cisco.com

 David Ward
 Cisco Systems
 170 W Tasman Dr,
 San Jose, CA 95134

 Email: wardd@cisco.com

 Alia Atlas
 Juniper Networks
 10 Technology park Drive
 Westford, MA 01886

 Email: akatlas@juniper.net

 Bruno Rijsman
 Juniper Networks
 10 Technology Park Drive
 Westford, MA 01886

 Email: brijsman@juniper.net

https://datatracker.ietf.org/doc/html/draft-ward-irs-framework-00

R. Fernando, et. al. Expires April 11, 2013 [Page 22]

INTERNET DRAFT IRS Framework Requirements October 8, 2012

R. Fernando, et. al. Expires April 11, 2013 [Page 23]

