
LWIG WG C. Williams
Internet-Draft MCSR Labs
Expires: September 7, 2012 G. Mulligan
 Proto6
 March 6, 2012

On Lightweight and Embedded IP Programming Interfaces
draft-williams-lwig-api-00.txt

Abstract

 This document takes a look at various aspects of Application
 Programming Interfaces (APIs) used in embedded sensors and controller
 applications such as IP Smart Objects and IP based Wireless Sensor
 Networks. These devices may be interconnected via many different
 types of media, including 802.15.4 (lowpans), power line control
 (PLC), RS485, but the common characteristic is that the devices have
 extremely limited code space and memory space for both the stack and
 application. Just as there is no one single API for IP networking
 stacks today (though the "Berkeley sockets" might be considered de-
 facto standard) there is not likely to be a single standard in the
 embedded space, but there can be some common understanding about
 facilities that can and should be provided to the application
 developer.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 7, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Williams & Mulligan Expires September 7, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft LWIG APIs March 2012

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Definition Of Terms . 3
3. Assumptions . 3
4. Applicability Statement . 4
5. API requirements . 4
5.1. Network Parameters . 4
5.2. Sending and Receiving packets 4
5.3. Managing network errors 4

6. To RTOS or not . 4
6.1. Using an RTOS . 4
6.2. Providing libraries . 5

7. Low level programming interfaces 5
7.1. Berkeley Sockets . 5
7.1.1. Network management 6
7.1.2. UDP . 6
7.1.3. TCP . 6

8. High level programming interfaces 6
8.1. Java . 6
8.2. Python . 6
8.3. Proprietary . 6

9. Modem type device interface 6
10. Security Considerations . 7
11. IANA Considerations . 7
12. Acknowledgements . 7
13. References . 7
13.1. Normative References 7
13.2. Informative References 7

 Authors' Addresses . 8

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Williams & Mulligan Expires September 7, 2012 [Page 2]

Internet-Draft LWIG APIs March 2012

1. Introduction

 Just as there is no one single Application Programming Interface
 (API) for IP networking stacks today (though the "Berkeley sockets"
 might be considered a de-facto standard) there is not likely to be a
 single standard in the embedded space, but there can be some common
 understanding about facilities that can and should be provided to the
 application developer. This document takes a look at various aspects
 of APIs used in embedded sensor and controller applications and
 Wireless Sensor Networks, such as IP Smart Objects and Machine to
 Machine (M2M) applications.

 Today in some embedded IP applications the IP stack is implemented in
 a separate external processor that provides a service like a Modem,
 while the application is run in its own processor. This has provided
 workable but more costly solutions by requiring two processors. This
 has the advantage that is separates the application from the network
 stack and offloads the network processing, but for small low-cost
 embedded systems the cost of the second processor can be prohibitive.
 In these cases combining the application and communications
 processors and providing an application environment in the single
 processor will provide a lower cost solution.

2. Definition Of Terms

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [1].

 LowPan Network:
 It is a wireless (usually) or wired network generally
 characterized by having constrained nodes. These constraints may
 be processing, memory or power or any combination

3. Assumptions

 o The 6LowPan host nodes either autoconfigure IPv6 address based on
 the prefix received in the Router Advertisement, or it uses DHCP
 for short address assignment. It can receive multiple Router
 Advertisements and should configure at least one default router as
 its immediate nexthop. It may configure multiple default routers,
 but this is implementation specific. The 6LowPan host nodes
 always send their packets to the default router. If one default
 router becomes unavailable, it chooses the next available default
 router or it may restart the ND process.

Williams & Mulligan Expires September 7, 2012 [Page 3]

Internet-Draft LWIG APIs March 2012

4. Applicability Statement

 This document aims to guide implementers in choosing appropriate
 programming interfaces for use in embedded IP devices, such as IP
 Smart Objects and other highly constrained devices with limited RAM
 or processing power

5. API requirements

5.1. Network Parameters

 Different types of networks will require different types of functions
 to set-up and manage the network interface. In the case of wireless
 networks such a IEEE 802.15.4 it is necessary that functions be
 provided to select the channel and the PANID and possible set or read
 other IEEE 802.15.4 MAC parameters.

5.2. Sending and Receiving packets

 All APIs must provide some mechanism to send and receive IP packets,
 otherwise what is the point of a networking stack. Additionaly they
 may provide higher functions that will compose TCP streams and UDP
 packets.

5.3. Managing network errors

 All stacks must provide some set of functions to pass network erros
 to the application. These errors might include local networking
 errors, such as no IP address set for the interface, no next hop, no
 route to the destination. These errors might also include remote
 network errors such as those received via ICMP.

6. To RTOS or not

 One fundamental question for all embedded stack developers is whether
 they should provide their stack with an RTOS or just a set of library
 functions. There are pros and cons to each.

6.1. Using an RTOS

 Certainly providing and RTOS does offer a more complete solution, but
 it tends to contrain the application developer and may add
 unnecessary overhead (processing, code, memory and power).

 TinyOS and Contiki are two open source RTOS. Each provides
 networking functionality and both now offer support for 6lowpan and

Williams & Mulligan Expires September 7, 2012 [Page 4]

Internet-Draft LWIG APIs March 2012

 IPv6. They both have the supporters and detractors. Some developers
 shy away from TinyOS because they don't want to delve into the world
 of nesC. Some developers have chosen to not use Contiki because of
 the design using "protothreads".

 The advantage that any RTOS provides is that the developer usually
 does not need to deal with many of the basic timings and can
 ostensibly write their application as just that, an application, and
 leave the details to the OS. The disadvantage is that if the
 application requires either some very specifc timing or possibly some
 detailed device or network control (sleeping, interrupts, ...) if
 these are not provided by the RTOS then the application may become
 more complex than otherwise required.

 Additionally, as already mentioned, the RTOS may provide unnecessary
 functionality which could impact code size or memory requirements.
 The RTOS might also require a change in the design of existing
 embedded applications in order to be integrated into this
 environment.

6.2. Providing libraries

 Providing libraries is not a panacea either. While a set of
 libraries offers the most flexibility (other than writing the
 complete stack and application), it does put the burden on the
 programmer to deal with all of the nuances normally taken care of by
 the OS. As such the programmer must have a better understanding of
 the specific of the particular microprocessor.

7. Low level programming interfaces

7.1. Berkeley Sockets

 A number of companies have implemented embedded networking stacks and
 provide an interface to the stack (either an RTOS or set of
 libraries) via a Berkely Socket like set of functions. The major
 advantage is that Berkely Sockets is widely known, understood and
 taught. This can greatly speed up the development of networked
 embedded systems. If the set of library functions it properly
 written the basic network calls should be able to be used just as if
 they were a being written on a Unix or Linux system. In the embedded
 environment it is probably not possible to provide a complete POSIX
 compliant network interface, but a sufficient subset of functions can
 be implemented.

Williams & Mulligan Expires September 7, 2012 [Page 5]

Internet-Draft LWIG APIs March 2012

7.1.1. Network management

 TBD

7.1.2. UDP

 Sending and receiving UDP packets

7.1.3. TCP

 TBD

8. High level programming interfaces

8.1. Java

 The Sun SPOT team built an embedded stack based on the JAVA VM. The
 stack provided a mechanism to write embedded networking code,
 including "mobile code", in Java. All of the implementation of the
 protocols was provided as part of the JVM. The implementation of the
 JVM required a processor with 8MB of flash and 1MB of RAM. This is
 larger than would typically be considered an embedded system.

8.2. Python

 At least one company has developed a python engine for small embedded
 devices. They provide a reduced set of phyton library functions, but
 they do include the ability to send a receive IP packets.

 More information TBC (to be completed)

8.3. Proprietary

 TBC

9. Modem type device interface

 Some providers of embedded communications devices have chosen to
 provide a "closed" external processor that is used to send a receive
 packets, much like a modem of yesteryears. Some companies have gone
 as far as to overload the old AT command set to manage the network
 interface. For example to set the destination address the
 application processor send the string "ATDT ipaddress/port" as though
 it was asking the communications process to dial a phone number.
 Prior to that the application would send other AT commands to define
 various other parameters such as whether to treat the data as

Williams & Mulligan Expires September 7, 2012 [Page 6]

Internet-Draft LWIG APIs March 2012

 datagrams (UDP) or a stream (TCP). In one case this was overloaded
 using ATDT (Dial Tone) for TCP and ATDP (Dial Pulse) for UDP and then
 the application just sends bytes and the outboard processor deals
 with all the details of managing the connection and sending and
 receiving data.

 As already mentioned, while this provides an extremely simple
 interface and insulates the application developer from any details of
 the network, it adds cost to the overall system and may not provide
 an abstraction that allows the system to meet power or timing
 constraints.

10. Security Considerations

 No known security considerations.

11. IANA Considerations

 There are no IANA considerations for this document.

12. Acknowledgements

 The ideas behind this came from discussion with a number of people
 including Eric Gnoske, Colin O'Flynn, Kris Pister, David Ewing and
 folks working in the 6LowPAN WG.

13. References

13.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

13.2. Informative References

 [2] Montenegro, G. and N. Kushalnagar, "Transmission of IPv6 Packets
 over IEEE 802.15.4 networks", RFC 4944, September 2007.

 [3] Kushalnagar, N. and G. Montenegro, "6LoWPAN: Overview,
 Assumptions, Problem Statement and Goals", RFC 4919,
 August 2007.

 [4] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6),
 Specification", RFC 2460, December 1998.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc4919
https://datatracker.ietf.org/doc/html/rfc2460

Williams & Mulligan Expires September 7, 2012 [Page 7]

Internet-Draft LWIG APIs March 2012

 [5] IEEE Computer Society, "IEEE Std. 802.15.4-2003", ,
 October 2003.

Authors' Addresses

 Carl Williams
 MCSR Labs
 USA

 Email: carlw@mcsr-labs.org

 Geoff Mulligan
 Proto6
 USA

 Email: geoff@proto6.com

Williams & Mulligan Expires September 7, 2012 [Page 8]

