datatracker.ietf.org
Sign in
Version 5.9.0, 2014-12-18
Report a bug

Mobile IPv6 Security Framework Using Transport Layer Security for Communication between the Mobile Node and Home Agent
RFC 6618

Internet Engineering Task Force (IETF)                  J. Korhonen, Ed.
Request for Comments: 6618                        Nokia Siemens Networks
Category: Experimental                                          B. Patil
ISSN: 2070-1721                                                    Nokia
                                                           H. Tschofenig
                                                  Nokia Siemens Networks
                                                          D. Kroeselberg
                                                                 Siemens
                                                                May 2012

     Mobile IPv6 Security Framework Using Transport Layer Security
        for Communication between the Mobile Node and Home Agent

Abstract

   Mobile IPv6 signaling between a Mobile Node (MN) and its Home Agent
   (HA) is secured using IPsec.  The security association (SA) between
   an MN and the HA is established using Internet Key Exchange Protocol
   (IKE) version 1 or 2.  The security model specified for Mobile IPv6,
   which relies on IKE/IPsec, requires interaction between the Mobile
   IPv6 protocol component and the IKE/IPsec module of the IP stack.
   This document proposes an alternate security framework for Mobile
   IPv6 and Dual-Stack Mobile IPv6, which relies on Transport Layer
   Security for establishing keying material and other bootstrapping
   parameters required to protect Mobile IPv6 signaling and data traffic
   between the MN and HA.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for examination, experimental implementation, and
   evaluation.

   This document defines an Experimental Protocol for the Internet
   community.  This document is a product of the Internet Engineering
   Task Force (IETF).  It represents the consensus of the IETF
   community.  It has received public review and has been approved for
   publication by the Internet Engineering Steering Group (IESG).  Not
   all documents approved by the IESG are a candidate for any level of
   Internet Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6618.

Korhonen, et al.              Experimental                      [Page 1]
RFC 6618           TLS-Based MIPv6 Security Framework           May 2012

Copyright Notice

   Copyright (c) 2012 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1. Introduction ....................................................3
   2. Terminology and Abbreviations ...................................4
   3. Background ......................................................5
   4. TLS-Based Security Establishment ................................5
      4.1. Overview ...................................................5
      4.2. Architecture ...............................................7
      4.3. Security Association Management ............................7
      4.4. Bootstrapping of Additional Mobile IPv6 Parameters .........9
      4.5. Protecting Traffic between Mobile Node and Home Agent .....10
   5. MN-to-HAC Communication ........................................10
      5.1. Request-Response Message Framing over TLS-Tunnel ..........10
      5.2. Request-Response Message Content Encoding .................11
      5.3. Request-Response Message Exchange .........................12
      5.4. Home Agent Controller Discovery ...........................13
      5.5. Generic Request-Response Parameters .......................13
           5.5.1. Mobile Node Identifier .............................13
           5.5.2. Authentication Method ..............................13
           5.5.3. Extensible Authentication Protocol Payload .........14
           5.5.4. Status Code ........................................14
           5.5.5. Message Authenticator ..............................14
           5.5.6. Retry After ........................................14
           5.5.7. End of Message Content .............................14
           5.5.8. Random Values ......................................15

[include full document text]