
CoRE Z. Shelby
Internet-Draft Sensinode
Intended status: Standards Track M. Vial
Expires: September 8, 2012 Schneider-Electric
 March 7, 2012

CoRE Interfaces
draft-shelby-core-interfaces-02

Abstract

 This document defines well-known REST interface descriptions for
 Batch, Sensor, Parameter and Actuator types for use in contrained web
 servers using the CoRE Link Format. A short reference is provided
 for each type that can be efficiently included in the interface
 description attribute of the CoRE Link Format. These descriptions
 are intended to be for general use in resource designs or for
 inclusion in more specific interface profiles. In addition, this
 document defines the concept of Function Set to guide the creation of
 RESTful profiles.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 8, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Shelby & Vial Expires September 8, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft CoRE Interfaces March 2012

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 3
3. Function Set . 4
3.1. Defining a Function Set 4
3.1.1. Path template . 4
3.1.2. Resource Type . 5
3.1.3. Interface Description 5
3.1.4. Data type . 6

3.2. Discovery . 6
3.3. Versioning . 6

4. Interface Descriptions . 6
4.1. Link List . 7
4.2. Batch . 8
4.3. Linked Batch . 9
4.4. Sensor . 10
4.5. Parameter . 10
4.6. Read-only Parameter 11
4.7. Actuator . 11
4.8. Resource Observation 12
4.9. Future Interfaces . 13
4.10. WADL Description . 13

5. Security Considerations 17
6. IANA Considerations . 17
7. Acknowledgments . 17
8. Changelog . 17
9. References . 18
9.1. Normative References 18
9.2. Informative References 18

Appendix A. Profile example 18
 Authors' Addresses . 19

Shelby & Vial Expires September 8, 2012 [Page 2]

Internet-Draft CoRE Interfaces March 2012

1. Introduction

 The Constrained RESTful Environments (CoRE) working group aims at
 realizing the REST architecture in a suitable form for the most
 constrained nodes (e.g. 8-bit microcontrollers with limited RAM and
 ROM) and networks (e.g. 6LoWPAN). CoRE is aimed at machine-to-
 machine (M2M) applications such as smart energy and building
 automation.

 The discovery of resources offered by a constrained server is very
 important in machine-to-machine applications where there are no
 humans in the loop and static interfaces result in fragility. The
 discovery of resources provided by an HTTP Web Server is typically
 called Web Linking [RFC5988]. The use of Web Linking for the
 description and discovery of resources hosted by constrained web
 servers is specified by the CoRE Link Format
 [I-D.ietf-core-link-format] and can be used by CoAP
 [I-D.ietf-core-coap] or HTTP servers. The CoRE Link Format defines
 an attribute that can be used to describe the REST interface of a
 resource, and may include a link to a description document. This
 document describes how other specifications can combine resources
 with a well-known interface to create new CoRE RESTful profiles. A
 CoRE profile is based on the concept of the Function Set, which is a
 group of REST resources providing a service in a distributed system.
 This document also defines well-known interface descriptions for
 Batch, Sensor, Parameter and Actuator types to compose new Function
 Sets or for standalone use in a constrained web server. A short
 reference is provided for each type that can be efficiently included
 in the interface description (if=) attribute of the CoRE Link Format.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This specification requires readers to be familiar with all the terms
 and concepts that are discussed in [RFC5988] and
 [I-D.ietf-core-link-format]. This specification makes use of the
 following additional terminology:

 Function Set: A group of well-known REST resources that provides a
 particular service.

https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5988

Shelby & Vial Expires September 8, 2012 [Page 3]

Internet-Draft CoRE Interfaces March 2012

 Profile: A group of well-known Function Sets defined by a
 specification.

 Device: An IP smart object running a web server that hosts a group
 of Function Set instances from a profile.

 Service Discovery: The process making it possible for a web client
 to automatically detect devices and Function Sets offered by these
 devices on a CoRE network.

 Resource Discovery: The process allowing a web client to identify
 resources being hosted on a web server.

 Gradual Reveal: A REST design where resources are discovered
 progressively using Web Linking.

3. Function Set

 This section defines how a specification can organize REST resources
 to create a new profile. A profile is structured into groups of
 resource types called Function Sets. A Function Set is similar to a
 function block in the sense that it consists of input, output and
 parameter resources and contains internal logic. A Function Set MAY
 have a subset of mandatory inputs, outputs and parameters to provide
 minimum interoperability. It MAY also be extended with manufacturer/
 user-specific resources. Other specifications defines the list of
 function sets available within a given profile. A device is composed
 of one or more Function Set instances. A profile specification MAY
 specify device profiles with mandatory function sets.

3.1. Defining a Function Set

 In a Function Set, types of resources are defined. Each type
 includes a human readable name, a path template, a Resource Type for
 discovery, the Interface Definition and the data type and allowed
 values. A Function Set definition may also include a field
 indicating if a sub-resource is mandatory or optional.

3.1.1. Path template

 A Function Set is a container resource under which its sub-resources
 are organized. The profile defines the path to each resource of a
 Function Set in a path template. The template can contain either
 relative paths or absolute paths depending on the profile needs. An
 absolute Function Set SHOULD be located at its recommended root path
 on a web server, however it MAY be located under an alternative path
 if necessary (for example multi-purpose devices, gateways etc.). A

Shelby & Vial Expires September 8, 2012 [Page 4]

Internet-Draft CoRE Interfaces March 2012

 relative Function Set can be instantiated as many times as needed on
 a web server with an arbitrary root path. However some Function Sets
 (e.g. device description) only make sense as singletons.

 The path template includes a possible index {#} parameter, and
 possible fixed path segments. The index {#} allows for multiple
 instances of this type of resource, and can be any string. The root
 path and the indexes are the only variable elements in a path
 template. All other path segments MUST be fixed.

3.1.2. Resource Type

 Each root resource of a Function Set is assigned a Resource Type
 parameter, therefore making it possible to discover it. Each sub-
 resource of a Function Set is also assigned a Resource Type
 parameter. This Resource Type is used for resource discovery and is
 usually necessary to discover optional resources supported on a
 specific device. The Resource Type of a Function Set may also be
 used for service discovery and MAY be exported to DNS-SD
 [I-D.cheshire-dnsext-dns-sd] for example.

 The Resource Type parameter defines the value that MUST be included
 in the rt= field of the CoRE Link Format when describing a link to
 this resource. The value SHOULD be in the form "namespace:type" for
 root resources and "namespace:type:subtype" for sub-resources. This
 naming convention facilitates resource type filtering with the
 /.well-known/core resource. However a profile MAY allow mixing in
 foreign namespace references within a Function Set to import external
 references from other object models (e.g. SenML and UCUM).

3.1.3. Interface Description

 The Interface Description parameter defines the REST interface for
 that type of resource. Several base interfaces are defined in

Section 4 of this document. For a given profile, the Interface
 Description may be inferred from the Resource Type. In that case the
 Interface Description MAY be elided from link descriptions of
 resource types defined in the profile, but SHOULD be included for
 custom extensions to the profile.

 The root resource of a Function Set should provide a list of links to
 its sub-resources in order to offer gradual reveal of resources. The
 CoRE Link List interface defined in Section 4.1 offers this
 functionality so a root resource SHOULD support this interface or a
 derived interface like CoRE Batch (See Section 4.2).

Shelby & Vial Expires September 8, 2012 [Page 5]

Internet-Draft CoRE Interfaces March 2012

3.1.4. Data type

 The Data Type field defines the type of value (and possible range)
 that is returned in response to a GET for that resource or accepted
 with a PUT. The interfaces defined in Section 4 make use of plain
 text and SenML Media types for the actual format of this data. A
 profile may restrict the list of supported content types for the CoRE
 interfaces or define new interfaces with new content types.

3.2. Discovery

 A device conforming to a profile SHOULD make its resources
 discoverable by providing links to the resources on the path /.well-
 known/core as defined in [I-D.ietf-core-link-format]. All resources
 hosted on a device SHOULD be discoverable either with a direct link
 in /.well-known/core or by following successive links starting from
 /.well-known/core.

 The root path of a Function Set instance SHOULD be directly
 referenced in /.well-known/core in order to offer discovery at the
 first discovery stage. A device with more than 10 individual
 resources SHOULD only expose Function Set instances in /.well-known/
 core to limit the size of this resource.

 In addition, a device MAY register its resources to a Resource
 Directory using the registration interface defined in
 [I-D.shelby-core-resource-directory] if such a directory is
 available.

3.3. Versioning

 A profile should track Function Set changes to avoid incompatibility
 issues. Evolutions in a Function Set SHOULD be backward compatible.

4. Interface Descriptions

 This section defines REST interfaces for Link List, Batch, Sensor,
 Parameter and Actuator resources. Variants such as Linked Batch or
 Read-Only Parameter are also presented. Each type is described along
 with its Interface Description attribute value and valid methods.
 These are defined for each interface in the table below. These
 interfaces can support plain text and/or SenML Media types.

 The if= column defines the Interface Description (if=) attribute
 value to be used in the CoRE Link Format for a resource conforming to
 that interface. When this value appears in the if= attribute of a
 link, the resource MUST support the corresponding REST interface

Shelby & Vial Expires September 8, 2012 [Page 6]

Internet-Draft CoRE Interfaces March 2012

 described in this section. The resource MAY support additional
 functionality, which is out of scope for this specification.
 Although these interface descriptions are intended to be used with
 the CoRE Link Format, they are applicable for use in any REST
 interface definition.

 The Methods column defines the methods supported by that interface,
 which are described in more detail below.

 +-------------------+---------+-------------------------------------+
 | Interface | if= | Methods |
 +-------------------+---------+-------------------------------------+
Link List	core#ll	GET
Batch	core#b	GET, PUT, POST (where applicable)
Linked Batch	core#lb	GET, PUT, POST, DELETE (where
		applicable)
Sensor	core#s	GET
Parameter	core#p	GET, PUT
Read-only	core#rp	GET
Parameter		
Actuator	core#a	GET, PUT, POST
 +-------------------+---------+-------------------------------------+

 The following is an example of links in the CoRE Link Format using
 these interface descriptions. The resource hierarchy is based on a
 simple profile defined in Appendix A. These links are used in the
 subsequent examples below.

 Req: GET /.well-known/core
 Res: 2.05 Content (application/link-format)
 </s>;rt="simple:sen";if="core#b",
 </s/lt>;rt="simple:sen:lt";if="core#s",
 </s/tmp>;rt="simple:sen:tmp";if="core#s";obs,
 </s/hum>;rt="simple:hum";if="core#s",
 ;rt="simple:act";if="core#b",
 </a/1/led>;rt="simple:act:led";if="core#a",
 </a/2/led>;rt="simple:act:led";if="core#a",
 </d>;rt="simple:dev";if="core#ll",
 </l>;if="core#lb",

4.1. Link List

 The Link List interface is used to retrieve (GET) a list of resources
 on a web server. The GET request SHOULD contain an Accept option
 with the application/link-format content type, however if the
 resource does not support any other form of GET methods the Accept
 option MAY be elided. The Accept option SHOULD only include the

Shelby & Vial Expires September 8, 2012 [Page 7]

Internet-Draft CoRE Interfaces March 2012

 application/link-format content type. The request returns a list of
 URI references with absolute paths to the resources as defined in
 CoRE Link Format. This interface is typically used with a parent
 resource to enumerate sub-resources but may be used to reference any
 resource on a web server.

 Link List is the base interface to provide gradual reveal of
 resources on a CoRE web server, hence the root resource of a Function
 Set SHOULD implement this interface or an extension of this
 interface.

 The following example interacts with a Link List /s containing Sensor
 sub-resources /s/light, /s/temp and /s/humidity.

 Req: GET /d (Accept:application/link-format)
 Res: 2.05 Content (application/link-format)
 </d/name>;rt="simple:dev:n";if="core#p",
 </d/model>;rt="simple:dev:mdl";if="core#rp"

4.2. Batch

 The Batch interface is used to manipulate a collection of sub-
 resources at the same time. The Batch interface type supports the
 same methods as its sub-resources, and can be used to read (GET), set
 (PUT) or toggle (POST) the values of those sub-resource with a single
 resource representation. The sub-resources of a Batch MAY be
 heterogeneous, a method used on the Batch only applies to sub-
 resources that support it. For example Sensor interfaces do not
 support PUT, and thus a PUT request to a Sensor member of that Batch
 would be ignored. A batch requires the use of SenML Media types in
 order to support multiple sub-resources.

 In addition, The Batch interface is an extension of the Link List
 interface and in consequence MUST support the same methods.

 The following example interacts with a Batch /s with Sensor sub-
 resources /s/light, /s/temp and /s/humidity.

 Req: GET /s
 Res: 2.05 Content (application/senml+json)
 {"e":[
 { "n": "light", "v": 123, "u": "lx" },
 { "n": "temp", "v": 27.2, "u": "degC" },
 { "n": "humidity", "v": 80, "u": "%RH" }],
 }

Shelby & Vial Expires September 8, 2012 [Page 8]

Internet-Draft CoRE Interfaces March 2012

4.3. Linked Batch

 The Linked Batch interface is an extension of the Batch interface.
 Contrary to the basic Batch which is a collection statically defined
 by the web server, a Linked Batch is dynamically controlled by a web
 client. A Linked Batch resource has no sub-resources. Instead the
 resources forming the batch are referenced using Web Linking
 [RFC5988] and the CoRE Link Format [I-D.ietf-core-link-format]. A
 request with a POST method and a content type of application/
 link-format simply appends new resources to the collection. The
 links in the payload MUST reference a resource on the web server with
 an absolute path. A DELETE request empties the current collection of
 links. All other requests available for a basic Batch are still
 valid for a Linked Batch.

 The following example interacts with a Linked Batch /l and creates a
 collection containing /s/light, /s/temp and /s/humidity in 2 steps.

 Req: POST /l (Content-type: application/link-format)
 </s/light>,</s/temp>
 Res: 2.04 Changed

 Req: GET /l
 Res: 2.05 Content (application/senml+json)
 {"e":[
 { "n": "/s/light", "v": 123, "u": "lx" },
 { "n": "/s/temp", "v": 27.2, "u": "degC" },
 }

 Req: POST /l (Content-type: application/link-format)
 </s/humidity>
 Res: 2.04 Changed

 Req: GET /l (Accept: application/link-format)
 Res: 2.05 Content (application/link-format)
 </s/light>,</s/temp>,</s/humidity>

 Req: GET /l
 Res: 2.05 Content (application/senml+json)
 {"e":[
 { "n": "/s/light", "v": 123, "u": "lx" },
 { "n": "/s/temp", "v": 27.2, "u": "degC" },
 { "n": "/s/humidity", "v": 80, "u": "%RH" }],
 }

 Req: DELETE /l
 Res: 2.04 Changed

https://datatracker.ietf.org/doc/html/rfc5988

Shelby & Vial Expires September 8, 2012 [Page 9]

Internet-Draft CoRE Interfaces March 2012

4.4. Sensor

 The Sensor interface allows the value of a sensor resource to be read
 (GET). The Media type of the resource can be either plain text or
 SenML. Plain text MAY be used for a single measurement that does not
 require meta-data. For a measurement with meta-data such as a unit
 or time stamp, SenML SHOULD be used. A resource with this interface
 MAY use SenML to return multiple measurements in the same
 representation, for example a list of recent measurements.

 The following are examples of Sensor interface requests in both text/
 plain and application/senml+json.

 Req: GET /s/humidity (Accept: text/plain)
 Res: 2.05 Content (text/plain)
 80

 Req: GET /s/humidity (Accept: application/senml+json)
 Res: 2.05 Content (application/senml+json)
 {"e":[
 { "n": "humidity", "v": 80, "u": "%RH" }],
 }

4.5. Parameter

 The Parameter interface allows configurable parameters and other
 information to be modeled as a resource. The value of the parameter
 can be read (GET) or set (PUT). Plain text or SenML Media types MAY
 be returned from this type of interface.

 The following example shows request for reading and setting a
 parameter.

 Req: GET /d/name
 Res: 2.05 Content (text/plain)
 node5

 Req: PUT /d/name (text/plain)
 outdoor
 Res: 2.04 Changed

Shelby & Vial Expires September 8, 2012 [Page 10]

Internet-Draft CoRE Interfaces March 2012

4.6. Read-only Parameter

 The Read-only Parameter interface allows configuration parameters to
 be read (GET) but not set. Plain text or SenML Media types MAY be
 returned from this type of interface.

 The following example shows request for reading such a parameter.

 Req: GET /d/model
 Res: 2.05 Content (text/plain)
 SuperNode200

4.7. Actuator

 The Actuator interface is used by resources that model different
 kinds of actuators (changing its value has an effect on its
 environment). Examples of actuators include for example LEDs,
 relays, motor controllers and light dimmers. The current value of
 the actuator can be read (GET) or a new actuator value set (PUT). In
 addition, this interface defines the use of POST (with no body) to
 toggle an actuator between its possible values. Plain text or SenML
 Media types MAY be returned from this type of interface. A resource
 with this interface MAY use SenML to include multiple measurements in
 the same representation, for example a list of recent actuator values
 or a list of values to set.

 The following example shows request for reading, setting and toggling
 an actuator (turning on a led).

 Req: GET /a/1/led
 Res: 2.05 Content (text/plain)
 0

 Req: PUT /a/1/led (text/plain)
 1
 Res: 2.04 Changed

 Req: POST /a/1/led (text/plain)
 Res: 2.04 Changed

 Req: GET /a/1/led
 Res: 2.05 Content (text/plain)
 0

Shelby & Vial Expires September 8, 2012 [Page 11]

Internet-Draft CoRE Interfaces March 2012

4.8. Resource Observation

 When resource interfaces following this specification are made
 available over CoAP, the CoAP Observation mechanism
 [I-D.ietf-core-observe] MAY be used to observe any changes in a
 resource, and receive asynchronous notifications as a result. In
 addition, a set of query string parameters are defined here to allow
 a client to request how often a client is interested in receiving
 notifications and how much a resource should change for the new
 representation to be interesting. These query parameters are
 described in the following table. A resource using an interface
 description defined in this specification and marked as Observable in
 its link description SHOULD support these observation parameters.
 The Change Step parameter can only be supported on resources with an
 atomic numeric value.

 +--------------------+-----------+------------------+
 | Query | Parameter | Value |
 +--------------------+-----------+------------------+
 | Minimum Period (s) | pmin | xsd:integer (>0) |
 | Maximum Period (s) | pmax | xsd:integer (>0) |
 | Change Step | st | xsd:decimal (>0) |
 +--------------------+-----------+------------------+

 Minimum Period: When present, the minimum period indicates the
 minimum time in seconds the server SHOULD wait between sending
 notifications. In the absence of this parameter, the minimum
 period is up to the server.

 Maximum Period: When present, the maximum period indicated the
 maximum time in seconds the server SHOULD wait between sending
 notifications (regardless if it has changed). In the absence of
 this parameter, the maximum period is up to the server. The
 maximum period MUST be great than the minimum period parameter (if
 present).

 Change Step: When present, the change step indicates how much the
 value of a resource SHOULD change before sending a new
 notification (compared to the value of the last notification).
 This parameter has lower priority than the period parameters, thus
 even if the change step has been fulfilled, the time since the
 last notification SHOULD be between pmin and pmax.

 The following example shows an Observation request using these query
 parameters. Here the value of Observe indicates the number of
 seconds since the observation was made to show the time.

Shelby & Vial Expires September 8, 2012 [Page 12]

Internet-Draft CoRE Interfaces March 2012

 Req: GET Observe /s/temp?pmin=10&pmax=60&st=1
 Res: 2.05 Content Observe:0 (text/plain)
 23.2

 Res: 2.05 Content Observe:60 (text/plain)
 23.0

 Res: 2.05 Content Observe:80 (text/plain)
 22.2

 Res: 2.05 Content Observe:140 (text/plain)
 21.8

4.9. Future Interfaces

 It is expected that further interface descriptions will be defined in
 this and other specifications. Potential interfaces to be considered
 for this specifications include:

 Collection: This resource would be a container that allows sub-
 resources to be added or removed.

4.10. WADL Description

 This section defines the formal Web Application Description Langauge
 (WADL) definition of these CoRE interface descriptions.

 <?xml version="1.0" standalone="yes"?>

 <application xmlns="http://research.sun.com/wadl/2006/10"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:senml="urn:ietf:params:xml:ns:senml">

 <grammars>
 <include href="http://tools.ietf.org/html/draft-jennings-senml"/>
 </grammars>

 <doc title="CoRE Interfaces"/>

 <resource_type id="s">
 <doc title="Sensor resource type"/>
 <method href="#read"/>
 <method href="#observe"/>
 </resource_type>

 <resource_type id="p">

Shelby & Vial Expires September 8, 2012 [Page 13]

Internet-Draft CoRE Interfaces March 2012

 <doc title="Parameter resource type"/>
 <method href="#read"/>
 <method href="#observe"/>
 <method href="#update"/>
 </resource_type>

 <resource_type id="rp">
 <doc title="Read-only Parameter resource type"/>
 <method href="#read"/>
 <method href="#observe"/>
 </resource_type>

 <resource_type id="a">
 <doc title="Actuator resource type"/>
 <method href="#read"/>
 <method href="#observe"/>
 <method href="#update"/>
 <method href="#toggle"/>
 </resource_type>

 <resource_type id="ll">
 <doc title="Link List type"/></doc>
 <method href="#listLinks"/>
 </resource_type>

 <resource_type id="b">
 <doc title="Batch of sub-resources type">The methods read,
 observe, update and toggle are applied to each sub-
 resource of the requested resource that supports it. Mixed
 sub-resource types can be supported.</doc>
 <method href="#read"/>
 <method href="#observe"/>
 <method href="#update"/>
 <method href="#toggle"/>
 <method href="#listLinks"/>
 </resource_type>

 <resource_type id="lb">
 <doc title="Linked Batch resource type">. The methods read,
 obervableRead, update and toggle are applied to each linked
 resource of the requested resource that supports it. Mixed
 linked resource types can be supported.</doc>
 <method href="#read"/>
 <method href="#observe"/>
 <method href="#update"/>
 <method href="#listLinks"/>
 <method href="#appendLinks"/>
 <method href="#clearLinks"/>

Shelby & Vial Expires September 8, 2012 [Page 14]

Internet-Draft CoRE Interfaces March 2012

 </resource_type>

 <method id="read" name="GET">
 <doc>Retrieve the value of a sensor, an actuator or a parameter.
 Both HTTP and CoAP support this method.</doc>
 <request>
 </request>
 <response status="200">
 <representation mediaType="text/plain"/>
 <representation mediaType="application/senml+exi"/>
 <representation mediaType="application/senml+xml"/>
 <representation mediaType="application/senml+json"/>
 </response>
 <response status="2.05">
 <representation mediaType="text/plain"/>
 <representation mediaType="application/senml+exi"/>
 <representation mediaType="application/senml+xml"/>
 <representation mediaType="application/senml+json"/>
 </response>
 </method>

 <method id="observe" name="GET">
 <doc>Observe the value of a sensor, an actuator or a parameter.
 Only CoAP supports this method since it requires the CoRE
 Observe mechanism.</doc>
 <request>
 <param name="pmin" style="query" type="xsd:integer"/>
 <param name="pmax" style="query" type="xsd:integer"/>
 <param name="st" style="query" type="xsd:decimal"/>
 </request>
 <response status="2.05">
 <representation mediaType="text/plain"/>
 <representation mediaType="application/senml+exi"/>
 <representation mediaType="application/senml+xml"/>
 <representation mediaType="application/senml+json"/>
 </response>
 </method>

 <method id="update" name="PUT">
 <doc>Control the actuator or update a parameter with a new value
 or command. Both HTTP and CoAP support this method.</doc>
 <request>
 <representation mediaType="text/plain"/>
 <representation mediaType="application/senml+exi"/>
 <representation mediaType="application/senml+xml"/>
 <representation mediaType="application/senml+json"/>
 </request>
 <response status="200"/>

Shelby & Vial Expires September 8, 2012 [Page 15]

Internet-Draft CoRE Interfaces March 2012

 <response status="2.04"/>
 </method>

 <method id="toggle" name="POST">
 <doc>Toggle the values of actuator resources. Both HTTP and CoAP
 support this method.</doc>
 <request>
 <doc>The toggle function is only applicable if the request
 is empty.</doc>
 </request>
 <response status="200"/>
 <response status="2.04"/>
 </method>

 <method id="listLinks" name="GET">
 <doc>Retrieve the list of Web links associated to a resource.
 Both HTTP and CoAP support this method.</doc>
 <request>
 <doc>This request MUST contain an Accept option with
 application/link-format when the resource supports
 other GET methods.</doc>
 </request>
 <response status="200">
 <representation mediaType="application/link-format"/>
 </response>
 <response status="2.05">
 <representation mediaType="application/link-format"/>
 </response>
 </method>

 <method id="appendLinks" name="POST">
 <doc>Append new Web links to a resource which is a collection
 of links. Both HTTP and CoAP support this method.</doc>
 <request>
 <representation mediaType="application/link-format"/>
 </request>
 <response status="200"/>
 <response status="2.04"/>
 </method>

 <method id="clearLinks" name="DELETE">
 <doc>Clear all Web Links in a resource which is a collection
 of links. Both HTTP and CoAP support this method.</doc>
 <request>
 </request>
 <response status="200"/>
 <response status="2.04"/>
 </method>

Shelby & Vial Expires September 8, 2012 [Page 16]

Internet-Draft CoRE Interfaces March 2012

 </application>

5. Security Considerations

 An implementation of a client needs to be prepared to deal with
 responses to a request that differ from what is specified in this
 document. A server implementing what the client thinks is a resource
 with one of these interface descriptions could return malformed
 representations and response codes either by accident or maliciously.
 A server sending maliciously malformed responses could attempt to
 take advantage of a poorly implemented client for example to crash
 the node or perform denial of service.

6. IANA Considerations

 To be determined if a registry of interface descriptions should be
 created for CoRE, allowing other interface descriptions to be
 registered by other specifications (and if this document is the place
 to create such a registry).

7. Acknowledgments

 Acknowledgement is given to colleagues from the SENSEI project who
 were critical in the initial development of the well-known REST
 interface concept, to members of the IPSO Alliance where further
 requirements for interface types have been discussed, and to Szymon
 Sasin, Cedric Chauvenet, Daniel Gavelle and Carsten Bormann who have
 provided useful discussion and input to the concepts in this
 document.

8. Changelog

 Changes from -01 to -02

 o Defined a Function Set and its guidelines.

 o Added the Link List interface.

 o Added the Linked Batch interface.

 o Improved the WADL interface definition.

Shelby & Vial Expires September 8, 2012 [Page 17]

Internet-Draft CoRE Interfaces March 2012

 o Added a simple profile example.

9. References

9.1. Normative References

 [I-D.ietf-core-link-format]
 Shelby, Z., "CoRE Link Format",

draft-ietf-core-link-format-11 (work in progress),
 January 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

9.2. Informative References

 [I-D.cheshire-dnsext-dns-sd]
 Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", draft-cheshire-dnsext-dns-sd-11 (work in
 progress), December 2011.

 [I-D.ietf-core-coap]
 Frank, B., Bormann, C., Hartke, K., and Z. Shelby,
 "Constrained Application Protocol (CoAP)",

draft-ietf-core-coap-08 (work in progress), October 2011.

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP",

draft-ietf-core-observe-04 (work in progress),
 February 2012.

 [I-D.shelby-core-resource-directory]
 Krco, S. and Z. Shelby, "CoRE Resource Directory",

draft-shelby-core-resource-directory-02 (work in
 progress), October 2011.

Appendix A. Profile example

 The following is a short definition of simple profile. This
 simplistic profile is for use in the examples of this document.

https://datatracker.ietf.org/doc/html/draft-ietf-core-link-format-11
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/draft-cheshire-dnsext-dns-sd-11
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-08
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-04
https://datatracker.ietf.org/doc/html/draft-shelby-core-resource-directory-02

Shelby & Vial Expires September 8, 2012 [Page 18]

Internet-Draft CoRE Interfaces March 2012

 +--------------------+-----------+------------+---------+
 | Function Set | Root Path | RT | IF |
 +--------------------+-----------+------------+---------+
 | Device Description | /d | simple:dev | core#ll |
 | Sensors | /s | simple:sen | core#b |
 | Actuators | /a | simple:act | core#b |
 +--------------------+-----------+------------+---------+

 List of Function Sets

 +-------+----------+----------------+---------+------------+
 | Type | Path | RT | IF | Data Type |
 +-------+----------+----------------+---------+------------+
 | Name | /d/name | simple:dev:n | core#p | xsd:string |
 | Model | /d/model | simple:dev:mdl | core#rp | xsd:string |
 +-------+----------+----------------+---------+------------+

 Device Description Function Set

 +-------------+-------------+----------------+--------+-------------+
 | Type | Path | RT | IF | Data Type |
 +-------------+-------------+----------------+--------+-------------+
Light	/s/light	simple:sen:lt	core#s	xsd:decimal
				(lux)
Humidity	/s/humidity	simple:sen:hum	core#s	xsd:decimal
				(%RH)
Temperature	/s/temp	simple:sen:tmp	core#s	xsd:decimal
				(degC)
 +-------------+-------------+----------------+--------+-------------+

 Sensors Function Set

 +------+------------+----------------+--------+-------------+
 | Type | Path | RT | IF | Data Type |
 +------+------------+----------------+--------+-------------+
 | LED | /a/{#}/led | simple:act:led | core#a | xsd:boolean |
 +------+------------+----------------+--------+-------------+

 Actuators Function Set

Shelby & Vial Expires September 8, 2012 [Page 19]

Internet-Draft CoRE Interfaces March 2012

Authors' Addresses

 Zach Shelby
 Sensinode
 Kidekuja 2
 Vuokatti 88600
 FINLAND

 Phone: +358407796297
 Email: zach@sensinode.com

 Matthieu Vial
 Schneider-Electric
 Grenoble,
 FRANCE

 Phone: +33 (0)47657 6522
 Email: matthieu.vial@schneider-electric.com

Shelby & Vial Expires September 8, 2012 [Page 20]

