
Network Working Group G. White
Internet-Draft J-F. Mule
Intended status: Informational D. Rice
Expires: January 7, 2013 CableLabs
 July 6, 2012

Analysis of SPDY and TCP Initcwnd
draft-white-httpbis-spdy-analysis-00

Abstract

 Making the Internet faster is the goal of many product and service
 companies. Many strategies exist, from data caching to packet
 switching, performance improvements in Internet browser clients and
 server software, without forgetting the transport network scaling
 from the fiber core to the access edges.

 This report investigates two proposed protocol enhancements aimed at
 making the web browsing user experience better by optimizing the
 transport of web objects and thereby reducing the page load time.
 The two enhancements are SPDY, a replacement of the HyperText
 Transfer Protocol (HTTP) requiring client and server changes, and a
 TCP tune-up, an increase in the TCP initial congestion window
 accomplished by a setting change on the web servers. Both show
 promise, but there are some caveats, particularly with SPDY. SPDY is
 a candidate for standardization as HTTP/2.0.

 In addition to a discussion of the two enhancements, this report
 provides the results of laboratory testing on SPDY version 2 and the
 proposed increase in the TCP initial congestion window in a variety
 of simulated conditions, comparing the page load time when using the
 proposed enhancement to the page load time for the default case of
 HTTPS and current initial congestion window settings.

 The proposed enhancements generate mixed results: web page load times
 were reduced in some scenarios but increased significantly in others.
 The performance improvement (or degradation) varied depending on the
 number of servers, configuration of the initial TCP congestion
 window, and especially any network packet loss. The following
 results were obtained across all scenarios comparing SPDY and
 congestion window enhancements to standard HTTPS.

 o Average reduction in page load time was 29%

 o Best improvement was over 78% reduction in page load time

White, et al. Expires January 7, 2013 [Page 1]

Internet-Draft spdy-analysis July 2012

 o Worst cases showed a negative impact, resulting in a 3.3x increase
 in page load time

 These results lead us to the following conclusions:

 o The SPDY protocol is currently a moving target, and thus it would
 be challenging to realize a return on investment for general-
 purpose usage in web servers.

 o Protocol improvements, standardization in the IETF and wider
 adoption by the client/server software may warrant a second look
 at SPDY.

 o Some applications in controlled environments may gain by
 leveraging SPDY. SPDY might be a valuable tool where the a single
 entity provides the servers, the client software, and the web
 content.

 o If SPDY were adopted very widely it may have some secondary
 benefits for network operators through improved infrastructure
 scalability due to a significant reduction in concurrent TCP
 sessions, as well as a reduction in Packets Per Second.

 o The proposed increase in the TCP initial congestion window is
 straightforward, requires no client modifications, and on its own
 provides consistent (albeit modest) performance gains.

 This report is available in a somewhat more detailed form in
 [SPDY-ANALYSIS].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 7, 2013.

Copyright Notice

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

White, et al. Expires January 7, 2013 [Page 2]

Internet-Draft spdy-analysis July 2012

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

White, et al. Expires January 7, 2013 [Page 3]

Internet-Draft spdy-analysis July 2012

Table of Contents

1. Introduction . 5
2. SPDY . 6
2.1. The SPDY Protocol . 7
2.2. SPDY Server Implementations 9
2.3. SPDY Client Implementations 9
2.4. SPDY in the Wild . 9
2.5. SPDY Protocol Development and IETF Standardization 9

3. TCP Initial Congestion Window 10
3.1. Historical Settings for initcwnd 10

4. The Current Web Environment 11
4.1. Content Environment 11
4.2. Network Environment 13
4.2.1. Round-Trip Time (RTT) 13
4.2.2. Access Network Data Rate 15
4.2.3. Packet Loss . 15

5. Laboratory Testing and Results 16
5.1. Goals . 16
5.2. Laboratory Environment 16
5.2.1. Web Server Configuration 16
5.2.2. Client Configurations 17

5.3. Test Conditions . 17
5.3.1. Protocol Options 17
5.3.2. Web Sites . 18

5.4. Test Results . 20
5.4.1. CASE 1: SPDY vs. HTTPS 21
5.4.2. CASE 2: initcwnd=10 vs. initcwnd=3 24
5.4.3. CASE 3: SPDY+initcwnd=10 vs. HTTPS+initcwnd=3 27
5.4.4. Results Summary 29

6. Recommendations and Conclusions 30
7. IANA Considerations . 31
8. Security Considerations 31
9. Acknowledgements . 31
10. References . 32

 Authors' Addresses . 33

White, et al. Expires January 7, 2013 [Page 4]

Internet-Draft spdy-analysis July 2012

1. Introduction

 The current method of transporting web objects from a server to a
 client utilizes Hypertext Transfer Protocol version 1.1 (HTTP/1.1),
 running atop the Transport Control Protocol (TCP) [RFC0793].
 HTTP/1.1 was published as [RFC2616] in 1999, and has since become the
 most widely used application-layer protocol on the Internet. TCP
 pre-dates HTTP/1.1 by about 18 years, and even though TCP has evolved
 over time, it is fundamentally unchanged, and runs atop IPv4 and
 IPv6.

 Since the advent of the World Wide Web 15+ years ago, access network
 bandwidths as well as server and client CPU horsepower have increased
 by a factor of approximately 1.5x year-over-year, yet the apparent
 speed of the web (from the web browsing user's perspective) has grown
 much more slowly. In part, this can be explained by a concomitant
 increase in web page complexity, as measured by any number of
 attributes including total page size, number of linked resources,
 amount of server-side code, and lines of JavaScript. However, there
 is a view that the underlying protocols used to transport web
 resources are becoming increasingly out-of-date with the network and
 computing resources that are in use today, and that significant
 improvements in performance (generally page load time) can be
 achieved by revisiting these fundamental technologies.

 Bolstering this view is the fact that while network bandwidths have
 been improving rapidly, network latencies have not, and there is
 little hope of achieving significant reductions in network latency,
 as it is dominated by propagation delay. The result is that a
 fundamental network parameter, the Bandwidth-Delay Product (BDP), is
 much larger today than in the early days of the Internet. It is
 becoming clear that HTTP/1.1 and TCP are not particularly optimized
 for networks with high bandwidth-delay product.

 Furthermore, in order to maximize performance using the existing
 tools of HTTP/1.1 and TCP, web architects (browser, server and site
 developers) have employed work-arounds that have some negative
 implications. The most significant implications result from the use
 of multiple simultaneous TCP connections. Modern browsers will open
 up to six simultaneous TCP connections to each server from which they
 need to retrieve resources, and optimized websites will compound this
 by spreading content over multiple servers, a practice known as
 "domain sharding". The result is that a single browser may have 20
 or more simultaneous TCP connections to the hosts of a particular
 site while it is downloading a single web page. The parallel nature
 of this approach is intended to reduce the page download time
 (compared to the alternative of a single, non-pipelined TCP
 connection), and in many cases it succeeds. However, a web browser

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc2616

White, et al. Expires January 7, 2013 [Page 5]

Internet-Draft spdy-analysis July 2012

 with 20 or more simultaneous TCP sessions can drown out other
 applications that use a small number of TCP sessions (e.g., one).
 This is due to the fact that the TCP congestion avoidance algorithm
 provides approximately fair sharing of the bandwidth on the
 bottleneck link on a per-TCP-session basis. Additionally, some
 browsers do not reuse TCP connections, so each web resource is
 retrieved using a separate TCP connection. The result is that the
 vast majority of sessions never reach the congestion avoidance phase,
 and network resources can therefore either be underutilized or
 excessively congested. The network overhead for establishing and
 tearing down all of the TCP connections can also be a concern.

 A number of efforts have sprung up to develop ways to improve page
 download time and consequently improve the web browsing user
 experience. This paper discusses two proposed enhancements, both
 originally proposed by Google as part of their "Let's Make the Web
 Faster" project [Faster]. The first is a replacement for HTTP 1.1,
 called SPDY [SPDY], which aims to make more efficient use of the
 network in common web browsing scenarios. The second is an
 incremental enhancement to the TCP protocol in the form of an
 increase in the server's initial congestion window (initcwnd).

 In addition to a discussion of the two proposed enhancements, this
 paper presents the results of laboratory testing conducted by
 CableLabs on both technologies independently, and on the combination
 of the two technologies.

2. SPDY

 SPDY [SPDY] is an experimental protocol developed by Mike Belshe and
 Roberto Peon of Google in late 2009 to replace HTTP/1.1 communication
 for transporting web content between a client and a server. It is
 deployed in production on many Google servers but requires a
 compatible browser such as Google Chrome. The stated goals of SPDY
 are:

 o 50% reduction in page load time

 o Minimize deployment complexity

 o Avoid changes to content by web authors

 o Solve this collaboratively via open-source software

 At the time of this study, the current implemented version of SPDY is
 version 2 (SPDY/2). Version 3 is currently being developed.

White, et al. Expires January 7, 2013 [Page 6]

Internet-Draft spdy-analysis July 2012

2.1. The SPDY Protocol

 SPDY/2 retains the HTTP/1.1 metadata, but replaces the transport
 aspects of HTTP with a more streamlined approach. SPDY has three
 basic features that are used to accelerate the loading of a page:

 o Multiplexed streams - The fundamental enhancement of SPDY is that
 multiple resources can be retrieved via a single TCP connection.
 The expectation (and current implementation in Chrome) is for the
 client to open a single TCP connection to each server, and to
 request all resources of the server over that single connection.
 The use of a single TCP connection in this way allows the
 congestion avoidance algorithm in TCP to more effectively manage
 data flow across the network. Also, the client can include
 multiple requests in a single message, thereby reducing overhead
 and the number of round-trip times necessary to begin file
 transfer for requests beyond the first. While this is similar to
 HTTP pipelining [HTTP_Pipelining], the difference introduced by
 SPDY is that the server can transfer all of the resources in
 parallel (multiplexed) without the "head-of-line blocking" problem
 that can occur with HTTP pipelining.

 o Request prioritization - While SPDY may serve to decrease total
 page load time, one side-effect of stream multiplexing is that a
 critical page resource might be delivered more slowly due to the
 concurrent delivery of a less critical resource. To prevent this,
 SPDY provides a way for the client to indicate relative priorities
 for the requested resources. For example, if a JavaScript library
 is required in order to generate URLs for additional page
 resources, the client can request that the library be delivered
 with higher priority so that it isn't holding up those subsequent
 requests.

 o HTTP header compression - SPDY mandates that HTTP headers be
 compressed to reduce the number of bytes transferred. HTTP Header
 compression has been an Internet standard but it is not widely
 used. Google SPDY makes it mandatory. This might be a fairly
 small gain on the response headers, but it can provide a
 significant benefit on the requests (which in many cases are
 entirely headers). For example, each request from a particular
 client to a particular server includes an identical user-agent
 string (which can be in excess of 100 bytes), and in some cases
 the same cookie is sent in each request. Both Chromium and
 Firefox developers have reported approximately 90% header
 compression using the proposed zlib compression. This could allow
 a lot more requests to be packed into each request packet.

 SPDY also has two advanced features that can be used in certain cases

White, et al. Expires January 7, 2013 [Page 7]

Internet-Draft spdy-analysis July 2012

 to further accelerate the web user experience:

 o Server Push - SPDY allows the server to create a stream to the
 client, and via this stream send web resources that were not
 explicitly requested by the client. The expectation is that the
 client will cache the pushed resource, and then upon needing it,
 will retrieve it from local cache. This function could
 potentially be used by the server to push objects (of which the
 client isn't yet aware) that are necessary for rendering the
 current page. Additionally, this function could be used to push
 resources for related pages that the user may be likely to
 request. The heuristics used by the server to decide when/if to
 push objects and what those objects are is left to the server
 implementer. This feature is somewhat controversial, but the
 authors defend it by pointing out that it is better than the
 practice of "in-lining" resources into the html page, since it
 allows the pushed resources to be cached for multiple future
 usages.

 o Server Hint - SPDY defines a new header that the server can use to
 suggest additional resources that the client should request. This
 is a less forceful approach than the Server Push, and allows the
 client to be involved in the decision whether or not a particular
 resource is delivered. The client might, for example, examine its
 own cache and only request resources that are not resident in
 local cache. On the other hand, Server Hint theoretically
 requires one additional round trip that would be eliminated by
 Server Push.

 While it isn't fundamentally required for the protocol to function,
 in practice SPDY/2 runs only over an encrypted (TLS) connection. The
 rationale for this is three-fold:

 o TLS involves a client-server handshake to negotiate cipher-suite.
 The authors of SPDY extend this handshake to negotiate whether
 SPDY can be used. This Next Protocol Negotiation (NPN)
 [I-D.agl-tls-nextprotoneg] allows the use of the https:// URI,
 rather than a new spdy:// URI, and as a result a single html page
 can work for clients that support SPDY and clients that don't.

 o TLS passes through firewalls and bypasses intermediaries. Many
 HTTP requests today are processed (and modified) by transparent
 proxies without the knowledge of the end-user. It would create a
 tremendous barrier to adoption of SPDY if it were necessary for
 intermediaries to be upgraded to handle the new protocol.

 o Encryption is good. The authors of SPDY state a philosophical
 belief that all HTTP traffic should be encrypted. They cite the

White, et al. Expires January 7, 2013 [Page 8]

Internet-Draft spdy-analysis July 2012

 relative ease by which traffic (particularly Wi-Fi traffic) can be
 snooped.

2.2. SPDY Server Implementations

 There are a number of SPDY server implementations that are in various
 stages of development as open source projects. The Chromium project
 maintains a list of the implementations available [SPDY]. At the
 time this study was initiated, many of these implementations
 supported a subset of SPDY functionality and/or supported SPDY
 version 1. At the time this study began, only two implementations
 appeared to support SPDY/2 in a reliable way. The first is the
 Chromium "FLIP Server" (FLIP was an early internal code-name for SPDY
 within Google). This server is built off of the immense Chromium
 source tree. The second is a Javascript implementation called "node-
 spdy" which is built on the node.js server framework. There is also
 an Apache module for SPDY, but at the time this study was initiated
 it was incomplete.

2.3. SPDY Client Implementations

 On the client side, both the Chrome browser and the Mozilla Firefox
 browser support SPDY/2. Chrome also includes a built-in diagnostics
 function that allows the user to examine the active SPDY sessions
 <chrome://net-internals/#spdy>. Finally, the Silk browser in the
 Amazon Kindle Fire tablet computer purportedly utilizes SPDY/2 for
 its connection to the Amazon EC2 cloud when performing web
 acceleration.

2.4. SPDY in the Wild

 In terms of live web content, the most significant, publicly
 available sites that serve content via SPDY are run by Google. Many
 of the Google properties have SPDY/2 enabled, including Gmail, Google
 Docs, Picasa, Google+, and Google Encrypted Search. All of these
 sites utilize only the basic SPDY features; there are no known live
 instances of Server Push or Server Hint. In addition, the Twitter
 and Wordpress websites utilize SPDY, and the web acceleration
 companies Cotendo (acquired by Akamai in Dec. 2011) and Strangeloop
 indicate that they have deployed SPDY in some capacity.

2.5. SPDY Protocol Development and IETF Standardization

 Google has actively solicited input on enhancements to the SPDY/2
 protocol. Up until very recently, development and discussion of
 SPDY/3 has taken place on an open, Google-managed forum. However,
 the SPDY/3 draft was submitted to the IETF HTTPbis working group on
 February 23, 2012, for comments [I-D.mbelshe-httpbis-spdy].

White, et al. Expires January 7, 2013 [Page 9]

Internet-Draft spdy-analysis July 2012

3. TCP Initial Congestion Window

 The TCP initial congestion window (initcwnd) is used at the start of
 a TCP connection. In the context of an HTTP session, the server's
 initcwnd setting controls how many data packets will be sent in the
 first burst of data from the server. It is a standard protocol
 parameter that can be changed on Linux servers via a simple command
 line.

 Absent packet loss or receiver window limits, the TCP slow start
 operation looks like:

 Table 1. TCP Slow Start Operation

 +--------------+---------------------------+-------------------------+
 | Round-Trip # | Client | Server |
 +--------------+---------------------------+-------------------------+
 | 1 | TCP SYN | TCP SYN/ACK |
 +--------------+---------------------------+-------------------------+
 | 2 | TCP ACK and HTTP GET <url>| initcwnd data packets |
 +--------------+---------------------------+-------------------------+
 | 3 | TCP ACKs | 2*initcwnd data packets |
 +--------------+---------------------------+-------------------------+
 | 4 | TCP ACKs | 4*initcwnd data packets |
 +--------------+---------------------------+-------------------------+
 | | | and so on.... |
 +--------------+---------------------------+-------------------------+

3.1. Historical Settings for initcwnd

 A larger value for initcwnd will clearly result in fewer Round-Trip
 Times (RTTs) to deliver a file. However, the downside to an
 excessively large initcwnd is that there is an increased risk of
 overflowing a router buffer on an intermediate hop, resulting in an
 increase in latency from packet loss and retransmissions. A value of
 initcwnd that is greater than the Bandwidth-Delay Product (BDP) of
 the network path between the server and client has an increased
 likelihood of causing packet loss that may lead to poor performance.
 As network bandwidths have increased over time, the BDP has
 increased, and as a result the defined value for initcwnd has been
 adjusted. The early specifications for TCP ([RFC1122], [RFC2001])
 required that a TCP implementation set initcwnd to 1 packet.
 Starting in 2002 ([RFC2414], [RFC3390]), the initcwnd value was
 raised to 4000 bytes (effectively 3 packets in most networks).

 Google has submitted an IETF draft [I-D.ietf-tcpm-initcwnd] proposing
 that initcwnd now be increased to at least 10 packets, based on a
 series of tests performed using production Google servers

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2001
https://datatracker.ietf.org/doc/html/rfc2414
https://datatracker.ietf.org/doc/html/rfc3390

White, et al. Expires January 7, 2013 [Page 10]

Internet-Draft spdy-analysis July 2012

 [INITCWND-PAPER]. In Google's tests, a value of 10-16 packets
 resulted in the minimum average latency for delivery of web
 resources.

 In November 2011, CDN Planet [CDNPLANET] performed an assessment of
 CDNs to see what value is currently used for initcwnd. Many CDNs
 have already increased their initcwnd beyond 3 packets, some as high
 as 10-16 packets.

 This increase from a value of 3 to a value of 10 will result in the
 elimination of up to 2 RTTs for each file transfer. The maximum gain
 will be seen for files that take 9 packets to deliver (i.e., files
 around 11 kB in size). Files of that size would take 4 RTTs to
 deliver using the default initcwnd, but can be delivered in 2 RTTs
 with the proposed increase, a 50% improvement. Files smaller than
 about 3 kB will not experience any acceleration.

4. The Current Web Environment

4.1. Content Environment

 The construction of web page content plays a very important role in
 determining the page load time. In order to validate the two
 proposed enhancements, we will create a test bed that consists of web
 servers, web clients and web content. We performed a survey of some
 popular (and resource heavy) websites in order to understand the
 content environment. The sites used in the survey were selected as
 examples of sites that would stand to benefit from an acceleration
 technology such as SPDY. Many of these sites are composed of a
 fairly large number of resources, the content changes frequently
 (reducing local cache acceleration), and they would presumably be
 interested in page load performance.

 The results shown in Table 2 indicate, for each site's home page, the
 number of servers from which content was drawn, the number of
 resources requested, the total transferred size of all page
 resources, and the page load time. The reported page load time is
 the total time to download all of the resources for the page. It is
 possible, and even likely, that one or more of these pages are
 largely complete (perhaps only missing some non-critical resources)
 in significantly less time than is reported here.

 Additionally, for each webpage we evaluated the percentage of total
 resources that were requested from the top N servers for the page,
 for values of N between 1 and 5. For example, Engadget receives 34%
 of the web objects from the most used server, 82% of the objects from
 3 most used servers and 87% of them come from the 5 servers with the

White, et al. Expires January 7, 2013 [Page 11]

Internet-Draft spdy-analysis July 2012

 highest count. These servers may include the host servers for the
 website, CDN servers for images and media content, advertising
 servers for ad content, and analytics collection, among other types
 of resources.

 Table 2. Website Survey

 +-------------+-------+-----+------+-------+------------------------+
 | | | |total | | % of GETs from |
 | | | |page | total | top N servers |
 | | | |size | time +----+----+----+----+----+
 |Page |servers|GETs |(KB) | (s) | N=1| N=2| N=3| N=4| N=5|
 +-------------+-------+-----+------+-------+----+----+----+----+----+
 |Engadget | 26 | 278 | 1500 | 23.0 | 34%| 67%| 82%| 85%| 87%|
 +-------------+-------+-----+------+-------+----+----+----+----+----+
 |NY Times | 27 | 148 | 1500 | 13.6 | 33%| 49%| 59%| 67%| 73%|
 +-------------+-------+-----+------+-------+----+----+----+----+----+
 |Gizmodo | 25 | 116 | 3900 | 13.2 | 34%| 60%| 69%| 76%| 78%|
 +-------------+-------+-----+------+-------+----+----+----+----+----+
 |CNN | 22 | 158 | 1180 | 12.6 | 59%| 70%| 75%| 80%| 83%|
 +-------------+-------+-----+------+-------+----+----+----+----+----+
 |comcast.net | 12 | 55 | 606 | 12.0 | 51%| 67%| 75%| 80%| 84%|
 +-------------+-------+-----+------+-------+----+----+----+----+----+
 |ESPN | 26 | 144 | 5400 | 11.6 | 40%| 51%| 60%| 67%| 70%|
 +-------------+-------+-----+------+-------+----+----+----+----+----+
 |Amazon | 15 | 139 | 1100 | 11.0 | 34%| 58%| 81%| 86%| 90%|
 +-------------+-------+-----+------+-------+----+----+----+----+----+
 |RoadRunner | 30 | 128 | 85 | 9.50 | 27%| 48%| 61%| 65%| 68%|
 +-------------+-------+-----+------+-------+----+----+----+----+----+
 |Wired | 32 | 130 | 1200 | 8.90 | 48%| 56%| 61%| 65%| 68%|
 +-------------+-------+-----+------+-------+----+----+----+----+----+
 |eBay | 14 | 53 | 520 | 8.60 | 23%| 40%| 55%| 68%| 75%|
 +-------------+-------+-----+------+-------+----+----+----+----+----+
 |LinkedIn | 9 | 75 | 457 | 7.17 | 48%| 80%| 88%| 92%| 95%|
 +-------------+-------+-----+------+-------+----+----+----+----+----+
 |Hulu | 12 | 193 | 2000 | 4.96 | 60%| 79%| 87%| 95%| 96%|
 +-------------+-------+-----+------+-------+----+----+----+----+----+
 |Yahoo | 6 | 51 | 423 | 4.60 | 88%| 92%| 94%| 96%| 98%|
 +-------------+-------+-----+------+-------+----+----+----+----+----+
 |YouTube | 6 | 37 | 2400 | 4.16 | 41%| 68%| 81%| 92%| 97%|
 +-------------+-------+-----+------+-------+----+----+----+----+----+
 |Google | 3 | 20 | 73 | 2.45 | 45%| 90%|100%|100%|100%|
 | shopping | | | | | | | | | |
 +-------------+-------+-----+------+-------+----+----+----+----+----+
 |Average | 18 | 115 | 1490 | 9.82 | 44%| 65%| 75%| 81%| 84%|
 +-------------+-------+-----+------+-------+----+----+----+----+----+

White, et al. Expires January 7, 2013 [Page 12]

Internet-Draft spdy-analysis July 2012

4.2. Network Environment

 The network environment between the servers and the client plays an
 equally large role in determining page load time. The most important
 parameters that drive performance are the round-trip time, the
 bottleneck link bandwidth, and the packet loss rate.

4.2.1. Round-Trip Time (RTT)

 In the absence of congestion, typical Internet round-trip times can
 range from as low as 10 milliseconds when accessing content served in
 close proximity, to as high as 500 milliseconds or more when
 accessing servers across continents. For wireline broadband
 customers in the U.S., the most popular websites can generally be
 reached with RTTs ranging from 15 ms to 150 ms. For the websites
 included in the survey in Section 4.1, a sample TCP RTT to each of
 the top-five servers (in terms of number of resources requested) from
 CableLabs headquarters in Louisville, Colorado, is shown (in
 milliseconds) in Table 3 along with a summary of the minimum, mean,
 and max RTT of those top-five servers. The RTT was calculated by
 doing a TCP "ACK RTT" analysis of a packet capture of each page load
 using the Wireshark tool. The ISP connection used during this
 testing consisted of two load-balanced 100 Mbps duplex links with a
 mean RTT of less than 2 ms.

White, et al. Expires January 7, 2013 [Page 13]

Internet-Draft spdy-analysis July 2012

 Table 3. Round-Trip Times to Website Servers in Milliseconds

 +-----------+------+------+------+------+------+-----+-------+-----+
 |Page |server|server|server|server|server| | | |
 | | 1 | 2 | 3 | 4 | 5 | min |average| max |
 +-----------+------+------+------+------+------+-----+-------+-----+
 |Engadget | 63* | 62* | 64* | 62* | 38 | 38 | 57.8 | 64 |
 +-----------+------+------+------+------+------+-----+-------+-----+
 |NY Times | 64* | 64* | 62* | 64* | 64* | 62 | 63.6 | 64 |
 +-----------+------+------+------+------+------+-----+-------+-----+
 |Gizmodo | 37* | 39* | 134 | 25 | 22 | 22 | 51.4 | 134 |
 +-----------+------+------+------+------+------+-----+-------+-----+
 |CNN | 46* | 53 | 69* | 32 | 45 | 32 | 49.0 | 69 |
 +-----------+------+------+------+------+------+-----+-------+-----+
 |Comcast.net| 65* | 69* | 94 | 28 | 71 | 28 | 65.4 | 94 |
 +-----------+------+------+------+------+------+-----+-------+-----+
 |ESPN | 64* | 33 | 65* | 64* | 64* | 33 | 58.0 | 65 |
 +-----------+------+------+------+------+------+-----+-------+-----+
 |Amazon | 35 | 72* | 16* | 98 | 33 | 16 | 50.8 | 98 |
 +-----------+------+------+------+------+------+-----+-------+-----+
 |RoadRunner | 56 | 58 | 29* | 52* | 61* | 29 | 51.2 | 61 |
 +-----------+------+------+------+------+------+-----+-------+-----+
 |Wired | 70* | 114 | 66* | 24* | 85 | 24 | 71.8 | 114 |
 +-----------+------+------+------+------+------+-----+-------+-----+
 |eBay | 62* | 75 | 64* | 62* | 62 | 62 | 65.0 | 75 |
 +-----------+------+------+------+------+------+-----+-------+-----+
 |LinkedIn | 50* | 72* | 78 | 54 | 63* | 50 | 63.4 | 78 |
 +-----------+------+------+------+------+------+-----+-------+-----+
 |Hulu | 65* | 67* | 66* | 64* | 22 | 22 | 56.8 | 67 |
 +-----------+------+------+------+------+------+-----+-------+-----+
 |Yahoo | 28 | 27 | 64 | 29 | 61 | 27 | 41.8 | 64 |
 +-----------+------+------+------+------+------+-----+-------+-----+
 |YouTube | 23 | 25 | 23 | 22 | 22 | 22 | 23.0 | 25 |
 +-----------+------+------+------+------+------+-----+-------+-----+
 |Google | 34 | 42 | 43 | 22 | - | 22 | 35.3 | 43 |
 | shopping | | | | | | | | |
 +-----------+------+------+------+------+------+-----+-------+-----+

 * denotes a host run by a CDN provider.

 When network links are congested, a phenomenon referred to as
 "bufferbloat" can result in an increase in RTT on the order of
 hundreds of milliseconds. Bufferbloat arises due to the fact that
 many network elements support much more buffering than is needed to
 maintain full link utilization. These oversized buffers will be kept
 full by the TCP (particularly when there are multiple simultaneous
 sessions), thereby causing an increase in latency. In recent updates
 to the DOCSIS 3.0 cable modem specification, a new feature has been

White, et al. Expires January 7, 2013 [Page 14]

Internet-Draft spdy-analysis July 2012

 added to mitigate this effect by proper sizing of the cable modem's
 upstream buffer. At this time, 14 cable modem models from 10
 manufacturers have been certified as supporting this feature. For
 more detail on bufferbloat and the DOCSIS Buffer Control feature,
 see: [BUFFERCONTROL].

4.2.2. Access Network Data Rate

 Residential access network data rates have steadily risen over time,
 with a 10 Mbps downstream rate and 1 Mbps upstream rate being fairly
 common in North America, and 20 Mbps x 2 Mbps rates becoming
 increasingly available.

 As a result, for purposes of our investigation of the two proposed
 technologies, we will utilize the 10x1 and 20x2 data rate
 configurations.

 Some access networks, in particular cable modem access networks, are
 able to provide higher burst data rates that go well beyond the
 sustained traffic rate for the connection. In this report we will
 not attempt to study the impact that these "Powerboost" type features
 have on the two proposed technologies. In addition, many operators
 offer higher speed tiers than those mentioned above, with speeds in
 Europe up to 360 Mbps on the very high end, but they currently have
 fairly low take rates. Finally, some access networks may have lower
 speed limitations placed on the services such as public and outdoor
 Wi-Fi networks.

4.2.3. Packet Loss

 It is important to note that packet loss due to router (or switch)
 buffer overflow is expected behavior in networks, particularly when
 TCP is utilized. In fact, packet loss due to buffer overflow is
 fundamental to the congestion avoidance algorithm in TCP; it is the
 only signal that the TCP has (absent the Explicit Congestion
 Notification field in IP packets) that it has saturated the link and
 needs to reduce its transmission rate. As a result, it is not a
 concern in this testing. The concern here is random packet loss due
 to noise, interference or network faults that will effectively send
 TCP an erroneous signal to reduce its transmission rate.

 In wired networks, packet loss due to noise is fairly uncommon, for
 example with packet loss rates of approximately 10^-5 being typical
 for DOCSIS cable modem networks. In wireless networks, packet loss
 can vary dramatically as a result of interference and fluctuations in
 carrier-to-noise ratio.

White, et al. Expires January 7, 2013 [Page 15]

Internet-Draft spdy-analysis July 2012

5. Laboratory Testing and Results

5.1. Goals

 The goals of the testing are to investigate the page load performance
 impacts of the two proposed technologies. In particular, we examine
 Google SPDY with an eye toward evaluating SPDY's ability to achieve
 the stated performance goal and to understand what aspects of SPDY
 provide acceleration and in which scenarios. Testing is limited to
 the SPDY "basic" features; no testing of server-push or server-hint
 is included in this study, primarily due to the fact that the
 performance enhancement gained by using them would be heavily
 dependent on how they are configured and utilized by the website
 administrator. Some benchmarks of server-push and server-hint have
 been published by external sources; see [GOOGLE-BENCHMARKS] . The
 results have not shown a statistically significant gain.

 As stated previously, the TCP initcwnd increase is tested both
 independently (using HTTPS) and in conjunction with SPDY.

5.2. Laboratory Environment

 The entire test network was virtualized on a dedicated VMWare ESX
 Virtual Server. The test network consisted of 7 virtual hosts, each
 having two network interfaces. A single network interface on each
 host was connected to a virtual LAN within the ESX environment. The
 second network interface on each host was connected to the corporate
 network. During the experiments, the CPU load on the virtualization
 server was checked to ensure that it was not impacting the results.

5.2.1. Web Server Configuration

 Four of the hosts were configured identically as web servers, with
 the following software:

 o OS: Ubuntu 11.04

 o Web Server: "Express-SPDY" written in JavaScript for node.js

 The "Express-SPDY" server is the melding of a compact and efficient
 open-source HTTPS server (known as "Express") with an open-source
 SPDY/2 implementation called "node-spdy". The implementation is
 written in JavaScript using the node.js server environment. This
 implementation was chosen over the Chromium package published by
 Google due to the fact that it was lightweight and could be deployed
 relatively easily. Unfortunately, the version of Express-SPDY
 available at the time of this testing was found to not be stable, and
 required some work to debug and fix prior to beginning any testing.

White, et al. Expires January 7, 2013 [Page 16]

Internet-Draft spdy-analysis July 2012

 Since our testing commenced, the author of node-spdy rewrote a large
 part of the package.

5.2.2. Client Configurations

 The remaining three hosts were configured as client machines. The
 primary client ran Windows 7, and the other two clients (used for
 spot testing) ran Windows XP and Ubuntu 11.04. All clients used the
 Chrome 16 browser, with the SPDY Benchmarking plugin, and were
 installed with Wireshark to capture network traffic. The Dummynet
 [DUMMYNET] network simulator was used to simulate the various network
 conditions.

 For each test condition, Dummynet was configured with the desired
 upstream and downstream rates, with the desired RTT split equally
 between the two links. In cases where packet loss was being tested,
 the same packet loss rate was configured on both links. Both links
 were left with the default buffering configuration of 50 packets.

 Note that two of the hosts (Win7 and Ubuntu) support the TCP Window
 Scaling Option by default, while the third (WinXP) does not.

5.3. Test Conditions

5.3.1. Protocol Options

 As previously stated, the testing is intended to compare the SPDY
 protocol to the HTTPS protocol, and to investigate the use of the
 increased TCP Initial Congestion Window (initcwnd) (both with HTTPS
 and in conjunction with SPDY). As a result, we measured the time it
 took to load a web page using four different protocol options as
 shown in Table 4. One option defines the baseline scenario or "Base
 Case": with HTTPS for transport and the default initcwnd setting of
 3. The results for the three cases involving a proposed enhancement
 are then compared to the "Base Case".

 Table 4. Matrix of Protocol Options

 +-------------+---------+
 | HTTPS | SPDY |
 +------------------+-------------+---------+
 | initcwnd = 3 | Base Case | CASE 1 |
 +------------------+-------------+---------+
 | initcwnd = 10 | CASE 2 | CASE 3 |
 +------------------+-------------+---------+

White, et al. Expires January 7, 2013 [Page 17]

Internet-Draft spdy-analysis July 2012

5.3.2. Web Sites

 Nine different "websites" were used to evaluate the impact that the
 content and server configuration would have on the test results. The
 nine websites were formed by the 3x3 matrix of three different server
 configurations and three different web pages as follows.

5.3.2.1. Server Configurations

 The server configuration parameter determined how all of the web
 resources for a page were served.

 o Server Case 1, all resources were served by a single server.

 o Server Case 2, the resources were divided equally across two
 servers.

 o Server Case 3, the resources were divided equally across four
 servers.

5.3.2.1.1. Web Pages

 Three web pages were used in testing. These pages were chosen to
 span a range of possible page configurations. In particular, Page B
 was modeled based on the data collected in the website survey
 (Section 4.1), while Pages A and C represent more extreme situations.
 Page A is the smallest of the three pages, and is populated by a
 number of small image files. Page C is the largest, and is populated
 by a small number of very large image files. It could be argued that
 a page like Page C would be fairly rare on the Internet compared to
 pages like Page A or Page B.

 Page A consisted of 102 total resources, with a total page size of
 369 KB. It was composed of the following resources:

 o 1 HTML file: 12.8 KB

 o 1 JavaScript Library (jquery.js): 94.5 KB

 o 100 JPEG images: min/mean/max/stddev size = 1.3/2.6/5.5/1.2 KB

 Page B consisted of 101 total resources, with a total page size of
 1.4 MB. It was composed of the following resources:

 o 1 HTML file: 8.2 KB

 o 100 JPEG/PNG/GIF images:

White, et al. Expires January 7, 2013 [Page 18]

Internet-Draft spdy-analysis July 2012

 * min/mean/max/stddev size = 46B/14KB/103KB/24KB

 * Approximately log-uniform size distribution

 Page C consisted of 11 total resources, with a total page size of 3.0
 MB. It was composed of the following resources:

 o 1 HTML file: 0.8 KB

 o 10 JPEG images: min/mean/max/stddev size = 298/302/310/4 KB

5.3.2.2. Channel Conditions

 Eight different channel conditions were used in the testing. These
 eight cases were formed from the 2x2x2 matrix of the following
 parameters:

 Configured Data Rate:

 10 Mbps downstream, 1 Mbps upstream

 20 Mbps downstream, 2 Mbps upstream

 Round Trip Time:

 20 ms

 100 ms

 Packet Loss Rate:

 0%

 1%

 The two Configured Data Rates were chosen to match two commonly used
 residential high-speed data service configurations. The Round Trip
 Times correspond to a fairly short RTT that models a user accessing a
 site that is located fairly close to them (or is accelerated by a
 CDN), as well as a longer RTT which models a U.S. coast-to-coast page
 load or a case where there is increased upstream latency due to
 bufferbloat. Performance in higher RTT cases, such as an overseas
 connection, is not considered in this study. The two packet loss
 rates correspond to an idealistic case that might be approached by an
 end-to-end wired network connection and a case with packet loss that
 might be more typical of a network connection that includes a Wi-Fi
 link.

White, et al. Expires January 7, 2013 [Page 19]

Internet-Draft spdy-analysis July 2012

5.3.2.3. Test Execution

 The test execution will be performed in the following fashion:

 o Run all 288 test conditions on Win 7

 o Run spot tests on WinXP and Ubuntu

 o For each test condition, perform 20 page loads (clearing cache and
 resetting connections before each load) and calculate median load
 time.

5.4. Test Results

 The result of the spot tests on WinXP and Ubuntu were largely
 consistent with the results for the Win7 testing. However, there was
 a subset of the test cases with WinXP where SPDY showed degraded
 performance compared to the other OSes. This occurred with the cases
 that used a single server, 100 ms RTT, and 0% packet loss. This is
 most likely a result of the lack of TCP Window Scaling in the WinXP
 client, which limits the data rate of each TCP connection to 5 Mbps
 in these conditions. Since SPDY is using a single TCP connection
 (compared to six for HTTP), SPDY will see a performance hit due to
 its inability to use the entire 10 Mbps or 20 Mbps pipe.

 The raw data for all test cases (including the WinXP and Ubuntu test
 cases) are provided in [SPDY-ANALYSIS]. The remainder of this report
 will focus on the Win7 test results.

 As described in Section 5.3.1, the 2x2 matrix of protocol options
 will be presented as three different "cases", where each case
 represents the gain achieved by using one of the three proposed
 protocol enhancement options compared to the base case. This section
 is broken into three subsections that correspond to the three cases.

 For each case, the results comprise a five-dimensional matrix of test
 conditions. In order to present the results in a compact way, each
 subsection below will first examine the impact that website
 configuration has on the achieved gain, then second will examine the
 impact of the channel conditions.

 The results provide a comparison between the median web page download
 time achieved using the proposed protocol enhancement option and that
 which is achieved in the base case.

White, et al. Expires January 7, 2013 [Page 20]

Internet-Draft spdy-analysis July 2012

5.4.1. CASE 1: SPDY vs. HTTPS

 Case 1 compares the median web page download time achieved using
 SPDY/2 to the median time achieved using HTTPS. The comparison is
 made for each website configuration and channel condition
 combination. The comparison is reported as a "gain", which is
 calculated as the ratio of median page load time using HTTPS to the
 median page load time using SPDY. As a result, gain values greater
 than 1 indicate that SPDY/2 provides an advantage over HTTPS. As an
 additional point of reference, a gain of 2 corresponds to a 50%
 reduction in page load time, the goal to which SPDY aspires.

 As stated above, the impact that the website configuration has on the
 achieved gain will be examined first. Table 5 shows the 3x3 matrix
 of website configurations. For each website, the maximum, minimum
 and mean gain values (across all channel conditions) are provided, in
 the manner shown below.

 +-------------+
 | max |
 | mean |
 | min |
 +-------------+

 Additionally, row-wise, column-wise, and overall statistics are
 calculated and shown around the periphery of the 3x3 matrix.

 Table 5. Website Impact on SPDY Gain

 | 1 server | 2 servers | 4 servers | average |
 ---------+-------------+-------------+-------------+-------------+
 | 4.1 | 1.8 | 1.8 | 4.1 |
 Page A | 2.4 | 1.3 | 1.3 | 1.7 |
 | 1.6 | 1.1 | 1.1 | 1.1 |
 ---------+-------------+-------------+-------------+-------------+
 | 3.3 | 1.4 | 1.4 | 3.3 |
 Page B | 1.7 | 1.0 | 1.0 | 1.3 |
 | 0.8 | 0.6 | 0.7 | 0.6 |
 ---------+-------------+-------------+-------------+-------------+
 | 1.0 | 1.0 | 1.1 | 1.1 |
 Page C | 0.5 | 0.7 | 0.9 | 0.7 |
 | 0.3 | 0.4 | 0.5 | 0.3 |
 ---------+-------------+-------------+-------------+-------------+
 | 4.1 | 1.8 | 1.8 | 4.1 |
 average | 1.6 | 1.0 | 1.1 | 1.2 |
 | 0.3 | 0.4 | 0.5 | 0.3 |
 ---------+-------------+-------------+-------------+-------------+

White, et al. Expires January 7, 2013 [Page 21]

Internet-Draft spdy-analysis July 2012

 These results show that SPDY worked well for Page A (many smaller
 images), showing gains across all test conditions and an average gain
 of 1.7. For Page B (many images more typical size), the results were
 a bit more hit-or-miss, with SPDY not always resulting in improved
 performance. Nonetheless, on average a gain of 1.3 was achieved.
 Page C (small number of large images), on the other hand, resulted in
 almost universally worse performance with SPDY than with HTTPS. In
 the worst case, SPDY resulted in a 3.3x increase in page load time
 (gain of 0.3). On average SPDY took 1.4x longer (gain of 0.7) to
 download Page C than traditional HTTPS.

 In general, the SPDY impact (positive or negative) diminished as more
 servers were utilized. This is the result of the increased
 parallelism and decreased number of objects requested per SPDY
 session, which if taken to the extreme would result in a pattern of
 requests that is similar to the HTTPS case.

 The results shown in Table 6 examine the impact that channel
 conditions have on SPDY performance (relative to HTTPS). Since the
 channel conditions were formed from a 2x2x2 matrix of data-rate, RTT,
 and packet-loss rate (PLR), the results are depicted as two 2x2
 matrices of data-rate and RTT, one corresponding to the 0% PLR test
 cases, and the other corresponding to the 1% PLR test cases. For
 each channel condition, the results for all nine websites are
 summarized via the maximum, mean, and minimum gain achieved. Similar
 to the row and column statistics provided in the website impact
 analysis in Table 5, summary statistics for all three dimensions are
 provided around the periphery of the 2x2x2 cube (i.e., in the right-
 most column, the last row, and the third table).

 Table 6a. Channel Impact on SPDY Gain (0% PLR)

 --------+-------------+-------------+-------------+
 0% PLR | 20ms | 100ms | average |
 --------+-------------+-------------+-------------+
 | 2.1 | 4.1 | 4.1 |
 10/1 | 1.4 | 1.7 | 1.6 |
 | 0.7 | 0.8 | 0.7 |
 --------+-------------+-------------+-------------+
 | 1.6 | 3.4 | 3.4 |
 20/2 | 1.2 | 1.6 | 1.4 |
 | 0.5 | 0.7 | 0.5 |
 --------+-------------+-------------+-------------+
 | 2.1 | 4.1 | 4.1 |
 average | 1.3 | 1.6 | 1.5 |
 | 0.5 | 0.7 | 0.5 |
 --------+-------------+-------------+-------------+

White, et al. Expires January 7, 2013 [Page 22]

Internet-Draft spdy-analysis July 2012

 Table 6b. Channel Impact on SPDY Gain (1% PLR)

 --------+-------------+-------------+-------------+
 1% PLR | 20ms | 100ms | average |

 | 2.3 | 2.2 | 2.3 |
 10/1 | 1.1 | 0.9 | 1.0 |
 | 0.4 | 0.3 | 0.3 |
 --------+-------------+-------------+-------------+
 | 2.0 | 1.7 | 2.0 |
 20/2 | 1.0 | 0.8 | 0.9 |
 | 0.3 | 0.3 | 0.3 |
 --------+-------------+-------------+-------------+
 | 2.3 | 2.2 | 2.3 |
 average | 1.0 | 0.8 | 0.9 |
 | 0.3 | 0.3 | 0.3 |
 --------+-------------+-------------+-------------+

 Table 6c. Channel Impact on SPDY Gain (all PLR)

 --------+-------------+-------------+-------------+
 all PLR | 20ms | 100ms | average |
 --------+-------------+-------------+-------------+
 | 2.3 | 4.1 | 4.1 |
 10/1 | 1.3 | 1.3 | 1.3 |
 | 0.4 | 0.3 | 0.3 |
 --------+-------------+-------------+-------------+
 | 2.0 | 3.4 | 3.4 |
 20/2 | 1.1 | 1.2 | 1.1 |
 | 0.3 | 0.3 | 0.3 |
 --------+-------------+-------------+-------------+
 | 2.3 | 4.1 | 4.1 |
 average | 1.2 | 1.2 | 1.2 |
 | 0.3 | 0.3 | 0.3 |
 --------+-------------+-------------+-------------+

 The most interesting observation here is the comparison between the
 two PLR tests. SPDY provided significant gains when the PLR was 0%
 (average gain 1.5), but showed worse average performance than HTTPS
 when packet loss was 1% (average gain 0.9). This effect was more
 pronounced in the large RTT cases as compared to the small RTT. This
 result points to a weakness in the way that SPDY utilizes TCP. With
 a typical HTTPS download of a web page, the browser will open a large
 number of simultaneous TCP connections. In this case, a random
 packet loss will cause the one affected connection to temporarily
 reduce its congestion window (and hence the effective data rate), but
 the other connections will be unaffected, and in fact may be able to
 opportunistically make use of the bandwidth made available by the

White, et al. Expires January 7, 2013 [Page 23]

Internet-Draft spdy-analysis July 2012

 affected connection. The result for HTTPS is that random packet loss
 has only a minor impact on page download time. In the case of SPDY,
 the number of parallel TCP connections is dramatically reduced (by as
 much as a factor of six), so that random packet loss has a much
 bigger impact on the overall throughput.

 In the absence of packet loss, SPDY provides better gains as the RTT
 increases. This is the result of reducing the number of round trips
 needed to fetch all of the page resources. Nonetheless, there were
 test cases with 0 packet loss where SPDY performed worse than HTTPS.
 This only occurred with Page C; SPDY always provided a benefit for
 Pages A and B when there was no packet loss. The root cause of the
 degradation is unknown, but it may be the result of the buffering
 configuration of the network simulator Dummynet. As stated
 previously, testing was performed with the default configuration of
 50 packet buffers. This configuration is not reflective of real
 networks (which in some cases may have more than double that amount
 of buffering), and could bias the results somewhat against
 applications (such as SPDY) that use a small number of TCP sessions.

 Additionally, SPDY generally shows more gain in the lower Data Rate
 cases.

 The overall average gain of 1.2 seen in our experiments aligns well
 with the performance gains that Google is seeing in their live
 deployments. In results presented in a December 8, 2011, Google
 TechTalk [TECHTALK], they report a 15.4% improvement in page load
 time (equivalent to a gain of 1.18).

5.4.2. CASE 2: initcwnd=10 vs. initcwnd=3

 The initcwnd increase provides very modest gain across the majority
 of test cases. In a few cases there was a marginal degradation of
 performance compared to the default initcwnd case. Across all test
 conditions an average gain of 1.1 (or 9% reduction in page load time)
 was seen, as indicated in Table 7 and Table 8.

White, et al. Expires January 7, 2013 [Page 24]

Internet-Draft spdy-analysis July 2012

 Table 7. Website Impact on Initcwnd Gain

 +-------------+-------------+-------------+-------------+
 | 1 server | 2 servers | 4 servers | average |
 ---------+-------------+-------------+-------------+-------------+
 | 1.1 | 1.1 | 1.1 | 1.1 |
 Page A | 1.0 | 1.0 | 1.0 | 1.0 |
 | 0.9 | 1.0 | 0.9 | 0.9 |
 ---------+-------------+-------------+-------------+-------------+
 | 1.1 | 1.3 | 1.2 | 1.3 |
 Page B | 1.0 | 1.1 | 1.0 | 1.0 |
 | 1.0 | 1.0 | 0.9 | 0.9 |
 ---------+-------------+-------------+-------------+-------------+
 | 1.2 | 1.3 | 1.5 | 1.5 |
 Page C | 1.1 | 1.1 | 1.2 | 1.1 |
 | 1.0 | 1.0 | 1.0 | 1.0 |
 ---------+-------------+-------------+-------------+-------------+
 | 1.2 | 1.3 | 1.5 | 1.5 |
 average | 1.1 | 1.1 | 1.1 | 1.1 |
 | 0.9 | 1.0 | 0.9 | 0.9 |
 ---------+-------------+-------------+-------------+-------------+

 Overall the Page C test cases showed a slightly higher gain over the
 other two pages. Since Page C involves large files, it isn't
 surprising that the effect is slightly more pronounced than in Page
 A. In Page A, the majority of resources can be delivered in 3 packets
 or less anyway, so the increase in initcwnd doesn't reduce the number
 of round-trips.

 Table 8a. Channel Impact on Initcwnd Gain (0% PLR)

 ---------+-------------+-------------+-------------+
 0% PLR | 20ms | 100ms | average |
 ---------+-------------+-------------+-------------+
 | 1.1 | 1.2 | 1.2 |
 10/1 | 1.0 | 1.1 | 1.0 |
 | 1.0 | 1.0 | 1.0 |
 ---------+-------------+-------------+-------------+
 | 1.1 | 1.1 | 1.1 |
 20/2 | 1.0 | 1.0 | 1.0 |
 | 1.0 | 0.9 | 0.9 |
 ---------+-------------+-------------+-------------+
 | 1.1 | 1.2 | 1.2 |
 average | 1.0 | 1.0 | 1.0 |
 | 1.0 | 0.9 | 0.9 |
 ---------+-------------+-------------+-------------+

White, et al. Expires January 7, 2013 [Page 25]

Internet-Draft spdy-analysis July 2012

 Table 8b. Channel Impact on Initcwnd Gain (1% PLR)

 ---------+-------------+-------------+-------------+
 1% PLR | 20ms | 100ms | average |
 ---------+-------------+-------------+-------------+
 | 1.5 | 1.2 | 1.5 |
 10/1 | 1.1 | 1.1 | 1.1 |
 | 0.9 | 1.0 | 0.9 |
 ---------+-------------+-------------+-------------+
 | 1.4 | 1.3 | 1.4 |
 20/2 | 1.1 | 1.1 | 1.1 |
 | 0.9 | 0.9 | 0.9 |
 ---------+-------------+-------------+-------------+
 | 1.5 | 1.3 | 1.5 |
 average | 1.1 | 1.1 | 1.1 |
 | 0.9 | 0.9 | 0.9 |
 ---------+-------------+-------------+-------------+

 Table 8c. Channel Impact on Initcwnd Gain (all PLR)

 ---------+-------------+-------------+-------------+
 all PLR | 20ms | 100ms | average |
 ---------+-------------+-------------+-------------+
 | 1.5 | 1.2 | 1.5 |
 10/1 | 1.1 | 1.1 | 1.1 |
 | 0.9 | 1.0 | 0.9 |
 ---------+-------------+-------------+-------------+
 | 1.4 | 1.3 | 1.4 |
 20/2 | 1.1 | 1.1 | 1.1 |
 | 0.9 | 0.9 | 0.9 |
 ---------+-------------+-------------+-------------+
 | 1.5 | 1.3 | 1.5 |
 average | 1.1 | 1.1 | 1.1 |
 | 0.9 | 0.9 | 0.9 |
 ---------+-------------+-------------+-------------+

 When viewing the results broken down by channel condition, we don't
 see a significant difference in gain from one channel condition to
 the next. Notably, even in the high RTT cases we don't see much
 change in the gain. This is likely due to the fact that the majority
 of resources had sizes that either fell below the 3 packet default
 initcwnd, or were much larger (e.g., over 210 packets each for the
 images in Page C) so that the initcwnd change might save a single RTT
 for a transfer that took 9 RTTs using the default initcwnd.

White, et al. Expires January 7, 2013 [Page 26]

Internet-Draft spdy-analysis July 2012

5.4.3. CASE 3: SPDY+initcwnd=10 vs. HTTPS+initcwnd=3

 The combination of SPDY and the initcwnd increase resulted in a
 benefit that was more than the product of the two individual gains.
 This is a result of the fact that, due to SPDY, all of the TCP
 sessions involved multiple round-trips, so the acceleration of
 initial data rate provided by the initcwnd increase resulted in
 tangible benefits. In fact, one case (Page A, single server) saw an
 astounding gain of 4.7. By examining the raw data in
 [SPDY-ANALYSIS], it can be seen that this combination reduced the
 median page load time of 8.7 seconds down to 1.9 seconds.
 Unfortunately, this result is not typical, and Page C again
 experienced worse performance when the new protocol options are used.
 The overall average gain seen was 1.4 across all test cases as shown
 in Table 9 and Table 10.

 Table 9. Website Impact on SPDY+Initcwnd Gain

 --------+-------------+-------------+-------------+-------------+
 | 1 server | 2 servers | 4 servers | average |
 --------+-------------+-------------+-------------+-------------+
 | 4.7 | 2.3 | 1.5 | 4.7 |
 Page A | 3.2 | 1.5 | 1.4 | 2.0 |
 | 2.2 | 1.2 | 1.2 | 1.2 |
 --------+-------------+-------------+-------------+-------------+
 | 3.3 | 1.6 | 1.5 | 3.3 |
 Page B | 1.9 | 1.1 | 1.1 | 1.4 |
 | 0.9 | 0.6 | 0.7 | 0.6 |
 --------+-------------+-------------+-------------+-------------+
 | 1.0 | 1.0 | 1.1 | 1.1 |
 Page C | 0.6 | 0.7 | 0.9 | 0.7 |
 | 0.3 | 0.4 | 0.6 | 0.3 |
 --------+-------------+-------------+-------------+-------------+
 | 4.7 | 2.3 | 1.5 | 4.7 |
 average | 1.9 | 1.1 | 1.1 | 1.4 |
 | 0.3 | 0.4 | 0.6 | 0.3 |
 --------+-------------+-------------+-------------+-------------+

White, et al. Expires January 7, 2013 [Page 27]

Internet-Draft spdy-analysis July 2012

 Table 10a. Channel Impact on SPDY+Initcwnd Gain (0% PLR)

 ---------+-------------+-------------+-------------+
 0% PLR | 20ms | 100ms | average |
 ---------+-------------+-------------+-------------+
 | 3.2 | 4.7 | 4.7 |
 10/1 | 1.7 | 1.8 | 1.8 |
 | 1.0 | 0.9 | 0.9 |
 ---------+-------------+-------------+-------------+
 | 3.1 | 3.9 | 3.9 |
 20/2 | 1.6 | 1.7 | 1.6 |
 | 0.7 | 0.7 | 0.7 |
 ---------+-------------+-------------+-------------+
 | 3.2 | 4.7 | 4.7 |
 average | 1.7 | 1.7 | 1.7 |
 | 0.7 | 0.7 | 0.7 |
 ---------+-------------+-------------+-------------+

 Table 10b. Channel Impact on SPDY+Initcwnd Gain (1% PLR)

 ---------+-------------+-------------+-------------+
 1% PLR | 20ms | 100ms | average |
 ---------+-------------+-------------+-------------+
 | 3.1 | 2.4 | 3.1 |
 10/1 | 1.2 | 0.9 | 1.1 |
 | 0.4 | 0.3 | 0.3 |
 ---------+-------------+-------------+-------------+
 | 2.8 | 2.2 | 2.8 |
 20/2 | 1.2 | 1.0 | 1.1 |
 | 0.3 | 0.3 | 0.3 |
 ---------+-------------+-------------+-------------+
 | 3.1 | 2.4 | 3.1 |
 average | 1.2 | 1.0 | 1.1 |
 | 0.3 | 0.3 | 0.3 |
 ---------+-------------+-------------+-------------+

White, et al. Expires January 7, 2013 [Page 28]

Internet-Draft spdy-analysis July 2012

 Table 10c. Channel Impact on SPDY+Initcwnd Gain (all PLR)

 ---------+-------------+-------------+-------------+
 all PLR | 20ms | 100ms | average |
 ---------+-------------+-------------+-------------+
 | 3.2 | 4.7 | 4.7 |
 10/1 | 1.5 | 1.4 | 1.4 |
 | 0.4 | 0.3 | 0.3 |
 ---------+-------------+-------------+-------------+
 | 3.1 | 3.9 | 3.9 |
 20/2 | 1.4 | 1.3 | 1.3 |
 | 0.3 | 0.3 | 0.3 |
 ---------+-------------+-------------+-------------+
 | 3.2 | 4.7 | 4.7 |
 average | 1.4 | 1.3 | 1.4 |
 | 0.3 | 0.3 | 0.3 |
 ---------+-------------+-------------+-------------+

 In the packet loss test cases, there was a fairly significant
 performance loss with SPDY, as reported in earlier test cases. This
 is particularly true in the high RTT cases.

5.4.4. Results Summary

 The results are summarized further in Table 11. A caveat on the
 average results presented here is worth noting: the 72 test cases
 were selected to test the protocol changes in a fairly wide range of
 conditions in order to understand the impact that individual factors
 have on the performance gains. As a result, the 72 test cases likely
 do not comprise a statistically accurate sampling of real-world
 sites, and so the average results presented here may not accurately
 reflect the average performance gain that would be seen in the real
 world. However, as noted previously, the average results do appear
 to align well with the average gains seen by Google via their live
 deployments with users utilizing the Chrome browser. In addition, it
 is interesting to examine the average gain achieved in a particular
 subset of the test conditions. For that we select the subset
 consisting of pages A and B operating on a wireline network (PLR=0%).
 For that subset, we see that the combination of SPDY/2 and the
 initcwnd increase achieves an average gain of 2.1 (52% reduction in
 page load time).

White, et al. Expires January 7, 2013 [Page 29]

Internet-Draft spdy-analysis July 2012

 Table 11. Summary of Results

 +--------------+--------------+--------------+
 | Case 1 | Case 2 | Case 3 |
 | SPDY | initcwnd |SPDY+initcwnd |
 +----------------------+--------------+--------------+--------------+
 |Best Gain | 4.1 | 1.5 | 4.7 |
 |(all test conditions) |(A,1,10,100,0)|(C,4,10,20,1) |(A,1,10,100,0)|
 +----------------------+--------------+--------------+--------------+
 |Average Gain | | | |
 |(all test conditions) | 1.2 | 1.1 | 1.4 |
 +----------------------+--------------+--------------+--------------+
 |Worst Gain | 0.3 | 0.9 | 0.3 |
 |(all test conditions) | (C,1,x,x,1) |(A,1,20,100,0)|(C,1,20,100,1)|
 +----------------------+--------------+--------------+--------------+
 |# test cases achieving| 40 of 72 | 58 of 72 | 44 of 72 |
 | gain >= 1 | (56%) | (81%) | (61%) |
 +----------------------+--------------+--------------+--------------+
 |# test cases achieving| 8 of 72 | 0 of 72 | 14 of 72 |
 | gain >= 2 | (11%) | (0%) | (19%) |
 +----------------------+--------------+--------------+--------------+
Average Gain			
(Pages A and B	1.8	1.0	2.1
with PLR=0%)			
 +----------------------+--------------+--------------+--------------+

6. Recommendations and Conclusions

 The results presented here indicate that SPDY/2 in conjunction with
 the TCP Initial Congestion Window increase has the potential to
 improve or impair web page download performance depending on a number
 of factors.

 Deployment of SPDY/2 for general-purpose web servers should be
 considered in light of the following concerns:

 o While the Chrome and Firefox browsers are important (approximately
 29% and 22% market share respectively as of June 2012), client
 support isn't ubiquitous.

 o Some web page downloads were significantly impaired by SPDY.

 o Work is underway on a revision to the protocol, and with
 standardization in the IETF a possibility in the near future,
 waiting may be worthwhile to see what develops in this space.

 On the other hand, for a controlled environment where a single entity

White, et al. Expires January 7, 2013 [Page 30]

Internet-Draft spdy-analysis July 2012

 provides the servers, the client software, and the web content, SPDY
 might be a valuable tool. An example application might be a remote
 user interface (RUI) that is delivered via HTTP to a CPE device.

 In addition to potential uses for SPDY by network operators, another
 area of interest is the impact that SPDY would have on network
 traffic if it were to be widely adopted. In general the story here
 is good, by reducing the number of simultaneous TCP sessions and
 extending the duration of many of the sessions, other applications
 could see improved performance as a result of TCP congestion
 avoidance being invoked far more often. Secondly, the expectation
 would be to see a slight reduction in data usage, due to the greater
 efficiency that SPDY provides (fewer TCP control packets), as well as
 a slight increase in average packet size, due to the multiplexing of
 HTTP responses. Both of these factors will serve to reduce the
 packets per second rate of the network, which improves scalability of
 CMTSs, routers, DPI boxes, etc. Finally, equipment implementing
 Carrier Grade NAT (which will be a key element of the IPv6 transition
 in some networks) could see improved scalability as the number of
 simultaneous TCP connections is reduced.

 In regards to the increase in the TCP Initial Congestion Window,
 while we see only marginal gains resulting from this enhancement, the
 change can be made simply by changing a server operating system
 parameter. It requires no client modifications. As a result, we see
 no reason not to set the server initcwnd at the proposed value of 10.

7. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

8. Security Considerations

 See [I-D.mbelshe-httpbis-spdy] and [I-D.ietf-tcpm-initcwnd] for
 Security Considerations.

9. Acknowledgements

 The authors would like to thank Marc Weaver, Darshak Thakore, Eric
 Winkelman, Robin Sam Ku, Scott Maize, and Rob Moon for their
 assistance in developing and configuring the test bed, and collecting
 the data presented in this report. The authors would also like to

White, et al. Expires January 7, 2013 [Page 31]

Internet-Draft spdy-analysis July 2012

 gratefully express their appreciation to Chris Donley, Joan Strosin,
 Ken Barringer and Christie Poland for manuscript preparation
 assistance, and to Mike Belshe and Roberto Peon for their review and
 very insightful comments.

10. References

 [BUFFERCONTROL]
 CableLabs, "Cable Modem Buffer Control", <http://

www.cablelabs.com/specifications/
CM-GL-Buffer-V01-110915.pdf>.

 [CDNPLANET]
 "www.cdnplanet.com", <http://www.cdnplanet.com>.

 [DUMMYNET]
 "Dummynet", <http://info.iet.unipi.it/~luigi/dummynet/>.

 [Faster] Google, "Let's Make the Web Faster",
 <http://code.google.com/speed>.

 [GOOGLE-BENCHMARKS]
 Lloyd , M., "SPDY and Server Push: Analysis and
 Experiments", June 2010,
 <https://docs.google.com/View?id=d446246_0cc6c6dkr>.

 [HTTP_Pipelining]
 Wikipedia, "HTTP Pipelining",
 <http://en.wikipedia.org/wiki/HTTP_pipelining>.

 [I-D.agl-tls-nextprotoneg]
 Langley, A., "Transport Layer Security (TLS) Next Protocol
 Negotiation Extension", draft-agl-tls-nextprotoneg-03
 (work in progress), April 2012.

 [I-D.ietf-tcpm-initcwnd]
 Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP's Initial Window",

draft-ietf-tcpm-initcwnd-03 (work in progress),
 February 2012.

 [I-D.mbelshe-httpbis-spdy]
 Belshe, M. and R. Peon, "SPDY Protocol",

draft-mbelshe-httpbis-spdy-00 (work in progress),
 February 2012.

 [INITCWND-PAPER]

http://www.cablelabs.com/specifications/CM-GL-Buffer-V01-110915.pdf
http://www.cablelabs.com/specifications/CM-GL-Buffer-V01-110915.pdf
http://www.cablelabs.com/specifications/CM-GL-Buffer-V01-110915.pdf
http://www.cdnplanet.com
http://info.iet.unipi.it/~luigi/dummynet/
http://code.google.com/speed
https://docs.google.com/View?id=d446246_0cc6c6dkr
http://en.wikipedia.org/wiki/HTTP_pipelining
https://datatracker.ietf.org/doc/html/draft-agl-tls-nextprotoneg-03
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-initcwnd-03
https://datatracker.ietf.org/doc/html/draft-mbelshe-httpbis-spdy-00

White, et al. Expires January 7, 2013 [Page 32]

Internet-Draft spdy-analysis July 2012

 Dukkipati , N., Refice, T., Cheng, Y., Chu, J., Sutin, N.,
 Agarwal, A., Herbert, T., and A. Jain, "An Argument for
 Increasing TCP's Initial Congestion Window", <http://

code.google.com/speed/articles/tcp_initcwnd_paper.pdf>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC2001] Stevens, W., "TCP Slow Start, Congestion Avoidance, Fast
 Retransmit, and Fast Recovery Algorithms", RFC 2001,
 January 1997.

 [RFC2414] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP's
 Initial Window", RFC 2414, September 1998.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3390] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP's
 Initial Window", RFC 3390, October 2002.

 [SPDY] "SPDY - The Chromium Projects",
 <http://www.chromium.org/spdy>.

 [SPDY-ANALYSIS]
 White, G., "Analysis of Google Spdy and TCP initcwnd",
 May 2012, <http://www.cablelabs.com/downloads/pubs/

Analysis_of_Google_SPDY_TCP.pdf>.

 [TECHTALK]
 "http://www.cnx-software.com/2012/01/27/
 spdy-aims-to-make-the-web-faster-and-replace-http/",
 <http://www.cnx-software.com/2012/01/page/2/ >.

http://code.google.com/speed/articles/tcp_initcwnd_paper.pdf
http://code.google.com/speed/articles/tcp_initcwnd_paper.pdf
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2001
https://datatracker.ietf.org/doc/html/rfc2414
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3390
http://www.chromium.org/spdy
http://www.cablelabs.com/downloads/pubs/Analysis_of_Google_SPDY_TCP.pdf
http://www.cablelabs.com/downloads/pubs/Analysis_of_Google_SPDY_TCP.pdf
http://www.cnx-software.com/2012/01/page/2/

White, et al. Expires January 7, 2013 [Page 33]

Internet-Draft spdy-analysis July 2012

Authors' Addresses

 Greg White
 CableLabs
 858 Coal Creek Circle
 Louisville, CO 80027-9750
 USA

 Email: g.white@cablelabs.com

 Jean-Francois Mule
 CableLabs
 180 Montgomery St
 Suite 2480
 San Francisco, CA 94104-4203
 USA

 Email: jf.mule@cablelabs.com

 Dan Rice
 CableLabs
 858 Coal Creek Circle
 Louisville, CO 80027-9750
 USA

 Email: d.rice@cablelabs.com

White, et al. Expires January 7, 2013 [Page 34]

