
Network Working Group J. Schaad

Internet-Draft Soaring Hawk Consulting

Intended status: Informational April 06, 2011

Expires: October 08, 2011

Commentary on the Design of the Authenticated-Enveloped-Data Content

Type

draft-schaad-smime-aed-rant-02

Abstract

The Authenticated-Enveloped-Data Content Type allows for the use of

Authenticated-Enveloped modes with block cipher algorithms. At the time

of the original design there was discussion about the relative location

of the authenticated attributes and the encrypted content in the ASN.1

structure. With the benefits of implementation experience I revisit the

discussion made at the time and re-evaluate the decision made.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on October 08, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction*

1.1. Terminology

2. Historic Arguments

3. Algorithm Taxonomy

3.1. CCM: Counter with CBC-MAC

3.2. CS: Cipher-State

3.3. CWC: Carter Wegman with Counter

3.4. EAX: A Conventional Authenticated-Encryption Mode

3.5. GCM: Galois/Counter Mode

3.6. IACBC: Integrity Aware Cipher Block Chaining

3.7. IAPM: Integrity Aware Parallelizable Mode

3.8. OCB: Offset Codebook

3.9. PCFB: Propagating Cipher Feedback

3.10. SIV: Synthetic IV

3.11. XCBC: eXtended Cipher Block Chaining Encryption

3.12. MAC-Authenticated Encryption

4. My Assumptions

5. Conclusions

6. Responses

7. Security Considerations

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Author's Address

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

1. Introduction

When the Cryptographic Message Syntax (CMS) [CMS] Authenticated-

Enveloped-Data content type (defined in RFC 5083 [CMS-AED]) was being

discussed, the S/MIME working group had no actual implementation

experience to guide it in some of the decisions that were being made at

the time. In this document I am revisiting one of these decisions based

on the implementation experience that I have since garnered.

Issues that were discussed at the time included:

What should the order be for the authenticated attributes, the

encrypted data and the authentication code be in the ASN.1

structure. There was uniform agreement that the authentication

code should be last, however the placement of the other two

fields was hotly disputed. This is the issue that we further

address below.

Should we change from using a SET to a SEQUENCE for the attribute

list. Doing so would have simplified the encoding processing for

hashing. There was no support for doing this as a common routine

exists that already worked for the signed and authenticated data

structures.

What are the security issues that deal with the timing of release

of the encrypted content vs. the validation step. This issue was

addressed in section 2 with the statement "The recipient MUST

verify the integrity of the received content before releasing any

information, especially the plaintext of the content."

Step 5 in section 2 says that padding needed to be done to the

block length, however there was some concern that the issue of

how padding should be done is better left to the algorithm

description rather than being specified here. No changes were

made to address the issue.

The major focus of the discussions centered on the relative placement

of the encrypted data blob (contained in the authEncryptedContentInfo

field) and the authenticated attributes (contained in the authAttrs

field). There were three different camps that emerged. These where: 1)

The attributes should be before the encrypted data, 2) The attributes

should be after the encrypted data, and 3) There should be the ability

to place the attributes both before and after the encrypted data and

the encoder would choice which to use. As can be seen from the ASN.1 in

Figure 1 the final decision was to place the authenticated attributes

after the encrypted content. This was counter to the arguments that I

made at the time to place the authenticated attributes before the

encrypted content.

*

*

*

*

AE

AEAD

Message Data

 AuthEnvelopedData ::= SEQUENCE {

 version CMSVersion,

 originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,

 recipientInfos RecipientInfos,

 authEncryptedContentInfo EncryptedContentInfo,

 authAttrs [1] IMPLICIT AuthAttributes OPTIONAL,

 mac MessageAuthenticationCode,

 unauthAttrs [2] IMPLICIT UnauthAttributes OPTIONAL }

This document is organized as follows:

Section 2 contains a review of the arguments presented at the

time.

Section 3 has a taxonomy of a number of authenticated encryption

algorithms.

Section 4 presents a set of criteria to be used.

Section 5 contains my personal conclusions on the issue.

Section 6 contains rebuttals (or maybe not).

The major part of my discussion focuses on the desirability to use a

streaming model for processing the ASN.1 structure and the data

contained within it. If one does not want to use streaming in doing the

processing, then much of the discussion here is moot. If one is willing

to buffer up all of the input to the encryption algorithm before

applying it, the order that the inputs are presented are immaterial.

This will be further detailed in Section 4.

1.1. Terminology

The following is a list of standardized terms used in the document:

is an abbreviation for Authenticated Encryption. This is block

cipher mode of operation which simultaneously provides

confidentiality and integrity assurances on the data.

is an abbreviation for Authenticated Encryption with Auxiliary

Data. This is a block cipher mode of operation which simultaneously

provides confidentiality and integrity assurances on the message

data as well as integrity assurances on an additional set of data.

is the section of the input data that is to be

authenticated and encrypted by the AE or AEAD algorithm mode. For

*

*

*

*

*

Authenticated Data

Authentication Tag

Streaming Model

CMS, the encrypted message data is placed in the encryptedContent

field of the authEncryptedContentInfo sequence.

is the section of input data that is to be

authenticated but not encrypted. For CMS, the authenticated data is

the sequence in the authAttrs field.

is a value that is generated by the mode which is

used to validate the integrity of the data. The Authentication Tag

is sometimes implicit and does not exist as an independent value.

For CMS, it is assumed that the use of the algorithm will define an

explicit tag and the tag will be placed in the mac field.

is a method of doing the processing such that the ASN.

1 processing and the cryptographic processing can be interleaved

with each other.

2. Historic Arguments

I have gone through the archived mailing list from the time to find the

arguments that were being advanced. The arguments are laid out with the

pro side being for attribute being placed after the data except for the

last item in the list.

Consistency with the existing CMS data types:

PRO: We have working implementations of both

AuthenticatedData and SignedData which work. In both of

these cases the data structures are ordered such that the

message data precedes the authenticated data. Keeping the

order consistent makes coding easier and leads to fewer

mistakes.

CON: Being constant is nice, however if it does not work

correctly that does not matter.

Authenticated attributes may be derived from the message

content:

PRO: It should be possible to create authenticated

attributes based on the content of the encrypted data and

have these attributes authenticated. Placing the attribute

before the message content means that one must buffer the

message content to do this. The example of this presented on

the mailing list was the ability for a sender to process the

body of the message on fly by a virus checker and publish

the result of the virus checking as an authenticated

attribute. This is the same thing that currently happens

today for both SignedData and AuthenticatedData where the

hash of the message data is computed on the fly and then

1.

*

*

2.

*

placed in the signed/authenticated attributes which are then

processed to compute the signature or mac values.

CON: Placing this information after the message data means

that the recipient cannot know to perform matching

processing, if necessary, in order to check the value

presented by the sender. The analogous step for the

SignedData structure is the need for the recipient to hash

the message data during processing in order to correctly

validate the signed attribute fields.

The decision should be dictated by Algorithm Characteristics:

PRO: The order of placing the attributes before the message

data was dictated by a specific choice of algorithms (CCM

and GCM) and that other authenticated encryption algorithms

(specifically CWC) would naturally place the attributes

second.

CON: No detailed analysis of algorithms was done. However,

the attribute data should be expected to be much smaller

than the message data and thus it makes more sense to cache

the attributes for later processing than to cache the

message data for later processing.

Resource requirements for the sender and recipient:

What happens with resource constrained devices that are

acting as senders or recipients? The initial argument dealt

with the question of resource limited senders that would not

be able to store intermediate data, but the same question

applies to resource limited recipients. We know that this

was intended to be used with firmware upgrades as one

option, but it could equally be used by a device sending out

reports to a central server. This is a case where a close

analysis would need to be done on the algorithm being used

and how it will affect the resources needed.

Relative frequency of processing:

There was a certain amount of discussion of the question of

the relative frequency of processing between the sender and

the recipient of a message. This would have bearing on the

question of which entity the decisions should be optimized

for. One set of people argued that recipients process

messages more frequently than senders. Another set of people

argued that there exist applications where the sender may

create messages that are never verified.

*

3.

*

*

4.

*

5.

*

Attributes should be placed in both locations.

There were a couple of people who attempted to argue that

the discussions should be made by the sender of the message

rather than by the object designers. In this case we should

have two different locations where the authenticated

attributes could be place, either before or after the data,

but only one of the two could be used. The message creator

would then select one or the other based on characteristics

of their choosing. Recipients would then be required to deal

with the attributes occurring in either location. It was

generally felt that the additional complexity on the

recipient side was not worth the added flexibility.

3. Algorithm Taxonomy

In item 3 in the previous section, one of the issues was what would a

rigorous analysis of the AEAD algorithms lead us to believe about how

the choice should be laid out. At the time we were using only hearsay

facts about what would make for a good choice. In this section, I

define a set of criteria that I will use to analysis the set of

algorithms and then describe how each algorithm fits the criteria.

NIST has been gathering information on Authenticated Encryption Modes

over the last decade. Information on these modes can be found at

http://crc.nist.gov/groups/ST/toolkit/BCM/modes_development.html. For

simplicity I used this as the set of algorithms to look at in order to

characterize the requirements for the purposes of comparison with the

characteristics required by the Authenticated Encryption data

structure.

In this section we will look at 11 AE algorithms from the NIST

submissions along with an algorithm being developed by Peter Gutmann.

Since we are interested in how to setup a streaming model, the criteria

we are looking at are chosen with that in mode. The major

characteristics we are going to be looking at are:

What are the parameters used for the algorithm? This contains a

list of the elements that are needed for processing exclusive

of the key value. These are the items that would need to be

encoded in the ASN.1 parameters field of an

AlgorithmInformation structure.

What information is directly authenticated? This is a list of

the data which is directly authenticated in the order of

authentication. (It is possible that this list may change

depending on the parameters. Thus if HMAC-SHA1 is used, the

length of the data is directly authenticated but it would not

be if MAC-AES-128-CCBC was used.)

6.

*

1.

2.

http://crc.nist.gov/groups/ST/toolkit/BCM/modes_development.html

What information is required before the first byte of message

data can be processed? Assuming that the first byte of message

data is to be processed upon it being decoded from the ASN.1

(or encoded to ASN.1), what items of information are needed by

the encryption/decryption algorithm prior to it being

processed.

What information is required before the first byte

authenticated data can be processed? Assuming that the first

byte of authenticated data is to be processed upon it being

decoded from the ASN.1 (or encoded to ASN.1), what items of

information are needed by the encryption/decryption algorithm

prior to it being processed.

NIST is currently in the middle of doing a review and selection process

for new modes to adopt as US security standards. For simplicity the set

of algorithms that I will be looking at come from the current set of

candidate algorithms that are being reviewed for this purpose. One

additional algorithm added to this is a simple hash and encrypt

algorithm that has been proposed by Peter Gutmann.

3.1. CCM: Counter with CBC-MAC

The Counter with CBC-MAC (CCM) mode was designed and documented by Doug

Whiting, Russ Housley and Niels Ferguson. A full description of the

mode can be found in RFC 3610 [RFC3610] and on the NIST website. CCM is

one of the standardized NIST modes (see [NIST-800-38C]) and is one of

the two modes that are currently documented for use with the CMS

Authenticated-Enveloped structures.

The characteristics of the algorithm are:

The parameters of the algorithm are the nonce (IV) and the

length of the tag to be generated.

The data authenticated is:

The nonce value,

The length of authentication tag,

The length of message data,

The length of authenticated data,

The authenticated data,

The message data

3.

4.

1.

2.

a.

b.

c.

d.

e.

f.

Before the first byte of message data can be processed, you

must know:

The nonce value

The length of the authentication tag

The length of the message

The length of authenticated data,

The authenticated data

Before the first byte of the authenticated data can be

processed, you must know:

The nonce value,

The length of the authentication tag

The length of the message

The length of authenticated data,

This algorithm mode provides major problems for a sender to process in

a streaming model. The lengths of the message data and the

authenticated data are both required to be known before any bytes of

the message data or authenticated data can be processed. Except in

cases where fixed length messages will be generated, it is required

that the message data be cached prior to encrypting.

This algorithm provides some problems for recipients in processing, but

under the correct circumstances can be processed under a streaming

model. The length of the message data must be presented to the

recipient before the message data is given. The authenticated data must

be presented before the message data is presented. Optimal use of this

algorithm would require that 1) the authenticated data be moved before

the message data bytes and 2) a requirement be established that either

the message data be DER encoded or the message data length be published

as part of the authenticated data. Given that this algorithm uses

counter mode for encryption, the length of the message is already known

so publishing it as part of the authenticated data would not leak any

additional information.

3.2. CS: Cipher-State

Cipher-State is an algorithm that supports an AE mode of operation, but

not an AEAD mode of operation. As such it does not matter where the

authenticated parameters would be placed as they are not supported by

the mode. This mode is therefore not of interest to this discussion.

3.

a.

b.

c.

d.

e.

4.

a.

b.

c.

d.

3.3. CWC: Carter Wegman with Counter

The Carter Wegman with Counter Authenticated Encryption mode was

designed by Tadayoshi Kohno, John Viega and Doug Whiting. A full

description of the mode can be found in [CWC] and on the NIST website.

The characteristics of the algorithm are:

The only parameter of the algorithm is a nonce.

The data actually authenticated is:

The nonce,

The authenticated data,

The encrypted message data

Before the first byte of data can be processed, you must know:

The nonce value,

The authenticated data

Before the first byte of authenticated data can be processed,

you must know:

The nonce value

It should be noted that the analysis above is for a simplistic

implementation of the algorithm such as would normally be done in

software. The algorithm is designed so that it can be performed in

parallel, it would be possible for message data bytes to be fully

processed before the authenticated data bytes are processed. The full

details of this approach are not spelled out in the referenced

documents.

This algorithm can be easily streamed for the sender provided that the

authenticated data are generated prior to the message data being

generated.

This algorithm can be easily streamed for the recipient provided that

the authenticated data is presented prior to the message data being

presented.

3.4. EAX: A Conventional Authenticated-Encryption Mode

A Conventional Authenticated-Encryption Mode was designed and

documented by M. Bellare, P. Rogaway and D. Wagner. A full description

of the algorithm can be found at [EAX] and on the NIST website.

The characteristics of the algorithm are:

The only parameter of the algorithm is a nonce.

1.

2.

a.

b.

c.

3.

a.

b.

4.

a.

1.

The data actually authenticated is:

The nonce,

The authenticated attributes,

The encrypted message.

Before the first byte of data can be processed, you must know:

The nonce value.

Before the first byte of the data can be processed, you must

know:

The nonce value.

Before the first byte of authenticated data can be processed,

you must know: nothing.

This mode computes the authentication value on the authenticated data

and on the encrypted message separately - so they can be computed in

any order - and combines the results together after the entire message

has been processed.

This algorithm can easily be streamed for the sender. The order of

generating the authenticated data and message data is immaterial.

This algorithm can easily be streamed for the recipient. The order of

presenting the authenticated data and the message data is immaterial.

3.5. GCM: Galois/Counter Mode

The Galois/Counter Mode of Operation (GCM) was designed and documented

by David McGrew and John Viega. A full description of the algorithm can

be found on the NIST website. GCM is one of the standardized NIST modes

(see [NIST-800-38D]) and is one of the two modes that are currently

documented for use with the CMS Authenticated-Enveloped structures.

The characteristics of the algorithm are:

The parameters of the algorithm are a nonce and the length of

the tag to be generated.

The data actually authenticated is:

The authenticated data,

The encrypted message data,

The length of the authenticated data,

The length of the message data.

2.

a.

b.

c.

3.

a.

4.

a.

5.

1.

2.

a.

b.

c.

d.

Before the first byte of message data can be processed, you

must know:

The nonce value.

The authenticated data.

Before the first byte of authenticated data can be processed

you must know: nothing.

This mode can easily be used in a stream model for senders provided the

authenticated data is generated prior to the message data.

This mode can easily be used in a stream model for recipients provided

that the authenticated data is presented prior to the message data.

3.6. IACBC: Integrity Aware Cipher Block Chaining

Integrity Aware Cipher Block Chaining is an algorithm that supports an

AE mode of operation, but not an AEAD mode of operation. As such it

does not matter where the authenticated parameters would be placed as

they are not supported by the mode. This mode is therefore not of

interest to this discussion.

3.7. IAPM: Integrity Aware Parallelizable Mode

Integrity Aware Parallelizable Mode is an algorithm that supports an AE

mode of operation, but not an AEAD mode of operation. As such it does

not matter where the authenticated parameters would be placed as they

are not supported by the mode. This mode is therefore not of interest

to this discussion.

3.8. OCB: Offset Codebook

Offset Codebook mode is an algorithm that supports an AE mode of

operation, but not an AEAD mode of operation. As such it does not

matter where the authenticated parameters would be placed as they are

not supported by the mode. This mode is therefore not of interest to

this discussion.

However, an addendum to the original mode submission described a method

of adding the AEAD capability to any AE algorithm. This was described

by Phillip Rogaway in [OCB-AD1] as section 5 and designated as

Ciphertext Translation.

The characteristics of this algorithm are:

This mode adds no additional parameters to the underlying AE

algorithm parameters.

The data actually authenticated is:

The message data

3.

a.

b.

4.

1.

2.

a.

The authenticated data

Before the first byte of data can be processed, you must know:

the same information as for the AE mode by itself.

Before the first byte of authenticated data can be processed

you must know: nothing.

It needs to be noted that before one can process the last t bytes of

the message (for either encryption or decryption) the authenticated

data must be known. The value t is equal to the length of the output

function for the authenticated data processor. This does mean that an

indication that one is in the last t bytes of processing the data is

needed for both encryption and decryption modes.

The sender can operate using a streaming model as long as it buffers

the last t bytes of message data so that it can be correctly tagged and

sent to the cryptographic code as needing special processing. The

authenticated data must be computed prior to the last t bytes of the

encryption stream being produced. One possible way of dealing with this

is to make the last t bytes the authentication tag as there is no

explicit authentication tag created.

The recipient can operate using a streaming model as long as it buffers

the last t bytes of encrypted data so that it can be correctly tagged

when sent to the cryptographic code. As no separate authentication tag

is created by the algorithm, the authenticated attributes must be

presented prior to the last bytes of the encrypted data stream being

decrypted.

3.9. PCFB: Propagating Cipher Feedback

Propagating Cipher Feedback is an algorithm that supports an AE mode of

operation, but not an AEAD mode of operation. As such it does not

matter where the authenticated parameters would be placed as they are

not supported by the mode. This mode is therefore not of interest to

this discussion.

3.10. SIV: Synthetic IV

The Synthetic IV (SIV) mode was designed and documented by Phillip

Rogaway and Thomas Shrimpton. A full description of the algorithm can

be found on the NIST website at [SIV].

The characteristics of the algorithm are:

The parameters of the algorithm are:

None for the sender of the message

An IV value for the recipient of the message. (The IV

value acts as the authentication tag.)

b.

3.

4.

1.

a.

b.

The data actually authenticated is:

The authenticated data

The message data

Before the first byte of data can be processed, you must know:

The authenticated attributes.

Before the first byte of authenticated data can be processed,

you must know: nothing.

The algorithm does not use a nonce value, instead the IV used for the

counter mode is computed from the authenticated data and message data.

The IV is then emitted as the authentication tag. Note that this also

means that the message data must processed twice by the cryptographic

code. Once to do the authentication computation and produce the IV and

one to do the counter mode encryption.

This algorithm cannot be streamed by the sender. Since the IV used for

the counter mode encryption of the message data depends on all of the

message data, the message data must actually be processed twice by the

encryption algorithm.

The algorithm can easily be streamed by the recipient. The requirement

is that the authenticated attributes and the IV be presented to the

recipient before the message data is presented. The authentication

check is then done by comparing the IV passed in with the IV computed.

3.11. XCBC: eXtended Cipher Block Chaining Encryption

eXtended Cipher Block Chaining Encryption is an algorithm that supports

an AE mode of operation, but not an AEAD mode of operation. As such it

does not matter where the authenticated parameters would be placed as

they are not supported by the mode. This mode is therefore not of

interest to this discussion.

3.12. MAC-Authenticated Encryption

The MAC-Authenticated Encryption mode has been documented by Peter

Gutmann. This mode is documented in [GUTMANN].

The characteristics of the algorithm are:

The parameters of the algorithm are:

A key derivation algorithm,

A keyed MAC algorithm,

An encryption algorithm

2.

a.

b.

3.

a.

4.

1.

a.

b.

c.

The data actually authenticated is:

The encrypted message,

The authenticated attributes.

Before the first byte of the message data can be processed, you

must know: nothing.

Before the first byte of the authenticated data can be

processed, you must know:

The encrypted message data.

This algorithm can easily be used in a streaming model by the sender.

This algorithm can easily be used in a streaming model by the

recipient.

Note: In the series of messages that I exchanged with Peter during the

design of this algorithm, one of the things he noted was that to make

streaming easier he should put the authenticated attributes after the

message data. Thus the algorithm was designed to make sure that

streaming worked well with the current encoding.

4. My Assumptions

This section will list the set of criteria that I am using in making my

conclusions. Again, the most important thing in my mind is the ability

to implement a streaming model for encode and decode operations.

We want to implement using a single pass streaming module to

encode and decode the structures. There are many reasons to do

so:

The amount of resources used is minimized by not buffering

the entirety of the message at each level of wrapping.

The fact that not all messages are DER encode means that

there is no single buffer in the original message that can

be treated as a single input buffer.

The message may be feed to the encoder/decode in chunks

due to the way things are read from files, the fact that

nodes in trees are emitted serially or the fact that

removal of MIME content transfer encoding is normally done

on small buffers.

There is one argument that says one should buffer up the

entire encrypted buffer, decrypt in one chunk and then pass

on the data in one piece. Since the name of the algorithm

class is encrypted and authenticated, one should perhaps

2.

a.

b.

3.

4.

a.

1.

1.

2.

3.

*

actually authenticate that the data is correct prior to

releasing the data for additional processing.

I believe that it is sufficient to check that the encrypted

buffer has been authenticated prior to acting on the data

contained in the encrypted buffer. Thus I believe it makes

sense to continue doing the decode and either fail on the

decode operation and propagate a failure up either when the

decode itself fails or when the authentication check is

actually made. In this way it is no different than the

processing of a signed message where the signature may be

checked long after the message has been fully decoded. In

fact this is the normal case for an S/MIME client where the

content is often viewable with some indication that the

validation of the signature failed for some reason.

The relative lengths of the data to be encrypted and the

attributes to be protected are such that the encrypted data is

generally much larger than the attributes. Thus if one has to

cache one in a streaming mode, it is preferable to cache the

attributes.

5. Conclusions

I now look again at the arguments presented in Section 2 and review the

arguments presented. All of the opinions in this section are mine and

may or may not be represent those of any other people. Section 6

contains the opinions of other people.

A foolish consistency is the hobgoblin of little minds,

adored by little statesmen and philosophers and divines.

 (Ralph Waldo Emerson 1841)

Consistency with the existing CMS data types:

This criteria should only be used a tie breaker in the event

that all other criteria come out equal. When looking at this

argument I am reminded of the following:

Authenticated attributes that are derived from the message

content:

This argument is slightly more believable than it was before

I began this document as I now have an attribute which is

derived from the message content, however this attribute is

the length of the message data and in order to be useful it

needs to be placed before the message data is consumed. (See

Section 3.1.)

*

2.

1.

*

2.

*

I found this argument to be difficult to believe at the time

it was presented, and I have not changed my mind since then.

The argument that this means the authenticated attributes

comes second would mean that this is an attribute that is

attested to by the sender, but is not verified in any way by

the recipient. If the recipient needed to do any processing

then it would be much more desirable to have the attribute

occur before the message data so that the recipient can

setup to do the necessary processing prior to processing the

message data.

In the process of writing [XOR-HASH] I have become convinced

that there is a fundamental problem which is going to be

coming in the future with the signed data structure. Since

the recipient does not "know" the correct set of hash

algorithms to be used when processing a message the vast

majority look at the list presented and then augment it with

a number of different algorithms. This often means that one

is computing four or five different hash functions on the

content just on the off-chance that they may be needed. Many

systems will not attempt a recovery if they find a signer

info structure which uses a hash algorithm they did not

realize that they needed even if it is known to the system

because of the work involved in doing a restart after having

parsed in all of the data. This means that similar behavior

should be expected for any attributes that need to be

validated by the recipient after having been generated by

the sender. The problem is worse since there is no similar

field to the set of digest algorithms that can filled at the

beginning of a signed data object.

I believe that this criteria was mis-applied. The issues of

how a recipient was supposed to deal with these types of

attributes was completely ignored in the decision process

and it should have had paramount importance.

The decision should be dictated by Algorithm Characteristics:

Looking at the taxonomy of algorithms that is presented in

Section 3 we come up with the following results:

The algorithms which cannot be easily streamed are: CCM,

SIV (for sender)

The algorithms which need attributes before the message

body are: CWC (serialized implementation), GCM, SIV (for

recipient), CCM (for recipient in special circumstances)

*

*

*

3.

*

-

-

The algorithms which need the message body before the

attributes are: MAC-Authenticated

The algorithms which can have either the body or the

attributes first are: CWC (parallelized implementation),

EAX, OCB

We can see that CCM and SIV will never be easily streamed

for the sender. It is unfortunate for people wanting to

stream the CCM is one of the two algorithms that we have

standardized on. It should be noted that both of these

algorithms can be setup to be streamed for the recipient of

the message, but CCM requires an additional restriction to

be applied. If either of these algorithms is used then the

entire question discussed above about a sender processing

the content on sending would be academic as the message data

needs to be buffered anyway.

We have only one algorithm were the attributes are logically

placed after the message data, that being the MAC-

Authenticated, which was explicitly designed to be that way

so that it could be streamed using the current data layout.

Additionally there are two algorithms that are agnostic of

the order of attributes and data plus one that can be

implemented to be agnostic.

For recipients, only the MAC-Authenticated algorithm

necessitates that the attributes be cached until the message

data has been processed. All of the other algorithms can be

made work with the attributes preceding the message data

without any problems.

In current practice, and in part because of NIST

standardization, the only two modes that have significant

use are the CCM and GCM modes. It is possible that the MAC-

Authenticated mode will also get traction since it is easy

for people to understand and implement. This should also be

taken into consideration when looking at the algorithm

characteristics.

If we had done this analysis at the time the decision was

made then we should have made the decision to place the

attributes first.

Resource requirements for the sender and recipient:

It is no more likely that the sender of a message is

resource constrained than it is for the recipient of the

message to be resource constrained. This means that it is

better for a set of algorithms and layout to be chosen that

-

-

*

*

*

*

*

4.

*

will work well in a streaming model under normal

circumstances than to optimize for either the sender or the

recipient.

Relative frequency of processing:

In my opinion, most of the time messages that are created

using an authenticated encryption algorithm will be

decrypted by at least one recipient. Messages which are not

decrypted will exist, either from being lost in the ether or

from being cached until needed, but these will be the

smallest part of the set. Messages which need to be

decrypted multiple times by a single recipient will

generally be a small number as well, unless it because part

of the S/MIME standard. However I believe that a significant

number of messages will be created that will have multiple

recipients. This may be done by creating multiple lock boxes

up front, or by creating the lock boxes on demand in cases

where it does not matter than a traffic analysis can be done

that multiple recipients have gotten the same message. (An

example of this might be sending a firmware upgrade to

multiple devices, where the message is transferred on demand

and it does not matter that an observer can see that the

same set of firmware is being installed on multiple

machines. This would be something that could probably be

assumed anyway.)

I therefore think that overall more messages will be decoded

and decrypted than encrypted and encoded. This would mean

that a bias should be placed for the recipients of messages

not the sender of messages in making decisions.

Based on the above, I would say that we should modify the order of

these fields in the event that the document is updated.

6. Responses

An opportunity was provided to the Russ Housley as the author of [CMS-

AED] and to others that were involved on the mailing list to provide a

formal response. Nobody took advantage of the offer.

7. Security Considerations

This document discusses a security related document, however it makes

no changes to the document. As such there are no actual security

implications for this document.

8. IANA Considerations

No action by IANA is required for this document.

5.

*

*

9. References

9.1. Normative References

[RFC3610]
Whiting, D., Housley, R. and N. Ferguson, "Counter

with CBC-MAC (CCM)", RFC 3610, September 2003.

[CMS]
Housley, R., "Cryptographic Message Syntax (CMS)",

RFC 5652, September 2009.

[CMS-AED]

Housley, R., "Cryptographic Message Syntax (CMS)

Authenticated-Enveloped-Data Content Type", RFC

5083, November 2007.

[GUTMANN]
Gutmann, P., "Using MAC-authenticated Encryption

in the Cryptographic Message Syntax (CMS)", .

[NIST-800-38C]

Dworkin, M., "Recommendation for Block Cipher

Modes of Operation: The CCM Mode for

Authentication and Confidentiality", NIST Special

Publication 800-38C, May 2004.

[NIST-800-38D]

Dworkin, M., "Recommendation for Block Cipher

Modes of Operation: Galois/Counter Mode (GCM) and

GMAC", NIST Special Publication 800-38D, November

2007.

[CWC]

Kohno, T., Viega, J. and D. Whiting, "The CWC

authenticated encryption (associated data) mode",

May 2003.

[EAX]
Bellare, M., Rogaway, P. and D. Wagner, "EAX: A

Conventional Authenticated-Encryption Mode", 2003.

[OCB-AD1]
Rogaway, P., "The Associated-Data Problem",

November 2001.

[SIV]

Rogaway, P. and T. Shrimpton, "The SIV Mode of

Operation for Deterministic Authenticated-

Encryption (Key Wrap) and Misuse-Resistant Nonce-

Based Authenticated-Encryption", August 2007.

9.2. Informative References

[XOR-

HASH]

Schaad, J, "Experiment: Hash functions with parameters in

CMS and S/MIME", Internet-Draft draft-schaad-smime-hash-

experiment-06, January 2011.

Author's Address

Jim Schaad Schaad Soaring Hawk Consulting EMail:

jimsch@augustcellars.com

http://tools.ietf.org/html/rfc3610
http://tools.ietf.org/html/rfc3610
http://tools.ietf.org/html/rfc5652
http://tools.ietf.org/html/rfc5083
http://tools.ietf.org/html/rfc5083
http://tools.ietf.org/html/draft-schaad-smime-hash-experiment-06
http://tools.ietf.org/html/draft-schaad-smime-hash-experiment-06
mailto:jimsch@augustcellars.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	2. Historic Arguments
	3. Algorithm Taxonomy
	3.1. CCM: Counter with CBC-MAC
	3.2. CS: Cipher-State
	3.3. CWC: Carter Wegman with Counter
	3.4. EAX: A Conventional Authenticated-Encryption Mode
	3.5. GCM: Galois/Counter Mode
	3.6. IACBC: Integrity Aware Cipher Block Chaining
	3.7. IAPM: Integrity Aware Parallelizable Mode
	3.8. OCB: Offset Codebook
	3.9. PCFB: Propagating Cipher Feedback
	3.10. SIV: Synthetic IV
	3.11. XCBC: eXtended Cipher Block Chaining Encryption
	3.12. MAC-Authenticated Encryption
	4. My Assumptions
	5. Conclusions
	6. Responses
	7. Security Considerations
	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References
	Author's Address

