datatracker.ietf.org
Sign in
Version 5.6.2.p6, 2014-09-03
Report a bug

Link Management Protocol (LMP) for Dense Wavelength Division Multiplexing (DWDM) Optical Line Systems
RFC 4209

Document type: RFC - Proposed Standard (October 2005; No errata)
Updated by RFC 6898
Document stream: IETF
Last updated: 2013-03-02
Other versions: plain text, pdf, html

IETF State: (None)
Consensus: Unknown
Document shepherd: No shepherd assigned

IESG State: RFC 4209 (Proposed Standard)
Responsible AD: Bert Wijnen
Send notices to: <adrian@olddog.co.uk>, <kireeti@juniper.net>

Network Working Group                                   A. Fredette, Ed.
Request for Comments: 4209                             Hatteras Networks
Category: Standards Track                                   J. Lang, Ed.
                                                              Sonos Inc.
                                                            October 2005

                  Link Management Protocol (LMP) for
   Dense Wavelength Division Multiplexing (DWDM) Optical Line Systems

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2005).

Abstract

   The Link Management Protocol (LMP) is defined to manage traffic
   engineering (TE) links.  In its present form, LMP focuses on peer
   nodes, i.e., nodes that peer in signaling and/or routing.  This
   document proposes extensions to LMP to allow it to be used between a
   peer node and an adjacent optical line system (OLS).  These
   extensions are intended to satisfy the "Optical Link Interface
   Requirements" described in a companion document.

1.  Introduction

   Networks are being developed with routers, switches, optical cross-
   connects (OXCs), dense wavelength division multiplexing (DWDM)
   optical line systems (OLSes), and add-drop multiplexors (ADMs) that
   use a common control plane (e.g., Generalized MPLS (GMPLS)) to
   dynamically provision resources and to provide network survivability
   using protection and restoration techniques.

   The Link Management Protocol (LMP) is being developed as part of the
   GMPLS protocol suite to manage traffic engineering (TE) links
   [RFC4204].  In its present form, LMP focuses on peer nodes, i.e.,
   nodes that peer in signaling and/or routing (e.g., OXC-to-OXC, as
   illustrated in Figure 1).  In this document, extensions to LMP are
   proposed to allow it to be used between a peer node and an adjacent
   optical line system (OLS).  These extensions are intended to satisfy

Fredette & Lang             Standards Track                     [Page 1]
RFC 4209           LMP for DWDM Optical Line Systems        October 2005

   the "Optical Link Interface Requirements" described in [OLI].  It is
   assumed that the reader is familiar with LMP, as defined in
   [RFC4204].

         +------+       +------+       +------+       +------+
         |      | ----- |      |       |      | ----- |      |
         | OXC1 | ----- | OLS1 | ===== | OLS2 | ----- | OXC2 |
         |      | ----- |      |       |      | ----- |      |
         +------+       +------+       +------+       +------+
            ^                                             ^
            |                                             |
            +---------------------LMP---------------------+

                          Figure 1: LMP Model

   Consider two peer nodes (e.g., two OXCs) interconnected by a
   wavelength-multiplexed link, i.e., a DWDM optical link (see Figure 1
   above).  Information about the configuration of this link and its
   current state is known by the two OLSes (OLS1 and OLS2).  Allowing
   them to communicate this information to the corresponding peer nodes
   (OXC1 and OXC2) via LMP can improve network usability by reducing
   required manual configuration and by enhancing fault detection and
   recovery.

   Information about the state of LSPs using the DWDM optical link is
   known by the peer nodes (OXC1 and OXC2), and allowing them to
   communicate this information to the corresponding OLSes (OLS1 and
   OLS2) is useful for alarm management and link monitoring.  Alarm
   management is important because the administrative state of an LSP,
   known to the peer nodes (e.g., via the Admin Status object of GMPLS
   signaling [RFC3471]), can be used to suppress spurious alarm
   reporting from the OLSes.

   The model for extending LMP to OLSes is shown in Figure 2.

         +------+       +------+       +------+       +------+
         |      | ----- |      |       |      | ----- |      |
         | OXC1 | ----- | OLS1 | ===== | OLS2 | ----- | OXC2 |
         |      | ----- |      |       |      | ----- |      |
         +------+       +------+       +------+       +------+
           ^  ^             ^              ^             ^  ^
           |  |             |              |             |  |
           |  +-----LMP-----+              +-----LMP-----+  |
           |                                                |
           +----------------------LMP-----------------------+

[include full document text]