
ABFAB J. Howlett
Internet-Draft Janet
Intended status: Standards Track S. Hartman
Expires: July 14, 2016 Painless Security
 A. Perez-Mendez, Ed.
 University of Murcia
 January 11, 2016

 A RADIUS Attribute, Binding, Profiles, Name Identifier Format, and
 Confirmation Methods for SAML
 draft-ietf-abfab-aaa-saml-14

Abstract

 This document describes the use of the Security Assertion Mark-up
 Language (SAML) with RADIUS in the context of the ABFAB architecture.
 It defines two RADIUS attributes, a SAML binding, a SAML name
 identifier format, two SAML profiles, and two SAML confirmation
 methods. The RADIUS attributes permit encapsulation of SAML
 assertions and protocol messages within RADIUS, allowing SAML
 entities to communicate using the binding. The two profiles describe
 the application of this binding for ABFAB authentication and
 assertion query/request, enabling a Relying Party to request
 authentication of, or assertions for, users or machines (Clients).
 These Clients may be named using a NAI name identifier format.
 Finally, the subject confirmation methods allow requests and queries
 to be issued for a previously authenticated user or machine without
 needing to explicitly identify them as the subject. The use of the
 artifacts defined in this document is not exclusive to ABFAB. They
 can be applied in any AAA scenario, such as the network access
 control.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Howlett, et al. Expires July 14, 2016 [Page 1]

Internet-Draft SAML RADIUS January 2016

 This Internet-Draft will expire on July 14, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 2. Conventions . 5
 3. RADIUS SAML Attributes 5
 3.1. SAML-Assertion attribute 5
 3.2. SAML-Protocol attribute 6
 4. SAML RADIUS Binding . 7
 4.1. Required Information 7
 4.2. Operation . 7
 4.3. Processing of names 9
 4.3.1. AAA names . 9
 4.3.2. SAML names . 9
 4.3.3. Mapping of AAA names in SAML metadata 10
 4.3.4. Example of SAML metadata including AAA names 12
 4.4. Use of XML Signatures 13
 4.5. Metadata Considerations 13
 5. Network Access Identifier Name Identifier Format 13
 6. RADIUS State Confirmation Method Identifiers 13
 7. ABFAB Authentication Profile 14
 7.1. Required Information 14
 7.2. Profile Overview . 14
 7.3. Profile Description 16
 7.3.1. Client Request to Relying Party 16
 7.3.2. Relying Party Issues <samlp:AuthnRequest> to Identity
 Provider . 16
 7.3.3. Identity Provider Identifies Client 17
 7.3.4. Identity Provider Issues <samlp:Response> to Relying
 Party . 17
 7.3.5. Relying Party Grants or Denies Access to Client . . . 17

Howlett, et al. Expires July 14, 2016 [Page 2]

Internet-Draft SAML RADIUS January 2016

 7.4. Use of Authentication Request Protocol 17
 7.4.1. <samlp:AuthnRequest> Usage 18
 7.4.2. <samlp:Response> Message Usage 18
 7.4.3. <samlp:Response> Message Processing Rules 19
 7.4.4. Unsolicited Responses 19
 7.4.5. Use of the SAML RADIUS Binding 19
 7.4.6. Use of XML Signatures 20
 7.4.7. Metadata Considerations 20
 8. ABFAB Assertion Query/Request Profile 20
 8.1. Required Information 20
 8.2. Profile Overview . 20
 8.3. Profile Description 21
 8.3.1. Differences from the SAML V2.0 Assertion
 Query/Request Profile 21
 8.3.2. Use of the SAML RADIUS Binding 22
 8.3.3. Use of XML Signatures 22
 8.3.4. Metadata Considerations 22
 9. Privacy considerations 22
 10. Security Considerations 23
 11. IANA Considerations . 24
 11.1. RADIUS Attributes 24
 11.2. ABFAB Parameters . 24
 11.3. Registration of the ABFAB URN Namespace 25
 12. Acknowledgements . 25
 13. References . 25
 13.1. Normative References 25
 13.2. Informative References 27
 Appendix A. XML Schema . 29
 Authors’ Addresses . 31

1. Introduction

 Within the ABFAB (Application Bridging for Federated Access Beyond
 web) architecture [I-D.ietf-abfab-arch] it is often desirable to
 convey Security Assertion Mark-up Language (SAML) assertions and
 protocol messages.

 SAML typically only considers the use of HTTP-based transports, known
 as bindings [OASIS.saml-bindings-2.0-os], which are primarily
 intended for use with the SAML V2.0 Web Browser Single Sign-On
 Profile [OASIS.saml-profiles-2.0-os]. However the goal of ABFAB is
 to extend the applicability of federated identity beyond the Web to
 other applications by building on the AAA framework. Consequently
 there exists a requirement for SAML to integrate with the AAA
 framework and protocols such as RADIUS [RFC2865] and Diameter
 [RFC6733], in addition to HTTP.

 In summary this document specifies:

Howlett, et al. Expires July 14, 2016 [Page 3]

Internet-Draft SAML RADIUS January 2016

 o Two RADIUS attributes to encapsulate SAML assertions and protocol
 messages respectively.

 o A SAML RADIUS binding that defines how SAML assertions and
 protocol messages can be transported by RADIUS within a SAML
 exchange.

 o A SAML name identifier format in the form of a Network Access
 Identifier.

 o A profile of the SAML Authentication Request Protocol that uses
 the SAML RADIUS binding to effect SAML-based authentication and
 authorization.

 o A profile of the SAML Assertion Query And Request Protocol that
 uses the SAML RADIUS binding to effect the query and request of
 SAML assertions.

 o Two SAML Subject Confirmation Methods for indicating that a user
 or machine client is the subject of an assertion.

 This document adheres to the guidelines stipulated by
 [OASIS.saml-bindings-2.0-os] and [OASIS.saml-profiles-2.0-os] for
 defining new SAML bindings and profiles respectively, and other
 conventions applied formally or otherwise within SAML. In
 particular, this document provides a ’Required Information’ section
 for the binding and profiles that enumerate:

 o A URI that uniquely identifies the protocol binding or profile.

 o Postal or electronic contact information for the author.

 o A reference to previously defined bindings or profiles that the
 new binding updates or obsoletes.

 o In the case of a profile, any SAML confirmation method identifiers
 defined and/or utilized by the profile.

1.1. Terminology

 This document uses terminology from a number of related standards,
 which tend to adopt different terms for similar or identical
 concepts. In general the document uses, when possible, the ABFAB
 term for the entity, as described in [I-D.ietf-abfab-arch]. For
 reference we include this table which maps the different terms into a
 single view.

Howlett, et al. Expires July 14, 2016 [Page 4]

Internet-Draft SAML RADIUS January 2016

 +----------+-----------+------------------+-------------------+
 | Protocol | Client | Relying Party | Identity Provider |
 +----------+-----------+------------------+-------------------+
 | ABFAB | Client | Relying Party | Identity Provider |
 | | | | |
 | SAML | Subject | Service Provider | Identity Provider |
 | | Principal | Requester | Responder |
 | | | Consumer | Issuer |
 | | | | |
 | RADIUS | User | NAS | AS |
 | | | RADIUS client | RADIUS server |
 +----------+-----------+------------------+-------------------+

 Table 1. Terminology

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. RADIUS SAML Attributes

 The RADIUS SAML binding defined in Section 4 of this document uses
 two attributes to convey SAML assertions and protocol messages
 [OASIS.saml-core-2.0-os]. Owing to the typical size of these
 structures, these attributes use the Long Extended Type format
 [RFC6929] to encapsulate their data. RADIUS entities MUST NOT
 include both attributes in the same RADIUS message, as they represent
 exclusive alternatives to convey SAML information.

3.1. SAML-Assertion attribute

 This attribute is used to encode a SAML assertion. The following
 figure represents the format of this attribute.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Extended-Type |M| Reserved |
 +-+
 | Value...
 +-+

 Figure 1: SAML-Assertion format

 Type

Howlett, et al. Expires July 14, 2016 [Page 5]

Internet-Draft SAML RADIUS January 2016

 245 (To be confirmed by IANA)

 Length

 >= 5

 Extended-Type

 TBD1

 M (More)

 As described in [RFC6929].

 Reserved

 As described in [RFC6929].

 Value

 One or more octets encoding a SAML assertion.

3.2. SAML-Protocol attribute

 This attribute is used to encode a SAML protocol message. The
 following figure represents the format of this attribute.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Extended-Type |M| Reserved |
 +-+
 | Value...
 +-+

 Figure 2: SAML-Protocol format

 Type

 245 (To be confirmed by IANA)

 Length

 >= 5

 Extended-Type

 TBD2

Howlett, et al. Expires July 14, 2016 [Page 6]

Internet-Draft SAML RADIUS January 2016

 M (More)

 As described in [RFC6929].

 Reserved

 As described in [RFC6929].

 Value

 One or more octets encoding a SAML protocol message.

4. SAML RADIUS Binding

 The SAML RADIUS binding defines how RADIUS [RFC2865] can be used to
 enable a RADIUS client and server to exchange SAML assertions and
 protocol messages.

4.1. Required Information

 Identification: urn:ietf:params:abfab:bindings:radius

 Contact information: iesg@ietf.org

 Updates: None.

4.2. Operation

 In this specification, the Relying Party MUST trust any statement in
 the SAML messages from the IdP in the same way that it trusts
 information contained in RADIUS attributes. These entities MUST
 trust the RADIUS infrastructure to provide integrity of the SAML
 messages.

 Hence, it is REQUIRED that the RADIUS exchange is protected using TLS
 encryption for RADIUS [RFC6614] to provide confidentiality and
 integrity protection, unless alternative methods to ensure them are
 used, such as IPSEC tunnels or a sufficiently secure internal
 network.

 Implementations of this profile can take advantage of mechanisms to
 permit the transport of longer SAML messages over RADIUS transports,
 such as the Support of fragmentation of RADIUS packets [RFC7499] or
 Larger Packets for RADIUS over TCP [I-D.ietf-radext-bigger-packets].

 There are two system models for the use of SAML over RADIUS. The
 first is a request-response model, using the RADIUS SAML-Protocol

Howlett, et al. Expires July 14, 2016 [Page 7]

Internet-Draft SAML RADIUS January 2016

 attribute defined in Section 3 to encapsulate the SAML protocol
 messages.

 1. The RADIUS client, acting as a Relying Party (RP), transmits a
 SAML request element within a RADIUS Access-Request message.
 This message MUST include a single instance of the RADIUS User-
 Name attribute whose value MUST conform to the Network Access
 Identifier [RFC7542] scheme. The Relying Party MUST NOT include
 more than one SAML request element.

 2. The RADIUS server, acting as an Identity Provider (IdP), returns
 a SAML protocol message within a RADIUS Access-Accept or Access-
 Reject message. These messages necessarily conclude a RADIUS
 exchange and therefore this is the only opportunity for the
 Identity Provider to send a response in the context of this
 exchange. The Identity Provider MUST NOT include more than one
 SAML response. An IdP that refuses to perform a message exchange
 with the Relying Party can silently discard the SAML request
 (this could subsequently be followed by a RADIUS Access-Reject,
 as the same conditions that cause the IdP to discard the SAML
 request may also cause the RADIUS server to fail to
 authenticate).

 The second system model permits a RADIUS server acting as an Identity
 Provider to use the RADIUS SAML-Assertion attribute defined in
 Section 3 to encapsulate an unsolicited SAML assertion. This
 attribute MUST be included in a RADIUS Access-Accept message. When
 included, the attribute MUST contain a single SAML assertion.

 RADIUS servers MUST NOT include both the SAML-Protocol and the SAML-
 Assertion attribute in the same RADIUS message. If an IdP is
 producing a response to a SAML request, then the first system model
 is used. An IdP MAY ignore a SAML request and send an unsolicited
 assertion using the second system model using the RADIUS SAML-
 Assertion attribute.

 In either system model, Identity Providers SHOULD return a RADIUS
 state attribute as part of the Access-Accept message so that future
 SAML queries or requests can be run against the same context of an
 authentication exchange.

 This binding is intended to be composed with other uses of RADIUS,
 such as network access. Therefore, other arbitrary RADIUS attributes
 MAY be used in either the request or response.

 In the case of a SAML processing error, the RADIUS server MAY include
 a SAML response message with an appropriate value for the
 <samlp:Status> element within the Access-Accept or Access-Reject

Howlett, et al. Expires July 14, 2016 [Page 8]

Internet-Draft SAML RADIUS January 2016

 packet to notify the client. Alternatively, the RADIUS server can
 respond without a SAML-Protocol attribute.

4.3. Processing of names

 SAML entities using profiles making use of this binding will
 typically possess both the SAML and AAA names of their
 correspondents. Frequently these entities will need to apply
 policies using these names; for example, when deciding to release
 attributes. Often these policies will be security-sensitive, and so
 it is important that policy is applied on these names consistently.

4.3.1. AAA names

 These rules relate to the processing of AAA names by SAML entities
 using profiles making use of this binding.

 o Identity Providers SHOULD apply policy based on the Relying
 Party’s identity associated with the RADIUS Access-Request.

 o Relying Parties SHOULD apply policy based on the NAI realm
 associated with the RADIUS Access-Accept.

4.3.2. SAML names

 These rules relate to the processing of SAML names by SAML entities
 using profiles making use of this binding.

 Identity Providers MAY apply policy based on the Relying Party’s SAML
 entityId. In such cases, at least one of the following methods is
 required in order to establish a relation between the SAML name and
 the AAA name of the Relying Party:

 o RADIUS client identity in trusted SAML metadata (as described in
 section Section 4.3.3).

 o RADIUS client identity in trusted digitally signed SAML request.

 A digitally signed SAML request without the RADIUS client identity is
 not sufficient, since a malicious RADIUS entity can observe a SAML
 message and include it in a different RADIUS message without the
 consent of the issuer of that SAML message. If an Identity Provider
 were to process the SAML message without confirming that it applied
 to the RADIUS message, inappropriate policy would be used.

 Relying Parties MAY apply policy based on the SAML issuer’s
 <entityId>. In such cases, at least one of the following methods is

Howlett, et al. Expires July 14, 2016 [Page 9]

Internet-Draft SAML RADIUS January 2016

 required in order to establish a relationship between the SAML name
 and the AAA name of the Identity Provider:

 o RADIUS realm in trusted SAML metadata (as described in section
 Section 4.3.3).

 o RADIUS realm in trusted digitally signed SAML response or
 assertion.

 A digitally signed SAML response alone is not sufficient for the same
 reasons described above for SAML requests.

4.3.3. Mapping of AAA names in SAML metadata

 This section defines extensions to the SAML metadata schema
 [OASIS.saml-metadata-2.0-os] that are required in order to represent
 AAA names associated with a particular <EntityDescriptor> element.

 In SAML metadata, a single entity may act in many different roles in
 the support of multiple profiles. This document defines two new
 roles: RADIUS IDP and RADIUS RP, requiring the declaration of two new
 subtypes of RoleDescriptorType: RADIUSIDPDescriptorType and
 RADIUSRPDescriptorType. These subtypes contain the additional
 elements required to represent AAA names for IDP and RP entities
 respectively.

4.3.3.1. RADIUSIDPDescriptorType

 The RADIUSIDPDescriptorType complex type extends RoleDescriptorType
 with elements common to IdPs that support RADIUS. It contains the
 following additional elements:

 <RADIUSIDPService> [Zero or More] Zero or more elements of type
 EndpointType that describe RADIUS endpoints that are associated
 with the entity.

 <RADIUSRealm> [Zero or More] Zero or more elements of type string
 that represent the acceptable values of the RADIUS realm
 associated with the entity, obtained from the realm part of RADIUS
 User-Name attribute.

 The following schema fragment defines the RADIUSIDPDescriptorType
 complex type:

Howlett, et al. Expires July 14, 2016 [Page 10]

Internet-Draft SAML RADIUS January 2016

 <complexType name="RADIUSIDPDescriptorType">
 <complexContent>
 <extension base="md:RoleDescriptorType">
 <sequence>
 <element ref="abfab:RADIUSIDPService" minOccurs="0" maxOccurs="u
nbounded"/>
 <element ref="abfab:RADIUSRealm" minOccurs="0" maxOccurs="unboun
ded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <element name="RADIUSIDPService" type="md:EndpointType"/>
 <element name="RADIUSRealm" type="string"/>

 Figure 3: RADIUSIDPDescriptorType schema

4.3.3.2. RADIUSRPDescriptorType

 The RADIUSRPDescriptorType complex type extends RoleDescriptorType
 with elements common to RPs that support RADIUS. It contains the
 following additional elements:

 <RADIUSRPService> [Zero or More] Zero or more elements of type
 EndpointType that describe RADIUS endpoints that are associated
 with the entity.

 <RADIUSNasIpAddress> [Zero or More] Zero or more elements of type
 string that represent the acceptable values of the RADIUS NAS-IP-
 Address or NAS-IPv6-Address attributes associated with the entity.

 <RADIUSNasIdentifier> [Zero or More] Zero or more elements of type
 string that represent the acceptable values of the RADIUS NAS-
 Identifier attribute associated with the entity.

 <RADIUSGssEapName> [Zero or More] Zero or more elements of type
 string that represent the acceptable values of the GSS-EAP
 acceptor name associated with the entity. The format for this
 name is described in section 3.1 of [RFC7055], while section 3.4
 describes how that name is decomposed and transported using RADIUS
 attributes.

 The following schema fragment defines the RADIUSRPDescriptorType
 complex type:

Howlett, et al. Expires July 14, 2016 [Page 11]

Internet-Draft SAML RADIUS January 2016

 <complexType name="RADIUSRPDescriptorType">
 <complexContent>
 <extension base="md:RoleDescriptorType">
 <sequence>
 <element ref="md:RADIUSRPService" minOccurs="0" maxOccurs="unbounded
"/>
 <element ref="md:RADIUSNasIpAddress" minOccurs="0" maxOccurs="unboun
ded"/>
 <element ref="md:RADIUSNasIdentifier" minOccurs="0" maxOccurs="unbou
nded"/>
 <element ref="md:RADIUSGssEapName" minOccurs="0" maxOccurs="unbounde
d"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <element name="RADIUSRPService" type="md:EndpointType"/>
 <element name="RADIUSNasIpAddress" type="string"/>
 <element name="RADIUSNasIdentifier" type="string"/>
 <element name="RADIUSGssEapName" type="string"/>

 Figure 4: RADIUSRPDescriptorType schema

4.3.4. Example of SAML metadata including AAA names

 The following figures illustrate an example of metadata including AAA
 names for and IDP and a RP respectively. The IDP’s SAML name is
 "https://IdentityProvider.com/", whereas its RADIUS realm is
 "idp.com". The RP’s SAML name is "https://RelyingParty.com/SAML",
 being its GSS-EAP acceptor name "nfs/fileserver.rp.com@RP.COM".

 <EntityDescriptor xmlns="urn:oasis:names:tc:SAML:2.0:metadata"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:abfab="urn:ietf:params:xml:ns:abfab"
 entityID="https://IdentityProvider.com/SAML">
 <RoleDescriptor xsi:type="abfab:RADIUSIDPDescriptorType"
 protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <RADIUSRealm>idp.com</RADIUSRealm>
 </RoleDescriptor>
 </EntityDescriptor>

 Figure 5: Metadata for the IDP

Howlett, et al. Expires July 14, 2016 [Page 12]

Internet-Draft SAML RADIUS January 2016

 <EntityDescriptor xmlns="urn:oasis:names:tc:SAML:2.0:metadata"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:abfab="urn:ietf:params:xml:ns:abfab"
 entityID="https://RelyingParty.com/SAML">
 <RoleDescriptor xsi:type="abfab:RADIUSRPDescriptorType"
 protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <RADIUSGssEapName>nfs/fileserver.rp.com@RP.COM</RADIUSGssEapName>
 </RoleDescriptor>
 </EntityDescriptor>

 Figure 6: Metadata for the RP

4.4. Use of XML Signatures

 This binding calls for the use of SAML elements that support XML
 signatures. To promote interoperability, implementations of this
 binding MUST support a default configuration that does not require
 the use of XML signatures. Implementations MAY choose to use XML
 signatures.

4.5. Metadata Considerations

 These binding and profiles are mostly intended to be used without
 metadata. In this usage, RADIUS infrastructure is used to provide
 integrity and naming of the SAML messages and assertions. RADIUS
 configuration is used to provide policy, including which attributes
 are accepted from a Relying Party and which attributes are sent by an
 Identity Provider.

 Nevertheless, if metadata is used, the roles describe in section
 Section 4.3.3 MUST be present.

5. Network Access Identifier Name Identifier Format

 URI: urn:ietf:params:abfab:nameid-format:nai

 Indicates that the content of the element is in the form of a Network
 Access Identifier (NAI) using the syntax described by [RFC7542].

6. RADIUS State Confirmation Method Identifiers

 URI: urn:ietf:params:abfab:cm:user

 URI: urn:ietf:params:abfab:cm:machine

 Indicates that the Subject is the system entity (either the user or
 machine) authenticated by a previously transmitted RADIUS Access-

Howlett, et al. Expires July 14, 2016 [Page 13]

Internet-Draft SAML RADIUS January 2016

 Accept message, as identified by the value of that RADIUS message’s
 State attribute.

7. ABFAB Authentication Profile

 In the scenario supported by the ABFAB Authentication Profile, a
 Client controlling a User Agent requests access to a Relying Party.
 The Relying Party uses RADIUS to authenticate the Client. In
 particular, the Relying Party, acting as a RADIUS client, attempts to
 validate the Client’s credentials against a RADIUS server acting as
 the Client’s Identity Provider. If the Identity Provider
 successfully authenticates the Client, it produces an authentication
 assertion which is consumed by the Relying Party. This assertion MAY
 include a name identifier that can be used between the Relying Party
 and the Identity Provider to refer to the Client.

7.1. Required Information

 Identification: urn:ietf:params:abfab:profiles:authentication

 Contact information: iesg@ietf.org

 SAML Confirmation Method Identifiers: The SAML V2.0 "RADIUS State"
 confirmation method identifiers, either urn:ietf:params:abfab:cm:user
 or urn:ietf:params:abfab:cm:machine, are used by this profile.

 Updates: None.

7.2. Profile Overview

 To implement this scenario, this profile of the SAML Authentication
 Request protocol MUST be used in conjunction with the SAML RADIUS
 binding defined in Section 4.

 This profile is based on the SAML V2.0 Web Browser Single Sign-On
 Profile [OASIS.saml-profiles-2.0-os]. There are some important
 differences, specifically:

 Authentication: This profile does not require the use of any
 particular authentication method. The ABFAB architecture does
 require the use of EAP [RFC3579], but this specification may be
 used in other non-ABFAB scenarios.

 Bindings: This profile does not use HTTP-based bindings. Instead
 all SAML protocol messages are transported using the SAML RADIUS
 binding defined in Section 4. This is intended to reduce the
 number of bindings that implementations must support to be
 interoperable.

Howlett, et al. Expires July 14, 2016 [Page 14]

Internet-Draft SAML RADIUS January 2016

 Requests: The profile does not permit the Relying Party to name the
 <saml:Subject> of the <samlp:AuthnRequest>. This is intended to
 simplify implementation and interoperability.

 Responses: The profile only permits the Identity Provider to return
 a single SAML message or assertion that MUST contain exactly one
 authentication statement. Other statements may be included within
 this assertion at the discretion of the Identity Provider. This
 is intended to simplify implementation and interoperability.

 Figure 7 below illustrates the flow of messages within this profile.

 Client Relying Party Identity Provider
 | | |
 | (1) | |
 | - - - - - - - - - > | |
 | | |
 | | (2) |
 | | - - - - - - - - - - - - > |
 | | |
 | (3) | |
 | < - - - - - - - - - |- - - - - - - - - - - - - >|
 | | |
 | | (4) |
 | | < - - - - - - - - - - - - |
 | | |
 | (5) | |
 | < - - - - - - - - - | |
 | | |
 V V V

 The following steps are described by the profile. Within an
 individual step, there may be one or more actual message exchanges.

 Figure 7

 1. Client request to Relying Party (Section 7.3.1): In step 1, the
 Client, via a User Agent, makes a request for a secured resource
 at the Relying Party. The Relying Party determines that no
 security context for the Client exists and initiates the
 authentication process.

 2. Relying Party issues <samlp:AuthnRequest> to Identity Provider
 (Section 7.3.2). In step 2, the Relying Party may optionally
 issue a <samlp:AuthnRequest> message to be delivered to the
 Identity Provider using the SAML-Protocol RADIUS attribute.

Howlett, et al. Expires July 14, 2016 [Page 15]

Internet-Draft SAML RADIUS January 2016

 3. Identity Provider identifies Client (Section 7.3.3). In step 3,
 the Client is authenticated and identified by the Identity
 Provider, while honoring any requirements imposed by the Relying
 Party in the <samlp:AuthnRequest> message if provided.

 4. Identity Provider issues <samlp:Response> to Relying Party
 (Section 7.3.4). In step 4, the Identity Provider issues a
 <samlp:Response> message to the Relying Party using the SAML
 RADIUS binding. The response either indicates an error or
 includes a SAML Authentication Statement in exactly one SAML
 Assertion. If the RP did not send an <samlp:AuthnRequest>, the
 IdP issues an unsolicited <samlp:Assertion>, as described in
 Section 7.4.4.

 5. Relying Party grants or denies access to Client (Section 7.3.5).
 In step 5, having received the response from the Identity
 Provider, the Relying Party can respond to the Client with its
 own error, or can establish its own security context for the
 Client and return the requested resource.

7.3. Profile Description

 The ABFAB Authentication Profile is a profile of the SAML V2.0
 Authentication Request Protocol [OASIS.saml-core-2.0-os]. Where both
 specifications conflict, the ABFAB Authentication Profile takes
 precedence.

7.3.1. Client Request to Relying Party

 The profile is initiated by an arbitrary Client request to the
 Relying Party. There are no restrictions on the form of the request.
 The Relying Party is free to use any means it wishes to associate the
 subsequent interactions with the original request. The Relying
 Party, acting as a RADIUS client, attempts to authenticate the
 Client.

7.3.2. Relying Party Issues <samlp:AuthnRequest> to Identity Provider

 The Relying Party uses RADIUS to communicate with the Client’s
 Identity Provider. The Relying Party MAY include a
 <samlp:AuthnRequest> within this RADIUS Access-Request message using
 the SAML-Protocol RADIUS attribute. The next hop destination MAY be
 the Identity Provider or alternatively an intermediate RADIUS proxy.

 Profile-specific rules for the contents of the <samlp:AuthnRequest>
 element are given in Section 7.4.1.

Howlett, et al. Expires July 14, 2016 [Page 16]

Internet-Draft SAML RADIUS January 2016

7.3.3. Identity Provider Identifies Client

 The Identity Provider MUST establish the identity of the Client using
 a RADIUS authentication method, or else it will return an error. If
 the ForceAuthn attribute on the <samlp:AuthnRequest> element (if sent
 by the Relying Party) is present and true, the Identity Provider MUST
 freshly establish this identity rather than relying on any existing
 session state it may have with the Client (for example, TLS state
 that may be used for session resumption). Otherwise, and in all
 other respects, the Identity Provider may use any method to
 authenticate the Client, subject to the constraints called out in the
 <samlp:AuthnRequest> message.

7.3.4. Identity Provider Issues <samlp:Response> to Relying Party

 The Identity Provider MUST conclude the authentication in a manner
 consistent with the RADIUS authentication result. The IdP MAY issue
 a <samlp:Response> message to the Relying Party that is consistent
 with the authentication result, as described in
 [OASIS.saml-core-2.0-os]. This SAML response is delivered to the
 Relying Party using the SAML RADIUS binding described in Section 4.

 Profile-specific rules regarding the contents of the <samlp:Response>
 element are given in Section 7.4.2.

7.3.5. Relying Party Grants or Denies Access to Client

 If a <samlp:Response> message is issued by the Identity Provider, the
 Relying Party MUST process that message and any enclosed assertion
 elements as described in [OASIS.saml-core-2.0-os]. Any subsequent
 use of the assertion elements is at the discretion of the Relying
 Party, subject to any restrictions contained within the assertions
 themselves or from any previously established out-of-band policy that
 governs the interaction between the Identity Provider and the Relying
 Party.

7.4. Use of Authentication Request Protocol

 This profile is based on the Authentication Request Protocol defined
 in [OASIS.saml-core-2.0-os]. In the nomenclature of actors
 enumerated in section 3.4 of that document, the Relying Party is the
 requester, the User Agent is the attesting entity and the Client is
 the Requested Subject.

Howlett, et al. Expires July 14, 2016 [Page 17]

Internet-Draft SAML RADIUS January 2016

7.4.1. <samlp:AuthnRequest> Usage

 The Relying Party MUST NOT include a <saml:Subject> element in the
 request. The authenticated RADIUS identity identifies the Client to
 the Identity Provider.

 A Relying Party MAY include any message content described in
 [OASIS.saml-core-2.0-os], section 3.4.1. All processing rules are as
 defined in [OASIS.saml-core-2.0-os].

 If the Relying Party wishes to permit the Identity Provider to
 establish a new identifier for the Client if none exists, it MUST
 include a <saml:NameIDPolicy> element with the AllowCreate attribute
 set to "true". Otherwise, only a Client for whom the Identity
 Provider has previously established an identifier usable by the
 Relying Party can be authenticated successfully.

 The <samlp:AuthnRequest> message MAY be signed. Authentication and
 integrity are also provided by the SAML RADIUS binding.

7.4.2. <samlp:Response> Message Usage

 If the Identity Provider cannot or will not satisfy the request, it
 MUST either respond with a <samlp:Response> message containing an
 appropriate error status code or codes and/or respond with a RADIUS
 Access-Reject message.

 If the Identity Provider wishes to return an error, it MUST NOT
 include any assertions in the <samlp:Response> message. Otherwise,
 if the request is successful (or if the response is not associated
 with a request), the <samlp:Response> element is subject to the
 following constraints:

 o It MAY be signed.

 o It MUST contain exactly one assertion. The <saml:Subject> element
 of this assertion MUST refer to the authenticated RADIUS user.

 o The assertion MUST contain a <saml:AuthnStatement>. Besides, the
 assertion MUST contain a <saml:Subject> element with at least one
 <saml:SubjectConfirmation> element containing a Method of
 urn:ietf:params:abfab:cm:user or urn:ietf:params:abfab:cm:machine
 that reflects the authentication of the Client to the Identity
 Provider. Since the containing message is in response to an
 <samlp:AuthnRequest>, the InResponseTo attribute (both in the
 <saml:SubjectConfirmationData> and in the <saml:Response>
 elements) MUST match the request’s ID. The <saml:Subject> element

Howlett, et al. Expires July 14, 2016 [Page 18]

Internet-Draft SAML RADIUS January 2016

 MAY use the NAI Name Identifier Format described in Section 5 to
 establish an identifier between the Relying Party and the IdP.

 o Other conditions MAY be included as requested by the Relying Party
 or at the discretion of the Identity Provider. The Identity
 Provider is NOT obligated to honor the requested set of conditions
 in the <samlp:AuthnRequest>, if any.

7.4.3. <samlp:Response> Message Processing Rules

 The Relying Party MUST do the following:

 o Assume that the Client’s identifier implied by a SAML <Subject>
 element, if present, takes precedence over an identifier implied
 by the RADIUS User-Name attribute.

 o Verify that the InResponseTo attribute in the "RADIUS State"
 <saml:SubjectConfirmationData> equals the ID of its original
 <samlp:AuthnRequest> message, unless the response is unsolicited,
 in which case the attribute MUST NOT be present.

 o If a <saml:AuthnStatement> used to establish a security context
 for the Client contains a SessionNotOnOrAfter attribute, the
 security context SHOULD be discarded once this time is reached,
 unless the Relying Party reestablishes the Client’s identity by
 repeating the use of this profile.

 o Verify that any assertions relied upon are valid according to
 processing rules in [OASIS.saml-core-2.0-os].

 o Any assertion which is not valid, or whose subject confirmation
 requirements cannot be met MUST be discarded and MUST NOT be used
 to establish a security context for the Client.

7.4.4. Unsolicited Responses

 An Identity Provider MAY initiate this profile by delivering an
 unsolicited assertion to a Relying Party. This MUST NOT contain any
 <saml:SubjectConfirmationData> elements containing an InResponseTo
 attribute.

7.4.5. Use of the SAML RADIUS Binding

 It is RECOMMENDED that the RADIUS exchange is protected using TLS
 encryption for RADIUS [RFC6614] to provide confidentiality and
 integrity protection.

Howlett, et al. Expires July 14, 2016 [Page 19]

Internet-Draft SAML RADIUS January 2016

7.4.6. Use of XML Signatures

 This profile calls for the use of SAML elements that support XML
 signatures. To promote interoperability implementations of this
 profile MUST NOT require the use of XML signatures. Implementations
 MAY choose to use XML signatures.

7.4.7. Metadata Considerations

 There are no metadata considerations particular to this profile,
 aside from those applying to the use of the RADIUS binding.

8. ABFAB Assertion Query/Request Profile

 This profile builds on the SAML V2.0 Assertion Query/Request Profile
 defined by [OASIS.saml-profiles-2.0-os]. That profile describes the
 use of the Assertion Query and Request Protocol defined by section
 3.3 of [OASIS.saml-core-2.0-os] with synchronous bindings, such as
 the SOAP binding defined in [OASIS.saml-bindings-2.0-os].

 While the SAML V2.0 Assertion Query/Request Profile is independent of
 the underlying binding, it is nonetheless useful to describe the use
 of the SAML RADIUS binding defined in Section 4 of this document, in
 the interests of promoting interoperable implementations,
 particularly as the SAML V2.0 Assertion Query/Request Profile is most
 frequently discussed and implemented in the context of the SOAP
 binding.

8.1. Required Information

 Identification: urn:ietf:params:abfab:profiles:query

 Contact information: iesg@ietf.org

 Description: Given below.

 Updates: None.

8.2. Profile Overview

 As with the SAML V2.0 Assertion Query/Request Profile defined by
 [OASIS.saml-profiles-2.0-os] the message exchange and basic
 processing rules that govern this profile are largely defined by
 Section 3.3 of [OASIS.saml-core-2.0-os] that defines the messages to
 be exchanged, in combination with the binding used to exchange the
 messages. The SAML RADIUS binding described in this document defines
 the binding of the message exchange to RADIUS. Unless specifically
 noted here, all requirements defined in those specifications apply.

Howlett, et al. Expires July 14, 2016 [Page 20]

Internet-Draft SAML RADIUS January 2016

 Figure 8 below illustrates the basic template for the query/request
 profile.

 Relying Party Identity Provider
 (SAML requester) (SAML responder)
 | |
 | (1) |
 | - > |
 | |
 | (2) |
 | < - |
 | |
 V V

 The following steps are described by the profile.

 Figure 8

 1. Query/Request issued by Relying Party: In step 1, a Relying Party
 initiates the profile by sending an <AssertionIDRequest>,
 <SubjectQuery>, <AuthnQuery>, <AttributeQuery>, or
 <AuthzDecisionQuery> message to a SAML authority.

 2. <Response> issued by SAML Authority: In step 2, the responding
 SAML authority (after processing the query or request) issues a
 <Response> message to the Relying Party.

8.3. Profile Description

8.3.1. Differences from the SAML V2.0 Assertion Query/Request Profile

 This profile is identical to the SAML V2.0 Assertion Query/Request
 Profile, with the following exceptions:

 o When processing the SAML request, the IdP MUST give precedence to
 the Client’s identifier implied by RADIUS State attribute, if
 present, over the identifier implied by the SAML request’s
 <Subject>, if any.

 o In respect to sections 6.3.1 and 6.5 of
 [OASIS.saml-profiles-2.0-os], this profile does not consider the
 use of metadata (as in [OASIS.saml-metadata-2.0-os]). See
 Section 8.3.4.

 o In respect to sections 6.3.2, 6.4.1, and 6.4.2 of
 [OASIS.saml-profiles-2.0-os], this profile additionally stipulates
 that implementations of this profile MUST NOT require the use of
 XML signatures. See Section 8.3.3.

Howlett, et al. Expires July 14, 2016 [Page 21]

Internet-Draft SAML RADIUS January 2016

8.3.2. Use of the SAML RADIUS Binding

 The RADIUS Access-Request sent by the Relying Party:

 o MUST include an instance of the RADIUS Service-Type attribute,
 having a value of Authorize-Only.

 o SHOULD include the RADIUS State attribute, where this Query/
 Request pertains to previously authenticated Client.

 When processing the SAML request, the IdP MUST give precedence to the
 Client’s identifier implied by RADIUS State attribute over the
 identifier implied by the SAML request’s <Subject>, if any.

 It is RECOMMENDED that the RADIUS exchange is protected using TLS
 encryption for RADIUS [RFC6614] to provide confidentiality and
 integrity protection.

8.3.3. Use of XML Signatures

 This profile calls for the use of SAML elements that support XML
 signatures. To promote interoperability implementations of this
 profile MUST NOT require the use of XML signatures. Implementations
 MAY choose to use XML signatures.

8.3.4. Metadata Considerations

 There are no metadata considerations particular to this profile,
 aside from those applying to the use of the RADIUS binding.

9. Privacy considerations

 The profiles defined in this document allow a Relying Party to
 request specific information about the Client, and allow an IdP to
 disclose information about that Client. In this sense, Identity
 Providers MUST apply policy to decide what information is released to
 a particular Relying Party. Moreover, the identity of the Client is
 typically hidden from the Relying Party unless informed by the
 Identity Provider. Conversely, the Relying Party does typically know
 the realm of the IdP, as it is required to route the RADIUS packets
 to the right destination.

 The kind of information that is released by the IdP can include
 generic attributes such as affiliation shared by many Clients. But
 even these generic attributes can help to identify a specific Client.
 Other kinds of attributes may also provide a Relying Party with the
 ability to link the same Client between different sessions. Finally,
 other kind of attributes might provide a group of Relying Parties

Howlett, et al. Expires July 14, 2016 [Page 22]

Internet-Draft SAML RADIUS January 2016

 with the ability to link the Client between them or with personally
 identifiable information about the Client.

 These profiles do not directly provide a Client with a mechanism to
 express preferences about what information is released. That
 information can be expressed out-of-band, for example as part of the
 enrollment process.

 The Relying Party may disclose privacy-sensitive information about
 itself as part of the request, although this is unlikely in typical
 deployments.

 If RADIUS proxies are used and encryption is not used, the attributes
 disclosed by the IdP are visible to the proxies. This is a
 significant privacy exposure in some deployments. Ongoing work is
 exploring mechanisms for creating TLS connections directly between
 the RADIUS client and the RADIUS server to reduce this exposure. If
 proxies are used, the impact of exposing SAML assertions to the
 proxies needs to be carefully considered.

 The use of TLS to provide confidentiality for the RADIUS exchange is
 strongly encouraged. Without this, passive eavesdroppers can observe
 the assertions.

10. Security Considerations

 In this specification, the Relying Party MUST trust any statement in
 the SAML messages from the IdP in the same way that it trusts
 information contained in RADIUS attributes. These entities MUST
 trust the RADIUS infrastructure to provide integrity of the SAML
 messages.

 Furthermore, the Relying Party MUST apply policy and filter the
 information based on what information the IdP is permitted to assert
 and on what trust is reasonable to place in proxies between them.

 XML signatures and encryption are provided as an OPTIONAL mechanism
 for end-to-end security. These mechanism can protect SAML messages
 from being modified by proxies in the RADIUS infrastructure. These
 mechanisms are not mandatory-to-implement. It is believed that
 ongoing work to provide direct TLS connections between a RADIUS
 client and RADIUS server will provide similar assurances but better
 deployability. XML security is appropriate for deployments where
 end-to-end security is required but proxies cannot be removed or
 where SAML messages need to be verified at a later time or by parties
 not involved in the authentication exchange.

Howlett, et al. Expires July 14, 2016 [Page 23]

Internet-Draft SAML RADIUS January 2016

11. IANA Considerations

11.1. RADIUS Attributes

 The authors request that Attribute Types and Attribute Values defined
 in this document be registered by the Internet Assigned Numbers
 Authority (IANA) from the RADIUS namespaces as described in the "IANA
 Considerations" section of [RFC3575], in accordance with BCP 26
 [RFC5226]. For RADIUS packets, attributes and registries created by
 this document IANA is requested to place them at
 http://www.iana.org/assignments/radius-types.

 In particular, this document defines two new RADIUS attributes,
 entitled "SAML-Assertion" and "SAML-Protocol" (see Section 3), with
 assigned values of 245.TBD1 and 245.TBD2 from the Long Extended Space
 of [RFC6929]:

 Type Ext. Type Name Length Meaning
 ---- --------- -------------- ------ ------------------------
 245 TBD1 SAML-Assertion >=5 Encodes a SAML assertion
 245 TBD2 SAML-Protocol >=5 Encodes a SAML protocol
 message

11.2. ABFAB Parameters

 A new top-level registry is created titled "ABFAB Parameters".

 In this top-level registry, a sub-registry titled "ABFAB URN
 Parameters" is created. Registration in this registry is by the IETF
 review or expert review procedures [RFC5226].

 This paragraph gives guidance to designated experts. Registrations
 in this registry are generally only expected as part of protocols
 published as RFCs on the IETF stream; other URIs are expected to be
 better choices for non-IETF work. Expert review is permitted mainly
 to allow early registration related to specifications under
 development when the community believes they have reached sufficient
 maturity. The expert SHOULD evaluate the maturity and stability of
 such an IETF-stream specification. Experts SHOULD review anything
 not from the IETF stream for consistency and consensus with current
 practice. Today such requests would not typically be approved.

 If a parameter named "paramname" is to be registered in this
 registry, then its URN will be "urn:ietf:params:abfab:paramname".
 The initial registrations are as follows:

Howlett, et al. Expires July 14, 2016 [Page 24]

Internet-Draft SAML RADIUS January 2016

 +-------------------------+-----------+
 | Parameter | Reference |
 +-------------------------+-----------+
 | bindings:radius | Section 4 |
 | nameid-format:nai | Section 5 |
 | profiles:authentication | Section 7 |
 | profiles:query | Section 8 |
 | cm:user | Section 6 |
 | cm:machine | Section 6 |
 +-------------------------+-----------+

 ABFAB Parameters

11.3. Registration of the ABFAB URN Namespace

 IANA is requested to register the "abfab" URN sub-namespace in the
 IETF URN sub-namespace for protocol parameters defined in [RFC3553].

 Registry Name: abfab

 Specification: draft-ietf-abfab-aaa-saml

 Repository: ABFAB URN Parameters (Section Section 11.2)

 Index Value: Sub-parameters MUST be specified in UTF-8 using standard
 URI encoding where necessary.

12. Acknowledgements

 The authors would like to acknowledge the OASIS Security Services
 (SAML) Technical Committee, and Scott Cantor in particular, for their
 help with the SAML-related material.

 The authors would also like to acknowledge the collaboration of Jim
 Schaad, Leif Johansson, Klaas Wierenga, Stephen Farell, Gabriel
 Lopez, and Rafael Marin, who have provided valuable comments on this
 document.

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

Howlett, et al. Expires July 14, 2016 [Page 25]

Internet-Draft SAML RADIUS January 2016

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <http://www.rfc-editor.org/info/rfc2865>.

 [RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579,
 DOI 10.17487/RFC3579, September 2003,
 <http://www.rfc-editor.org/info/rfc3579>.

 [RFC6614] Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
 "Transport Layer Security (TLS) Encryption for RADIUS",
 RFC 6614, DOI 10.17487/RFC6614, May 2012,
 <http://www.rfc-editor.org/info/rfc6614>.

 [RFC6929] DeKok, A. and A. Lior, "Remote Authentication Dial In User
 Service (RADIUS) Protocol Extensions", RFC 6929,
 DOI 10.17487/RFC6929, April 2013,
 <http://www.rfc-editor.org/info/rfc6929>.

 [RFC3575] Aboba, B., "IANA Considerations for RADIUS (Remote
 Authentication Dial In User Service)", RFC 3575,
 DOI 10.17487/RFC3575, July 2003,
 <http://www.rfc-editor.org/info/rfc3575>.

 [RFC7542] DeKok, A., "The Network Access Identifier", RFC 7542,
 DOI 10.17487/RFC7542, May 2015,
 <http://www.rfc-editor.org/info/rfc7542>.

 [OASIS.saml-bindings-2.0-os]
 Cantor, S., Hirsch, F., Kemp, J., Philpott, R., and E.
 Maler, "Bindings for the OASIS Security Assertion Markup
 Language (SAML) V2.0", OASIS Standard saml-bindings-
 2.0-os, March 2005.

 [OASIS.saml-core-2.0-os]
 Cantor, S., Kemp, J., Philpott, R., and E. Maler,
 "Assertions and Protocol for the OASIS Security Assertion
 Markup Language (SAML) V2.0", OASIS Standard saml-core-
 2.0-os, March 2005.

 [OASIS.saml-profiles-2.0-os]
 Hughes, J., Cantor, S., Hodges, J., Hirsch, F., Mishra,
 P., Philpott, R., and E. Maler, "Profiles for the OASIS
 Security Assertion Markup Language (SAML) V2.0", OASIS
 Standard OASIS.saml-profiles-2.0-os, March 2005.

Howlett, et al. Expires July 14, 2016 [Page 26]

Internet-Draft SAML RADIUS January 2016

 [OASIS.saml-metadata-2.0-os]
 Cantor, S., Moreh, J., Philpott, R., and E. Maler,
 "Metadata for the Security Assertion Markup Language
 (SAML) V2.0", OASIS Standard saml-metadata-2.0-os, March
 2005.

13.2. Informative References

 [RFC3553] Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
 IETF URN Sub-namespace for Registered Protocol
 Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553, June
 2003, <http://www.rfc-editor.org/info/rfc3553>.

 [RFC6733] Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <http://www.rfc-editor.org/info/rfc6733>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC7055] Hartman, S., Ed. and J. Howlett, "A GSS-API Mechanism for
 the Extensible Authentication Protocol", RFC 7055,
 DOI 10.17487/RFC7055, December 2013,
 <http://www.rfc-editor.org/info/rfc7055>.

 [RFC7499] Perez-Mendez, A., Ed., Marin-Lopez, R., Pereniguez-Garcia,
 F., Lopez-Millan, G., Lopez, D., and A. DeKok, "Support of
 Fragmentation of RADIUS Packets", RFC 7499,
 DOI 10.17487/RFC7499, April 2015,
 <http://www.rfc-editor.org/info/rfc7499>.

 [I-D.ietf-abfab-arch]
 Howlett, J., Hartman, S., Tschofenig, H., Lear, E., and J.
 Schaad, "Application Bridging for Federated Access Beyond
 Web (ABFAB) Architecture", draft-ietf-abfab-arch-13 (work
 in progress), July 2014.

 [I-D.ietf-radext-bigger-packets]
 Hartman, S., "Larger Packets for RADIUS over TCP", draft-
 ietf-radext-bigger-packets-05 (work in progress), December
 2015.

Howlett, et al. Expires July 14, 2016 [Page 27]

Internet-Draft SAML RADIUS January 2016

 [W3C.REC-xmlschema-1]
 Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn,
 "XML Schema Part 1: Structures", W3C REC-xmlschema-1, May
 2001, <http://www.w3.org/TR/xmlschema-1/>.

Howlett, et al. Expires July 14, 2016 [Page 28]

Internet-Draft SAML RADIUS January 2016

Appendix A. XML Schema

 The following schema formally defines the
 "urn:ietf:params:xml:ns:abfab" namespace used in this document, in
 conformance with [W3C.REC-xmlschema-1] While XML validation is
 optional, the schema that follows is the normative definition of the
 constructs it defines. Where the schema differs from any prose in
 this specification, the schema takes precedence.

Howlett, et al. Expires July 14, 2016 [Page 29]

Internet-Draft SAML RADIUS January 2016

 <schema
 targetNamespace="urn:ietf:params:xml:ns:abfab"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata"
 xmlns:abfab="urn:ietf:params:xml:ns:abfab"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified"
 blockDefault="substitution"
 version="1.0">

 <import namespace="urn:oasis:names:tc:SAML:2.0:metadata"/>

 <complexType name="RADIUSIDPDescriptorType">
 <complexContent>
 <extension base="md:RoleDescriptorType">
 <sequence>
 <element ref="abfab:RADIUSIDPService" minOccurs="0" maxOccurs=
"unbounded"/>
 <element ref="abfab:RADIUSRealm" minOccurs="0" maxOccurs="unbo
unded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <element name="RADIUSIDPService" type="md:EndpointType"/>
 <element name="RADIUSRealm" type="string"/>

 <complexType name="RADIUSRPDescriptorType">
 <complexContent>
 <extension base="md:RoleDescriptorType">
 <sequence>
 <element ref="md:RADIUSRPService" minOccurs="0" maxOccurs="unb
ounded"/>
 <element ref="md:RADIUSNasIpAddress" minOccurs="0" maxOccurs="
unbounded"/>
 <element ref="md:RADIUSNasIdentifier" minOccurs="0" maxOccurs=
"unbounded"/>
 <element ref="md:RADIUSGssEapName" minOccurs="0" maxOccurs="un
bounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <element name="RADIUSRPService" type="md:EndpointType"/>
 <element name="RADIUSNasIpAddress" type="string"/>
 <element name="RADIUSNasIdentifier" type="string"/>
 <element name="RADIUSGssEapName" type="string"/>

 </schema>

Howlett, et al. Expires July 14, 2016 [Page 30]

Internet-Draft SAML RADIUS January 2016

Authors’ Addresses

 Josh Howlett
 Janet
 Lumen House, Library Avenue, Harwell
 Oxford OX11 0SG
 UK

 Phone: +44 1235 822363
 EMail: Josh.Howlett@ja.net

 Sam Hartman
 Painless Security

 EMail: hartmans-ietf@mit.edu

 Alejandro Perez-Mendez (editor)
 University of Murcia
 Campus de Espinardo S/N, Faculty of Computer Science
 Murcia 30100
 Spain

 Phone: +34 868 88 46 44
 EMail: alex@um.es

Howlett, et al. Expires July 14, 2016 [Page 31]

ABFAB J. Howlett
Internet-Draft JANET(UK)
Intended status: Informational S. Hartman
Expires: January 22, 2015 Painless Security
 H. Tschofenig
 ARM Ltd.
 E. Lear
 Cisco Systems GmbH
 J. Schaad
 Soaring Hawk Consulting
 July 21, 2014

 Application Bridging for Federated Access Beyond Web (ABFAB)
 Architecture
 draft-ietf-abfab-arch-13.txt

Abstract

 Over the last decade a substantial amount of work has occurred in the
 space of federated access management. Most of this effort has
 focused on two use cases: network access and web-based access.
 However, the solutions to these use cases that have been proposed and
 deployed tend to have few building blocks in common.

 This memo describes an architecture that makes use of extensions to
 the commonly used security mechanisms for both federated and non-
 federated access management, including the Remote Authentication Dial
 In User Service (RADIUS) the Generic Security Service Application
 Program Interface (GSS-API), the Extensible Authentication Protocol
 (EAP) and the Security Assertion Markup Language (SAML). The
 architecture addresses the problem of federated access management to
 primarily non-web-based services, in a manner that will scale to
 large numbers of identity providers, relying parties, and
 federations.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Howlett, et al. Expires January 22, 2015 [Page 1]

Internet-Draft ABFAB Architecture July 2014

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 22, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 5
 1.1.1. Channel Binding 6
 1.2. An Overview of Federation 7
 1.3. Challenges for Contemporary Federation 10
 1.4. An Overview of ABFAB-based Federation 10
 1.5. Design Goals . 13
 2. Architecture . 14
 2.1. Relying Party to Identity Provider 15
 2.1.1. AAA, RADIUS and Diameter 16
 2.1.2. Discovery and Rules Determination 18
 2.1.3. Routing and Technical Trust 19
 2.1.4. AAA Security . 21
 2.1.5. SAML Assertions 21
 2.2. Client To Identity Provider 23
 2.2.1. Extensible Authentication Protocol (EAP) 23
 2.2.2. EAP Channel Binding 25
 2.3. Client to Relying Party 25
 2.3.1. GSS-API . 26
 2.3.2. Protocol Transport 27
 2.3.3. Reauthentication 28
 3. Application Security Services 28
 3.1. Authentication . 28
 3.2. GSS-API Channel Binding 30
 3.3. Host-Based Service Names 31
 3.4. Additional GSS-API Services 32

Howlett, et al. Expires January 22, 2015 [Page 2]

Internet-Draft ABFAB Architecture July 2014

 4. Privacy Considerations 33
 4.1. Entities and their roles 34
 4.2. Privacy Aspects of ABFAB Communication Flows 35
 4.2.1. Client to RP . 35
 4.2.2. Client to IdP (via Federation Substrate) 36
 4.2.3. IdP to RP (via Federation Substrate) 37
 4.3. Relationship between User and Entities 37
 4.4. Accounting Information 38
 4.5. Collection and retention of data and identifiers 38
 4.6. User Participation 39
 5. Security Considerations 39
 6. IANA Considerations . 40
 7. Acknowledgments . 40
 8. References . 40
 8.1. Normative References 40
 8.2. Informative References 41
 Authors’ Addresses . 43

1. Introduction

 Numerous security mechanisms have been deployed on the Internet to
 manage access to various resources. These mechanisms have been
 generalized and scaled over the last decade through mechanisms such
 as Simple Authentication and Security Layer (SASL) with the Generic
 Security Server Application Program Interface (GSS-API) (known as the
 GS2 family) [RFC5801], Security Assertion Markup Language (SAML)
 [OASIS.saml-core-2.0-os], and the Authentication, Authorization, and
 Accounting (AAA) architecture as embodied in RADIUS [RFC2865] and
 Diameter [RFC6733].

 A Relying Party (RP) is the entity that manages access to some
 resource. The entity that is requesting access to that resource is
 often described as the Client. Many security mechanisms are
 manifested as an exchange of information between these entities. The
 RP is therefore able to decide whether the Client is authorized, or
 not.

 Some security mechanisms allow the RP to delegate aspects of the
 access management decision to an entity called the Identity Provider
 (IdP). This delegation requires technical signaling, trust and a
 common understanding of semantics between the RP and IdP. These
 aspects are generally managed within a relationship known as a
 ’federation’. This style of access management is accordingly
 described as ’federated access management’.

Howlett, et al. Expires January 22, 2015 [Page 3]

Internet-Draft ABFAB Architecture July 2014

 Federated access management has evolved over the last decade through
 specifications like SAML [OASIS.saml-core-2.0-os], OpenID [1], OAuth
 [RFC6749] and WS-Trust [WS-TRUST]. The benefits of federated access
 management include:

 Single or Simplified sign-on:

 An Internet service can delegate access management, and the
 associated responsibilities such as identity management and
 credentialing, to an organization that already has a long-term
 relationship with the Client. This is often attractive as Relying
 Parties frequently do not want these responsibilities. The Client
 also requires fewer credentials, which is also desirable.

 Data Minimization and User Participation:

 Often a Relying Party does not need to know the identity of a
 Client to reach an access management decision. It is frequently
 only necessary for the Relying Party to know specific attributes
 about the client, for example, that the client is affiliated with
 a particular organization or has a certain role or entitlement.
 Sometimes the RP only needs to know a pseudonym of the client.

 Prior to the release of attributes to the RP from the IdP, the IdP
 will check configuration and policy to determine if the attributes
 are to be released. There is currently no direct client
 participation in this decision.

 Provisioning:

 Sometimes a Relying Party needs, or would like, to know more about
 a client than an affiliation or a pseudonym. For example, a
 Relying Party may want the Client’s email address or name. Some
 federated access management technologies provide the ability for
 the IdP to supply this information, either on request by the RP or
 unsolicited.

 This memo describes the Application Bridging for Federated Access
 Beyond the Web (ABFAB) architecture. The architecture addresses the
 problem of federated access management primarily for non-web-based
 services. This architecture makes use of extensions to the commonly
 used security mechanisms for both federated and non-federated access
 management, including RADIUS, the Generic Security Service (GSS), the
 Extensible Authentication Protocol (EAP) and SAML. The architecture
 should be extended to use Diameter in the future. It does so in a
 manner that designed to scale to large numbers of identity providers,
 relying parties, and federations.

Howlett, et al. Expires January 22, 2015 [Page 4]

Internet-Draft ABFAB Architecture July 2014

1.1. Terminology

 This document uses identity management and privacy terminology from
 [RFC6973]. In particular, this document uses the terms identity
 provider, relying party, identifier, pseudonymity, unlinkability, and
 anonymity.

 In this architecture the IdP consists of the following components: an
 EAP server, a RADIUS server, and optionally a SAML Assertion service.

 This document uses the term Network Access Identifier (NAI), as
 defined in [I-D.ietf-radext-nai]. An NAI consists of a realm
 identifier, which is associated with an AAA server and thus an IdP
 and a username which is associated with a specific client of the IdP.

 One of the problems some people have found with reading this document
 is that the terminology sometimes appears to be inconsistent. This
 is due the fact that the terms used by the different standards we are
 referencing are not consistent with each other. In general the
 document uses either the ABFAB term or the term associated with the
 standard under discussion as appropriate. For reference we include
 this table which maps the different terms into a single table.

 +------------+-------------+---------------------+------------------+
 | Protocol | Client | Relying Party | Identity |
 | | | | Provider |
 +------------+-------------+---------------------+------------------+
ABFAB	Client	Relying Party (RP)	Identity
			Provider (IdP)
	Initiator	Acceptor	
		Server	
SAML	Subject	Service Provider	Issuer
GSS-API	Initiator	Acceptor	
EAP	EAP peer	EAP Authenticator	EAP server
AAA		AAA Client	AAA server
RADIUS	user	NAS	RADIUS server
		RADIUS client	
 +------------+-------------+---------------------+------------------+

 Table 1. Terminology

Howlett, et al. Expires January 22, 2015 [Page 5]

Internet-Draft ABFAB Architecture July 2014

 Note that in some cases a cell has been left empty; in these cases
 there is no name that represents the entity.

1.1.1. Channel Binding

 This document uses the term channel binding in two different
 contexts. The term channel binding has a different meaning in each
 of these contexts.

 EAP channel binding is used to implement GSS-API naming semantics.
 EAP channel binding sends a set of attributes from the peer to the
 EAP server either as part of the EAP conversation or as part of a
 secure association protocol. In addition, attributes are sent in the
 backend protocol from the EAP authenticator to the EAP server. The
 EAP server confirms the consistency of these attributes and provides
 the confirmation back to the peer. In this document, channel binding
 without qualification refers to EAP channel binding.

 GSS-API channel binding provides protection against man-in-the-middle
 attacks when GSS-API is used for authentication inside of some
 tunnel; it is similar to a facility called cryptographic binding in
 EAP. The binding works by each side deriving a cryptographic value
 from the tunnel itself and then using that cryptographic value to
 prove to the other side that it knows the value.

 See [RFC5056] for a discussion of the differences between these two
 facilities. However, the difference can be summarized as GSS-API
 channel binding says that there is nobody between the client and the
 EAP authenticator while EAP channel binding allows the client to have
 knowledge about attributes of the EAP authenticator (such as its
 name).

 Typically when considering both EAP and GSS-API channel binding,
 people think of channel binding in combination with mutual
 authentication. This is sufficiently common that without additional
 qualification channel binding should be assumed to imply mutual
 authentication. In GSS-API, without mutual authentication only the
 acceptor has authenticated the initiator. Similarly in EAP, only the
 EAP server has authenticated the peer. That’s sometimes useful.
 Consider for example a user who wishes to access a protected resource
 for a shared whiteboard in a conference room. The whiteboard is the
 acceptor; it knows that the initiator is authorized to give it a
 presentation and the user can validate the whitebord got the correct
 presentation by visual means. (The presention should not be
 confidential in this case.) If channel binding is used without
 mutual authentication, it is effectively a request to disclose the
 resource in the context of a particular channel. Such an
 authentication would be similar in concept to a holder-of-key SAML

Howlett, et al. Expires January 22, 2015 [Page 6]

Internet-Draft ABFAB Architecture July 2014

 assertion. However, also note that while it is not happening in the
 protocol, mutual authentication is happening in the overall system:
 the user is able to visually authenticate the content. This is
 consistent with all uses of channel binding without protocol level
 mutual authentication found so far.

1.2. An Overview of Federation

 In the previous section we introduced the following entities:

 o the Client,

 o the Identity Provider, and

 o the Relying Party.

 The final entity that needs to be introduced is the Individual. An
 Individual is a human being that is using the Client. In any given
 situation, an Individual may or may not exist. Clients can act
 either as front ends for Individuals or they may be independent
 entities that are setup and allowed to run autonomously. An example
 of such an independent entity can be found in the trust routing
 protocol [2] where the routers use ABFAB to authenticate to each
 other.

 These entities and their relationships are illustrated graphically in
 Figure 1.

 ,----------\ ,---------\
 | Identity | Federation | Relying |
 | Provider + <-------------------> + Party |
 ‘----------’ ’---------’
 <
 \
 \ Authentication
 \
 \
 \
 \
 \ +---------+
 \ | | O
 v| Client | \|/ Individual
 | | |
 +---------+ / \

 Figure 1: Entities and their Relationships

Howlett, et al. Expires January 22, 2015 [Page 7]

Internet-Draft ABFAB Architecture July 2014

 The relationships between the entities in Figure 1 are:

 Federation

 The Identity Provider and the Relying Parties are part of a
 Federation. The relationship may be direct (they have an explicit
 trust relationship) or transitive (the trust relationship is
 mediated by one or more entities). The federation relationship is
 governed by a federation agreement. Within a single federation,
 there may be multiple Identity Providers as well as multiple
 Relying Parties.

 Authentication

 There is a direct relationship between the Client and the Identity
 Provider. This relationship provides the means by which they
 trust each other and can securely authenticate each other.

 A federation agreement typically encompasses operational
 specifications and legal rules:

 Operational Specifications:

 The goal of operational specifications is to provide enough
 definition that the system works and interoperability is possible.
 These include the technical specifications (e.g. protocols used to
 communicate between the three parties), process standards,
 policies, identity proofing, credential and authentication
 algorithm requirements, performance requirements, assessment and
 audit criteria, etc.

 Legal Rules:

 The legal rules take the legal framework into consideration and
 provide contractual obligations for each entity. The rules define
 the responsibilities of each party and provide further
 clarification of the operational specifications. These legal
 rules regulate the operational specifications, make operational
 specifications legally binding to the participants, define and
 govern the rights and responsibilities of the participants. The
 legal rules may, for example, describe liability for losses,
 termination rights, enforcement mechanisms, measures of damage,
 dispute resolution, warranties, etc.

 The Operational Specifications can demand the usage of a specific
 technical infrastructure, including requirements on the message
 routing intermediaries, to offer the required technical
 functionality. In other environments, the Operational Specifications

Howlett, et al. Expires January 22, 2015 [Page 8]

Internet-Draft ABFAB Architecture July 2014

 require fewer technical components in order to meet the required
 technical functionality.

 The Legal Rules include many non-technical aspects of federation,
 such as business practices and legal arrangements, which are outside
 the scope of the IETF. The Legal Rules can still have an impact on
 the architectural setup or on how to ensure the dynamic establishment
 of trust.

 While a federation agreement is often discussed within the context of
 formal relationships, such as between an enterprise and an employee
 or a government and a citizen, a federation agreement does not have
 to require any particular level of formality. For an IdP and a
 Client, it is sufficient for a relationship to be established by
 something as simple as using a web form and confirmation email. For
 an IdP and an RP, it is sufficient for the IdP to publish contact
 information along with a public key and for the RP to use that data.
 Within the framework of ABFAB, it will generally be required that a
 mechanism exists for the IdP to be able to trust the identity of the
 RP, if this is not present then the IdP cannot provide the assurances
 to the client that the identity of the RP has been established.

 The nature of federation dictates that there is some form of
 relationship between the identity provider and the relying party.
 This is particularly important when the relying party wants to use
 information obtained from the identity provider for access management
 decisions and when the identity provider does not want to release
 information to every relying party (or only under certain
 conditions).

 While it is possible to have a bilateral agreement between every IdP
 and every RP; on an Internet scale this setup requires the
 introduction of the multi-lateral federation concept, as the
 management of such pair-wise relationships would otherwise prove
 burdensome.

 The IdP will typically have a long-term relationship with the Client.
 This relationship typically involves the IdP positively identifying
 and credentialing the Client (for example, at time of employment
 within an organization). When dealing with individuals, this process
 is called identity proofing [NIST-SP.800-63]. The relationship will
 often be instantiated within an agreement between the IdP and the
 Client (for example, within an employment contract or terms of use
 that stipulates the appropriate use of credentials and so forth).

Howlett, et al. Expires January 22, 2015 [Page 9]

Internet-Draft ABFAB Architecture July 2014

 The nature and quality of the relationship between the Client and the
 IdP is an important contributor to the level of trust that an RP may
 assign to an assertion describing a Client made by an IdP. This is
 sometimes described as the Level of Assurance [NIST-SP.800-63].

 Federation does not require an a priori relationship or a long-term
 relationship between the RP and the Client; it is this property of
 federation that yields many of the federation benefits. However,
 federation does not preclude the possibility of a pre-existing
 relationship between the RP and the Client, nor that they may use the
 introduction to create a new long-term relationship independent of
 the federation.

 Finally, it is important to reiterate that in some scenarios there
 might indeed be an Individual behind the Client and in other cases
 the Client may be autonomous.

1.3. Challenges for Contemporary Federation

 As the number of federated IdPs and RPs (services) proliferats, the
 role of the individual can become ambiguous in certain circumstances.
 For example, a school might provide online access for a student’s
 grades to their parents for review, and to the student’s teacher for
 modification. A teacher who is also a parent must clearly
 distinguish her role upon access.

 Similarly, as the number of federations proliferates, it becomes
 increasingly difficult to discover which identity provider(s) a user
 is associated with. This is true for both the web and non-web case,
 but is particularly acute for the latter as many non-web
 authentication systems are not semantically rich enough on their own
 to allow for such ambiguities. For instance, in the case of an email
 provider, the SMTP and IMAP protocols do not have the ability for the
 server to request information from the client, beyond the clients
 NAI, that the server would then use to decide between the multiple
 federations it is associated with. However, the building blocks do
 exist to add this functionality.

1.4. An Overview of ABFAB-based Federation

 The previous section described the general model of federation, and
 the application of access management within the federation. This
 section provides a brief overview of ABFAB in the context of this
 model.

 In this example, a client is attempting to connect to a server in
 order to either get access to some data or perform some type of
 transaction. In order for the client to mutually authenticate with

Howlett, et al. Expires January 22, 2015 [Page 10]

Internet-Draft ABFAB Architecture July 2014

 the server, the following steps are taken in an ABFAB architecture (a
 graphical view of the steps can be found in figure Figure 2):

 1. Client Configuration: The Client Application is configured with
 an NAI assigned by the IdP. It is also configured with any
 keys, certificates, passwords or other secret and public
 information needed to run the EAP protocols between it and the
 IdP.

 2. Authentication mechanism selection: The Client Application is
 configured to use the GSS-EAP GSS-API mechanism for
 authentication/authorization.

 3. Client provides an NAI to RP: The client application sets up a
 transport to the RP and begins the GSS-EAP authentication. In
 response, the RP sends an EAP request message (nested in the
 GSS-EAP protocol) asking for the Client’s name. The Client
 sends an EAP response with an NAI name form that, at a minimum,
 contains the realm portion of its full NAI.

 4. Discovery of federated IdP: The RP uses pre-configured
 information or a federation proxy to determine what IdP to use
 based on policy and the realm portion of the provided Client
 NAI. This is discussed in detail below (Section 2.1.2).

 5. Request from Relying Party to IdP: Once the RP knows who the IdP
 is, it (or its agent) will send a RADIUS request to the IdP.
 The RADIUS access request encapsulates the EAP response. At
 this stage, the RP will likely have no idea who the client is.
 The RP sends its identity to the IdP in AAA attributes, and it
 may send a SAML Attribute Request in a AAA attribute. The AAA
 network checks that the identity claimed by the RP is valid.

 6. IdP begins EAP with the client: The IdP sends an EAP message to
 the client with an EAP method to be used. The IdP should not
 re-request the clients name in this message, but clients need to
 be able to handle it. In this case the IdP must accept a realm
 only in order to protect the client’s name from the RP. The
 available and appropriate methods are discussed below in this
 memo (Section 2.2.1).

 7. The EAP protocol is run: A bunch of EAP messages are passed
 between the client (EAP peer) and the IdP (EAP server), until
 the result of the authentication protocol is determined. The
 number and content of those messages depends on the EAP method
 selected. If the IdP is unable to authenticate the client, the
 IdP sends an EAP failure message to the RP. As part of the EAP
 protocol, the client sends a channel bindings EAP message to the

Howlett, et al. Expires January 22, 2015 [Page 11]

Internet-Draft ABFAB Architecture July 2014

 IdP (Section 2.2.2). In the channel binding message the client
 identifies, among other things, the RP to which it is attempting
 to authenticate. The IdP checks the channel binding data from
 the client with that provided by the RP via the AAA protocol.
 If the bindings do not match the IdP sends an EAP failure
 message to the RP.

 8. Successful EAP Authentication: At this point, the IdP (EAP
 server) and client (EAP peer) have mutually authenticated each
 other. As a result, the client and the IdP hold two
 cryptographic keys: a Master Session Key (MSK), and an Extended
 MSK (EMSK). At this point the client has a level of assurance
 about the identity of the RP based on the name checking the IdP
 has done using the RP naming information from the AAA framework
 and from the client (by the channel binding data).

 9. Local IdP Policy Check: At this stage, the IdP checks local
 policy to determine whether the RP and client are authorized for
 a given transaction/service, and if so, what if any, attributes
 will be released to the RP. If the IdP gets a policy failure,
 it sends an EAP failure message to the RP and client. (The RP
 will have done its policy checks during the discovery process.)

 10. IdP provides the RP with the MSK: The IdP sends a positive
 result EAP to the RP, along with an optional set of AAA
 attributes associated with the client (usually as one or more
 SAML assertions). In addition, the EAP MSK is returned to the
 RP.

 11. RP Processes Results: When the RP receives the result from the
 IdP, it should have enough information to either grant or refuse
 a resource access request. It may have information that
 associates the client with specific authorization identities.
 If additional attributes are needed from the IdP the RP may make
 a new SAML Request to the IdP. It will apply these results in
 an application-specific way.

 12. RP returns results to client: Once the RP has a response it must
 inform the client application of the result. If all has gone
 well, all are authenticated, and the application proceeds with
 appropriate authorization levels. The client can now complete
 the authentication of the RP by the use of the EAP MSK value.

 Relying Client Identity
 Party App Provider

 | (1) | Client Configuration
 | | |

Howlett, et al. Expires January 22, 2015 [Page 12]

Internet-Draft ABFAB Architecture July 2014

 |<-----(2)----->| | Mechanism Selection
 | | |
 |<-----(3)-----<| | NAI transmitted to RP
 | | |
 |<=====(4)====================>| Discovery
 | | |
 |>=====(5)====================>| Access request from RP to IdP
 | | |
 | |< - - (6) - -<| EAP method to Client
 | | |
 | |< - - (7) - ->| EAP Exchange to authenticate
 | | | Client
 | | |
 | | (8 & 9) Local Policy Check
 | | |
 |<====(10)====================<| IdP Assertion to RP
 | | |
 (11) | | RP processes results
 | | |
 |>----(12)----->| | Results to client app.

 ----- = Between Client App and RP
 ===== = Between RP and IdP
 - - - = Between Client App and IdP (via RP)

 Figure 2: ABFAB Authentication Steps

1.5. Design Goals

 Our key design goals are as follows:

 o Each party in a transaction will be authenticated, although
 perhaps not identified, and the client will be authorized for
 access to a specific resource.

 o Means of authentication is decoupled from the application protocol
 so as to allow for multiple authentication methods with minimal
 changes to the application.

 o The architecture requires no sharing of long term private keys
 between clients and RPs.

 o The system will scale to large numbers of identity providers,
 relying parties, and users.

Howlett, et al. Expires January 22, 2015 [Page 13]

Internet-Draft ABFAB Architecture July 2014

 o The system will be designed primarily for non-Web-based
 authentication.

 o The system will build upon existing standards, components, and
 operational practices.

 Designing new three party authentication and authorization protocols
 is hard and fraught with risk of cryptographic flaws. Achieving
 widespread deployment is even more difficult. A lot of attention on
 federated access has been devoted to the Web. This document instead
 focuses on a non-Web-based environment and focuses on those protocols
 where HTTP is not used. Despite the growing trend to layer every
 protocol on top of HTTP there are still a number of protocols
 available that do not use HTTP-based transports. Many of these
 protocols are lacking a native authentication and authorization
 framework of the style shown in Figure 1.

2. Architecture

 We have already introduced the federated access architecture, with
 the illustration of the different actors that need to interact, but
 did not expand on the specifics of providing support for non-Web
 based applications. This section details this aspect and motivates
 design decisions. The main theme of the work described in this
 document is focused on re-using existing building blocks that have
 been deployed already and to re-arrange them in a novel way.

 Although this architecture assumes updates to the relying party, the
 client application, and the IdP, those changes are kept at a minimum.
 A mechanism that can demonstrate deployment benefits (based on ease
 of update of existing software, low implementation effort, etc.) is
 preferred and there may be a need to specify multiple mechanisms to
 support the range of different deployment scenarios.

 There are a number of ways to encapsulate EAP into an application
 protocol. For ease of integration with a wide range of non-Web based
 application protocols, GSS-API was chosen. The technical
 specification of GSS-EAP can be found in [RFC7055].

 The architecture consists of several building blocks, which is shown
 graphically in Figure 3. In the following sections, we discuss the
 data flow between each of the entities, the protocols used for that
 data flow and some of the trade-offs made in choosing the protocols.

 +--------------+
 | Identity |
 | Provider |
 | (IdP) |

Howlett, et al. Expires January 22, 2015 [Page 14]

Internet-Draft ABFAB Architecture July 2014

 +-^----------^-+
 * EAP o RADIUS
 * o
 --v----------v--
 /// \\\
 // \\
 | Federation |
 | Substrate |
 \\ //
 \\\ ///
 --^----------^--
 * EAP o RADIUS
 * o
 +-------------+ +-v----------v--+
Client	EAP/EAP Method	Relying Party
Application	<****************>	(RP)
	GSS-API	
	<---------------->	
	Application	
	Protocol	
	<================>	
 +-------------+ +---------------+

 Legend:

 <****>: Client-to-IdP Exchange
 <---->: Client-to-RP Exchange
 <oooo>: RP-to-IdP Exchange
 <====>: Protocol through which GSS-API/GS2 exchanges are tunneled

 Figure 3: ABFAB Protocol Instantiation

2.1. Relying Party to Identity Provider

 Communications between the Relying Party and the Identity Provider is
 done by the federation substrate. This communication channel is
 responsible for:

 o Establishing the trust relationship between the RP and the IdP.

 o Determining the rules governing the relationship.

 o Conveying authentication packets from the client to the IdP and
 back.

 o Providing the means of establishing a trust relationship between
 the RP and the client.

Howlett, et al. Expires January 22, 2015 [Page 15]

Internet-Draft ABFAB Architecture July 2014

 o Providing a means for the RP to obtain attributes about the client
 from the IdP.

 The ABFAB working group has chosen the AAA framework for the messages
 transported between the RP and IdP. The AAA framework supports the
 requirements stated above as follows:

 o The AAA backbone supplies the trust relationship between the RP
 and the IdP.

 o The agreements governing a specific AAA backbone contains the
 rules governing the relationships within the AAA federation.

 o A method exists for carrying EAP packets within RADIUS [RFC3579]
 and Diameter [RFC4072].

 o The use of EAP channel binding [RFC6677] along with the core ABFAB
 protocol provide the pieces necessary to establish the identities
 of the RP and the client, while EAP provides the cryptographic
 methods for the RP and the client to validate they are talking to
 each other.

 o A method exists for carrying SAML packets within RADIUS
 [I-D.ietf-abfab-aaa-saml] which allows the RP to query attributes
 about the client from the IdP.

 Protocols that support the same framework, but do different routing
 are expected to be defined and used the future. One such effort call
 the Trust Router is to setup a framework that creates a trusted
 point-to-point channel on the fly [3].

2.1.1. AAA, RADIUS and Diameter

 The usage of the AAA framework with RADIUS [RFC2865] and Diameter
 [RFC6733] for network access authentication has been successful from
 a deployment point of view. To map to the terminology used in Figure
 1 to the AAA framework the IdP corresponds to the AAA server, the RP
 corresponds to the AAA client, and the technical building blocks of a
 federation are AAA proxies, relays and redirect agents (particularly
 if they are operated by third parties, such as AAA brokers and
 clearing houses). The front-end, i.e. the end host to AAA client
 communication, is in case of network access authentication offered by
 link layer protocols that forward authentication protocol exchanges
 back-and-forth. An example of a large scale RADIUS-based federation
 is EDUROAM [4].

 By using the AAA framework, ABFAB can be built on the federation
 agreements already exist, the agreements can then merely be expanded

Howlett, et al. Expires January 22, 2015 [Page 16]

Internet-Draft ABFAB Architecture July 2014

 to cover the ABFAB. The AAA framework has already addressed some of
 the problems outlined above. For example,

 o It already has a method for routing requests based on a domain.

 o It already has an extensible architecture allowing for new
 attributes to be defined and transported.

 o Pre-existing relationships can be re-used.

 The astute reader will notice that RADIUS and Diameter have
 substantially similar characteristics. Why not pick one? RADIUS and
 Diameter are deployed in different environments. RADIUS can often be
 found in enterprise and university networks, and is also in use by
 fixed network operators. Diameter, on the other hand, is deployed by
 mobile operators. Another key difference is that today RADIUS is
 largely transported upon UDP. We leave as a deployment decision,
 which protocol will be appropriate. The protocol defines all the
 necessary new AAA attributes as RADIUS attributes. A future document
 could define the same AAA attributes for a Diameter environment. We
 also note that there exist proxies which convert from RADIUS to
 Diameter and back. This makes it possible for both to be deployed in
 a single federation substrate.

 Through the integrity protection mechanisms in the AAA framework, the
 identity provider can establish technical trust that messages are
 being sent by the appropriate relying party. Any given interaction
 will be associated with one federation at the policy level. The
 legal or business relationship defines what statements the identity
 provider is trusted to make and how these statements are interpreted
 by the relying party. The AAA framework also permits the relying
 party or elements between the relying party and identity provider to
 make statements about the relying party.

 The AAA framework provides transport for attributes. Statements made
 about the client by the identity provider, statements made about the
 relying party and other information are transported as attributes.

Howlett, et al. Expires January 22, 2015 [Page 17]

Internet-Draft ABFAB Architecture July 2014

 One demand that the AAA substrate makes of the upper layers is that
 they must properly identify the end points of the communication. It
 must be possible for the AAA client at the RP to determine where to
 send each RADIUS or Diameter message. Without this requirement, it
 would be the RP’s responsibility to determine the identity of the
 client on its own, without the assistance of an IdP. This
 architecture makes use of the Network Access Identifier (NAI), where
 the IdP is indicated by the realm component [I-D.ietf-radext-nai].
 The NAI is represented and consumed by the GSS-API layer as
 GSS_C_NT_USER_NAME as specified in [RFC2743]. The GSS-API EAP
 mechanism includes the NAI in the EAP Response/Identity message.

 As of the time this document was published, no profiles for the use
 of Diameter have been created.

2.1.2. Discovery and Rules Determination

 While we are using the AAA protocols to communicate with the IdP, the
 RP may have multiple federation substrates to select from. The RP
 has a number of criteria that it will use in selecting which of the
 different federations to use:

 o The federation selected must be able to communicate with the IdP.

 o The federation selected must match the business rules and
 technical policies required for the RP security requirements.

 The RP needs to discover which federation will be used to contact the
 IdP. The first selection criterion used during discovery is going to
 be the name of the IdP to be contacted. The second selection
 criteria used during discovery is going to be the set of business
 rules and technical policies governing the relationship; this is
 called rules determination. The RP also needs to establish technical
 trust in the communications with the IdP.

Howlett, et al. Expires January 22, 2015 [Page 18]

Internet-Draft ABFAB Architecture July 2014

 Rules determination covers a broad range of decisions about the
 exchange. One of these is whether the given RP is permitted to talk
 to the IdP using a given federation at all, so rules determination
 encompasses the basic authorization decision. Other factors are
 included, such as what policies govern release of information about
 the client to the RP and what policies govern the RP’s use of this
 information. While rules determination is ultimately a business
 function, it has significant impact on the technical exchanges. The
 protocols need to communicate the result of authorization. When
 multiple sets of rules are possible, the protocol must disambiguate
 which set of rules are in play. Some rules have technical
 enforcement mechanisms; for example in some federations
 intermediaries validate information that is being communicated within
 the federation.

 At the time of writing no protocol mechanism has been specified to
 allow a AAA client to determine whether a AAA proxy will indeed be
 able to route AAA requests to a specific IdP. The AAA routing is
 impacted by business rules and technical policies that may be quite
 complex and at the present time, the route selection is based on
 manual configuration.

2.1.3. Routing and Technical Trust

 Several approaches to having messages routed through the federation
 substrate are possible. These routing methods can most easily be
 classified based on the mechanism for technical trust that is used.
 The choice of technical trust mechanism constrains how rules
 determination is implemented. Regardless of what deployment strategy
 is chosen, it is important that the technical trust mechanism be able
 to validate the identities of both parties to the exchange. The
 trust mechanism must ensure that the entity acting as IdP for a given
 NAI is permitted to be the IdP for that realm, and that any service
 name claimed by the RP is permitted to be claimed by that entity.
 Here are the categories of technical trust determination:

 AAA Proxy:
 The simplest model is that an RP is an AAA client and can send the
 request directly to an AAA proxy. The hop-by-hop integrity
 protection of the AAA fabric provides technical trust. An RP can
 submit a request directly to the correct federation.
 Alternatively, a federation disambiguation fabric can be used.
 Such a fabric takes information about what federations the RP is
 part of and what federations the IdP is part of and routes a
 message to the appropriate federation. The routing of messages
 across the fabric plus attributes added to requests and responses
 provides rules determination. For example, when a disambiguation
 fabric routes a message to a given federation, that federation’s

Howlett, et al. Expires January 22, 2015 [Page 19]

Internet-Draft ABFAB Architecture July 2014

 rules are chosen. Name validation is enforced as messages travel
 across the fabric. The entities near the RP confirm its identity
 and validate names it claims. The fabric routes the message
 towards the appropriate IdP, validating the name of the IdP in the
 process. The routing can be statically configured. Alternatively
 a routing protocol could be developed to exchange reachability
 information about a given IdP and to apply policy across the AAA
 fabric. Such a routing protocol could flood naming constraints to
 the appropriate points in the fabric.

 Trust Broker:
 Instead of routing messages through AAA proxies, some trust broker
 could establish keys between entities near the RP and entities
 near the IdP. The advantage of this approach is efficiency of
 message handling. Fewer entities are needed to be involved for
 each message. Security may be improved by sending individual
 messages over fewer hops. Rules determination involves decisions
 made by trust brokers about what keys to grant. Also, associated
 with each credential is context about rules and about other
 aspects of technical trust including names that may be claimed. A
 routing protocol similar to the one for AAA proxies is likely to
 be useful to trust brokers in flooding rules and naming
 constraints.

 Global Credential:
 A global credential such as a public key and certificate in a
 public key infrastructure can be used to establish technical
 trust. A directory or distributed database such as the Domain
 Name System is used by the RP to discover the endpoint to contact
 for a given NAI. Either the database or certificates can provide
 a place to store information about rules determination and naming
 constraints. Provided that no intermediates are required (or
 appear to be required) and that the RP and IdP are sufficient to
 enforce and determine rules, rules determination is reasonably
 simple. However applying certain rules is likely to be quite
 complex. For example if multiple sets of rules are possible
 between an IdP and RP, confirming the correct set is used may be
 difficult. This is particularly true if intermediates are
 involved in making the decision. Also, to the extent that
 directory information needs to be trusted, rules determination may
 be more complex.

 Real-world deployments are likely to be mixtures of these basic
 approaches. For example, it will be quite common for an RP to route
 traffic to a AAA proxy within an organization. That proxy could then
 use any of the three methods to get closer to the IdP. It is also
 likely that rather than being directly reachable, the IdP may have a
 proxy on the edge of its organization. Federations will likely

Howlett, et al. Expires January 22, 2015 [Page 20]

Internet-Draft ABFAB Architecture July 2014

 provide a traditional AAA proxy interface even if they also provide
 another mechanism for increased efficiency or security.

2.1.4. AAA Security

 For the AAA framework there are two different places where security
 needs to be examined. The first is the security that is in place for
 the links in the AAA backbone being used. The second are the nodes
 that form the AAA backbone.

 The default link security for RADIUS is showing its age as it uses
 MD5 and a shared secret to both obfuscate passwords and to provide
 integrity on the RADIUS messages. While some EAP methods include the
 ability to protect the client authentication credentials, the MSK
 returned from the IdP to the RP is protected only by the RADIUS
 security. In many environments this is considered to be
 insufficient, especially as not all attributes are obfuscated and can
 thus leak information to a passive eavesdropper. The use of RADIUS
 with TLS [RFC6614] and/or DTLS [I-D.ietf-radext-dtls] addresses these
 attacks. The same level of security is included in the base Diameter
 specifications.

2.1.5. SAML Assertions

 For the traditional use of AAA frameworks, network access, an
 affirmative response from the IdP can be sufficient to grant access.
 In the ABFAB world, the RP may need to get significantly more
 additional information about the client before granting access.
 ABFAB therefore has a requirement that it can transport an arbitrary
 set of attributes about the client from the IdP to the RP.

 Security Assertions Markup Language (SAML) [OASIS.saml-core-2.0-os]
 was designed in order to carry an extensible set of attributes about
 a subject. Since SAML is extensible in the attribute space, ABFAB
 has no immediate needs to update the core SAML specifications for our
 work. It will be necessary to update IdPs that need to return SAML
 assertions to RPs and for both the IdP and the RP to implement a new
 SAML profile designed to carry SAML assertions in AAA. The new
 profile can be found in RFCXXXX [I-D.ietf-abfab-aaa-saml]. As SAML
 statements will frequently be large, RADIUS servers and clients that
 deal with SAML statements will need to implement RFC XXXX
 [I-D.ietf-radext-radius-fragmentation]

 There are several issues that need to be highlighted:

 o The security of SAML assertions.

 o Namespaces and mapping of SAML attributes.

Howlett, et al. Expires January 22, 2015 [Page 21]

Internet-Draft ABFAB Architecture July 2014

 o Subject naming of entities.

 o Making multiple queries about the subject(s).

 o Level of Assurance for authentication.

 SAML assertions have an optional signature that can be used to
 protect and provide origination of the assertion. These signatures
 are normally based on asymmetric key operations and require that the
 verifier be able to check not only the cryptographic operation, but
 also the binding of the originators name and the public key. In a
 federated environment it will not always be possible for the RP to
 validate the binding, for this reason the technical trust established
 in the federation is used as an alternate method of validating the
 origination and integrity of the SAML Assertion.

 Attributes in a SAML assertion are identified by a name string. The
 name string is either assigned by the SAML issuer context or is
 scoped by a namespace (for example a URI or object identifier (OID)).
 This means that the same attribute can have different name strings
 used to identify it. In many, but not all, cases the federation
 agreements will determine what attributes and names can be used in a
 SAML statement. This means that the RP needs to map from the SAML
 issuer or federation name, type and semantic into the name, type and
 semantics that the policies of the RP are written in. In other cases
 the federation substrate, in the form of proxies, will modify the
 SAML assertions in transit to do the necessary name, type and value
 mappings as the assertion crosses boundaries in the federation. If
 the proxies are modifying the SAML Assertion, then they will remove
 any signatures on the SAML as changing the content of the SAML
 statement would invalidate the signature. In this case the technical
 trust is the required mechanism for validating the integrity of the
 assertion. (The proxy could re-sign the SAML assertion, but the same
 issues of establishing trust in the proxy would still exist.)
 Finally, the attributes may still be in the namespace of the
 originating IdP. When this occurs the RP will need to get the
 required mapping operations from the federation agreements and do the
 appropriate mappings itself.

 The RADIUS SAML RFC [I-D.ietf-abfab-aaa-saml] has defined a new SAML
 name format that corresponds to the NAI name form defined by RFC XXXX
 [I-D.ietf-radext-nai]. This allows for easy name matching in many
 cases as the name form in the SAML statement and the name form used
 in RADIUS or Diameter will be the same. In addition to the NAI name
 form, the document also defines a pair of implicit name forms
 corresponding to the Client and the Client’s machine. These implicit
 name forms are based on the Identity-Type enumeration defined in TEAP
 [I-D.ietf-emu-eap-tunnel-method]. If the name form returned in a

Howlett, et al. Expires January 22, 2015 [Page 22]

Internet-Draft ABFAB Architecture July 2014

 SAML statement is not based on the NAI, then it is a requirement on
 the EAP server that it validate that the subject of the SAML
 assertion, if any, is equivalent to the subject identified by the NAI
 used in the RADIUS or Diameter session.

 RADIUS has the ability to deal with multiple SAML queries for those
 EAP Servers which follow RFC 5080 [RFC5080]. In this case a State
 attribute will always be returned with the Access-Accept. The EAP
 client can then send a new Access-Request with the State attribute
 and the new SAML Request Multiple SAML queries can then be done by
 making a new Access-Request using the State attribute returned in the
 last Access-Accept to link together the different RADIUS sessions.

 Some RPs need to ensure that specific criteria are met during the
 authentication process. This need is met by using Levels of
 Assurance. The way a Level of Assurance is communicated to the RP
 from the EAP server is by the use of a SAML Authentication Request
 using the Authentication Profile from RFC XXX
 [I-D.ietf-abfab-aaa-saml] When crossing boundaries between different
 federations, either the policy specified will need to be shared
 between the two federations, the policy will need to be mapped by the
 proxy server on the boundary or the proxy server on the boundary will
 need to supply information the EAP server so that it can do the
 required mapping. If this mapping is not done, then the EAP server
 will not be able to enforce the desired Level of Assurance as it will
 not understand the policy requirements.

2.2. Client To Identity Provider

 Looking at the communications between the client and the IdP, the
 following items need to be dealt with:

 o The client and the IdP need to mutually authenticate each other.

 o The client and the IdP need to mutually agree on the identity of
 the RP.

 ABFAB selected EAP for the purposes of mutual authentication and
 assisted in creating some new EAP channel binding documents for
 dealing with determining the identity of the RP. A framework for the
 channel binding mechanism has been defined in RFC 6677 [RFC6677] that
 allows the IdP to check the identity of the RP provided by the AAA
 framework with that provided by the client.

2.2.1. Extensible Authentication Protocol (EAP)

 Traditional web federation does not describe how a client interacts
 with an identity provider for authentication. As a result, this

Howlett, et al. Expires January 22, 2015 [Page 23]

Internet-Draft ABFAB Architecture July 2014

 communication is not standardized. There are several disadvantages
 to this approach. Since the communication is not standardized, it is
 difficult for machines to recognize which entity is going to do the
 authentication and thus which credentials to use and where in the
 authentication form that the credentials are to be entered. Humans
 have a much easier time to correctly deal with these problems. The
 use of browsers for authentication restricts the deployment of more
 secure forms of authentication beyond plaintext username and password
 known by the server. In a number of cases the authentication
 interface may be presented before the client has adequately validated
 they are talking to the intended server. By giving control of the
 authentication interface to a potential attacker, the security of the
 system may be reduced and phishing opportunities introduced.

 As a result, it is desirable to choose some standardized approach for
 communication between the client’s end-host and the identity
 provider. There are a number of requirements this approach must
 meet.

 Experience has taught us one key security and scalability
 requirement: it is important that the relying party not get
 possession of the long-term secret of the client. Aside from a
 valuable secret being exposed, a synchronization problem can develop
 when the client changes keys with the IdP.

 Since there is no single authentication mechanism that will be used
 everywhere there is another associated requirement: The
 authentication framework must allow for the flexible integration of
 authentication mechanisms. For instance, some IdPs require hardware
 tokens while others use passwords. A service provider wants to
 provide support for both authentication methods, and other methods
 from IdPs not yet seen.

 These requirements can be met by utilizing standardized and
 successfully deployed technology, namely by the Extensible
 Authentication Protocol (EAP) framework [RFC3748]. Figure 3
 illustrates the integration graphically.

 EAP is an end-to-end framework; it provides for two-way communication
 between a peer (i.e. client or individual) through the EAP
 authenticator (i.e., relying party) to the back-end (i.e., identity
 provider). Conveniently, this is precisely the communication path
 that is needed for federated identity. Although EAP support is
 already integrated in AAA systems (see [RFC3579] and [RFC4072])
 several challenges remain:

 o The first is how to carry EAP payloads from the end host to the
 relying party.

Howlett, et al. Expires January 22, 2015 [Page 24]

Internet-Draft ABFAB Architecture July 2014

 o Another is to verify statements the relying party has made to the
 client, confirm these statements are consistent with statements
 made to the identity provider and confirm all of the above are
 consistent with the federation and any federation-specific policy
 or configuration.

 o Another challenge is choosing which identity provider to use for
 which service.

 The EAP method used for ABFAB needs to meet the following
 requirements:

 o It needs to provide mutual authentication of the client and IdP.

 o It needs to support channel binding.

 As of this writing, the only EAP method that meets these criteria is
 TEAP [I-D.ietf-emu-eap-tunnel-method] either alone (if client
 certificates are used) or with an inner EAP method that does mutual
 authentication.

2.2.2. EAP Channel Binding

 EAP channel binding is easily confused with a facility in GSS-API
 also called channel binding. GSS-API channel binding provides
 protection against man-in-the-middle attacks when GSS-API is used as
 authentication inside some tunnel; it is similar to a facility called
 cryptographic binding in EAP. See [RFC5056] for a discussion of the
 differences between these two facilities.

 The client knows, in theory, the name of the RP that it attempted to
 connect to, however in the event that an attacker has intercepted the
 protocol, the client and the IdP need to be able to detect this
 situation. A general overview of the problem along with a
 recommended way to deal with the channel binding issues can be found
 in RFC 6677 [RFC6677].

 Since that document was published, a number of possible attacks were
 found and methods to address these attacks have been outlined in
 [RFC7029].

2.3. Client to Relying Party

 The final set of interactions between the parties to consider are
 those between the client and the RP. In some ways this is the most
 complex set since at least part of it is outside the scope of the
 ABFAB work. The interactions between these parties include:

Howlett, et al. Expires January 22, 2015 [Page 25]

Internet-Draft ABFAB Architecture July 2014

 o Running the protocol that implements the service that is provided
 by the RP and desired by the client.

 o Authenticating the client to the RP and the RP to the client.

 o Providing the necessary security services to the service protocol
 that it needs beyond authentication.

 o Deal with client re-authentication where desired.

2.3.1. GSS-API

 One of the remaining layers is responsible for integration of
 federated authentication into the application. There are a number of
 approaches that applications have adopted for security. So, there
 may need to be multiple strategies for integration of federated
 authentication into applications. However, we have started with a
 strategy that provides integration to a large number of application
 protocols.

 Many applications such as SSH [RFC4462], NFS [RFC2203], DNS [RFC3645]
 and several non-IETF applications support the Generic Security
 Services Application Programming Interface [RFC2743]. Many
 applications such as IMAP, SMTP, XMPP and LDAP support the Simple
 Authentication and Security Layer (SASL) [RFC4422] framework. These
 two approaches work together nicely: by creating a GSS-API mechanism,
 SASL integration is also addressed. In effect, using a GSS-API
 mechanism with SASL simply requires placing some headers on the front
 of the mechanism and constraining certain GSS-API options.

 GSS-API is specified in terms of an abstract set of operations which
 can be mapped into a programming language to form an API. When
 people are first introduced to GSS-API, they focus on it as an API.
 However, from the prospective of authentication for non-web
 applications, GSS-API should be thought of as a protocol as well as
 an API. When looked at as a protocol, it consists of abstract
 operations such as the initial context exchange, which includes two
 sub-operations (gss_init_sec_context and gss_accept_sec_context). An
 application defines which abstract operations it is going to use and
 where messages produced by these operations fit into the application
 architecture. A GSS-API mechanism will define what actual protocol
 messages result from that abstract message for a given abstract
 operation. So, since this work is focusing on a particular GSS-API
 mechanism, we generally focus on protocol elements rather than the
 API view of GSS-API.

 The API view of GSS-API does have significant value as well, since
 the abstract operations are well defined, the set of information that

Howlett, et al. Expires January 22, 2015 [Page 26]

Internet-Draft ABFAB Architecture July 2014

 a mechanism gets from the application is well defined. Also, the set
 of assumptions the application is permitted to make is generally well
 defined. As a result, an application protocol that supports GSS-API
 or SASL is very likely to be usable with a new approach to
 authentication including this one with no required modifications. In
 some cases, support for a new authentication mechanism has been added
 using plugin interfaces to applications without the application being
 modified at all. Even when modifications are required, they can
 often be limited to supporting a new naming and authorization model.
 For example, this work focuses on privacy; an application that
 assumes it will always obtain an identifier for the client will need
 to be modified to support anonymity, unlinkability or pseudonymity.

 So, we use GSS-API and SASL because a number of the application
 protocols we wish to federate support these strategies for security
 integration. What does this mean from a protocol standpoint and how
 does this relate to other layers? This means we need to design a
 concrete GSS-API mechanism. We have chosen to use a GSS-API
 mechanism that encapsulates EAP authentication. So, GSS-API (and
 SASL) encapsulates EAP between the end-host and the service. The AAA
 framework encapsulates EAP between the relying party and the identity
 provider. The GSS-API mechanism includes rules about how initiators
 and services are named as well as per-message security and other
 facilities required by the applications we wish to support.

2.3.2. Protocol Transport

 The transport of data between the client and the relying party is not
 provided by GSS-API. GSS-API creates and consumes messages, but it
 does not provide the transport itself, instead the protocol using
 GSS-API needs to provide the transport. In many cases HTTP or HTTPS
 is used for this transport, but other transports are perfectly
 acceptable. The core GSS-API document [RFC2743] provides some
 details on what requirements exist.

 In addition we highlight the following:

 o The transport does not need to provide either confidentiality or
 integrity. After GSS-EAP has finished negotiation, GSS-API can be
 used to provide both services. If the negotiation process itself
 needs protection from eavesdroppers then the transport would need
 to provide the necessary services.

 o The transport needs to provide reliable transport of the messages.

 o The transport needs to ensure that tokens are delivered in order
 during the negotiation process.

Howlett, et al. Expires January 22, 2015 [Page 27]

Internet-Draft ABFAB Architecture July 2014

 o GSS-API messages need to be delivered atomically. If the
 transport breaks up a message it must also reassemble the message
 before delivery.

2.3.3. Reauthentication

 There are circumstances where the RP will want to have the client
 reauthenticate itself. These include very long sessions, where the
 original authentication is time limited or cases where in order to
 complete an operation a different authentication is required. GSS-
 EAP does not have any mechanism for the server to initiate a
 reauthentication as all authentication operations start from the
 client. If a protocol using GSS-EAP needs to support
 reauthentication that is initiated by the server, then a request from
 the server to the client for the reauthentiction to start needs to be
 placed in the protocol.

 Clients can re-use the existing secure connection established by GSS-
 API to run the new authentication in by calling GSS_Init_sec_context.
 At this point a full reauthentication will be done.

3. Application Security Services

 One of the key goals is to integrate federated authentication into
 existing application protocols and where possible, existing
 implementations of these protocols. Another goal is to perform this
 integration while meeting the best security practices of the
 technologies used to perform the integration. This section describes
 security services and properties required by the EAP GSS-API
 mechanism in order to meet these goals. This information could be
 viewed as specific to that mechanism. However, other future
 application integration strategies are very likely to need similar
 services. So, it is likely that these services will be expanded
 across application integration strategies if new application
 integration strategies are adopted.

3.1. Authentication

 GSS-API provides an optional security service called mutual
 authentication. This service means that in addition to the initiator
 providing (potentially anonymous or pseudonymous) identity to the
 acceptor, the acceptor confirms its identity to the initiator.
 Especially for the ABFAB context, this service is confusingly named.
 We still say that mutual authentication is provided when the identity
 of an acceptor is strongly authenticated to an anonymous initiator.

Howlett, et al. Expires January 22, 2015 [Page 28]

Internet-Draft ABFAB Architecture July 2014

 RFC 2743, unfortunately, does not explicitly talk about what mutual
 authentication means. Within this document we therefore define
 mutual authentication as:

 o If a target name is configured for the initiator, then the
 initiator trusts that the supplied target name describes the
 acceptor. This implies both that appropriate cryptographic
 exchanges took place for the initiator to make such a trust
 decision, and that after evaluating the results of these
 exchanges, the initiator’s policy trusts that the target name is
 accurate.

 o If no target name is configured for the initiator, then the
 initiator trusts that the acceptor name, supplied by the acceptor,
 correctly names the entity it is communicating with.

 o Both the initiator and acceptor have the same key material for
 per-message keys and both parties have confirmed they actually
 have the key material. In EAP terms, there is a protected
 indication of success.

 Mutual authentication is an important defense against certain aspects
 of phishing. Intuitively, clients would like to assume that if some
 party asks for their credentials as part of authentication,
 successfully gaining access to the resource means that they are
 talking to the expected party. Without mutual authentication, the
 server could "grant access" regardless of what credentials are
 supplied. Mutual authentication better matches this user intuition.

 It is important, therefore, that the GSS-EAP mechanism implement
 mutual authentication. That is, an initiator needs to be able to
 request mutual authentication. When mutual authentication is
 requested, only EAP methods capable of providing the necessary
 service can be used, and appropriate steps need to be taken to
 provide mutual authentication. While a broader set of EAP methods
 could be supported by not requiring mutual authentication, it was
 decided that the client needs to always have the ability to request
 it. In some cases the IdP and the RP will not support mutual
 authentication, however the client will always be able to detect this
 and make an appropriate security decision.

Howlett, et al. Expires January 22, 2015 [Page 29]

Internet-Draft ABFAB Architecture July 2014

 The AAA infrastructure may hide the initiator’s identity from the
 GSS-API acceptor, providing anonymity between the initiator and the
 acceptor. At this time, whether the identity is disclosed is
 determined by EAP server policy rather than by an indication from the
 initiator. Also, initiators are unlikely to be able to determine
 whether anonymous communication will be provided. For this reason,
 initiators are unlikely to set the anonymous return flag from
 GSS_Init_Sec_context (Section 4.2.1 in [RFC4178].

3.2. GSS-API Channel Binding

 [RFC5056] defines a concept of channel binding which is used prevent
 man-in-the-middle attacks. The channel binding works by taking a
 cryptographic value from the transport security and checks that both
 sides of the GSS-API conversation know this value. Transport Layer
 Security (TLS) [RFC5246] is the most common transport security layer
 used for this purpose.

 It needs to be stressed that RFC 5056 channel binding (also called
 GSS-API channel binding when GSS-API is involved) is not the same
 thing as EAP channel binding. GSS-API channel binding is used for
 detecting Man-In-The-Middle attacks. EAP channel binding is used for
 mutual authentication and acceptor naming checks. Details are
 discussed in the mechanisms specification [RFC7055]. A fuller
 description of the differences between the facilities can be found in
 RFC 5056 [RFC5056].

 The use of TLS can provide both encryption and integrity on the
 channel. It is common to provide SASL and GSS-API with these other
 security services.

 One of the benefits that the use of TLS provides, is that client has
 the ability to validate the name of the server. However this
 validation is predicated on a couple of things. The TLS sessions
 needs to be using certificates and not be an anonymous session. The
 client and the TLS server need to share a common trust point for the
 certificate used in validating the server. TLS provides its own
 server authentication. However there are a variety of situations
 where this authentication is not checked for policy or usability
 reasons. When the TLS authentication is checked, if the trust
 infrastructure behind the TLS authentication is different from the
 trust infrastructure behind the GSS-API mutual authentication then
 confirming the end-points using both trust infrastructures is likely
 to enhance security. If the endpoints of the GSS-API authentication
 are different than the endpoints of the lower layer, this is a strong
 indication of a problem such as a man-in-the-middle attack. Channel
 binding provides a facility to determine whether these endpoints are
 the same.

Howlett, et al. Expires January 22, 2015 [Page 30]

Internet-Draft ABFAB Architecture July 2014

 The GSS-EAP mechanism needs to support channel binding. When an
 application provides channel binding data, the mechanism needs to
 confirm this is the same on both sides consistent with the GSS-API
 specification.

3.3. Host-Based Service Names

 IETF security mechanisms typically take a host name and perhaps a
 service, entered by a user, and make some trust decision about
 whether the remote party in the interaction is the intended party.
 This decision can be made by the use of certificates, pre-configured
 key information or a previous leap of trust. GSS-API has defined a
 relatively flexible name convention, however most of the IETF
 applications that use GSS-API (including SSH, NFS, IMAP, LDAP and
 XMPP) have chosen to use a more restricted naming convention based on
 the host name. The GSS-EAP mechanism needs to support host-based
 service names in order to work with existing IETF protocols.

 The use of host-based service names leads to a challenging trust
 delegation problem. Who is allowed to decide whether a particular
 host name maps to a specific entity? Possible solutions to this
 problem have been looked at.

 o The public-key infrastructure (PKI) used by the web has chosen to
 have a number of trust anchors (root certificate authorities) each
 of which can map any host name to a public key.

 o A number of GSS-API mechanisms, such as Kerberos [RFC1964], have
 split the problem into two parts. A new concept called a realm is
 introduced, the realm is responsible for host mapping within that
 realm. The mechanism then decides what realm is responsible for a
 given name. This is the approach adopted by ABFAB.

 GSS-EAP defines a host naming convention that takes into account the
 host name, the realm, the service and the service parameters. An
 example of GSS-API service name is "xmpp/foo@example.com". This
 identifies the XMPP service on the host foo in the realm example.com.
 Any of the components, except for the service name may be omitted
 from a name. When omitted, then a local default would be used for
 that component of the name.

 While there is no requirement that realm names map to Fully Qualified
 Domain Names (FQDN) within DNS, in practice this is normally true.
 Doing so allows for the realm portion of service names and the
 portion of NAIs to be the same. It also allows for the use of DNS in
 locating the host of a service while establishing the transport
 channel between the client and the relying party.

Howlett, et al. Expires January 22, 2015 [Page 31]

Internet-Draft ABFAB Architecture July 2014

 It is the responsibility of the application to determine the server
 that it is going to communicate with; GSS-API has the ability to help
 confirm that the server is the desired server but not to determine
 the name of the server to use. It is also the responsibility of the
 application to determine how much of the information identifying the
 service needs to be validated by the ABFAB system. The information
 that needs to be validated is used to build up the service name
 passed into the GSS-EAP mechanism. What information is to be
 validated will depend on both what information was provided by the
 client, and what information is considered significant. If the
 client only cares about getting a specific service, then the host and
 realm that provides the service does not need to be validated.

 Applications may retrieve information about providers of services
 from DNS. Service Records (SRV) [RFC2782] and Naming Authority
 Pointer (NAPTR) [RFC3401] records are used to help find a host that
 provides a service; however the necessity of having DNSSEC on the
 queries depends on how the information is going to be used. If the
 host name returned is not going to be validated by EAP channel
 binding, because only the service is being validated, then DNSSEC
 [RFC4033] is not required. However, if the host name is going to be
 validated by EAP channel binding then DNSSEC needs to be use to
 ensure that the correct host name is validated. In general, if the
 information that is returned from the DNS query is to be validated,
 then it needs to be obtained in a secure manner.

 Another issue that needs to be addressed for host-based service names
 is that they do not work ideally when different instances of a
 service are running on different ports. If the services are
 equivalent, then it does not matter. However if there are
 substantial differences in the quality of the service that
 information needs to be part of the validation process. If one has
 just a host name and not a port in the information being validated,
 then this is not going to be a successful strategy.

3.4. Additional GSS-API Services

 GSS-API provides per-message security services that can provide
 confidentiality and/or integrity. Some IETF protocols such as NFS
 and SSH take advantage of these services. As a result GSS-EAP needs
 to support these services. As with mutual authentication, per-
 message security services will limit the set of EAP methods that can
 be used to those that generate a Master Session Key (MSK). Any EAP
 method that produces an MSK is able to support per-message security
 services described in [RFC2743].

 GSS-API provides a pseudo-random function. This function generates a
 pseudo-random sequence using the shared session key as the seed for

Howlett, et al. Expires January 22, 2015 [Page 32]

Internet-Draft ABFAB Architecture July 2014

 the bytes generated. This provides an algorithm that both the
 initiator and acceptor can run in order to arrive at the same key
 value. The use of this feature allows for an application to generate
 keys or other shared secrets for use in other places in the protocol.
 In this regards, it is similar in concept to the TLS extractor (RFC
 5705 [RFC5705].). While no current IETF protocols require this, non-
 IETF protocols are expected to take advantage of this in the near
 future. Additionally, a number of protocols have found the TLS
 extractor to be useful in this regards so it is highly probable that
 IETF protocols may also start using this feature.

4. Privacy Considerations

 ABFAB, as an architecture designed to enable federated authentication
 and allow for the secure transmission of identity information between
 entities, obviously requires careful consideration around privacy and
 the potential for privacy violations.

 This section examines the privacy related information presented in
 this document, summarizing the entities that are involved in ABFAB
 communications and what exposure they have to identity information.
 In discussing these privacy considerations in this section, we use
 terminology and ideas from [RFC6973].

 Note that the ABFAB architecture uses at its core several existing
 technologies and protocols; detailed privacy discussion around these
 is not examined. This section instead focuses on privacy
 considerations specifically related to overall architecture and usage
 of ABFAB.

 +--------+ +---------------+ +--------------+
 | Client | <---> | RP | <---> | AAA Client |
 +--------+ +---------------+ +--------------+
 ^
 |
 v
 +---------------+ +--------------+
 | SAML Server | | AAA Proxy(s) |
 +---------------+ +--------------+
 ^ ^
 | |
 v v
 +------------+ +---------------+ +--------------+
 | EAP Server | <---> | IdP | <---> | AAA Server |
 +------------+ +---------------+ +--------------+

 Figure 4: Entities and Data Flow

Howlett, et al. Expires January 22, 2015 [Page 33]

Internet-Draft ABFAB Architecture July 2014

4.1. Entities and their roles

 Categorizing the ABFAB entities shown in the Figure 4 according to
 the taxonomy of terms from [RFC6973] the entities shown in Figure 4
 is somewhat complicated as during the various phases of ABFAB
 communications the roles of each entity changes. The three main
 phases of relevance are the Client to RP communication phase, the
 Client to IdP (via the Federation Substrate) phase, and the IdP to RP
 (via the Federation Substrate) phase.

 In the Client to RP communication phase, we have:

 Initiator: Client.

 Observers: Client, RP.

 Recipient: RP.

 In the Client to IdP (via the Federation Substrate) communication
 phase, we have:

 Initiator: Client.

 Observers: Client, RP, AAA Client, AAA Proxy(s), AAA Server, IdP.

 Recipient: IdP

 In the IdP to Relying party (via the Federation Substrate)
 communication phase, we have:

 Initiator: RP.

 Observers: IdP, AAA Server, AAA Proxy(s), AAA Client, RP.

 Recipient: IdP

 Eavesdroppers and Attackers can reside on any or all communication
 links between entities in Figure 4.

 The various entities in the system might also collude or be coerced
 into colluding. Some of the significant collusions to look at are:

 o If two RPs are colluding, they have the information available to
 both nodes. This can be analyzed as if a single RP was offering
 multiple services.

 o If an RP and a AAA proxy are colluding, then the trust of the
 system is broken as the RP would be able to lie about its own

Howlett, et al. Expires January 22, 2015 [Page 34]

Internet-Draft ABFAB Architecture July 2014

 identity to the IdP. There is no known way to deal with this
 situation.

 o If multiple AAA proxies are colluding, it can be treated as a
 single node for analysis.

 The Federation Substrate consists of all of the AAA entities. In
 some cases the AAA Proxies entities may not exist as the AAA Client
 can talk directly to the AAA Server. Specifications such as the
 Trust Router Protocol [5] and RADIUS dynamic discovery
 [I-D.ietf-radext-dynamic-discovery] can be used to shorten the path
 between the AAA client and the AAA server (and thus stop these AAA
 Proxies from being Observers); however even in these circumstances
 there may be AAA Proxies in the path.

 In Figure 4 the IdP has been divided into multiple logical pieces, in
 actual implementations these pieces will frequently be tightly
 coupled. The links between these pieces provide the greatest
 opportunity for attackers and eavesdroppers to acquire information,
 however, as they are all under the control of a single entity they
 are also the easiest to have tightly secured.

4.2. Privacy Aspects of ABFAB Communication Flows

 In the ABFAB architecture, there are a few different types of data
 and identifiers in use. The best way to understand them, and the
 potential privacy impacts of them, is to look at each phase of
 communication in ABFAB.

4.2.1. Client to RP

 The flow of data between the client and the RP is divided into two
 parts. The first part consists of all of the data exchanged as part
 of the ABFAB authentication process. The second part consists of all
 of the data exchanged after the authentication process has been
 finished.

 During the initial communications phase, the client sends an NAI (see
 [I-D.ietf-radext-nai]) to the RP. Many EAP methods (but not all)
 allow for the client to disclose an NAI to RP the in a form that
 includes only a realm component during this communications phase.
 This is the minimum amount of identity information necessary for
 ABFAB to work - it indicates an IdP that the principal has a
 relationship with. EAP methods that do not allow this will
 necessarily also reveal an identifier for the principal in the IdP
 realm (e.g. a username).

Howlett, et al. Expires January 22, 2015 [Page 35]

Internet-Draft ABFAB Architecture July 2014

 The data shared during the initial communication phase may be
 protected by a channel protocol such as TLS. This will prevent the
 leak of information to passive eavesdroppers, however an active
 attacker may still be able to setup as a man-in-the-middle. The
 client may not be able to validate the certificates (if any) provided
 by the service, deferring the check of the identity of the RP until
 the completion of the ABFAB authentication protocol (i.e., using EAP
 channel binding).

 The data exchanged after the authentication process can have privacy
 and authentication using the GSS-API services. If the overall
 application protocol allows for the process of re-authentication,
 then the same privacy implications as discussed in previous
 paragraphs apply.

4.2.2. Client to IdP (via Federation Substrate)

 This phase sees a secure TLS tunnel initiated between the Client and
 the IdP via the RP and federation substrate. The process is
 initiated by the RP using the realm information given to it by the
 client. Once set up, the tunnel is used to send credentials to IdP
 to authenticate.

 Various operational information is transported between RP and IdP,
 over the AAA infrastructure, for example using RADIUS headers. As no
 end-to-end security is provided by AAA, all AAA entities on the path
 between the RP and IdP have the ability to eavesdrop on this
 information unless additional security measures are taken (such as
 the use of TLS for RADIUS [I-D.ietf-radext-dtls]). Some of this
 information may form identifiers or explicit identity information:

 o The Relying Party knows the IP address of the Client. It is
 possible that the Relying Party could choose to expose this IP
 address by including it in a RADIUS header such as Calling Station
 ID. This is a privacy consideration to take into account of the
 application protocol.

 o The EAP MSK is transported between the IdP and the RP over the AAA
 infrastructure, for example through RADIUS headers. This is a
 particularly important privacy consideration, as any AAA Proxy
 that has access to the EAP MSK is able to decrypt and eavesdrop on
 any traffic encrypted using that EAP MSK (i.e., all communications
 between the Client and RP). This problem can be mitigted by the
 application protocol setting up a secure tunnel between the Client
 and the RP and performing a cryptographic binding between the
 tunnel and EAP MSK.

Howlett, et al. Expires January 22, 2015 [Page 36]

Internet-Draft ABFAB Architecture July 2014

 o Related to the above, the AAA server has access to the material
 necessary to derive the session key, thus the AAA server can
 observe any traffic encrypted between the Client and RP. This
 "feature" was chosen as a simplification and to make performance
 faster; if it was decided that this trade-off was not desirable
 for privacy and security reasons, then extensions to ABFAB that
 make use of techniques such as Diffie-Helman key exchange would
 mitigate against this.

 The choice of EAP method used has other potential privacy
 implications. For example, if the EAP method in use does not support
 trust anchors to enable mutual authentication, then there are no
 guarantees that the IdP is who it claims to be, and thus the full NAI
 including a username and a realm might be sent to any entity
 masquerading as a particular IdP.

 Note that ABFAB has not specified any AAA accounting requirements.
 Implementations that use the accounting portion of AAA should
 consider privacy appropriately when designing this aspect.

4.2.3. IdP to RP (via Federation Substrate)

 In this phase, the IdP communicates with the RP informing it as to
 the success or failure of authentication of the user, and optionally,
 the sending of identity information about the principal.

 As in the previous flow (Client to IdP), various operation
 information is transported between IdP and RP over the AAA
 infrastructure, and the same privacy considerations apply. However,
 in this flow, explicit identity information about the authenticated
 principal can be sent from the IdP to the RP. This information can
 be sent through RADIUS headers, or using SAML
 [I-D.ietf-abfab-aaa-saml]. This can include protocol specific
 identifiers, such as SAML NameIDs, as well as arbitrary attribute
 information about the principal. What information will be released
 is controlled by policy on the Identity Provider. As before, when
 sending this through RADIUS headers, all AAA entities on the path
 between the RP and IdP have the ability to eavesdrop unless
 additional security measures are taken (such as the use of TLS for
 RADIUS [I-D.ietf-radext-dtls]). When sending this using SAML, as
 specified in [I-D.ietf-abfab-aaa-saml], confidentiality of the
 information should however be guaranteed as [I-D.ietf-abfab-aaa-saml]
 requires the use of TLS for RADIUS.

4.3. Relationship between User and Entities

 o Between User and IdP - the IdP is an entity the user will have a
 direct relationship with, created when the organization that

Howlett, et al. Expires January 22, 2015 [Page 37]

Internet-Draft ABFAB Architecture July 2014

 operates the entity provisioned and exchanged the user’s
 credentials. Privacy and data protection guarantees may form a
 part of this relationship.

 o Between User and RP - the RP is an entity the user may or may not
 have a direct relationship with, depending on the service in
 question. Some services may only be offered to those users where
 such a direct relationship exists (for particularly sensitive
 services, for example), while some may not require this and would
 instead be satisfied with basic federation trust guarantees
 between themselves and the IdP). This may well include the option
 that the user stays anonymous with respect to the RP (though
 obviously never to the IdP). If attempting to preserve privacy
 through the mitigation of data minimization, then the only
 attribute information about individuals exposed to the RP should
 be that which is strictly necessary for the operation of the
 service.

 o Between User and Federation substrate - the user is highly likely
 to have no knowledge of, or relationship with, any entities
 involved with the federation substrate (not that the IdP and/or RP
 may, however). Knowledge of attribute information about
 individuals for these entities is not necessary, and thus such
 information should be protected in such a way as to prevent access
 to this information from being possible.

4.4. Accounting Information

 Alongside the core authentication and authorization that occurs in
 AAA communications, accounting information about resource consumption
 may be delivered as part of the accounting exchange during the
 lifetime of the granted application session.

4.5. Collection and retention of data and identifiers

 In cases where Relying Parties are not required to identify a
 particular individual when an individual wishes to make use of their
 service, the ABFAB architecture enables anonymous or pseudonymous
 access. Thus data and identifiers other than pseudonyms and
 unlinkable attribute information need not be stored and retained.

 However, in cases where Relying Parties require the ability to
 identify a particular individual (e.g. so they can link this identity
 information to a particular account in their service, or where
 identity information is required for audit purposes), the service
 will need to collect and store such information, and to retain it for
 as long as they require. Deprovisioning of such accounts and
 information is out of scope for ABFAB, but obviously for privacy

Howlett, et al. Expires January 22, 2015 [Page 38]

Internet-Draft ABFAB Architecture July 2014

 protection any identifiers collected should be deleted when they are
 no longer needed.

4.6. User Participation

 In the ABFAB architecture, by its very nature users are active
 participants in the sharing of their identifiers as they initiate the
 communications exchange every time they wish to access a server.
 They are, however, not involved in control of the set of information
 related to them that transmitted from the IdP to RP for authorization
 purposes; rather, this is under the control of policy on the IdP.
 Due to the nature of the AAA communication flows, with the current
 ABFAB architecture there is no place for a process of gaining user
 consent for the information to be released from IdP to RP.

5. Security Considerations

 This document describes the architecture for Application Bridging for
 Federated Access Beyond Web (ABFAB) and security is therefore the
 main focus. Many of the items that are security considerations have
 already been discussed in the Privacy Considerations section.
 Readers should be sure to read that section as well.

 There are many places in this document where TLS is used. While in
 some places (i.e. client to RP) anonymous connections can be used, it
 is very important that TLS connections within the AAA infrastructure
 and between the client and the IdP be fully authenticated and, if
 using certificates, that revocation be checked as well. When using
 anonymous connections between the client and the RP, all messages and
 data exchanged between those two entities will be visible to an
 active attacker. In situations where the client is not yet on the
 net, the status_request extension [RFC6066] can be used to obtain
 revocation checking data inside of the TLS protocol. Clients also
 need to get the Trust Anchor for the IdP configured correctly in
 order to prevent attacks, this is a hard problem in general and is
 going to be even harder for kiosk environments.

 Selection of the EAP methods to be permitted by clients and IdPs is
 important. The use of a tunneling method such as TEAP
 [I-D.ietf-emu-eap-tunnel-method] allows for other EAP methods to be
 used while hiding the contents of those EAP exchanges from the RP and
 the AAA framework. When considering inner EAP methods the
 considerations outlined in [RFC7029] about binding the inner and
 outer EAP methods needs to be considered. Finally, one wants to have
 the ability to support channel binding in those cases where the
 client needs to validate that it is talking to the correct RP.

Howlett, et al. Expires January 22, 2015 [Page 39]

Internet-Draft ABFAB Architecture July 2014

 In those places where SAML statements are used, RPs will generally be
 unable to validate signatures on the SAML statement, either because
 it is stripped off by the IdP or because it is unable to validate the
 binding between the signer, the key used to sign and the realm
 represented by the IdP. For these reasons it is required that IdPs
 do the necessary trust checking on the SAML statements and RPs can
 trust the AAA infrastructure to keep the SAML statement valid.

 When a pseudonym is generated as a unique long term identifier for a
 client by an IdP, care must be taken in the algorithm that it cannot
 easily be reverse engineered by the service provider. If it can be
 reversed then the service provider can consult an oracle to determine
 if a given unique long term identifier is associated with a different
 known identifier.

6. IANA Considerations

 This document does not require actions by IANA.

7. Acknowledgments

 We would like to thank Mayutan Arumaithurai, Klaas Wierenga and Rhys
 Smith for their feedback. Additionally, we would like to thank Eve
 Maler, Nicolas Williams, Bob Morgan, Scott Cantor, Jim Fenton, Paul
 Leach, and Luke Howard for their feedback on the federation
 terminology question.

 Furthermore, we would like to thank Klaas Wierenga for his review of
 the pre-00 draft version.

8. References

8.1. Normative References

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)", RFC
 2865, June 2000.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, "Extensible Authentication Protocol (EAP)", RFC
 3748, June 2004.

 [RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579, September 2003.

Howlett, et al. Expires January 22, 2015 [Page 40]

Internet-Draft ABFAB Architecture July 2014

 [RFC4072] Eronen, P., Hiller, T., and G. Zorn, "Diameter Extensible
 Authentication Protocol (EAP) Application", RFC 4072,
 August 2005.

 [RFC7055] Hartman, S. and J. Howlett, "A GSS-API Mechanism for the
 Extensible Authentication Protocol", RFC 7055, December
 2013.

 [I-D.ietf-abfab-aaa-saml]
 Howlett, J. and S. Hartman, "A RADIUS Attribute, Binding,
 Profiles, Name Identifier Format, and Confirmation Methods
 for SAML", draft-ietf-abfab-aaa-saml-09 (work in
 progress), February 2014.

 [I-D.ietf-radext-nai]
 DeKok, A., "The Network Access Identifier", draft-ietf-
 radext-nai-06 (work in progress), June 2014.

 [RFC6677] Hartman, S., Clancy, T., and K. Hoeper, "Channel-Binding
 Support for Extensible Authentication Protocol (EAP)
 Methods", RFC 6677, July 2012.

8.2. Informative References

 [RFC6733] Fajardo, V., Arkko, J., Loughney, J., and G. Zorn,
 "Diameter Base Protocol", RFC 6733, October 2012.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
 6749, October 2012.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973, July
 2013.

 [I-D.ietf-radext-radius-fragmentation]
 Perez-Mendez, A., Lopez, R., Pereniguez-Garcia, F., Lopez-
 Millan, G., Lopez, D., and A. DeKok, "Support of
 fragmentation of RADIUS packets", draft-ietf-radext-
 radius-fragmentation-06 (work in progress), April 2014.

 [RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC
 1964, June 1996.

 [RFC2203] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol
 Specification", RFC 2203, September 1997.

Howlett, et al. Expires January 22, 2015 [Page 41]

Internet-Draft ABFAB Architecture July 2014

 [RFC3645] Kwan, S., Garg, P., Gilroy, J., Esibov, L., Westhead, J.,
 and R. Hall, "Generic Security Service Algorithm for
 Secret Key Transaction Authentication for DNS (GSS-TSIG)",
 RFC 3645, October 2003.

 [RFC4462] Hutzelman, J., Salowey, J., Galbraith, J., and V. Welch,
 "Generic Security Service Application Program Interface
 (GSS-API) Authentication and Key Exchange for the Secure
 Shell (SSH) Protocol", RFC 4462, May 2006.

 [RFC4422] Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

 [RFC5080] Nelson, D. and A. DeKok, "Common Remote Authentication
 Dial In User Service (RADIUS) Implementation Issues and
 Suggested Fixes", RFC 5080, December 2007.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, March 2010.

 [RFC5801] Josefsson, S. and N. Williams, "Using Generic Security
 Service Application Program Interface (GSS-API) Mechanisms
 in Simple Authentication and Security Layer (SASL): The
 GS2 Mechanism Family", RFC 5801, July 2010.

 [RFC6614] Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
 "Transport Layer Security (TLS) Encryption for RADIUS",
 RFC 6614, May 2012.

 [OASIS.saml-core-2.0-os]
 Cantor, S., Kemp, J., Philpott, R., and E. Maler,
 "Assertions and Protocol for the OASIS Security Assertion
 Markup Language (SAML) V2.0", OASIS Standard saml-
 core-2.0-os, March 2005.

 [RFC7029] Hartman, S., Wasserman, M., and D. Zhang, "Extensible
 Authentication Protocol (EAP) Mutual Cryptographic
 Binding", RFC 7029, October 2013.

 [I-D.ietf-emu-eap-tunnel-method]
 Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,
 "Tunnel EAP Method (TEAP) Version 1", draft-ietf-emu-eap-
 tunnel-method-10 (work in progress), January 2014.

 [I-D.ietf-radext-dtls]

Howlett, et al. Expires January 22, 2015 [Page 42]

Internet-Draft ABFAB Architecture July 2014

 DeKok, A., "DTLS as a Transport Layer for RADIUS", draft-
 ietf-radext-dtls-13 (work in progress), July 2014.

 [I-D.ietf-radext-dynamic-discovery]
 Winter, S. and M. McCauley, "NAI-based Dynamic Peer
 Discovery for RADIUS/TLS and RADIUS/DTLS", draft-ietf-
 radext-dynamic-discovery-11 (work in progress), March
 2014.

 [WS-TRUST]
 Lawrence, K., Kaler, C., Nadalin, A., Goodner, M., Gudgin,
 M., Barbir, A., and H. Granqvist, "WS-Trust 1.4", OASIS
 Standard ws-trust-200902, February 2009, <http://docs
 .oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html>.

 [NIST-SP.800-63]
 Burr, W., Dodson, D., and W. Polk, "Electronic
 Authentication Guideline", NIST Special Publication
 800-63, April 2006.

 [RFC4178] Zhu, L., Leach, P., Jaganathan, K., and W. Ingersoll, "The
 Simple and Protected Generic Security Service Application
 Program Interface (GSS-API) Negotiation Mechanism", RFC
 4178, October 2005.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

 [RFC3401] Mealling, M., "Dynamic Delegation Discovery System (DDDS)
 Part One: The Comprehensive DDDS", RFC 3401, October 2002.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements", RFC
 4033, March 2005.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

Authors’ Addresses

Howlett, et al. Expires January 22, 2015 [Page 43]

Internet-Draft ABFAB Architecture July 2014

 Josh Howlett
 JANET(UK)
 Lumen House, Library Avenue, Harwell
 Oxford OX11 0SG
 UK

 Phone: +44 1235 822363
 Email: Josh.Howlett@ja.net

 Sam Hartman
 Painless Security

 Email: hartmans-ietf@mit.edu

 Hannes Tschofenig
 ARM Ltd.
 110 Fulbourn Rd
 Cambridge CB1 9NJ
 Great Britain

 Email: Hannes.tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

 Eliot Lear
 Cisco Systems GmbH
 Richtistrasse 7
 Wallisellen, ZH CH-8304
 Switzerland

 Phone: +41 44 878 9200
 Email: lear@cisco.com

 Jim Schaad
 Soaring Hawk Consulting

 Email: ietf@augustcellars.com

Howlett, et al. Expires January 22, 2015 [Page 44]

ABFAB Working Group S. Winter
Internet-Draft RESTENA
Updates: 3748 (if approved) J. Salowey
Intended status: Standards Track Cisco
Expires: February 20, 2014 August 19, 2013

 Update to the EAP Applicability Statement for ABFAB
 draft-ietf-abfab-eapapplicability-06

Abstract

 This document updates the Extensible Authentication Protocol (EAP)
 applicability statement from RFC3748 to reflect recent usage of the
 EAP protocol in the Application Bridging for Federated Access Beyond
 web (ABFAB) architecture.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 20, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Winter & Salowey Expires February 20, 2014 [Page 1]

Internet-Draft EAP Applicability August 2013

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 2
 2. Uses of EAP for Application-Layer Access 2
 2.1. Retransmission . 4
 2.2. Re-Authentication . 4
 3. Revised EAP applicability statement 5
 4. Security Considerations 6
 5. IANA Considerations . 6
 6. Acknowledgements . 6
 7. References . 6
 7.1. Normative References 6
 7.2. Informational References 6

1. Introduction

 The EAP applicability statement in [RFC3748] defines the scope of the
 Extensible Authentication Protocol to be "for use in network access
 authentication, where IP layer connectivity may not be available.",
 and states that "Use of EAP for other purposes, such as bulk data
 transport, is NOT RECOMMENDED.".

 While some of the recommendation against usage of EAP for bulk data
 transport is still valid, some of the other provisions in the
 applicability statement have turned out to be too narrow. Section 2
 describes the example where EAP is used to authenticate application
 layer access. Section 3 provides new text to update the paragraph
 1.3. "Applicability" in [RFC3748].

1.1. Requirements Language

 In this document, several words are used to signify the requirements
 of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
 RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
 interpreted as described in RFC 2119. [RFC2119]

2. Uses of EAP for Application-Layer Access

 Ongoing work in the IETF specifies the use of EAP over GSSAPI for
 generic application layer access [I-D.ietf-abfab-gss-eap]. In the
 past, using EAP in this context has met resistance due to the lack of
 channel bindings [RFC6677]. Without channel bindings, a peer cannot
 verify if an authenticator is authorized to provide an advertised
 service.

Winter & Salowey Expires February 20, 2014 [Page 2]

Internet-Draft EAP Applicability August 2013

 However as additional services use EAP for authentication, the
 distinction of which service is being contacted becomes more
 important. Application services might have different properties.
 Consider an environment with multiple printers some of which provide
 a confidential service to output documents to a controlled location.
 If a peer sent a document to the wrong service then potentially
 sensitive information might be printed in an uncontrolled location
 and be disclosed. In addition, it might be more likely that a low-
 value service is compromised than some high value service. If the
 high-value service could be impersonated by a low-value service then
 the security of the overall system would be limited by the security
 of the lower value service.

 This distinction is present in any environment where peers’ security
 depends on which service they reach. However it is particularly
 acute in a federated environment where multiple organizations are
 involved. It is very likely that these organizations will have
 different security policies and practices. It is very likely that
 the goals of these organizations will not entirely be aligned. In
 many situations one organization could gain value by being able to
 impersonate another. In this environment, authenticating the EAP
 server is insufficient: the peer must also validate that the
 contacted host is authorized to provide the requested service.

 In environments where EAP is used for purposes other than network
 access authentication:

 o All EAP servers and all application access EAP peers MUST support
 channel bindings. All network access EAP peers SHOULD support
 channel bindings.

 o Channel binding MUST be used for all application authentication.
 The EAP server MUST either require that the correct EAP lower-
 layer attribute or another attribute indicating the purpose of the
 authentication be present in the channel binding data for
 application authentication.

 o Channel binding SHOULD be used for all network access
 authentication, and when channel binding data is present, the EAP
 server MUST require that it contain the correct EAP lower-layer
 attribute to explicitly identify the reason for authentication.

 o Any new usage of EAP MUST use channel bindings including the EAP
 lower-layer attribute to prevent confusion with network access
 usage.

 Operators need to carefully consider the security implications before
 relaxing these requirements. One potentially serious attack exists

Winter & Salowey Expires February 20, 2014 [Page 3]

Internet-Draft EAP Applicability August 2013

 when channel binding is not required and EAP authentication is
 introduced into an existing service other than network access. A
 device can be created that impersonates a Network Access Service to
 peers, but actually proxies the authentication to the new application
 service that accepts EAP authentications. This may decrease the
 security of this service even for users who previously used non-EAP
 means of authentication to the service.

 It is REQUIRED for the application layer to prove that both the EAP
 Peer and EAP Authenticator possess the EAP Master Session Key (MSK).
 Failing to validate the possession of the EAP MSK can allow an
 attacker to insert himself into the conversation and impersonate the
 peer or authenticator. In addition, the application should define
 channel binding attributes that are sufficient to validate that the
 application service is being correctly represented to the peer.

2.1. Retransmission

 In EAP, the authenticator is responsible for retransmission. By
 default EAP assumes that the lower layer (the application in this
 context) is unreliable. The authenticator can send a packet whenever
 its retransmission timer triggers. In this mode, applications need
 to be able to receive and process EAP messages at any time during the
 authentication conversation.

 Alternatively, EAP permits a lower layer to set the retransmission
 timer to infinite. When this happens, the lower layer becomes
 responsible for reliable delivery of EAP messages. Applications that
 use a lock-step or client-driven authentication protocol might
 benefit from this approach.

 In addition to retransmission behavior applications need to deal with
 discarded EAP messages. For example, whenever some EAP methods
 receive erroneous input, these methods discard the input rather than
 generating an error response. If the erroneous input was generated
 by an attacker, legitimate input can sometimes be received after the
 erroneous input. Applications MUST handle discarded EAP messages,
 although the specific way in which discarded messages will be handled
 depends on the characteristics of the application. Options include
 failing the authentication at the application level, requesting an
 EAP retransmit and waiting for additional EAP input.

 Applications designers that incorporate EAP into their application
 need to determine how retransmission and message discards are
 handled.

2.2. Re-Authentication

Winter & Salowey Expires February 20, 2014 [Page 4]

Internet-Draft EAP Applicability August 2013

 EAP lower layers MAY provide a mechanism for re-authentication to
 happen within an existing session [RFC3748]. Re-authentication
 permits security associations to be updated without establishing a
 new session. For network access, this can be important because
 interrupting network access can disrupt connections and media.

 Some applications might not need re-authentication support. For
 example if sessions are relatively short-lived or if sessions can be
 replaced without significant disruption, re-authentication might not
 provide value. Protocols like Hypertext Transfer Protocol (HTTP)
 [RFC2616] and Simple Mail Transport Protocol (SMTP) [RFC5321] are
 examples of protocols where establishing a new connection to update
 security associations is likely to be sufficient.

 Re-authentication is likely to be valuable if sessions or connections
 are long-lived or if there is a significant cost to disrupting them.

 Another factor may make re-authentication important. Some protocols
 only permit one party in a protocol (for example the client) to
 establish a new connection. If another party in the protocol needs
 the security association refreshed then re-authentication can provide
 a mechanism to do so.

 Application designers need to determine whether re-authentication
 support is needed and which parties can initiate it.

3. Revised EAP applicability statement

 The following text is added to the EAP applicability statement in
 [RFC3748].

 In cases where EAP is used for application authentication, support
 for EAP Channel Bindings is REQUIRED on the EAP Peer and EAP Server
 to validate that the host is authorized to provide the services
 requested. In addition, the application MUST define channel binding
 attributes that are sufficient to validate that the application
 service is being correctly represented to the peer. The protocol
 carrying EAP MUST prove possession of the EAP MSK between the EAP
 Peer and EAP Authenticator. In the context of EAP for application
 access the application is providing the EAP Lower Layer.
 Applications protocols vary so their specific behavior and transport
 characteristics needs to be considered when determining their
 retransmission and re-authentication behavior. Circumstances might
 require that applications need to perform conversion of identities
 from an application specific character set to UTF-8 or another
 character set required by a particular EAP method.

Winter & Salowey Expires February 20, 2014 [Page 5]

Internet-Draft EAP Applicability August 2013

4. Security Considerations

 In addition to the requirements discussed in the main sections of the
 document applications should take into account how server
 authentication is achieved. Some deployments may allow for weak
 server authentication that is then validated with an additional
 existing exchange that provides mutual authentication. In order to
 fully mitigate the risk of NAS impersonation when these mechanisms
 are used, it is RECOMMENDED that mutual channel bindings be used to
 bind the authentications together as described in
 [I-D.ietf-emu-crypto-bind]. When doing channel binding it is
 REQUIRED that the authenticator is not able to modify the channel
 binding data passed between the peer to the authenticator as part of
 the authentication process.

5. IANA Considerations

 This document has no actions for IANA.

6. Acknowledgements

 Large amounts of helpful text and insightful thoughts were
 contributed by Sam Hartman, Painless Security. David Black
 contributed to the text clarifying channel bindings usage.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, "Extensible Authentication Protocol (EAP)", RFC
 3748, June 2004.

 [RFC6677] Hartman, S., Clancy, T., and K. Hoeper, "Channel-Binding
 Support for Extensible Authentication Protocol (EAP)
 Methods", RFC 6677, July 2012.

7.2. Informational References

 [I-D.ietf-emu-crypto-bind]
 Hartman, S., Wasserman, M., and D. Zhang, "EAP Mutual
 Cryptographic Binding", draft-ietf-emu-crypto-bind-04
 (work in progress), July 2013.

 [I-D.ietf-abfab-gss-eap]

Winter & Salowey Expires February 20, 2014 [Page 6]

Internet-Draft EAP Applicability August 2013

 Hartman, S. and J. Howlett, "A GSS-API Mechanism for the
 Extensible Authentication Protocol", draft-ietf-abfab-gss-
 eap-09 (work in progress), August 2012.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 October 2008.

Authors’ Addresses

 Stefan Winter
 Fondation RESTENA
 6, rue Richard Coudenhove-Kalergi
 Luxembourg 1359
 LUXEMBOURG

 Phone: +352 424409 1
 Fax: +352 422473
 EMail: stefan.winter@restena.lu
 URI: http://www.restena.lu.

 Joseph Salowey
 Cisco Systems
 2901 3rd Ave
 Seattle, Washington 98121
 USA

 EMail: jsalowey@cisco.com

Winter & Salowey Expires February 20, 2014 [Page 7]

Network Working Group S. Hartman, Ed.
Internet-Draft Painless Security
Intended status: Standards Track J. Howlett
Expires: February 14, 2013 JANET
 August 13, 2012

 A GSS-API Mechanism for the Extensible Authentication Protocol
 draft-ietf-abfab-gss-eap-09.txt

Abstract

 This document defines protocols, procedures, and conventions to be
 employed by peers implementing the Generic Security Service
 Application Program Interface (GSS-API) when using the Extensible
 Authentication Protocol mechanism. Through the GS2 family of
 mechanisms defined in RFC 5801, these protocols also define how
 Simple Authentication and Security Layer (SASL, RFC 4422)
 applications use the Extensible Authentication Protocol.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 14, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Hartman & Howlett Expires February 14, 2013 [Page 1]

Internet-Draft EAP GSS-API August 2012

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Discovery . 5
 1.2. Authentication . 5
 1.3. Secure Association Protocol 6
 2. Requirements notation . 8
 3. EAP Channel Binding and Naming 9
 3.1. Mechanism Name Format 9
 3.2. Internationalization of Names 12
 3.3. Exported Mechanism Names 12
 3.4. Acceptor Name RADIUS AVP 13
 3.5. Proxy Verification of Acceptor Name 13
 4. Selection of EAP Method 15
 5. Context Tokens . 16
 5.1. Mechanisms and Encryption Types 17
 5.2. Processing received tokens 17
 5.3. Error Subtokens . 18
 5.4. Initial State . 18
 5.4.1. Vendor Subtoken 19
 5.4.2. Acceptor Name Request 19
 5.4.3. Acceptor Name Response 19
 5.5. Authenticate State . 20
 5.5.1. EAP Request Subtoken 21
 5.5.2. EAP Response Subtoken 21
 5.6. Extension State . 21
 5.6.1. Flags Subtoken . 22
 5.6.2. GSS Channel Bindings Subtoken 22
 5.6.3. MIC Subtoken . 23
 5.7. Example Token . 24
 5.8. Context Options . 24
 6. Acceptor Services . 26
 6.1. GSS-API Channel Binding 26
 6.2. Per-message security 27
 6.3. Pseudo Random Function 27
 7. Iana Considerations . 28
 7.1. OID Registry . 28
 7.2. RFC 4121 Token Identifiers 29
 7.3. GSS EAP Subtoken Types 29
 7.4. RADIUS Attribute Assignments 30
 7.5. Registration of the EAP-AES128 SASL Mechanisms 31
 7.6. GSS EAP Errors . 31
 7.7. GSS EAP Context Flags 32

Hartman & Howlett Expires February 14, 2013 [Page 2]

Internet-Draft EAP GSS-API August 2012

 8. Security Considerations 34
 9. Acknowledgements . 36
 10. References . 37
 10.1. Normative References 37
 10.2. Informative References 38
 Appendix A. Pre-Publication RADIUS VSA 40
 Authors’ Addresses . 41

Hartman & Howlett Expires February 14, 2013 [Page 3]

Internet-Draft EAP GSS-API August 2012

1. Introduction

 ABFAB [I-D.ietf-abfab-arch] describes an architecture for providing
 federated access management to applications using the Generic
 Security Services Application Programming Interface (GSS-API)
 [RFC2743] and Simple Authentication and Security Layers (SASL)
 [RFC4422]. This specification provides the core mechanism for
 bringing federated authentication to these applications.

 The Extensible Authentication Protocol (EAP) [RFC3748] defines a
 framework for authenticating a network access client and server in
 order to gain access to a network. A variety of different EAP
 methods are in wide use; one of EAP’s strengths is that for most
 types of credentials in common use, there is an EAP method that
 permits the credential to be used.

 EAP is often used in conjunction with a backend Authentication ,
 Authorization and Accounting (AAA) server via RADIUS [RFC3579] or
 Diameter [RFC4072]. In this mode, the Network Access Server (NAS)
 simply tunnels EAP packets over the backend authentication protocol
 to a home EAP/AAA server for the client. After EAP succeeds, the
 backend authentication protocol is used to communicate key material
 to the NAS. In this mode, the NAS need not be aware of or have any
 specific support for the EAP method used between the client and the
 home EAP server. The client and EAP server share a credential that
 depends on the EAP method; the NAS and AAA server share a credential
 based on the backend authentication protocol in use. The backend
 authentication server acts as a trusted third party enabling network
 access even though the client and NAS may not actually share any
 common authentication methods. As described in the architecture
 document, using AAA proxies, this mode can be extended beyond one
 organization to provide federated authentication for network access.

 The GSS-API provides a generic framework for applications to use
 security services including authentication and per-message data
 security. Between protocols that support GSS-API directly or
 protocols that support SASL [RFC4422], many application protocols can
 use GSS-API for security services. However, with the exception of
 Kerberos [RFC4121], few GSS-API mechanisms are in wide use on the
 Internet. While GSS-API permits an application to be written
 independent of the specific GSS-API mechanism in use, there is no
 facility to separate the server from the implementation of the
 mechanism as there is with EAP and backend authentication servers.

 The goal of this specification is to combine GSS-API’s support for
 application protocols with EAP/AAA’s support for common credential
 types and for authenticating to a server without requiring that
 server to specifically support the authentication method in use. In

Hartman & Howlett Expires February 14, 2013 [Page 4]

Internet-Draft EAP GSS-API August 2012

 addition, this specification supports the architectural goal of
 transporting attributes about subjects to relying parties. Together
 this combination will provide federated authentication and
 authorization for GSS-API applications. This specification meets the
 applicability requirements for EAP to application authentication
 [I-D.ietf-abfab-eapapplicability].

 This mechanism is a GSS-API mechanism that encapsulates an EAP
 conversation. From the perspective of RFC 3748, this specification
 defines a new lower-layer protocol for EAP. From the perspective of
 the application, this specification defines a new GSS-API mechanism.

 Section 1.3 of [RFC5247] outlines the typical conversation between
 EAP peers where an EAP key is derived:

 o Phase 0: Discovery

 o Phase 1: Authentication

 o 1a: EAP authentication

 o 1b: AAA Key Transport (optional)

 o Phase 2: Secure Association Protocol

 o 2a: Unicast Secure Association

 o 2b: Multicast Secure Association (optional)

1.1. Discovery

 GSS-API peers discover each other and discover support for GSS-API in
 an application-dependent mechanism. SASL [RFC4422] describes how
 discovery of a particular SASL mechanism such as a GSS-API mechanism
 is conducted. The Simple and Protected Negotiation mechanism
 (SPNEGO) [RFC4178] provides another approach for discovering what
 GSS-API mechanisms are available. The specific approach used for
 discovery is out of scope for this mechanism.

1.2. Authentication

 GSS-API authenticates a party called the GSS-API initiator to the
 GSS-API acceptor, optionally providing authentication of the acceptor
 to the initiator. Authentication starts with a mechanism-specific
 message called a context token sent from the initiator to the
 acceptor. The acceptor responds, followed by the initiator, and so
 on until authentication succeeds or fails. GSS-API context tokens
 are reliably delivered by the application using GSS-API. The

Hartman & Howlett Expires February 14, 2013 [Page 5]

Internet-Draft EAP GSS-API August 2012

 application is responsible for in-order delivery and retransmission.

 EAP authenticates a party called a peer to a party called the EAP
 server. A third party called an EAP passthrough authenticator may
 decapsulate EAP messages from a lower layer and reencapsulate them
 into an AAA protocol. The term EAP authenticator refers to whichever
 of the passthrough authenticator or EAP server receives the lower-
 layer EAP packets. The first EAP message travels from the
 authenticator to the peer; a GSS-API message is sent from the
 initiator to acceptor to prompt the authenticator to send the first
 EAP message. The EAP peer maps onto the GSS-API initiator. The role
 of the GSS-API acceptor is split between the EAP authenticator and
 the EAP server. When these two entities are combined, the division
 resembles GSS-API acceptors in other mechanisms. When a more typical
 deployment is used and there is a passthrough authenticator, most
 context establishment takes place on the EAP server and per-message
 operations take place on the authenticator. EAP messages from the
 peer to the authenticator are called responses; messages from the
 authenticator to the peer are called requests.

 Because GSS-API applications provide guaranteed delivery of context
 tokens, the EAP retransmission timeout MUST be infinite and the EAP
 layer MUST NOT retransmit a message.

 This specification permits a GSS-API acceptor to hand-off the
 processing of the EAP packets to a remote EAP server by using AAA
 protocols such as RADIUS, RadSec or Diameter. In this case, the GSS-
 API acceptor acts as an EAP pass-through authenticator. The pass-
 through authenticator is responsible for retransmitting AAA messages
 if a response is not received from the AAA server. If a response
 cannot be recieved, then the authenticator generates an error at the
 GSS-API level. If EAP authentication is successful, and where the
 chosen EAP method supports key derivation, EAP keying material may
 also be derived. If an AAA protocol is used, this can also be used
 to replicate the EAP Key from the EAP server to the EAP
 authenticator.

 See Section 5 for details of the authentication exchange.

1.3. Secure Association Protocol

 After authentication succeeds, GSS-API provides a number of per-
 message security services that can be used:

 GSS_Wrap() provides integrity and optional confidentiality for a
 message.

Hartman & Howlett Expires February 14, 2013 [Page 6]

Internet-Draft EAP GSS-API August 2012

 GSS_GetMIC() provides integrity protection for data sent
 independently of the GSS-API

 GSS_Pseudo_random [RFC4401] provides key derivation functionality.

 These services perform a function similar to secure association
 protocols in network access. Like secure association protocols,
 these services need to be performed near the authenticator/acceptor
 even when a AAA protocol is used to separate the authenticator from
 the EAP server. The key used for these per-message services is
 derived from the EAP key; the EAP peer and authenticator derive this
 key as a result of a successful EAP authentication. In the case that
 the EAP authenticator is acting as a pass-through it obtains it via
 the AAA protocol. See Section 6 for details.

Hartman & Howlett Expires February 14, 2013 [Page 7]

Internet-Draft EAP GSS-API August 2012

2. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Hartman & Howlett Expires February 14, 2013 [Page 8]

Internet-Draft EAP GSS-API August 2012

3. EAP Channel Binding and Naming

 EAP authenticates a user to a realm. The peer knows that it has
 exchanged authentication with an EAP server in a given realm. Today,
 the peer does not typically know which NAS it is talking to securely.
 That is often fine for network access. However privileges to
 delegate to a chat server seem very different than privileges for a
 file server or trading site. Also, an EAP peer knows the identity of
 the home realm, but perhaps not even the visited realm.

 In contrast, GSS-API takes a name for both the initiator and acceptor
 as inputs to the authentication process. When mutual authentication
 is used, both parties are authenticated. The granularity of these
 names is somewhat mechanism dependent. In the case of the Kerberos
 mechanism, the acceptor name typically identifies both the protocol
 in use (such as IMAP) and the specific instance of the service being
 connected to. The acceptor name almost always identifies the
 administrative domain providing service.

 An EAP GSS-API mechanism needs to provide GSS-API naming semantics in
 order to work with existing GSS-API applications. EAP channel
 binding [I-D.ietf-emu-chbind] is used to provide GSS-API naming
 semantics. Channel binding sends a set of attributes from the peer
 to the EAP server either as part of the EAP conversation or as part
 of a secure association protocol. In addition, attributes are sent
 in the backend authentication protocol from the authenticator to the
 EAP server. The EAP server confirms the consistency of these
 attributes. Confirming attribute consistency also involves checking
 consistency against a local policy database as discussed in
 Section 3.5. In particular, the peer sends the name of the acceptor
 it is authenticating to as part of channel binding. The acceptor
 sends its full name as part of the backend authentication protocol.
 The EAP server confirms consistency of the names.

 EAP channel binding is easily confused with a facility in GSS-API
 also called channel binding. GSS-API channel binding provides
 protection against man-in-the-middle attacks when GSS-API is used as
 authentication inside some tunnel; it is similar to a facility called
 cryptographic binding in EAP. See [RFC5056] for a discussion of the
 differences between these two facilities and Section 6.1 for how GSS-
 API channel binding is handled in this mechanism.

3.1. Mechanism Name Format

 Before discussing how the initiator and acceptor names are validated
 in the AAA infrastructure, it is necessary to discuss what composes a
 name for an EAP GSS-API mechanism. GSS-API permits several types of
 generic names to be imported using GSS_Import_name(). Once a

Hartman & Howlett Expires February 14, 2013 [Page 9]

Internet-Draft EAP GSS-API August 2012

 mechanism is chosen, these names are converted into a mechanism-
 specific name called a "Mechanism Name". Note that a Mechanism Name
 is the name of an initiator or acceptor, not of a GSS-API mechanism.
 This section first discusses the mechanism name form and then
 discusses what name forms are supported.

 The string representation of the GSS-EAP mechanism name has the
 following ABNF [RFC5234] representation:

 char-normal = %x00-2E/%x30-3F/%x41-5B/%x5D-FF
 char-escaped = "\" %x2F / "\" %x40 / "\" %x5C
 name-char = char-normal / char-escaped
 name-string = 1*name-char
 user-or-service = name-string
 host = [name-string]
 realm = name-string
 service-specific = name-string
 service-specifics = service-specific 0*("/" service-specifics)
 name = user-or-service ["/" host ["/" service-specifics]] ["@"
 realm]

 Special characters appearing in a name can be backslash escaped to
 avoid their special meanings. For example "\\" represents a literal
 backslash. This escaping mechanism is a property of the string
 representation; if the components of a name are transported in some
 mechanism that will keep them separate without backslash escaping,
 then backslash SHOULD have no special meaning.

 The user-or-service component is similar to the portion of a network
 access identifier (NAI) before the ’@’ symbol for initiator names and
 the service name from the registry of GSS-API host-based services in
 the case of acceptor names [GSS-IANA]. The NAI specification
 provides rules for encoding and string preparation in order to
 support internationalization of NAIs; implementations of this
 mechanism MUST NOT prepare the user-or-service according to these
 rules; see Section 3.2 for internationalization of this mechanism.
 The host portion is empty for initiators and typically contains the
 domain name of the system on which an acceptor service is running.
 Some services MAY require additional parameters to distinguish the
 entity being authenticated against. Such parameters are encoded in
 the service-specifics portion of the name. The EAP server MUST
 reject authentication of any acceptor name that has a non-empty
 service-specifics component unless the EAP server understands the
 service-specifics and authenticates them. The interpretation of the
 service-specifics is scoped by the user-or-service portion. The
 realm is similar to the the realm portion of a NAI for initiator
 names; again the NAI specification’s internationalization rules MUST
 NOT be applied to the realm. The realm is the administrative realm

Hartman & Howlett Expires February 14, 2013 [Page 10]

Internet-Draft EAP GSS-API August 2012

 of a service for an acceptor name.

 The string representation of this name form is designed to be
 generally compatible with the string representation of Kerberos names
 defined in [RFC1964].

 The GSS_C_NT_USER_NAME form represents the name of an individual
 user. From the standpoint of this mechanism it may take the form
 either of an undecorated user name or a name semantically similar to
 a network access identifier (NAI) [RFC4282]. The name is split at
 the first at-sign (’@’) into the part preceeding the realm which is
 the user-or-service portion of the mechanism name and the realm
 portion which is the realm portion of the mechanism name.

 The GSS_C_NT_HOSTBASED_SERVICE name form represents a service running
 on a host; it is textually represented as "service@host". This name
 form is required by most SASL profiles and is used by many existing
 applications that use the Kerberos GSS-API mechanism. While support
 for this name form is critical, it presents an interesting challenge
 in terms of EAP channel binding. Consider a case where the server
 communicates with a "server proxy," or a AAA server near the server.
 That server proxy communicates with the EAP server. The EAP server
 and server proxy are in different administrative realms. The server
 proxy is in a position to verify that the request comes from the
 indicated host. However the EAP server cannot make this
 determination directly. So, the EAP server needs to determine
 whether to trust the server proxy to verify the host portion of the
 acceptor name. This trust decision depends both on the host name and
 the realm of the server proxy. In effect, the EAP server decides
 whether to trust that the realm of the server proxy is the right
 realm for the given hostname and then makes a trust decision about
 the server proxy itself. The same problem appears in Kerberos:
 there, clients decide what Kerberos realm to trust for a given
 hostname. The service portion of this name is imported into the
 user-or-service portion of the mechanism name; the host portion is
 imported into the host portion of the mechanism name. The realm
 portion is empty. However, authentication will typically fail unless
 some AAA component indicates the realm to the EAP server. If the
 application server knows its realm, then it should be indicated in
 the outgoing AAA request. Otherwise, a proxy SHOULD add the realm.
 An alternate form of this name type MAY be used on acceptors; in this
 case the name form is "service" with no host component. This is
 imported with the service as user-or-service and an empty host and
 realm portion. This form is useful when a service is unsure which
 name an initiator knows it by.

 If the null name type or the GSS_EAP_NT_EAP_NAME (OID
 1.3.6.1.5.5.15.2.1) (see Section 7.1) is imported, then the string

Hartman & Howlett Expires February 14, 2013 [Page 11]

Internet-Draft EAP GSS-API August 2012

 representation above should be directly imported. Mechanisms MAY
 support the GSS_KRB5_NT_KRB5_PRINCIPAL_NAME name form with the OID
 {iso(1) member-body(2) United States(840) mit(113554) infosys(1)
 gssapi(2) krb5(2) krb5_name(1)}. In many circumstances, Kerberos
 GSS-API mechanism names will behave as expected when used with the
 GSS-API EAP mechanism, but there are some differences that may cause
 some confusion. If an implementation does support importing Kerberos
 names it SHOULD fail the import if the Kerberos name is not
 syntactically a valid GSS-API EAP mechanism name as defined in this
 section.

3.2. Internationalization of Names

 For the most part, GSS-EAP names are transported in other protocols;
 those protocols define the internationalization semantics. For
 example, if an AAA server wishes to communicate the user-or-service
 portion of the initiator name to an acceptor, it does so using
 existing mechanisms in the AAA protocol. Existing
 internationalization rules are applied. Similarly, within an
 application, existing specifications such as [RFC5178] define the
 encoding of names that are imported and displayed with the GSS-API.

 This mechanism does introduce a few cases where name components are
 sent. In these cases the encoding of the string is UTF-8. Senders
 SHOULD NOT normalize or map strings before sending. These strings
 include RADIUS attributes introduced in Section 3.4.

 When comparing the host portion of a GSS-EAP acceptor name supplied
 in EAP channel binding by a peer to that supplied by an acceptor, EAP
 servers SHOULD prepare the host portion according to [RFC5891] prior
 to comparison. Applications MAY prepare domain names prior to
 importing them into this mechanism.

3.3. Exported Mechanism Names

 GSS-API provides the GSS_Export_name call. This call can be used to
 export the binary representation of a name. This name form can be
 stored on access control lists for binary comparison.

 The exported name token MUST use the format described in section 3.2
 of RFC 2743. The mechanism specific portion of this name token is
 the string format of the mechanism name described in Section 3.1.

 RFC 2744 [RFC2744] places the requirement that the result of
 importing a name, canonicalizing it to a Mechanism Name and then
 exporting it needs to be the same as importing that name, obtaining
 credentials for that principal, initiating a context with those
 credentials and exporting the name on the acceptor. In practice, GSS

Hartman & Howlett Expires February 14, 2013 [Page 12]

Internet-Draft EAP GSS-API August 2012

 mechanisms often, but not always meet this requirement. For names
 expected to be used as initiator names, this requirement is met.
 However, permitting empty host and realm components when importing
 hostbased services may make it possible for an imported name to
 differ from the exported name actually used. Other mechanisms such
 as Kerberos have similar situations where imported and exported names
 may differ.

3.4. Acceptor Name RADIUS AVP

 See Section 7.4 for registrations of RADIUS attribute types to carry
 the acceptor service name. All the attribute types registered in
 that section are strings. See Section 3.1 for details of the values
 in a name.

 If RADIUS is used as an AAA transport, the acceptor MUST send the
 acceptor name in these attribute types. That is, the acceptor
 decomposes its name and sends any non-empty portion as a RADIUS
 attribute. With the exception of the service-specifics portion of
 the name, the backslash escaping mechanism is not used in RADIUS
 attributes; backslash has no special meaning. In the service-
 specifics portion, a literal "/" separates components. In this one
 attribute, "\/" indicates a slash character that does not separate
 components and "\\" indicates a literal backslash character.

 The initiator MUST require that the EAP method in use support channel
 binding and MUST send the acceptor name as part of the channel
 binding data. The client MUST NOT indicate mutual authentication in
 the result of GSS_Init_Sec_Context unless all name elements that the
 client supplied are in a successful channel binding response. For
 example, if the client supplied a hostname in channel binding data,
 the hostname MUST be in a successful channel binding response.

 If an empty target name is supplied to GSS_Init_Sec_Context, the
 initiator MUST fail context establishment unless the acceptor
 supplies the acceptor name response (Section 5.4.3). If a null
 target name is supplied, the initiator MUST use this response to
 populate EAP channel bindings.

3.5. Proxy Verification of Acceptor Name

 Proxies may play a role in verification of the acceptor identity.
 For example, an AAA proxy near the acceptor may be in a position to
 verify the acceptor hostname, while the EAP server is likely to be
 too distant to reliably verify this on its own.

 The EAP server or some proxy trusted by the EAP server is likely to
 be in a position to verify the acceptor realm. In effect, this proxy

Hartman & Howlett Expires February 14, 2013 [Page 13]

Internet-Draft EAP GSS-API August 2012

 is confirming that the right AAA credential is used for the claimed
 realm and thus that the acceptor is in the organization it claims to
 be part of. This proxy is also typically trusted by the EAP server
 to make sure that the hostname claimed by the acceptor is a
 reasonable hostname for the realm of the acceptor.

 A proxy close to the EAP server is unlikely to be in a position to
 confirm that the acceptor is claiming the correct hostname. Instead
 this is typically delegated to a proxy near the acceptor. That proxy
 is typically expected to verify the acceptor hostname and to verify
 the appropriate AAA credential for that host is used. Such a proxy
 may insert the acceptor realm if it is absent, permitting realm
 configuration to be at the proxy boundary rather than on acceptors.

 Ultimately specific proxy behavior is a matter for deployment. The
 EAP server MUST assure that the appropriate validation has been done
 before including acceptor name attributes in a successful channel
 binding response. If the acceptor service is included the EAP server
 asserts that the service is plausible for the acceptor. If the
 acceptor hostname is included the EAP server asserts that the
 acceptor hostname is verified. If the realm is included the EAP
 server asserts that the realm has been verified, and if the hostname
 was also included, that the realm and hostname are consistent. Part
 of this verification MAY be delegated to proxies, but the EAP server
 configuration MUST guarantee that the combination of proxies meets
 these requirements. Typically such delegation will involve business
 or operational measures such as cross-organizational agreements as
 well as technical measures.

 It is likely that future technical work will be needed to communicate
 what verification has been done by proxies along the path. Such
 technical measures will not release the EAP server from its
 responsibility to decide whether proxies on the path should be
 trusted to perform checks delegated to them. However technical
 measures could prevent misconfigurations and help to support diverse
 environments.

Hartman & Howlett Expires February 14, 2013 [Page 14]

Internet-Draft EAP GSS-API August 2012

4. Selection of EAP Method

 EAP does not provide a facility for an EAP server to advertise what
 methods are available to a peer. Instead, a server starts with its
 preferred method selection. If the peer does not accept that method,
 the peer sends a NAK response containing the list of methods
 supported by the client.

 Providing multiple facilities to negotiate which security mechanism
 to use is undesirable. Section 7.3 of [RFC4462]describes the problem
 referencing the SSH key exchange negotiation and the SPNEGO GSS-API
 mechanism. If a client preferred an EAP method A, a non-EAP
 authentication mechanism B, and then an EAP method C, then the client
 would have to commit to using EAP before learning whether A is
 actually supported. Such a client might end up using C when B is
 available.

 The standard solution to this problem is to perform all the
 negotiation at one layer. In this case, rather than defining a
 single GSS-API mechanism, a family of mechanisms should be defined.
 Each mechanism corresponds to an EAP method. The EAP method type
 should be part of the GSS-API OID. Then, a GSS-API rather than EAP
 facility can be used for negotiation.

 Unfortunately, using a family of mechanisms has a number of problems.
 First, GSS-API assumes that both the initiator and acceptor know the
 entire set of mechanisms that are available. Some negotiation
 mechanisms are driven by the client; others are driven by the server.
 With EAP GSS-API, the acceptor does not know what methods the EAP
 server implements. The EAP server that is used depends on the
 identity of the client. The best solution so far is to accept the
 disadvantages of multi-layer negotiation and commit to using EAP GSS-
 API before a specific EAP method. This has two main disadvantages.
 First, authentication may fail when other methods might allow
 authentication to succeed. Second, a non-optimal security mechanism
 may be chosen.

Hartman & Howlett Expires February 14, 2013 [Page 15]

Internet-Draft EAP GSS-API August 2012

5. Context Tokens

 All context establishment tokens emitted by the EAP mechanism SHALL
 have the framing described in section 3.1 of [RFC2743], as
 illustrated by the following pseudo-ASN.1 structures:

 GSS-API DEFINITIONS ::=
 BEGIN

 MechType ::= OBJECT IDENTIFIER
 -- representing EAP mechanism
 GSSAPI-Token ::=
 -- option indication (delegation, etc.) indicated within
 -- mechanism-specific token
 [APPLICATION 0] IMPLICIT SEQUENCE {
 thisMech MechType,
 innerToken ANY DEFINED BY thisMech
 -- contents mechanism-specific
 -- ASN.1 structure not required
 }
 END

 The innerToken field starts with a 16-bit network byte order token
 type identifier. The remainder of the innerToken field is a set of
 type-length-value subtokens. The following figure describes the
 structure of the inner token:

 +----------------+--------------------------+
 | Octet Position | Description |
 +----------------+--------------------------+
 | 0..1 | token ID |
 | | |
 | 2..5 | first subtoken type |
 | | |
 | 6..9 | length of first subtoken |
 | | |
 | 10..10+n-1 | first subtoken body |
 | | |
 | 10+n..10+n+3 | second subtoken type |
 +----------------+--------------------------+

 The inner token continues with length, second subtoken body, and so
 forth. If a subtoken type is present, its length and body MUST be
 present.

 Structure of Inner Token

 The length is a four-octet length of the subtoken body in network

Hartman & Howlett Expires February 14, 2013 [Page 16]

Internet-Draft EAP GSS-API August 2012

 byte order. The length does not include the length of the type field
 or the length field; the length only covers the body.

 Tokens from the initiator to acceptor use an inner token type with ID
 06 01; tokens from acceptor to initiator use an inner token type with
 ID 06 02. These token types are registered in the registry of RFC
 4121 token types; see Section 7.2.

 See Section 5.7 for the encoding of a complete token. The following
 sections discuss how mechanism OIDs are chosen and the state machine
 that defines what subtokens are permitted at each point in the
 context establishment process.

5.1. Mechanisms and Encryption Types

 This mechanism family uses the security services of the Kerberos
 cryptographic framework [RFC3961]. The root of the OID ARC for
 mechanisms described in this document is 1.3.6.1.5.5.15.1.1; a
 Kerberos encryption type number [RFC3961] is appended to that root
 OID to form a mechanism OID. As such, a particular encryption type
 needs to be chosen. By convention, there is a single object
 identifier arc for the EAP family of GSS-API mechanisms. A specific
 mechanism is chosen by adding the numeric Kerberos encryption type
 number to the root of this arc. However, in order to register the
 SASL name, the specific usage with a given encryption type needs to
 be registered. This document defines the EAP-AES128 GSS-API
 mechanism.

5.2. Processing received tokens

 Whenever a context token is received, the receiver performs the
 following checks. First the receiver confirms the object identifier
 is that of the mechanism being used. The receiver confirms that the
 token type corresponds to the role of the peer: acceptors will only
 process initiator tokens and initiators will only process acceptor
 tokens.

 Implementations of this mechanism maintain a state machine for the
 context establishment process. Both the initiator and acceptor start
 out in the initial state; see Section 5.4 for a description of this
 state. Associated with each state are a set of subtoken types that
 are processed in that state and rules for processing these subtoken
 types. The reciever examines the subtokens in order, processing any
 that are appropriate for the current state. Unknown subtokens or
 subtokens that are not expected in the current state are ignored if
 their critical bit (see below) is clear.

 A state may have a set of required subtoken types. If a subtoken

Hartman & Howlett Expires February 14, 2013 [Page 17]

Internet-Draft EAP GSS-API August 2012

 type is required by the current state but no subtoken of that type is
 present, then the context establishment MUST fail.

 The most-significant bit (0x80000000) in a subtoken type is the
 critical bit. If a subtoken with this bit set in the type is
 received, the receiver MUST fail context establishment unless the
 subtoken is understood and processed for the current state.

 The subtoken type MUST be unique within a given token.

5.3. Error Subtokens

 The acceptor may always end the exchange by generating an error
 subtoken. The error subtoken has the following format:

 +--------+--+
 | Pos | Description |
 +--------+--+
0..3	0x80 00 00 01
4..7	length of error token
8..11	major status from RFC 2744 as 32-bit network byte order
12..15	GSS EAP error code as 32-bit network byte order; see
	Section 7.6
 +--------+--+

 Initiators MUST ignore octets beyond the GSS EAP error code for
 future extensibility. As indicated, the error token is always marked
 critical.

5.4. Initial State

 Both the acceptor and initiator start the context establishment
 process in the initial state.

 The initiator sends a token to the acceptor. It MAY be empty; no
 subtokens are required in this state. Alternatively the initiator
 MAY include a vendor ID subtoken or an acceptor name request
 subtoken.

 The acceptor responds to this message. It MAY include an acceptor
 name response subtoken. It MUST include a first eap request; this is
 an EAP request/identity message (see Section 5.5.1 for the format of
 this subtoken).

 The initiator and acceptor then transition to authenticate state.

Hartman & Howlett Expires February 14, 2013 [Page 18]

Internet-Draft EAP GSS-API August 2012

5.4.1. Vendor Subtoken

 The vendor ID token has type 0x0000000B and the following structure:

 +-------------+------------------------+
 | Pos | Description |
 +-------------+------------------------+
 | 0..3 | 0x0000000B |
 | | |
 | 4..7 | length of vendor token |
 | | |
 | 8..8+length | Vendor ID string |
 +-------------+------------------------+

 The vendor ID string is an UTF-8 string describing the vendor of this
 implementation. This string is unstructured and for debugging
 purposes only.

5.4.2. Acceptor Name Request

 The acceptor name request token is sent from the initiator to the
 acceptor indicating that the initiator wishes a particular acceptor
 name. This is similar to TLS Server Name Indication [RFC6066] which
 permits a client to indicate which one of a number of virtual
 services to contact. The structure is as follows:

 +------+------------------------------+
 | Pos | Description |
 +------+------------------------------+
 | 0..3 | 0x00000002 |
 | | |
 | 4..7 | Length of subtoken |
 | | |
 | 8..n | string form of acceptor name |
 +------+------------------------------+

 It is likely that channel binding and thus authentication will fail
 if the acceptor does not choose a name that is a superset of this
 name. That is, if a hostname is sent, the acceptor needs to be
 willing to accept this hosntame.

5.4.3. Acceptor Name Response

 The acceptor name response subtoken indicates what acceptor name is
 used. This is useful for example if the initiator supplied no target
 name to context initialization. This allows the initiator to learn
 the acceptor name. EAP channel bindings will provide confirmation
 that the acceptor is accurately naming itself.

Hartman & Howlett Expires February 14, 2013 [Page 19]

Internet-Draft EAP GSS-API August 2012

 this token is sent from the acceptor to initiator. In the Initial
 state, this token would typically be sent if the acceptor name
 request is absent, because if the initiator already sent an acceptor
 name then the initiator knows what acceptor it wishes to contact.
 This subtoken is also sent in extensions state Section 5.6 so the
 initiator can protect against a man-in-the-middle modifying the
 acceptor name request subtoken.

 +------+------------------------------+
 | Pos | Description |
 +------+------------------------------+
 | 0..3 | 0x00000003 |
 | | |
 | 4..7 | Length of subtoken |
 | | |
 | 8..n | string form of acceptor name |
 +------+------------------------------+

5.5. Authenticate State

 In this state, the acceptor sends EAP requests to the initiator and
 the initiator generates EAP responses. The goal of the state is to
 perform a successful EAP authentication. Since the acceptor sends an
 identity request at the end of the initial state, the first half-
 round-trip in this state is a response to that request from the
 initiator.

 The EAP conversation can end in a number of ways:

 o If the EAP state machine generates an EAP success message, then
 the EAP authenticator believes the authentication is successful.
 The Acceptor MUST confirm that a key has been derived (Section
 7.10 of [RFC3748]). The acceptor MUST confirm that this success
 indication is consistent with any protected result indication for
 combined authenticators and with AAA indication of success for
 pass-through authenticators. If any of these checks fail, the
 acceptor MUST send an error subtoken and fail the context
 establishment. If these checks succeed the acceptor sends the
 success message using the EAP Request subtoken type and
 transitions to Extensions state. If the initiator receives an EAP
 Success message, it confirms that a key has been derived and that
 the EAP success is consistent with any protected result
 indication. If so, it transitions to Extensions state.
 Otherwise, it returns an error to the caller of
 GSS_Init_Sec_context without producing an output token.

 o If the acceptor receives an EAP failure, then the acceptor sends
 this in the Eap Request subtoken type. If the initiator receives

Hartman & Howlett Expires February 14, 2013 [Page 20]

Internet-Draft EAP GSS-API August 2012

 an EAP Failure, it returns GSS failure.

 o If there is some other error, the acceptor MAY return an error
 subtoken.

5.5.1. EAP Request Subtoken

 The EAP Request subtoken is sent from the acceptor to the initiator.
 This subtoken is always critical and is REQUIRED in the
 authentication state.

 +-------------+-----------------------+
 | Pos | Description |
 +-------------+-----------------------+
 | 0..3 | 0x80000005 |
 | | |
 | 4..7 | Length of EAP message |
 | | |
 | 8..8+length | EAP message |
 +-------------+-----------------------+

5.5.2. EAP Response Subtoken

 This subtoken is REQUIRED in authentication state messages from the
 initiator to the acceptor. It is always critical.

 +-------------+-----------------------+
 | Pos | Description |
 +-------------+-----------------------+
 | 0..3 | 0x80000004 |
 | | |
 | 4..7 | Length of EAP message |
 | | |
 | 8..8+length | EAP message |
 +-------------+-----------------------+

5.6. Extension State

 After EAP success, the initiator sends a token to the acceptor
 including additional subtokens that negotiate optional features or
 provide GSS-API channel binding (see Section 6.1). The acceptor then
 responds with a token to the initiator. When the acceptor produces
 its final token it returns GSS_S_COMPLETE; when the initiator
 consumes this token it returns GSS_S_COMPLETE if no errors are
 detected.

 The acceptor SHOULD send an acceptor name response (Section 5.4.3) so
 that the initiator can get a copy of the acceptor name protected by

Hartman & Howlett Expires February 14, 2013 [Page 21]

Internet-Draft EAP GSS-API August 2012

 the MIC subtoken.

 Both the initiator and acceptor MUST include and verify a MIC
 subtoken to protect the extensions exchange.

5.6.1. Flags Subtoken

 This token is sent to convey initiator flags to the acceptor. The
 flags are sent as a 32-bit integer in network byte order. The only
 flag defined so far is GSS_C_MUTUAL_FLAG, indicating that the
 initiator successfully performed mutual authentication of the
 acceptor. This flag is communicated to the acceptor because some
 protocols [RFC4462] require the acceptor to know whether the
 initiator has confirmed its identity. This flag has the value 0x2 to
 be consistent with RFC 2744.

 +-------+-----------------------+
 | Pos | Description |
 +-------+-----------------------+
 | 0..3 | 0x0000000C |
 | | |
 | 4..7 | length of flags token |
 | | |
 | 8..11 | flags |
 +-------+-----------------------+

 Initiators MUST send 4 octets of flags. Acceptors MUST ignore flag
 octets beyond the first 4 and MUST ignore flag bits other than
 GSS_C_MUTUAL_FLAG. Initiators MUST send undefined flag bits as zero.

5.6.2. GSS Channel Bindings Subtoken

 This token is always critical when sent. It is sent from the
 initiator to the acceptor. The contents of this token are an RFC
 3961 get_mic token of the application data from the GSS channel
 bindings structure passed into the context establishment call.

 +-------------+---+
 | Pos | Description |
 +-------------+---+
 | 0..3 | 0x80000006 |
 | | |
 | 4..7 | length of token |
 | | |
 | 8..8+length | get_mic of channel binding application data |
 +-------------+---+

 Again, only the application data is sent in the channel binding. Any

Hartman & Howlett Expires February 14, 2013 [Page 22]

Internet-Draft EAP GSS-API August 2012

 initiator and acceptor addresses passed by an application into
 context establishment calls are ignored and not sent over the wire.
 The checksum type of the get_mic token SHOULD be the mandatory to
 implement checksum type of the Context Root Key (CRK.) The key to
 use is the CRK and the key usage is 60 (KEY_USAGE_GSSEAP_CHBIND_MIC).
 An acceptor MAY accept any MIC in the channel bindings subtoken if
 the channel bindings input to GSS_Accept_Sec_context is not provided.
 If the channel binding input to GSS_Accept_Sec_context is provided,
 the acceptor MUST return failure if the channel binding MIC in a
 received channel binding subtoken fails to verify.

 The initiator MUST send this token if channel bindings including
 application data are passed into GSS_Init_Sec_context and MUST NOT
 send this token otherwise.

5.6.3. MIC Subtoken

 This token MUST be the last subtoken in the tokens sent in Extensions
 state. This token is sent both by the initiator and acceptor.

 +-------------+--+
 | Pos | Description |
 +-------------+--+
 | 0..3 | 0x8000000D for initiator 0x8000000E for acceptor |
 | | |
 | 4..7 | Length of RFC 3961 MIC token |
 | | |
 | 8..8+length | RFC 3961 result of get_mic |
 +-------------+--+

 As with any call to get_mic, a token is produced as described in RFC
 3961 using the CRK Section 6 as the key and the mandatory checksum
 type for the encryption type of the CRK as the checksum type. The
 key usage is 61 (KEY_USAGE_GSSEAP_ACCTOKEN_MIC) for the subtoken from
 the acceptor to the initiator and 62 (KEY_USAGE_GSSEAP_INITTOKEN_MIC)
 for the subtoken from the initiator to the acceptor. The input is as
 follows:

 1. The DER-encoded object identifier of the mechanism in use; this
 value starts with 0x06 (the tag for object identifier). When
 encoded in an RFC 2743 context token, the object identifier is
 preceeded by the tag and length for [Application 0] SEQUENCE.
 This tag and the length of the overall token is not included;
 only the tag, length and value of the object identifier itself.

 2. A 16-bit token type in network byte order of the RFC 4121 token
 identifier (0x0601 for initiator, 0x0602 for acceptor).

Hartman & Howlett Expires February 14, 2013 [Page 23]

Internet-Draft EAP GSS-API August 2012

 3. For each subtoken other than the MIC subtoken itself in the order
 the subtokens appear in the token:

 1. A four octet subtoken type in network byte order

 2. A four byte length in network byte order

 3. Length octets of value from that subtoken

5.7. Example Token

 +----+------+----+------+-----+-------------------------+
 | 60 | 23 | 06 | 09 | 2b | 06 01 05 05 0f 01 01 11 |
 +----+------+----+------+-----+-------------------------+
 |App0|Token |OID |OID | 1 3 | 6 1 5 5 15 1 1 17 |
 |Tag |length|Tag |length| Mechanism object id |
 +----+------+----+------+-------------------------------+

 +----------+-------------+-------------+
 | 06 01 | 00 00 00 02 | 00 00 00 0e |
 +----------+-------------|-------------|
 |Initiator | Acceptor | Length |
 |context | name | (14 octets) |
 |token id | request | |
 +----------+-------------+-------------+

 +---+
 | 68 6f 73 74 2f 6c 6f 63 61 6c 68 6f 73 74 |
 +---+
 | String form of acceptor name |
 | "host/localhost" |
 +---+

 Example Initiator Token

5.8. Context Options

 GSS-API provides a number of optional per-context services requested
 by flags on the call to GSS_Init_sec_context and indicated as outputs
 from both GSS_Init_sec_context and GSS_Accept_sec_context. This
 section describes how these services are handled. Which services the
 client selects in the call to GSS_Init_sec_context controls what EAP
 methods MAY be used by the client. Section 7.2 of RFC 3748 describes
 a set of security claims for EAP. As described below, the selected
 GSS options place requirements on security claims that MUST be met.

Hartman & Howlett Expires February 14, 2013 [Page 24]

Internet-Draft EAP GSS-API August 2012

 This GSS mechanism MUST only be used with EAP methods that provide
 dictionary attack resistance. Typically dictionary attack resistance
 is obtained by using an EAP tunnel method to tunnel an inner method
 in TLS.

 The EAP method MUST support key derivation. Integrity,
 confidentiality, sequencing and replay detection MUST be indicated in
 the output of GSS_Init_Sec_Context and GSS_Accept_Sec_context
 regardless of which services are requested.

 The PROT_READY service defined in Section 1.2.7 of [RFC2743] is never
 available with this mechanism. Implementations MUST NOT offer this
 flag or permit per-message security services to be used before
 context establishment.

 The EAP method MUST support mutual authentication and channel
 binding. See Section 3.4 for details on what is required for
 successful mutual authentication. Regardless of whether mutual
 authentication is requested, the implementation MUST include channel
 bindings in the EAP authentication. If mutual authentication is
 requested and successful mutual authentication takes place as defined
 in Section 3.4, the initiator MUST send a flags subtoken
 Section 5.6.1 in Extensions state.

Hartman & Howlett Expires February 14, 2013 [Page 25]

Internet-Draft EAP GSS-API August 2012

6. Acceptor Services

 The context establishment process may be passed through to a EAP
 server via a backend authentication protocol. However after the EAP
 authentication succeeds, security services are provided directly by
 the acceptor.

 This mechanism uses an RFC 3961 cryptographic key called the context
 root key (CRK). The CRK is derived from the GMSK (GSS-API MSK). The
 GMSK is the result of the random-to-key [RFC3961] operation of the
 encryption type of this mechanism consuming the appropriate number of
 bits from the EAP master session key. For example for aes128-cts-
 hmac-sha1-96, the random-to-key operation consumes 16 octets of key
 material; thus the first 16 bytes of the master session key are input
 to random-to-key to form the GMSK. If the MSK is too short,
 authentication MUST fail.

 In the following, pseudo-random is the RFC 3961 pseudo-random
 operation for the encryption type of the GMSK and random-to-key is
 the RFC 3961 random-to-key operation for the enctype of the
 mechanism. The truncate function takes the initial l bits of its
 input. The goal in constructing a CRK is to call the pseudo-random
 function enough times to produce the right number of bits of output
 and discard any excess bits of output.

 The CRK is derived from the GMSK using the following procedure

 Tn = pseudo-random(GMSK, n || "rfc4121-gss-eap")
 CRK = random-to-key(truncate(L, T0 || T1 || .. || Tn))
 L = random-to-key input size

 Where n is a 32-bit integer in network byte order starting at 0 and
 incremented to each call to the pseudo_random operation.

6.1. GSS-API Channel Binding

 GSS-API channel binding [RFC5554] is a protected facility for
 exchanging a cryptographic name for an enclosing channel between the
 initiator and acceptor. The initiator sends channel binding data and
 the acceptor confirms that channel binding data has been checked.

 The acceptor SHOULD accept any channel binding provided by the
 initiator if null channel bindings are passed into
 gss_accept_sec_context. Protocols such as HTTP Negotiate [RFC4559]
 depend on this behavior of some Kerberos implementations.

 As discussed, the GSS channel bindings subtoken is sent in the
 extensions state.

Hartman & Howlett Expires February 14, 2013 [Page 26]

Internet-Draft EAP GSS-API August 2012

6.2. Per-message security

 The per-message tokens of section 4 of RFC 4121 are used. The CRK
 SHALL be treated as the initiator sub-session key, the acceptor sub-
 session key and the ticket session key.

6.3. Pseudo Random Function

 The pseudo random function defined in [RFC4402] is used to provide
 GSS_Pseudo_Random functionality to applications.

Hartman & Howlett Expires February 14, 2013 [Page 27]

Internet-Draft EAP GSS-API August 2012

7. Iana Considerations

 This specification creates a number of IANA registries.

7.1. OID Registry

 IANA is requested to create a registry of ABFAB object identifiers
 titled "Object Identifiers for Application Bridging for federated
 Access". The initial contents of the registry are specified below.
 The registration policy is IETF review or IESG approval. Early
 allocation is permitted. IANA is requested to update the reference
 for the root of this OID delegation to point to the newly created
 registry.

Prefix: iso.org.dod.internet.security.mechanisms.abfab (1.3.6.1.5.5.15)

Decimal Name Description References
------- ---- ------------------------------------ ----------
 0 Reserved Reserved
 1 mechanisms A sub-arc containing ABFAB mechanisms
 2 nametypes A sub-arc containing ABFAB GSS-API Name Types

 NOTE: the following mechanisms registry are the root of the OID for
 the mechanism in question. As discussed in Section 5.1
 [draft-ietf-abbfab-gss-eap], a Kerberos encryption type number
 [RFC3961] is appended to the mechanism version OID below to form the
 OID of a specific mechanism.

Prefix: iso.org.dod.internet.security.mechanisms.abfab.mechanisms
 (1.3.6.1.5.5.15.1)

Decimal Name Description References
------- ---- ------------------------------------ ----------
 0 Reserved Reserved
 1 gss-eap-v1 The GSS-EAP mechanism [this spec

Prefix: iso.org.dod.internet.security.mechanisms.abfab.nametypes
 (1.3.6.1.5.5.15.2)

Decimal Name Description References
------- ---- ------------------------------------ ----------
 0 Reserved Reserved
 1 GSS_EAP_NT_EAP_NAME sect 3.1

Hartman & Howlett Expires February 14, 2013 [Page 28]

Internet-Draft EAP GSS-API August 2012

7.2. RFC 4121 Token Identifiers

 In the top level registry titled "Kerberos V GSS-API Mechanism
 Parameters," a sub-registry called "Kerberos GSS-API Token Type
 Identifiers" is created; the overall reference for this subregistry
 is section 4.1 of RFC 4121. The allocation procedure is expert
 review [RFC5226]. The expert’s primary job is to make sure that
 token type identifiers are requested by an appropriate requester for
 the RFC 4121 mechanism in which they will be used and that multiple
 values are not allocated for the same purpose. For RFC 4121 and this
 mechanism, the expert is currently expected to make allocations for
 token identifiers from documents in the IETF stream; effectively for
 these mechanisms the expert currently confirms the allocation meets
 the requirements of the IETF review process.

 The ID field is a hexadecimal token identifier specified in network
 byte order.

 The initial registrations are as follows:

 +-------+---------------------------------+-----------------------+
 | ID | Description | Reference |
 +-------+---------------------------------+-----------------------+
 | 01 00 | KRB_AP_REQ | RFC 4121 sect 4.1 |
 | | | |
 | 02 00 | KRB_AP_REP | RFC 4121 sect 4.1 |
 | | | |
 | 03 00 | KRB_ERROR | RFC 4121 sect 4.1 |
 | | | |
 | 04 04 | MIC tokens | RFC 4121 sect 4.2.6.1 |
 | | | |
 | 05 04 | wrap tokens | RFC 4121 sect 4.2.6.2 |
 | | | |
 | 06 01 | GSS-EAP initiator context token | Section 5 |
 | | | |
 | 06 02 | GSS EAP acceptor context token | Section 5 |
 +-------+---------------------------------+-----------------------+

7.3. GSS EAP Subtoken Types

 This document creates a top level registry called "The Extensible
 Authentication Protocol Mechanism for the Generic Security Services
 Application Programming Interface (GSS-EAP) Parameters". In any
 short form of that name, including any URI for this registry, it is
 important that the string GSS come before the string EAP; this will
 help to distinguish registries if EAP methods for performing GSS-API
 authentication are ever defined.

Hartman & Howlett Expires February 14, 2013 [Page 29]

Internet-Draft EAP GSS-API August 2012

 In this registry is a subregistry of subtoken types; identifiers are
 32-bit integers; the upper bit (0x80000000) is reserved as a critical
 flag and should not be indicated in the registration. Assignments of
 GSS EAP subtoken types are made by expert review. The expert is
 expected to require a public specification of the subtoken similar in
 detail to registrations given in this document. The security of GSS-
 EAP depends on making sure that subtoken information has adequate
 protection and that the overall mechanism continues to be secure.
 Examining the security and architectural consistency of the proposed
 registration is the primary responsibility of the expert.

 +------------+--------------------------+---------------+
 | Type | Description | Reference |
 +------------+--------------------------+---------------+
 | 0x00000001 | Error | Section 5.3 |
 | | | |
 | 0x0000000B | Vendor | Section 5.4.1 |
 | | | |
 | 0x00000002 | Acceptor name request | Section 5.4.2 |
 | | | |
 | 0x00000003 | Acceptor name response | Section 5.4.3 |
 | | | |
 | 0x00000005 | EAP request | Section 5.5.1 |
 | | | |
 | 0x00000004 | EAP response | Section 5.5.2 |
 | | | |
 | 0x0000000C | Flags | Section 5.6.1 |
 | | | |
 | 0x00000006 | GSS-API channel bindings | Section 5.6.2 |
 | | | |
 | 0x0000000D | Initiator MIC | Section 5.6.3 |
 | | | |
 | 0x0000000E | Acceptor MIC | Section 5.6.3 |
 +------------+--------------------------+---------------+

7.4. RADIUS Attribute Assignments

 The following RADIUS attribute type values [RFC3575] are assigned.
 The assignment rules in section 10.3 of
 [I-D.ietf-radext-radius-extensions] may be used if that specification
 is approved when IANA actions for this specification are processed.

Hartman & Howlett Expires February 14, 2013 [Page 30]

Internet-Draft EAP GSS-API August 2012

 +--------------------------------+-----------+----------------------+
 | Name | Attribute | Description |
 +--------------------------------+-----------+----------------------+
GSS-Acceptor-Service-Name	TBD1	user-or-service
		portion of name
GSS-Acceptor-Host-Name	TBD2	host portion of name
GSS-Acceptor-Service-specifics	TBD3	service-specifics
		portion of name
GSS-Acceptor-Realm-Name	TBD4	Realm portion of
		name
 +--------------------------------+-----------+----------------------+

7.5. Registration of the EAP-AES128 SASL Mechanisms

 Subject: Registration of SASL mechanisms
 EAP-AES128 and EAP-AES128-PLUS

 SASL mechanism names: EAP-AES128 and EAP-AES128-PLUS

 Security considerations: See RFC 5801 and draft-ietf-abfab-gss-eap

 Published specification (recommended): draft-ietf-abfab-gss-eap

 Person & email address to contact for further information:
 Abfab Working Group abfab@ietf.org

 Intended usage: common

 Owner/Change controller: iesg@ietf.org

 Note: This mechanism describes the GSS-EAP mechanism used with
 the aes128-cts-hmac-sha1-96 enctype. The GSS-API OID for this
 mechanism is 1.3.6.1.5.5.15.1.1.17
 As described in RFC 5801 a PLUS varient of this mechanism is
 also required.

7.6. GSS EAP Errors

 A new subregistry is created in the GSS EAP parameters registry
 titled "Error Codes". The error codes in this registry are unsigned
 32-bit numbers. Values less than or equal to 127 are assigned by
 standards action. Values 128 through 255 are assigned with the
 specification required assignment policy. Values greater than 255
 are reserved; updates to registration policy may make these values
 available for assignment and implementations MUST be prepared to

Hartman & Howlett Expires February 14, 2013 [Page 31]

Internet-Draft EAP GSS-API August 2012

 receive them.

 This table provides the initial contents of the registry.

 +-------+--+
 | Value | Description |
 +-------+--+
 | 0 | Reserved |
 | | |
 | 1 | Buffer is incorrect size |
 | | |
 | 2 | Incorrect mechanism OID |
 | | |
 | 3 | Token is corrupted |
 | | |
 | 4 | Token is truncated |
 | | |
 | 5 | Packet received by direction that sent it |
 | | |
 | 6 | Incorrect token type identifier |
 | | |
 | 7 | Unhandled critical subtoken received |
 | | |
 | 8 | Missing required subtoken |
 | | |
 | 9 | Duplicate subtoken type |
 | | |
 | 10 | Received unexpected subtoken for current state xxx |
 | | |
 | 11 | EAP did not produce a key |
 | | |
 | 12 | EAP key too short |
 | | |
 | 13 | Authentication rejected |
 | | |
 | 14 | AAA returned an unexpected message type |
 | | |
 | 15 | AAA response did not include EAP request |
 | | |
 | 16 | Generic AAA failure |
 +-------+--+

7.7. GSS EAP Context Flags

 A new sub-registry is created in the GSS EAP parameters registry.
 This registry holds registrations of flag bits sent in the flags
 subtoken Section 5.6.1. There are 32 flag bits available for
 registration represented as hexadecimal numbers from the most-

Hartman & Howlett Expires February 14, 2013 [Page 32]

Internet-Draft EAP GSS-API August 2012

 significant bit 0x80000000 to the least significant bit 0x1. The
 registration policy for this registry is IETF review or in
 exceptional cases IESG approval. The following table indicates
 initial registrations; all other values are available for assignment.

 +------+-------------------+---------------+
 | Flag | Name | Reference |
 +------+-------------------+---------------+
 | 0x2 | GSS_C_MUTUAL_FLAG | Section 5.6.1 |
 +------+-------------------+---------------+

Hartman & Howlett Expires February 14, 2013 [Page 33]

Internet-Draft EAP GSS-API August 2012

8. Security Considerations

 RFC 3748 discusses security issues surrounding EAP. RFC 5247
 discusses the security and requirements surrounding key management
 that leverages the AAA infrastructure. These documents are critical
 to the security analysis of this mechanism.

 RFC 2743 discusses generic security considerations for the GSS-API.
 RFC 4121 discusses security issues surrounding the specific per-
 message services used in this mechanism.

 As discussed in Section 4, this mechanism may introduce multiple
 layers of security negotiation into application protocols. Multiple
 layer negotiations are vulnerable to a bid-down attack when a
 mechanism negotiated at the outer layer is preferred to some but not
 all mechanisms negotiated at the inner layer; see section 7.3 of
 [RFC4462] for an example. One possible approach to mitigate this
 attack is to construct security policy such that the preference for
 all mechanisms negotiated in the inner layer falls between
 preferences for two outer layer mechanisms or falls at one end of the
 overall ranked preferences including both the inner and outer layer.
 Another approach is to only use this mechanism when it has
 specifically been selected for a given service. The second approach
 is likely to be common in practice because one common deployment will
 involve an EAP supplicant interacting with a user to select a given
 identity. Only when an identity is successfully chosen by the user
 will this mechanism be attempted.

 EAP channel binding is used to give the GSS-API initiator confidence
 in the identity of the GSS-API acceptor. Thus, the security of this
 mechanism depends on the use and verification of EAP channel binding.
 Today EAP channel binding is in very limited deployment. If EAP
 channel binding is not used, then the system may be vulnerable to
 phishing attacks where a user is diverted from one service to
 another. If the EAP method in question supports mutual
 authentication then users can only be diverted between servers that
 are part of the same AAA infrastructure. For deployments where
 membership in the AAA infrastructure is limited, this may serve as a
 significant limitation on the value of phishing as an attack. For
 other deployments, use of EAP channel binding is critical to avoid
 phishing. These attacks are possible with EAP today although not
 typically with common GSS-API mechanisms. For this reason,
 implementations are required to implement and use EAP channel
 binding; see Section 3 for details.

 The security considerations of EAP channel binding
 [I-D.ietf-emu-chbind] describe the security properties of channel
 binding. Two attacks are worth calling out here. First, when a

Hartman & Howlett Expires February 14, 2013 [Page 34]

Internet-Draft EAP GSS-API August 2012

 tunneled EAP method is used, it is critical that the channel binding
 be performed with an EAP server trusted by the peer. With existing
 EAP methods this typically requires validating the certificate of the
 server tunnel endpoint back to a trust anchor and confirming the name
 of the entity who is a subject of that certificate. EAP methods may
 suffer from bid-down attacks where an attacker can cause a peer to
 think that a particular EAP server does not support channel binding.
 This does not directly cause a problem because mutual authentication
 is only offered at the GSS-API level when channel binding to the
 server’s identity is successful. However when an EAP method is not
 vulnerable to these bid-down attacks, additional protection is
 available. This mechanism will benefit significantly from new strong
 EAP methods such as [I-D.ietf-emu-eap-tunnel-method].

 Every proxy in the AAA chain from the authenticator to the EAP server
 needs to be trusted to help verify channel bindings and to protect
 the integrity of key material. GSS-API applications may be built to
 assume a trust model where the acceptor is directly responsible for
 authentication. However, GSS-API is definitely used with trusted-
 third-party mechanisms such as Kerberos.

 RADIUS does provide a weak form of hop-by-hop confidentiality of key
 material based on using MD5 as a stream cipher. Diameter can use TLS
 or IPsec but has no mandatory-to-implement confidentiality mechanism.
 Operationally, protecting key material as it is transported between
 the IDP and RP is critical to per-message security and verification
 of GSS-API channel binding [RFC5056]. Mechanisms such as RADIUS over
 TLS [I-D.ietf-radext-radsec] provide significantly better protection
 of key material than the base RADIUS specification.

Hartman & Howlett Expires February 14, 2013 [Page 35]

Internet-Draft EAP GSS-API August 2012

9. Acknowledgements

 Luke Howard, Jim Schaad, Alejandro Perez Mendez, Alexey Melnikov and
 Sujing Zhou provided valuable reviews of this document.

 Rhys Smith provided the text for the OID registry section. Sam
 Hartman’s work on this draft has been funded by JANET.

Hartman & Howlett Expires February 14, 2013 [Page 36]

Internet-Draft EAP GSS-API August 2012

10. References

10.1. Normative References

 [GSS-IANA]
 IANA, "GSS-API Service Name Registry", <http://
 www.iana.org/assignments/gssapi-service-names/
 gssapi-service-names.xhtml>.

 [I-D.ietf-abfab-eapapplicability]
 Winter, S. and J. Salowey, "Update to the EAP
 Applicability Statement for ABFAB",
 draft-ietf-abfab-eapapplicability-00 (work in progress),
 July 2012.

 [I-D.ietf-emu-chbind]
 Hartman, S., Clancy, T., and K. Hoeper, "Channel Binding
 Support for EAP Methods", draft-ietf-emu-chbind-16 (work
 in progress), May 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC2744] Wray, J., "Generic Security Service API Version 2 :
 C-bindings", RFC 2744, January 2000.

 [RFC3575] Aboba, B., "IANA Considerations for RADIUS (Remote
 Authentication Dial In User Service)", RFC 3575,
 July 2003.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, "Extensible Authentication Protocol (EAP)",
 RFC 3748, June 2004.

 [RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
 Kerberos 5", RFC 3961, February 2005.

 [RFC4121] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
 Version 5 Generic Security Service Application Program
 Interface (GSS-API) Mechanism: Version 2", RFC 4121,
 July 2005.

 [RFC4282] Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
 Network Access Identifier", RFC 4282, December 2005.

Hartman & Howlett Expires February 14, 2013 [Page 37]

Internet-Draft EAP GSS-API August 2012

 [RFC4401] Williams, N., "A Pseudo-Random Function (PRF) API
 Extension for the Generic Security Service Application
 Program Interface (GSS-API)", RFC 4401, February 2006.

 [RFC4402] Williams, N., "A Pseudo-Random Function (PRF) for the
 Kerberos V Generic Security Service Application Program
 Interface (GSS-API) Mechanism", RFC 4402, February 2006.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5554] Williams, N., "Clarifications and Extensions to the
 Generic Security Service Application Program Interface
 (GSS-API) for the Use of Channel Bindings", RFC 5554,
 May 2009.

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891, August 2010.

10.2. Informative References

 [I-D.ietf-abfab-arch]
 Howlett, J., Hartman, S., Tschofenig, H., Lear, E., and J.
 Schaad, "Application Bridging for Federated Access Beyond
 Web (ABFAB) Architecture", draft-ietf-abfab-arch-03 (work
 in progress), July 2012.

 [I-D.ietf-emu-eap-tunnel-method]
 Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,
 "Tunnel EAP Method (TEAP) Version 1",
 draft-ietf-emu-eap-tunnel-method-03 (work in progress),
 June 2012.

 [I-D.ietf-krb-wg-gss-cb-hash-agility]
 Emery, S., "Kerberos Version 5 GSS-API Channel Binding
 Hash Agility", draft-ietf-krb-wg-gss-cb-hash-agility-10
 (work in progress), January 2012.

 [I-D.ietf-radext-radius-extensions]
 DeKok, A. and A. Lior, "Remote Authentication Dial In User
 Service (RADIUS) Protocol Extensions",
 draft-ietf-radext-radius-extensions-06 (work in progress),
 June 2012.

 [I-D.ietf-radext-radsec]

Hartman & Howlett Expires February 14, 2013 [Page 38]

Internet-Draft EAP GSS-API August 2012

 Wierenga, K., McCauley, M., Winter, S., and S. Venaas,
 "Transport Layer Security (TLS) encryption for RADIUS",
 draft-ietf-radext-radsec-12 (work in progress),
 February 2012.

 [RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism",
 RFC 1964, June 1996.

 [RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579, September 2003.

 [RFC4072] Eronen, P., Hiller, T., and G. Zorn, "Diameter Extensible
 Authentication Protocol (EAP) Application", RFC 4072,
 August 2005.

 [RFC4178] Zhu, L., Leach, P., Jaganathan, K., and W. Ingersoll, "The
 Simple and Protected Generic Security Service Application
 Program Interface (GSS-API) Negotiation Mechanism",
 RFC 4178, October 2005.

 [RFC4422] Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [RFC4462] Hutzelman, J., Salowey, J., Galbraith, J., and V. Welch,
 "Generic Security Service Application Program Interface
 (GSS-API) Authentication and Key Exchange for the Secure
 Shell (SSH) Protocol", RFC 4462, May 2006.

 [RFC4559] Jaganathan, K., Zhu, L., and J. Brezak, "SPNEGO-based
 Kerberos and NTLM HTTP Authentication in Microsoft
 Windows", RFC 4559, June 2006.

 [RFC5178] Williams, N. and A. Melnikov, "Generic Security Service
 Application Program Interface (GSS-API)
 Internationalization and Domain-Based Service Names and
 Name Type", RFC 5178, May 2008.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",
 RFC 5247, August 2008.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

Hartman & Howlett Expires February 14, 2013 [Page 39]

Internet-Draft EAP GSS-API August 2012

Appendix A. Pre-Publication RADIUS VSA

 As described in Section 3.4, RADIUS attributes are used to carry the
 acceptor name when this family of mechanisms is used with RADIUS.
 Prior to publication of this specification, a vendor-specific RADIUS
 attribute was used. This non-normative appendix documents that
 attribute as it may be seen from older implementations.

 Prior to IANA assignment, GSS-EAP used a RADIUS vendor-specific
 attribute for carrying the acceptor name. The VSA with enterprise ID
 25622 is formatted as a VSA according to the recommendation in the
 RADIUS specification. The following sub-attributes are defined:

 +--------------------------------+-----------+----------------------+
 | Name | Attribute | Description |
 +--------------------------------+-----------+----------------------+
GSS-Acceptor-Service-Name	128	user-or-service
		portion of name
GSS-Acceptor-Host-Name	129	host portion of name
GSS-Acceptor-Service-specifics	130	service-specifics
		portion of name
GSS-Acceptor-Realm-Name	131	Realm portion of
		name
 +--------------------------------+-----------+----------------------+

Hartman & Howlett Expires February 14, 2013 [Page 40]

Internet-Draft EAP GSS-API August 2012

Authors’ Addresses

 Sam Hartman (editor)
 Painless Security

 Email: hartmans-ietf@mit.edu

 Josh Howlett
 JANET

 Email: josh.howlett@ja.net

Hartman & Howlett Expires February 14, 2013 [Page 41]

Network Working Group S. Hartman
Internet-Draft Painless Security
Intended status: Standards Track J. Howlett
Expires: May 18, 2013 JANET(UK)
 November 14, 2012

 Name Attributes for the GSS-API EAP mechanism
 draft-ietf-abfab-gss-eap-naming-07

Abstract

 The naming extensions to the Generic Security Services Application
 Programming interface provide a mechanism for applications to
 discover authorization and personalization information associated
 with GSS-API names. The Extensible Authentication Protocol GSS-API
 mechanism allows an Authentication/Authorization/Accounting peer to
 provide authorization attributes along side an authentication
 response. It also provides mechanisms to process Security Assertion
 Markup Language (SAML) messages provided in the AAA response. This
 document describes the necessary information to use the naming
 extensions API to access that information.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 18, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Hartman & Howlett Expires May 18, 2013 [Page 1]

Internet-Draft GSS EAP Name Attributes November 2012

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Requirements notation . 4
 3. Naming Extensions and SAML 5
 4. Federated Context . 6
 5. Name Attributes for GSS-EAP 8
 6. Names of SAML Attributes in the Federated Context 9
 6.1. Assertions . 9
 6.2. SAML Attributes . 9
 6.3. SAML Name Identifiers 10
 7. Security Considerations 11
 8. IANA Considerations . 12
 8.1. Registration of the GSS URN Namespace 12
 9. Acknowledgements . 14
 10. References . 15
 10.1. Normative References 15
 10.2. Informative References 16
 Authors’ Addresses . 17

Hartman & Howlett Expires May 18, 2013 [Page 2]

Internet-Draft GSS EAP Name Attributes November 2012

1. Introduction

 The naming extensions [I-D.ietf-kitten-gssapi-naming-exts] to the
 Generic Security Services Application Programming interface (GSS-API)
 [RFC2743] provide a mechanism for applications to discover
 authorization and personalization information associated with GSS-API
 names. The Extensible Authentication Protocol GSS-API mechanism
 [I-D.ietf-abfab-gss-eap] allows an Authentication/Authorization/
 Accounting (AAA) peer to provide authorization attributes along side
 an authentication response. It also provides mechanisms to process
 Security Assertion Markup Language (SAML) messages provided in the
 AAA response. Other mechanisms such as SAML EC
 [I-D.ietf-kitten-sasl-saml-ec] also support SAML assertions and
 attributes carried in the GSS-API. This document describes the
 necessary information to use the naming extensions API to access SAML
 assertions in the federated context and AAA attributes.

 The semantics of setting attributes defined in this specification are
 undefined and left to future work.

Hartman & Howlett Expires May 18, 2013 [Page 3]

Internet-Draft GSS EAP Name Attributes November 2012

2. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Hartman & Howlett Expires May 18, 2013 [Page 4]

Internet-Draft GSS EAP Name Attributes November 2012

3. Naming Extensions and SAML

 SAML assertions can carry attributes describing properties of the
 subject of the assertion. For example, an assertion might carry an
 attribute describing the organizational affiliation or e-mail address
 of a subject. According to Section 8.2 and 2.7.3.1 of
 [OASIS.saml-core-2.0-os], the name of an attribute has two parts.
 The first is a Universal Resource Identifier (URI) describing the
 format of the name. The second part, whose form depends on the
 format URI, is the actual name. GSS-API name attributes may take a
 form starting with a URI describing the form of the name; the rest of
 the name is specified by that URI.

 SAML attributes carried in GSS-API names are named with three parts.
 The first is a Universal Resource Name (URN) indicating that the name
 is a SAML attribute and describing the context (Section 4). This URN
 is followed by a space, the URI indicating the format of the SAML
 name, a space and the SAML attribute name. The URI indicating the
 format of the SAML attribute name is not optional and MUST be
 present.

 SAML attribute names may not be globally unique. Many names that are
 named by URNs or URIs are likely to have semantics independent of the
 issuer. However other name formats, including unspecified name
 formats, make it easy for two issuers to choose the same name for
 attributes with different semantics. Attributes using the federated
 context Section 4 are issued by the same party performing the
 authentication. So, based on who is the subject of the name, the
 semantics of the attribute can be determined.

Hartman & Howlett Expires May 18, 2013 [Page 5]

Internet-Draft GSS EAP Name Attributes November 2012

4. Federated Context

 GSS-API naming extensions have the concept of an authenticated name
 attribute. The mechanism guarantees that the contents of an
 authenticated name attribute are an authenticated statement from the
 trusted source of the peer credential. The fact that an attribute is
 authenticated does not imply that the trusted source of the peer
 credential is authorized to assert the attribute.

 In the federated context, the trusted source of the peer credential
 is typically some identity provider. In the GSS EAP mechanism,
 information is combined from AAA and SAML sources. The SAML IDP and
 home AAA server are assumed to be in the same trust domain. However,
 this trust domain is not typically the same as the trust domain of
 the service. With other SAML mechanisms using this specification,
 the SAML assertion also comes from the party performing
 authentication. Typically, the IDP is run by another organization in
 the same federation. The IDP is trusted to make some statements,
 particularly related to the context of a federation. For example, an
 academic federation’s participants would typically trust an IDP’s
 assertions about whether someone was a student or a professor.
 However that same IDP would not typically be trusted to make
 assertions about local entitlements such as group membership. Thus,
 a service MUST make a policy decision about whether the IDP is
 permitted to assert a particular attribute and about whether the
 asserted value is acceptable. This policy can be implemented as
 local configuration on the service, as rules in AAA proxies, or
 through other deployment-specific mechanisms.

 In contrast, attributes in an enterprise context are often verified
 by a central authentication infrastructure that is trusted to assert
 most or all attributes. For example, in a Kerberos infrastructure,
 the KDC typically indicates group membership information for clients
 to a server using KDC-authenticated authorization data.

 The context of an attribute is an important property of that
 attribute; trust context is an important part of this overall
 context. In order for applications to distinguish the context of
 attributes, attributes with different context need different names.
 This specification defines attribute names for SAML and AAA
 attributes in the federated context.

 These names MUST NOT be used for attributes issued by a party other
 than one closely associated with the source of credentials unless the
 source of credentials is re-asserting the attributes. For example, a
 source of credentials can consult whatever sources of attributes it
 chooses, but acceptors can assume attributes in the federated context
 are from the source of credentials. This requirement is typically

Hartman & Howlett Expires May 18, 2013 [Page 6]

Internet-Draft GSS EAP Name Attributes November 2012

 enforced in mechanism specifications. For example
 [I-D.ietf-abfab-aaa-saml] provides enough information thatwe know the
 attributes it carries today are in the federated context. Similarly,
 we know that the requirements of this paragraph are met by SAML
 mechanisms where the assertion is the means of authentication.

Hartman & Howlett Expires May 18, 2013 [Page 7]

Internet-Draft GSS EAP Name Attributes November 2012

5. Name Attributes for GSS-EAP

 This section describes how RADIUS attributes received in an access-
 accept message by the GSS-EAP [I-D.ietf-abfab-gss-eap] mechanism are
 named. The use of attributes defined in this section for other
 RADIUS messages or prior to the access-accept message is undefined at
 this time. Future specifations can explore these areas giving
 adequate weight to backward compatibility. In particular, this
 specification defines the meaning of these attributes for the
 src_name output of GSS_Accept_sec_context after that function returns
 GSS_S_COMPLETE. Attributes MAY be absent or values MAY change in
 other circumstances; future specifications MAY define this behavior.

 The first portion of the name is urn:ietf:params:gss:radius-attribute
 (a URN indicating that this is a GSS-EAP RADIUS AVP). This is
 followed by a space and a numeric RADIUS name as described by section
 2.6 of [I-D.ietf-radext-radius-extensions]. For example the name of
 the User-Name attribute is "urn:ietf:params:gss:radius-attribute 1".
 The name of extended type 1 within type 241 would be
 "urn:ietf:params:gss:radius-attribute 241.1".

 Consider a case where the RADIUS access-accept response includes the
 RADIUS username attribute. An application wishing to retrieve the
 value of this attribute would first wait until GSS-
 _Accept_sec_Context returned GSS_S_COMPLETE. Then the application
 would take the src_name output from GSS_Accept_sec_context and call
 GSS_Get_name_attribute passing this name and an attribute of
 "urn:ietf:params:gss:radius-attribute 1" as inputs. After confirming
 that the authenticated boolean output is true, the application can
 find the username in the values output.

 The value of RADIUS attributes is the raw octets of the packet.
 Integers are in network byte order. The display value SHOULD be a
 human readable string; an implementation can only produce this string
 if it knows the type of a given RADIUS attribute. If multiple
 attributes are present with a given name in the RADIUS message, then
 a multi-valued GSS-API attribute SHOULD be returned. As an
 exception, implementations SHOULD concatenate RADIUS attributes such
 as EAP-Message or large attributes defined in
 [I-D.ietf-radext-radius-extensions] that use multiple attributes to
 carry more than 253 octets of information.

Hartman & Howlett Expires May 18, 2013 [Page 8]

Internet-Draft GSS EAP Name Attributes November 2012

6. Names of SAML Attributes in the Federated Context

6.1. Assertions

 An assertion generated by the credential source is named by
 "urn:ietf:params:gss:federated-saml-assertion". The value of this
 attribute is the assertion carried in the AAA protocol or used for
 authentication in a SAML mechanism. This attribute is absent from a
 given acceptor name if no such assertion is present or if the
 assertion fails local policy checks.

 When GSS_Get_name_attribute is called, This attribute will be
 returned with the authenticated output set to true only if the
 mechanism can successfully authenticate the SAML statement. For the
 GSS-EAP mechanism this is true if the AAA exchange has successfully
 authenticated. However, uses of the GSS-API MUST confirm that the
 attribute is marked authenticated as other mechanisms MAY permit an
 initiator to provide an unauthenticated SAML statement.

 Mechanisms MAY perform additional local policy checks and MAY remove
 the attribute corresponding to assertions that fail these checks.

6.2. SAML Attributes

 Each attribute carried in the assertion SHOULD also be a GSS name
 attribute. The name of this attribute has three parts, all separated
 by an ASCII space character. The first part is
 urn:ietf:params:gss:federated-saml-attribute. The second part is the
 URI for the <saml:Attribute> element’s NameFormat XML attribute. The
 final part is the <saml:Attribute> element’s Name XML attribute. The
 SAML attribute name may itself contain spaces. As required by the
 URI specification, spaces within a URI are encoded as "%20". Spaces
 within a URI, including either the first or second part of the name,
 encoded as "%20" do not separate parts of the GSS-API attribute name;
 they are simply part of the URI.

 As an example, if the eduPersonEntitlement attribute is present in an
 assertion, then an attribute with the name
 "urn:ietf:params:gss:federated-saml-attribute
 urn:oasis:names:tc:SAML:2.0:attrname-format:uri
 urn:oid:1.3.6.1.4.1.5923.1.1.1.7" could be returned from
 GSS_Inquire_Name. If an application calls GSS_Get_name_attribute
 with this attribute in the attr parameter then the values output
 would include one or more URIs of entitlements that were associated
 with the authenticated user.

 If the content of each <saml:AttributeValue> element is a simple text
 node (or nodes), then the raw and "display" values of the GSS name

Hartman & Howlett Expires May 18, 2013 [Page 9]

Internet-Draft GSS EAP Name Attributes November 2012

 attribute MUST be the text content of the element(s). The raw value
 MUST be encoded as UTF-8.

 If the value is not simple or is empty, then the raw value(s) of the
 GSS name attribute MUST be a namespace well-formed serialization
 [XMLNS]of the <saml:AttributeValue> element(s) encoded as UTF-8. The
 "display" values are implementation-defined.

 These attributes SHOULD be marked authenticated if they are contained
 in SAML assertions that have been successfully validated back to the
 trusted source of the peer credential. In the GSS-EAP mechanism, a
 SAML assertion carried in an integrity-protected and authenticated
 AAA protocol SHALL be successfully validated; attributes from that
 assertion SHALL be returned from GSS_Get_name_attribute with the
 authenticated output set to true. An implementation MAY apply local
 policy checks to each attribute in this assertion and discard the
 attribute if it is unacceptable according to these checks.

6.3. SAML Name Identifiers

 The <saml:NameID> carried in the subject of the assertion SHOULD also
 be a GSS name attribute. The name of this attribute has two parts,
 separated by an ASCII space character. The first part is
 urn:ietf:params:gss:federated-saml-nameid. The second part is the
 URI for the <saml:NameID> element’s Format XML attribute.

 The raw value of the GSS name attribute MUST be the well-formed
 serialization of the <saml:NameID> element encoded as UTF-8. The
 "display" value is implementation-defined. For formats defined by
 section 8.3 of [OASIS.saml-core-2.0-os], missing values of the
 NameQualifier or SPNameQualifier XML attributes MUST be populated in
 accordance with the definition of the format prior to serialization.
 In other words, the defaulting rules specified for the "persistent"
 and "transient" formats MUST be applied prior to serialization.

 This attribute SHOULD be marked authenticated if the name identifier
 is contained in a SAML assertion that has been successfully validated
 back to the trusted source of the peer credential. In the GSS-EAP
 mechanism, a SAML assertion carried in an integrity-protected and
 authenticated AAA protocol SHALL be sufficiently validated. An
 implementation MAY apply local policy checks to this assertion and
 discard it if it is unacceptable according to these checks.

Hartman & Howlett Expires May 18, 2013 [Page 10]

Internet-Draft GSS EAP Name Attributes November 2012

7. Security Considerations

 This document describes how to access RADIUS attributes, SAML
 attributes and SAML assertions from some GSS-API mechanisms. These
 attributes are typically used for one of two purposes. The least
 sensitive is personalization: a central service MAY provide
 information about an authenticated user so they need not enter it
 with each acceptor they access. A more sensitive use is
 authorization.

 The mechanism is responsible for authentication and integrity
 protection of the attributes. However, the acceptor application is
 responsible for making a decision about whether the credential source
 is trusted to assert the attribute and validating the asserted value.

 Mechanisms are permitted to perform local policy checks on SAML
 assertions, attributes and name identifiers exposed through name
 attributes defined in this document. If there is another way to get
 access to the SAML assertion, for example the mechanism described in
 [I-D.ietf-abfab-aaa-saml], then an application MAY get different
 results depending on how the SAML is accessed. This is intended
 behavior; applications who choose to bypass local policy checks
 SHOULD perform their own evaluation before relying on information.

Hartman & Howlett Expires May 18, 2013 [Page 11]

Internet-Draft GSS EAP Name Attributes November 2012

8. IANA Considerations

 A new top-level registry is created titled "Generic Security Service
 Application Program Interface Parameters".

 In this top-level registry, a sub-registry titled "GSS-API URN
 Parameters" is created. Registration in this registry is by the IETF
 review or expert review procedures [RFC5226].

 This paragraph gives guidance to designated experts. Registrations
 in this registry are generally only expected as part of protocols
 published as RFCs on the IETF stream; other URIs are expected to be
 better choices for non-IETf work. Expert review is permitted mainly
 to permit early registration related to specifications under
 development when the community believes they have reach sufficient
 maturity. The expert SHOULD evaluate the maturity and stability of
 such an IETF-stream specification. Experts SHOULD review anything
 not from the IETF stream for consistency and consensus with current
 practice. Today such requests would not typically be approved.

 If the "paramname" parameter is registered in this registry then its
 URN will be "urn:ietf:params:gss:paramname". The initial
 registrations are as follows:

 +--------------------------+-------------+
 | Parameter | Reference |
 +--------------------------+-------------+
 | radius-attribute | Section 5 |
 | | |
 | federated-saml-assertion | Section 6.1 |
 | | |
 | federated-saml-attribute | Section 6.2 |
 | | |
 | federated-saml-nameid | Section 6.3 |
 +--------------------------+-------------+

8.1. Registration of the GSS URN Namespace

 IANA is requested to register the "gss" URN sub-namespace in the IETF
 URN sub-namespace for protocol parameters defined in [RFC3553].

 Registry Name: gss

 Specification: draft-ietf-abfab-gss-eap-naming

 Repository: GSS-API URN Parameters (Section 8)

 Index Value: Sub-parameters MUST be specified in UTF-8 using standard

Hartman & Howlett Expires May 18, 2013 [Page 12]

Internet-Draft GSS EAP Name Attributes November 2012

 URI encoding where necessary.

Hartman & Howlett Expires May 18, 2013 [Page 13]

Internet-Draft GSS EAP Name Attributes November 2012

9. Acknowledgements

 Scott Cantor contributed significant text and multiple reviews of
 this document.

 The authors would like to thank Stephen Farrell, Luke Howard, and Jim
 Schaad

 Sam hartman’s work on this specification has been funded by Janet.

Hartman & Howlett Expires May 18, 2013 [Page 14]

Internet-Draft GSS EAP Name Attributes November 2012

10. References

10.1. Normative References

 [I-D.ietf-abfab-gss-eap]
 Hartman, S. and J. Howlett, "A GSS-API Mechanism for the
 Extensible Authentication Protocol",
 draft-ietf-abfab-gss-eap-09 (work in progress),
 August 2012.

 [I-D.ietf-kitten-gssapi-naming-exts]
 Williams, N., Johansson, L., Hartman, S., and S.
 Josefsson, "GSS-API Naming Extensions",
 draft-ietf-kitten-gssapi-naming-exts-15 (work in
 progress), May 2012.

 [I-D.ietf-radext-radius-extensions]
 DeKok, A. and A. Lior, "Remote Authentication Dial In User
 Service (RADIUS) Protocol Extensions",
 draft-ietf-radext-radius-extensions-06 (work in progress),
 June 2012.

 [OASIS.saml-core-2.0-os]
 Cantor, S., Kemp, J., Philpott, R., and E. Maler,
 "Assertions and Protocol for the OASIS Security Assertion
 Markup Language (SAML) V2.0", OASIS Standard saml-core-
 2.0-os, March 2005.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC3553] Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
 IETF URN Sub-namespace for Registered Protocol
 Parameters", BCP 73, RFC 3553, June 2003.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [XMLNS] W3C, "XML Namespaces Conformance", 2009, <http://
 www.w3.org/TR/2009/REC-xml-names-20091208/#Conformance>.

Hartman & Howlett Expires May 18, 2013 [Page 15]

Internet-Draft GSS EAP Name Attributes November 2012

10.2. Informative References

 [I-D.ietf-abfab-aaa-saml]
 Howlett, J. and S. Hartman, "A RADIUS Attribute, Binding
 and Profiles for SAML", draft-ietf-abfab-aaa-saml-04 (work
 in progress), October 2012.

 [I-D.ietf-kitten-sasl-saml-ec]
 Cantor, S. and S. Josefsson, "SAML Enhanced Client SASL
 and GSS-API Mechanisms", draft-ietf-kitten-sasl-saml-ec-04
 (work in progress), October 2012.

Hartman & Howlett Expires May 18, 2013 [Page 16]

Internet-Draft GSS EAP Name Attributes November 2012

Authors’ Addresses

 Sam Hartman
 Painless Security

 Email: hartmans-ietf@mit.edu

 Josh Howlett
 JANET(UK)

 Email: josh.howlett@ja.net

Hartman & Howlett Expires May 18, 2013 [Page 17]

ABFAB R. Smith, Ed.
Internet-Draft Cardiff University
Intended status: Informational September 25, 2012
Expires: March 29, 2013

 Application Bridging for Federated Access Beyond web (ABFAB) Use Cases
 draft-ietf-abfab-usecases-05

Abstract

 Federated identity is typically associated with Web-based services at
 present, but there is growing interest in its application in non Web-
 based contexts. The goal of this document is to document a selection
 of the wide variety of these contexts whose user experience could be
 improved through the use of technologies based on the ABFAB
 architecture and specifications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 29, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as

Smith Expires March 29, 2013 [Page 1]

Internet-Draft ABFAB Use Cases September 2012

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Context of Use Cases . 3
 3. Use Cases . 3
 3.1. Cloud Services . 4
 3.1.1. Cloud-based Application Services 4
 3.1.2. Cloud-based Infrastructure Services 5
 3.2. High Performance Computing 6
 3.3. Grid Infrastructure 7
 3.4. Databases and Directories 8
 3.5. Media Streaming . 8
 3.6. Printing . 9
 3.7. Accessing Applications from Devices on a Telecoms
 Infrastructure . 9
 3.8. Enhanced Security Services for S/MIME 10
 3.9. Smart Objects . 11
 4. Contributors . 12
 5. Acknowledgements . 12
 6. Security Considerations 12
 7. IANA Considerations . 12
 8. References . 12
 8.1. Normative References 12
 8.2. Informative References 12

Smith Expires March 29, 2013 [Page 2]

Internet-Draft ABFAB Use Cases September 2012

1. Introduction

 Federated identity facilitates the controlled sharing of information
 about people (a.k.a. ’principals’), commonly across organisational
 boundaries. This avoids redundant registration of principals who
 operate in and across multiple domains; both reducing the
 administrative overhead for the organizations involved and improving
 the usability of systems for the principal. Simultaneously, it can
 also help address privacy-related concerns, along with the regulatory
 and statutory requirements of some jurisdictions.

 The information that is passed between organizations may include
 authentication state and identity information that can be used for
 many purposes, including making access management decisions. A
 number of mechanisms support the transmission of this information for
 Web-based scenarios in particular (e.g. SAML
 [OASIS.saml-profiles-2.0-os]), but there is significant interest in
 the more general application of federated identity to include non-Web
 use cases. This document enumerates some of these use cases,
 describing how technologies based on the the ABFAB architecture
 [I-D.lear-abfab-arch] and specifications could be used.

2. Context of Use Cases

 The use cases described in this document are a result of work led by
 Janet, the operator of the United Kingdom’s education and research
 network, responding to requirements from its community, and augmented
 by various inputs from the IETF community.

 The ABFAB architecture and specifications enables authentication and
 authorization to occur across organizational boundaries. For many
 applications, principals need not have pre-instantiated accounts that
 their federated identity maps to before their first visit to that
 application; the application can perform this process on the fly. In
 cases where such accounts are required for particular applications,
 the pre-provisioning process is out of scope of ABFAB technologies,
 which assumes any such requirements have already been fulfilled.
 Standards-based work of note that would assist with this pre-
 provisioning of accounts includes the standards and specifications
 produced by the IETF SCIM working group.

3. Use Cases

 This section describes some of the variety of potential use cases
 where technologies based on the ABFAB architecture and specifications
 could help improve the user experience; each includes a brief
 description of how current technologies attempt to solve the use
 cases and how this could improved upon by ABFAB implementations.

Smith Expires March 29, 2013 [Page 3]

Internet-Draft ABFAB Use Cases September 2012

3.1. Cloud Services

 Cloud computing is emerging as a common way of provisioning
 infrastructure services in an on-demand manner. These services are
 typically offered as one of three models:

 o General infrastructure services such as computing power, network,
 storage, and utility ("Infrastructure as a Service", or IaaS);

 o Software stacks or platforms such as database servers, web
 servers, application runtime environments, etc. ("Platform as a
 Service", or PaaS);

 o Common application software such as email, shared storage,
 business applications such as Customer Relationship Management
 (CRM) or scientific applications ("Software as a Service", or
 SaaS).

 In many cases the provisioned cloud infrastructures and applications
 need to be integrated with existing infrastructure of the
 organisation, and it is of course desirable if this could be achieved
 in a way that allows business or scientific workflows to act across
 infrastructure both across the cloud and in the local infrastructure
 in as seamless a manner as possible.

 There are two main areas where federated access fits in cloud
 computing: using federation to help mediate access to cloud based
 application services (e.g. cloud provided email or CRM systems); and
 using federation to help mediate access to the management of cloud
 based infrastructure services.

3.1.1. Cloud-based Application Services

 Many organizations are seeking to deliver services to their users
 through the use of providers based in the ’cloud’. This is typically
 motivated by a desire to avoid management and operation of commodity
 services which, through economies of scale and so-forth, can often be
 delivered more efficiently by such providers.

 Many providers already provide web-based access using conventional
 federated authentication mechanisms; for example, outsourced email
 provision where federated access is enabled using ’webmail’
 applications where access is mediated through the use of SAML
 [OASIS.saml-profiles-2.0-os]. This use of federated authentication
 enables organizations that consume cloud services to more efficiently
 orchestrate the delivery of these services to their users, and
 enables Single Sign On to the services for these users.

Smith Expires March 29, 2013 [Page 4]

Internet-Draft ABFAB Use Cases September 2012

 Frequently, however, users will prefer to use desktop applications
 that do not use web (i.e. HTTP [RFC2616] based) protocols. For
 example, a desktop email client may use a variety of non-web
 protocols including SMTP [RFC5321], IMAP [RFC3501] and POP [RFC1939].
 Some cloud providers support access to their services using non-web
 protocols, however, the authentication mechanisms used by these
 protocols will typically require that the provider has access to the
 user’s credentials - i.e. non federated. Consequently, the provider
 will require that users’ credentials are regularly synchronised from
 the user organisation to the provider, with the obvious overhead this
 imparts on the organisation along with the obvious implications for
 security and privacy; or else be provisioned directly by the provider
 to the user.

 The latter approach of directly provisioning accounts may be
 acceptable in the case where an organisation has relationships with
 only a small number of providers, but may become untenable if an
 organisation obtains services from many providers. Consequently any
 organisation with a requirement to use non-web protocols would prefer
 to make use of the credentials that they have already provisioned
 their users with, and to utilise federated authentication with non-
 web protocols to obtain access to cloud-based providers.

 ABFAB could help in this context as its specifications would enable
 federated authentication for a variety of non-web protocols, thus
 gaining the benefits of federated authentication without any of the
 drawbacks that are currently experienced.

3.1.2. Cloud-based Infrastructure Services

 Typical IaaS or PaaS cloud use cases deal with provisioning on-demand
 cloud based infrastructure services that may include infrastructure
 components such as computing and storage resources, network
 infrastructure, and other utilities. Cloud based virtualised
 applications should ideally operate in the same way as regular non-
 virtualised applications whilst allowing management of the virtual
 computing resources (scaling, migration, reconfiguration) without
 changing the management applications.

 In many cases, moving applications or platforms to the Cloud may
 require their re-designing/re-factoring to support dynamic deployment
 and configuration, including their security and authentication and
 authorisation services. These will typically today be extensively
 based on manual setup and configuration of such components and
 features as trusted certificates and trust anchors, authorities and
 trusted services (both their location and certificates), attribute
 namespaces, policies, etc.

Smith Expires March 29, 2013 [Page 5]

Internet-Draft ABFAB Use Cases September 2012

 ABFAB could help in this context as a way of moving from the model of
 manually configured authentication and authorisation towards a more
 easily managed system involved federated trust and identity, and will
 be applicable for a wide range of existing features (e.g. connecting
 to a newly provisioned Virtual Machine through ABFAB enabled secure
 shell (SSH) [RFC4251] instead of having to manually manage an
 administrative login to that machine).

3.2. High Performance Computing

 High-performance computing (HPC) is a discipline that uses
 supercomputers and computer clusters to solve complex computation
 problems; it most commonly associated with scientific research or
 computational science.

 Access to HPC resources, often mediated through technologies such as
 secure shell, is typically managed through the use of user digital
 certificates [RFC5280] or through manually provisioned credentials
 and accounts. This requires HPC operators to issue certificates or
 accounts to users using a registration process that often duplicates
 identity management processes that already exist within most user
 organizations. The HPC community would like to utilise federated
 identity to perform both the user registration and authentication
 functions required to use HPC resources, and so reduce costs by
 avoiding this duplication of effort.

 The HPC community also have following additional requirements:

 o Improved Business Continuity: In the event of operational issues
 at an HPC system at one organisation (for example, a power
 failure), users and jobs could be transparently moved to other HPC
 systems without the overhead of having to manage user credentials
 for multiple organizations;

 o Establish HPC-as-a-service: Many organizations who have invested
 in HPC systems want to make their systems easily available to
 external customers. Federated authentication facilitates this by
 enabling these customers to use their existing identity
 management, user credentialing and support processes;

 o Improve the user experience: Authentication to HPC systems is
 normally performed using user digital certificates, which some
 users find difficult to use. Federated authentication can provide
 a better user experience by allowing the use of other types of
 credentials, without requiring technical modifications to the HPC
 system to support these.

 ABFAB could help in this context as it could enable federated

Smith Expires March 29, 2013 [Page 6]

Internet-Draft ABFAB Use Cases September 2012

 authentication for the many of the protocols and technologies
 currently in use by HPC providers, such as secure shell.

3.3. Grid Infrastructure

 Grids are large-scale distributed infrastructures, consisting of many
 loosely coupled, independently managed, and geographically
 distributed resources managed by organisationally independent
 providers. Users of grids utilise these resources using grid
 middleware that allows them to submit and control computing jobs,
 manipulate datasets, communicate with other users, etc. These users
 are organised into Virtual Organisations (VOs); each VO represents a
 group of people working collaboratively on a common project. VOs
 facilitate both the management of its users and the meditation of
 agreements between its users and resource providers.

 Authentication and authorisation within most grids is performed using
 a Public Key Infrastructure, requiring each user to have an X.509
 public-key certificate [RFC5280]. Authentication is performed
 through ownership of a particular certificate, while authorisation
 decisions are made based on the user’s identity (derived from their
 X.509 certificate), membership of a particular VO, or additional
 information assigned to a user by a VO. While efficient and
 scalable, this approach has been found wanting in terms of usability
 - many users find certificates difficult to manage, for various
 reasons.

 One approach to ameliorating this issue, adopted to some extent by
 some grid communities already, is to abstract away direct access to
 certificates from users, instead using alternative authentication
 mechanisms and then converting the credential provided by these into
 standard grid certificates. Some implementations of this idea use
 existing federated authentication techniques. However, current
 implementations of this approach suffer from a number of problems,
 not the least of which is the inability to use the federated
 credentials used to authenticate to a credential-conversion portal to
 also directly authenticate to non-web resources such as secure shell
 daemons.

 The ability to use federated authentication directly through ABFAB,
 without the use of a credential conversion service, would allow users
 to authenticate to a grid and its associated services, allowing them
 to directly launch and control computing jobs, all without having to
 manage, or even see, an X.509 public-key certificate at any point in
 the process. Authorisation within the grid would still be performed
 using VO membership asserted issued by the user’s identity provider
 through the federated transport.

Smith Expires March 29, 2013 [Page 7]

Internet-Draft ABFAB Use Cases September 2012

3.4. Databases and Directories

 Databases (e.g. MySQL, PostgreSQL, Oracle, etc.) and directory
 technologies (e.g. OpenLDAP, Microsoft Active Directory, Novell
 eDirectory, etc.) are very commonly used within many organsiations
 for a variety of purposes. This can include core administrative
 functions, such as hosting identity information for its users, as
 well as business functions (e.g. student records systems at
 educational organizations).

 Access to such database and directory systems is usually provided for
 internal users only, however, users external to the organizations
 sometimes require access to these systems directly: for example,
 external examiners in educational organizations requiring access to
 student records systems, members of cross-organisational project
 teams who store information in a particular organisation’s systems,
 external auditors, etc.

 Credentials for users both internal or external to the organisation
 that allow access these databases and directories are usually
 provisioned manually within an organisation, either using Identity
 Management technologies or through more manual processes. For the
 internal users, this situation is fine - this is one of the mainstays
 of Identity Management. However, for external users who require
 access, this represents more of a problem for organisational
 processes. The organisation either has to add these external users
 to its internal Identity Management systems, or else provision these
 credentials directly within the database/directory systems and
 continue to manage them, including appropriate access controls
 associated with each credential, for the lifetime of that credential.

 Federated authentication to databases or directories, via ABFAB
 technologies, would improve upon this situation as it would remove
 the need to provision and de-provision credentials to access these
 systems. Organisations may still wish to manually manage access
 control of federated identities; however, even this could be provided
 through federated means, if the trust relationship between
 organizations was strong enough for the organisation providing the
 service to rely upon it for this purpose.

3.5. Media Streaming

 Media streaming services (audio or audio/video) are often provided
 publicly to anonymous users, but authentication is important for a
 protected subset of streams where rights management and access
 control must be applied.

 Streams can be delivered via protocols such as RTSP [RFC3226] / RTP

Smith Expires March 29, 2013 [Page 8]

Internet-Draft ABFAB Use Cases September 2012

 [RFC3550] which already include authentication, or can be published
 in an encrypted form with keys only being distributed to trusted
 users. Federated authentication is applicable to both of these
 cases.

 Alternative mechanisms to managing access exist; for example, an
 approach where a unique stream URI is minted for each user. However,
 this relies on preserving the secrecy of the stream URI, and also
 requires a communication channel between the web page used for
 authentication and the streaming service itself. Federated
 authentication would be a better fit for this kind of access control.
 Thus, AFAB technologies that allow federated authentication directly
 within (inherently non-web) media streaming protocols would represent
 an enhancement to this area.

3.6. Printing

 A visitor from one organisation to the premises of another often
 requires the use of print services. Their home organisation may of
 course offer printing, but the output could be a long way away so the
 home service is not useful. The user will typically want to print
 from within a desktop or mobile application.

 Where this service is currently offered it would usually be achieved
 through the use of ’open’ printers (i.e. printers that allow
 anonymous print requests), where printer availability is advertised
 through the use of Bonjour or other similar protocols. If the
 organisation requires authenticated print requests (usually for
 accounting purposes), the the visitor would usually have to be given
 credentials that allow this, often supplemented with pay-as-you-go
 style payment systems.

 Adding federated authentication to IPP [RFC2911] (and other relevant
 protocols) would enable this kind of remote printing service without
 the administrative overhead of credentialing these visitors (who, of
 course, may well one time visitors to the organisation). This would
 be immediately applicable to higher education, where this use case is
 increasingly important thanks to the success of federated network
 authentication systems such as eduroam but could also be used in
 other contexts such as commercial print kiosks, or in large,
 heterogeneous organizations.

3.7. Accessing Applications from Devices on a Telecoms Infrastructure

 Telecom operators typically have the following properties:

 o A large collection of registered users, many of whom may have
 identities registered to a fairly high level of assurance (often

Smith Expires March 29, 2013 [Page 9]

Internet-Draft ABFAB Use Cases September 2012

 for payment purposes). However, not all users will have this
 property - for example, non-contract customers on mobile telecoms
 infrastructures in countries with low levels of identity
 registration requirements.

 o An existing network infrastructure capable of authenticating a
 device (e.g. a cellphone or an ADSL router), and by inference, its
 owner.

 o A large collection of applications (both web-based and non web-
 based) that its users wish to access using their device. These
 applications could be hosted by the telecoms operator directly, or
 could be any application or system on the internet - for example,
 network messaging services, VoIP, email, etc.

 At present, authentication to these applications will be typically
 configured manually by the user on the device (or on a different
 device connected to that device) but inputting their (usually pre-
 provisioned out-of-band) credentials for that application - one per
 application.

 The use of ABFAB technologies in this case, via a mechanism dubbed
 "federated cross-layer access" (see [I-D.wei-abfab-fcla]) would
 enhance the user experience of using these applications through
 devices greatly. Federated cross-layer access would make use of the
 initial mutual authentication between device and network to enable
 subsequent authentication and authorisation to happen in a seamless
 manner for the user of that device authenticating to applications.

3.8. Enhanced Security Services for S/MIME

 There are many situations where organizations want to protect
 information with robust access control, either for implementation of
 intellectual property right protections, enforcement of contractual
 confidentiality agreements or because of legal regulations. The
 Enhanced Security Services (ESS) for S/MIME defines an access control
 mechanism which is enforced by the recipient’s client after
 decryption of the message (see [I-D.freeman-plasma-requirements]).
 The data model used makes use of Policy decision points (PDP) which
 make the policy decisions, policy enforcement points (PEP) which make
 decision requests to the PDP, and policy information points (PIP)
 which issue attributes about subjects. The decisions themselves are
 based on the policies and on the subject attributes.

 The use of ABFAB technologies in this case would enable both the
 front or back end attribute exchange required to provide subject
 attributes. When the PEP contacts the PDP, it would initiate an
 ABFAB authentication in order to authenticate to the PDP and allow it

Smith Expires March 29, 2013 [Page 10]

Internet-Draft ABFAB Use Cases September 2012

 to obtain these required subject attributes. Once authenticated, the
 PDP would return a token to the subject PEP which can be used for
 subsequent authentications to the PDP.

3.9. Smart Objects

 Many smart device deployments involve multiple organizations that do
 not directly share security infrastructure. For example, in smart
 power deployments, devices including appliances and infrastructure
 such as electric car chargers will wish to connect to an energy
 management system. The energy management system is provided by a
 utility company in some deployments. The utility company may wish to
 grant access only to authorized devices; for example, a consortium of
 utility companies and device manufacturers may certify devices to
 connect to power networks.

 In another example, consumer devices may be used to access cloud
 services. For example, a camera could be bound to a photo processing
 site. Authentication and authorization for uploading pictures or
 ordering prints is required. Sensors could be used to provide data
 to services run by organizations other than the sensor manufacturer.
 Authorization and authentication can become very tricky when sensors
 have no user interface. Cellular devices may want to access services
 provided by a third party regardless of whether the cellular network
 or wi-fi is used. This becomes difficult when authorization and
 billing is coordinated by the cellular provider.

 The use of ABFAB technologies in this case would provide
 authentication between one entity, such as a smart device, and its
 identity provider. Only two parties are involved in this exchange;
 this means that the smart device need not participate in any
 complicated public-key infrastructure even if it is authenticating
 against many cloud services. Instead, the device can delegate the
 process of authenticating the service and even deciding whether the
 device should be permitted to access the service to the identity
 provider. This has several advantages. A wide variety of revenue
 sharing models are enabled. Because device authentication is only
 with a single identity provider, phishing of device credentials can
 be avoided. Authorization and decisions about what personal
 information to release are made by the identity provider. The device
 owner can use a rich interface such as a website to configure
 authorization and privacy policy even if the device has no user
 interface. This model works well with pre-provisioning of device
 credentials.

Smith Expires March 29, 2013 [Page 11]

Internet-Draft ABFAB Use Cases September 2012

4. Contributors

 The following individuals made important contributions to the text of
 this document: Tim Bannister (Manchester University), Simon Cooper
 (Janet), Josh Howlett (Janet), and Mark Tysom (Janet).

5. Acknowledgements

 These use-cases have been developed and documented using significant
 input from Jens Jensen (STFC Rutherford Appleton Laboratory), Daniel
 Kouril (CESNET), Michal Prochazka (CESNET), Ian Stewart (University
 of Edinburgh), Stephen Booth (Edinburgh Parallel Computing Centre),
 Eefje van der Harst (SURFnet), Joost van Dijk (SURFnet), Robin
 Breathe (Oxford Brookes University), Yinxing Wei (ZTE Corporation),
 Trevor Freeman (Microsoft Corp.), Sam Hartman (Painless Security,
 LLC), and Yuri Demchenko (University of Amsterdam).

6. Security Considerations

 This document contains only use cases and defines no protocol
 operations for ABFAB. Security considerations for the ABFAB
 architecture are documented in the ABFAB architecture specification,
 and security considerations for ABFAB technologies and protocols that
 are discussed in these use cases are documented in the corresponding
 protocol specifications.

7. IANA Considerations

 This document does not require actions by IANA.

8. References

8.1. Normative References

 [I-D.lear-abfab-arch] Howlett, J., Hartman, S.,
 Tschofenig, H., and E. Lear,
 "Application Bridging for
 Federated Access Beyond Web
 (ABFAB) Architecture",
 draft-lear-abfab-arch-02 (work in
 progress), March 2011.

8.2. Informative References

 [RFC1939] Myers, J. and M. Rose, "Post
 Office Protocol - Version 3",
 STD 53, RFC 1939, May 1996.

Smith Expires March 29, 2013 [Page 12]

Internet-Draft ABFAB Use Cases September 2012

 [RFC2616] Fielding, R., Gettys, J., Mogul,
 J., Frystyk, H., Masinter, L.,
 Leach, P., and T. Berners-Lee,
 "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [RFC2911] Hastings, T., Herriot, R., deBry,
 R., Isaacson, S., and P. Powell,
 "Internet Printing Protocol/1.1:
 Model and Semantics", RFC 2911,
 September 2000.

 [RFC3226] Gudmundsson, O., "DNSSEC and IPv6
 A6 aware server/resolver message
 size requirements", RFC 3226,
 December 2001.

 [RFC3501] Crispin, M., "INTERNET MESSAGE
 ACCESS PROTOCOL - VERSION 4rev1",
 RFC 3501, March 2003.

 [RFC3550] Schulzrinne, H., Casner, S.,
 Frederick, R., and V. Jacobson,
 "RTP: A Transport Protocol for
 Real-Time Applications", STD 64,
 RFC 3550, July 2003.

 [RFC4251] Ylonen, T. and C. Lonvick, "The
 Secure Shell (SSH) Protocol
 Architecture", RFC 4251,
 January 2006.

 [RFC5280] Cooper, D., Santesson, S.,
 Farrell, S., Boeyen, S., Housley,
 R., and W. Polk, "Internet X.509
 Public Key Infrastructure
 Certificate and Certificate
 Revocation List (CRL) Profile",
 RFC 5280, May 2008.

 [RFC5321] Klensin, J., "Simple Mail Transfer
 Protocol", RFC 5321, October 2008.

 [OASIS.saml-profiles-2.0-os] Hughes, J., Cantor, S., Hodges,
 J., Hirsch, F., Mishra, P.,
 Philpott, R., and E. Maler,
 "Profiles for the OASIS Security
 Assertion Markup Language (SAML)

Smith Expires March 29, 2013 [Page 13]

Internet-Draft ABFAB Use Cases September 2012

 V2.0", OASIS Standard OASIS.saml-
 profiles-2.0-os, March 2005.

 [I-D.wei-abfab-fcla] Wei, Y., "Federated Cross-Layer
 Access", draft-wei-abfab-fcla-02
 (work in progress), March 2012.

 [I-D.freeman-plasma-requirements] Freeman, T., Schaad, J., and P.
 Patterson, "Requirements for
 Message Access Control", draft-
 freeman-plasma-requirements-03
 (work in progress), August 2012.

Author’s Address

 Dr. Rhys Smith (editor)
 Cardiff University
 39-41 Park Place
 Cardiff CF10 3BB
 United Kingdom

 Phone: +44 29 2087 0126
 EMail: smith@cardiff.ac.uk

Smith Expires March 29, 2013 [Page 14]

ABFAB R. Smith
Internet-Draft Cardiff University
Intended status: Informational January 8, 2013
Expires: July 12, 2013

 Application Bridging for Federated Access Beyond web (ABFAB) Usability
 and User Interface Considerations
 draft-smith-abfab-usability-ui-considerations-03

Abstract

 The use of ABFAB-based technologies requires that each user’s device
 is configured with the user’s identities that they wish to use in
 ABFAB transactions. This will require something on that device,
 either built into the operating system or a standalone utility, that
 will manage the user’s identities and identity to service mappings.
 Anyone designing that "something" will face the same set of
 challenges. This document aims to document these challenges with the
 aim of producing well-thought out UIs with some degree of
 consistency.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 12, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Smith Expires July 12, 2013 [Page 1]

Internet-Draft ABFAB UI Considerations January 2013

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Smith Expires July 12, 2013 [Page 2]

Internet-Draft ABFAB UI Considerations January 2013

Table of Contents

 1. Introduction . 4
 2. Conventions . 4
 3. Terminology . 4
 4. Context . 5
 5. Considerations around Terminology 6
 5.1. Identity . 6
 5.2. Services . 6
 5.3. Identity to Service Mapping 6
 6. Considerations around Management of Identities 7
 6.1. Information associated with each Identity 7
 6.2. Adding/Association of an Identity 8
 6.2.1. Manual Addition 8
 6.2.2. Manually Triggered Automated Addition 9
 6.2.3. Fully Automated Addition 10
 6.3. Modifying Identity Information 10
 6.3.1. Manual Modification 10
 6.3.2. Automated Modification 11
 6.4. Verifying an identity 11
 6.5. Removing an Identity 11
 6.5.1. Manual Removal . 11
 6.5.2. Automated Removal 11
 7. Considerations around Management of Service to Identity
 Mappings . 12
 7.1. Listing Services and Identities 12
 7.2. Showing the Identity currently in use 12
 7.3. Associating a Service with an Identity 12
 7.3.1. User-driven Manual Association 12
 7.3.2. Automated Rules-based Association 13
 7.4. Disassociating a Service with an Identity 13
 8. Handling of Errors . 13
 8.1. Identity Association/Verification Errors 13
 8.2. Service Errors . 13
 8.3. Other Errors. . 13
 9. Handling of Successes . 14
 9.1. Reporting Authentication Success on First Use of
 Identity . 14
 9.2. Reporting Authentication Success 14
 10. Contributors . 14
 11. Acknowledgements . 14
 12. Security Considerations 14
 13. IANA Considerations . 14
 14. Normative References . 14
 Appendix A. Change Log . 15
 Appendix B. Open Issues . 15

Smith Expires July 12, 2013 [Page 3]

Internet-Draft ABFAB UI Considerations January 2013

1. Introduction

 The use of ABFAB-based technologies requires that a user’s device is
 configured with their identities that they wish to use in ABFAB
 transactions. Achieving this will require something on that device,
 either built into the operating system or a standalone utility, that
 will manage the user’s identities and identity to service mappings.
 Anyone designing that "something" will face the same set of
 challenges. This document aims to document these challenges with the
 aim of producing well-thought out UIs with some degree of
 consistency.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Terminology

 Various items of terminology used in the document are heavily
 overloaded and thus could mean a variety of different things to
 different people. In an attempt to minimise this problem, this
 section gives a brief description of the main items of terminology
 used in order to aid with a consistent understanding of this
 document.

 o Identity: In this context, an identity is a credential given to a
 user by a particular organisation with which they have an
 organisation. A user MAY have multiple identities. The identity
 will consist of an NAI, alongside other information that supports
 authentication.

 o Identity Selector: The mechanism by which the GSS-API acquires the
 identity to use with a particular service, and typically would
 allow the user to configure a set of identities and service to
 identity mappings.

 o NAI: Network Access Identifier - a standard way of identifying a
 user. See [RFC4282].

 o Service: The thing that the user is attempting to authenticate to
 via ABFAB technology. See [TODO: Link to ABFAB-Use-Cases] for
 example use cases of what these services could be.

 o Trust anchor: An authoritative source of verification of a
 particular service, used to allow authentication of a server using
 X.509 [TODO: link]. Typically a commercial CA to allow

Smith Expires July 12, 2013 [Page 4]

Internet-Draft ABFAB UI Considerations January 2013

 authentication via chain of trust, or a preconfigured non-
 commercial certificate.

4. Context

 When using the ABFAB architecture to perform federated authentication
 to some service, when a user attempts to authenticate to an ABFAB
 secured application they will need to provide identity information
 that they wish to authenticate to that particular service with. This
 will happen through a process of the application calling the GSS-API,
 which will in turn gather the users credentials through whatever
 mechanism it has been configured to do so. We will call this
 mechanism the "identity selector" in this document, though note that
 this is not a recommendation on terminology for the mechanism!

 The simplest way to achieve the desired effect would be a mechanism
 that simply takes the credentials from the currently logged in user
 (e.g. the Windows Domain Credentials) and uses those for all services
 that request authenticate through ABFAB. This approach gives
 ultimate simplicity in terms of UI - i.e. it wouldn’t have one - but
 the least flexibility. If there is ever to be a requirement for a
 user to user a different set of credentials for a service, then
 something more complex will be needed.

 Where there is a requirement for multiple credentials to be
 supported, there are of course two methods that could be employed to
 configure identities and associated information:

 o They could be configured manually by a user in an application
 specific configuration file that could be edited by hand or some
 such simple mechanism. While this could work very well
 functionally, in practice only a small subset of users would be
 happy with - and able to - configure their identities in such a
 manner.

 o They could be configured through some interactive mechanism. For
 ease of use this should have a simple UI, although a headless mode
 may need to be supported for those not using a GUI.

 When designing an identity selector with a UI (or indeed, with a
 headless mode), any implementor will share a common set of usability
 considerations inherent to the context. This document aims to
 explore these considerations, and provide advice and guidance on
 addressing them where possible.

Smith Expires July 12, 2013 [Page 5]

Internet-Draft ABFAB UI Considerations January 2013

5. Considerations around Terminology

 Anyone designing an identity selector will have to grapple with
 choosing terminology that the average user has some chance of
 understanding. This terminology can split into a few main functional
 areas, as discussed next.

5.1. Identity

 The first area where terminology is needed is around the identity/
 identities of the user. Users are typically used to seeing a variety
 of terms for aspects of their identity in the federated sense, and an
 even larger variety in the wider internet sense. For example, in the
 federated sense some of these terms include "username", "login",
 "network account", "institutional account", "home organisation
 account", "credentials", and a myriad of other such terms. However,
 NAI - the technically correct name for their identity in an ABFAB
 sense - is highly unlikely to be one of these terms that users are
 used to seeing.

 Implementors of an identity selector will need to carefully consider
 their indended audience for both their level of technical capability
 and the existing terminology that they may have been exposed to.

 Beyond terminology, careful thought needs to be given to the paradigm
 to use when presenting identity to users, as identities and services
 are abstract concepts that some users may not find is easily
 understandable. Implementors may wish to keep such abstract
 concepts, or may wish to examine attempts to map to real world
 paradigms, e.g. the idea of using "Identity Cards" that are held in
 the user’s "Wallet", as used by Microsoft Cardspace.

5.2. Services

 Terminology around services is likely to be less of a problem than
 identity, but it will actually depend on what the service is. For
 example, each service could be simply described as "server",
 "system", etc. But for simplicity just the word "service" will
 probably suffice.

5.3. Identity to Service Mapping

 Depending on your perspective either each identity may be mapped to
 multiple services, or each service has multiple identities mapped to
 it. Thus any UI could present either perspective, or both.

Smith Expires July 12, 2013 [Page 6]

Internet-Draft ABFAB UI Considerations January 2013

6. Considerations around Management of Identities

 One of the core features of an identity selector is the management of
 a user’s identities. This section first looks at what information
 associated with an identity will need to managed, and then looks in
 detail at various usability considerations of this area.

6.1. Information associated with each Identity

 There is firstly a minimal set of information that MUST be stored
 about each identity to allow ABFAB authentication to take place:

 o Issuing organisation: Shows the organisation that issued this
 particular credential. TODO: This should be... what, a realm?
 (e.g. "sandford.edu")? What about a friendly name for that realm?
 For example "Sandford University"?

 o NAI: The user’s Network Access Identifier (see [RFC4282]) for this
 particular credentials. For example, "joe@example.com".

 o Password: The password associated with this particular NAI.

 o Trust anchor: For the identity selector to be able to verify that
 the server it is going to talk to and attempt to authenticate
 against is the server that it is expecting, and that it is not
 being spoofed in some way. This is likely to be an X.509
 certificate [TODO X509 ref].

 Next up is a small set of information that SHOULD be stored about
 each identity to allow the user to effectively select a particular
 identity:

 o Friendly name for identity: To allow the user to differentiate
 between the set of identities represented in the Identity
 Selector. This should be editable by the user. The only
 restriction on this name is that it MUST be unique within that
 particular user’s set of identities. For example: "My
 University", "Google Account", "Work Login", etc.

 o Friendly icon for identity: To allow the user to differentiate
 between the set of identities they have they should be able to set
 an icon for that particular identity.

 Finally, there is a set of optional information that MAY be stored
 about each identity that represent useful information for the user to
 have. Note that this list is not intended to be exhaused; any
 implementor is free to add any more items to their identity selector
 that make sense in their implementation.

Smith Expires July 12, 2013 [Page 7]

Internet-Draft ABFAB UI Considerations January 2013

 o Password changing URL: The URL the user should visit should they
 need to change their password for this particular identity. For
 example, "http://www.example.com/passwordreset".

 o Helpdesk URL: The URL the user should visit to get contact details
 for the helpdesk of the organisation that issued this particular
 identity for when the user encounters issues and needs help. For
 example, https://www.exmaple.com/helpdesk.

6.2. Adding/Association of an Identity

 Users will have one or more identities given to them by organisations
 that they have a relationship with. One of the core tasks of an
 identity selector will be to learn about these identities in order to
 use them when it comes to authenticating to services on behalf of the
 user. Adding these identities could be done in one of three ways:
 manual addition, automated addition that is manually triggered, or
 automated addition that is automatically triggered. Each of these
 are discussed in more detail next.

 Note that the term "association" or "addition" of an identity is used
 rather than "provisioning" of an identity, because while we actually
 are provisioning identities into the UI, provisioning is an
 overloaded term in the identity and access management space and could
 easily be confused with identity provisioning in the sense of the
 creation of the identity by the home organisation’s identity
 management procedures.

6.2.1. Manual Addition

 Allowing users to manually add an identity is technically the easiest
 method to , but it is a method that has the greatest usability
 drawbacks. Most of the information required is relatively technical
 and finding some way of explaining what each field is to an
 untechnical audience is challenging (to say the least). This
 especially is the case for trust anchor information. Thus this
 method should be considered as a power-user option only, or as a
 fall-back should the other methods not be applicable.

 When this method is used, careful consideration should be given to
 the UI presented to the user. The UI will have to ask for all of the
 information detailed in Section 6.1.

 There are two points at which a user could manually add an identity:

 o Asynchronously: the user could be allowed to, at any time, trigger
 a workflow of manually adding an identity. This represents the
 most flexible way of adding an identity since a user can perform

Smith Expires July 12, 2013 [Page 8]

Internet-Draft ABFAB UI Considerations January 2013

 this at any time. It does, however, have inherent issues when it
 comes to verifying the newly added identity - see Section 6.4.

 o Just In Time: when connecting to a service which has no mapping to
 an existing identity, the user could be given an option to add a
 new one, as well as associating with an existing one. This
 presents a better user experience when it comes to verifying the
 newly added identity (see Section 6.4), however, represents a less
 direct method of adding an identity. Users who have not yet added
 the appropriate identity to their identity selector may find it
 difficult to understand that they must try to access a particular
 service in order to add an identity.

 Of course, implementors could support both styles of identity
 addition to gain the benefits of both and give flexibility to the
 user.

 TODO: Something about choosing an appropriate trust anchor and
 verifying your IdP...

6.2.2. Manually Triggered Automated Addition

 One way to bypass the need for manual addition of a user’s identity -
 and all of the usability issues inherent with that approach - is to
 provide some sort of manually triggered, but automated, provisioning
 process.

 One approach to accomplishing this, for example, could be for an
 organisation to have a section on their website where their users
 could visit, enter the user part of their NAI, and be given piece of
 provisioning data that contains much or all of the relevant identity
 information for importing into the identity selector.

 It is reasonable to assume that any such provisioning service is
 likely to be organisation specific, so that the Issuing Organisation
 and realm part of the NAI will be constant, as would be the trust
 anchor information. The user part of their NAI will have been input
 on the web service. The password could be provided as a part of the
 provisioning file or the identity selector could prompt the user to
 enter it.

 Additionally, the user SHOULD be given the opportunity to:

 o Supply or change the default friendly name for that identity - to
 allow the user to customise the identifier they use for that
 identity;

Smith Expires July 12, 2013 [Page 9]

Internet-Draft ABFAB UI Considerations January 2013

 o Indicate whether or not the identity selector should always ask
 before using services with this identity - to customise the way in
 which the identity selector interacts with the user with this
 particular identity;

 o Reject the addition of the identity completely - to allow the user
 to back out of the association process in an intuitive way.

 In this case, trust anchors could be directly provided through the
 provisioning mechanism to help establish the trust relationship in a
 secure manner.

6.2.3. Fully Automated Addition

 Many organisations manage the machines of their users using
 enterprise management tools. Such organisations may wish to be able
 to automatically add a particular user’s identity to the identity
 selector on their machine/network account so that the user has to do
 nothing.

 This represents the best usability for the user - who wouldn’t
 actually have to do anything. However, it can only work on machines
 centrally managed by the organisation.

 Additionally, having an identity automatically provided, including
 its password, does have some particular usability issues. Users are
 used to having to provide their username and password to access
 services. When attempting to access services, authenticating to them
 completely transparently to the user could represent a source of
 confusion. User training within an organisation to explain that
 automated provisioning of their identity has been enabled is the only
 way to counter this.

6.3. Modifying Identity Information

 This process is conceptually fairly similar to adding an identity,
 and thus shares many of the usability issues with that process. Some
 particular things are discussed here.

6.3.1. Manual Modification

 An identity selector may allow a user to manually modify some or all
 of the information associated with each identity. The obvious item
 that MUST be allowed to be changed by the user is the password
 associated with the identity.

Smith Expires July 12, 2013 [Page 10]

Internet-Draft ABFAB UI Considerations January 2013

6.3.2. Automated Modification

 To ease usability, organisations may wish to automatically provide
 updates to identity information. For example, if the user’s password
 changes, it could automatically update the password for the identity
 in the user’s identity selector.

6.4. Verifying an identity

 An inherent by-product of the ABFAB architecture is that an identity
 cannot be verified during the addition process; it can only be
 verified while it is in use with a real service. This represents a
 definite usability issue no matter which method of identity addition
 is used (see Section 6.2):

 o If the user has manually added the identity (see Section 6.2) they
 may have gone through the whole manual process with no errors and
 so believe the identity has been set up correctly. However, when
 they attempt to access a service, they may be given an error
 message, thus causing some amount of confusion.

 o If the user has had the identity provisioned into their identity
 selector, then there is a much greater chance of the identity
 information being correct. However, if any of the information is
 not correct, then there is the potential for confusion as the user
 did not add the information in the first place.

 Also, if the identity information is incorrect the user may not know
 where the error lies, and the error messages provided by the
 mechanism may not be helpful enough to indicate the error and how to
 fix it (see Section 8).

6.5. Removing an Identity

 This is fairly similar to adding or modifying an identity, and thus
 shares many of the usability issues with those processes. Some
 particular things are discussed here.

6.5.1. Manual Removal

 Allowing the user to manually delete an identity is probably the best
 way to achieve the goal. Any UI should allow for this option.

6.5.2. Automated Removal

 While automated removal of an identity is a way of achieving the goal
 without having to interact with the user, the consequence is that
 things may disappear from the user’s identity selector without them

Smith Expires July 12, 2013 [Page 11]

Internet-Draft ABFAB UI Considerations January 2013

 realising.

7. Considerations around Management of Service to Identity Mappings

 A service to identity mapping tell the identity selector which
 identity should be used for a particular service. There is
 potentially a many-to-many association between identities and
 services since a user may wish to use one of their identities for
 many services, or more than one identity for a single service (e.g.
 if they have multiple roles on that service).

 This potentially complex many-to-many association between is not
 easily comprehended by the user, and allowing the user to both
 manipulate it and control can be challenging. These obstacles are
 especially common when errors occur after an association has been
 made. In this scenario it is important to make it easy for the user
 to disassociate the Identity from the service.

7.1. Listing Services and Identities

 A service listing should be considered in the identity selector which
 is both searchable and editable by the user.

7.2. Showing the Identity currently in use

 It would be beneficial if, when using a service, the identity
 currently in use could be made visible to the user while he/she is
 using a specific service. This allows the user to identify which the
 identity is used with a particular service at a particular time (the
 user may have more than one identity that they could use with a
 particular service) - so that they can then disassociate the pairing.

7.3. Associating a Service with an Identity

 There needs to be a way for the user to create the service to
 identity association. however this should only occur once the
 identity has authenticated with the service without any error.

 There are a few ways this association could happen.

7.3.1. User-driven Manual Association

 The user could manually associate a particular service with a
 particular identity. In order to do so, however, the user would need
 to know all of the technical details of that service before hand,
 such as its realm and all other required information.

Smith Expires July 12, 2013 [Page 12]

Internet-Draft ABFAB UI Considerations January 2013

7.3.2. Automated Rules-based Association

 It would be benefical from a usability perspective to minimise - or
 avoid entirely - situations where the user has to pick an identity
 for a particular service. This could be accomplished by having rules
 to describe services and their mapping to identities. Such a rule
 could match, for example, a particular identity for all IMAP servers,
 or a particular identity for all services in a given service realm.
 These rules could be configured as a part of the automated identity
 addition process described in Section 6.2.2 or Section 6.2.3

7.4. Disassociating a Service with an Identity

 A user MUST be able to disassociate an identity with a service - that
 is, to be able to remove the mapping without having to remove the
 identity.

8. Handling of Errors

 All GSS-API calls need to be instantiated from the application. For
 this reason when an error occurs the user needs to be sent back to
 the application to re-initiate the GSS-API call. This can get
 tedious and cause the user to opt out of what they are trying to
 accomplish. In addition to this the error messages themselves may
 not be useful enough for the user to decipher what has gone wrong.

 It is important to try and avoid error cases all together while using
 GSS-API as error messages and error handling can really effect
 usability. Another solution would be to alter the application to
 handle the errors as it is instantiating the GSS-API communication.

 TODO: Lots more to discuss here...

8.1. Identity Association/Verification Errors

 TODO: e.g. wrong password, bad trust anchors, etc. TODO.

8.2. Service Errors

 TODO: e.g. identity is correct but no authorisation. TODO.

8.3. Other Errors.

 TODO: e.g. network errors. TODO.

Smith Expires July 12, 2013 [Page 13]

Internet-Draft ABFAB UI Considerations January 2013

9. Handling of Successes

 It is of course hoped that the identity selector will have to
 occasionally handle successes as well as errors. This section has
 some brief discussion about some areas you might want to think about.

9.1. Reporting Authentication Success on First Use of Identity

 The first time an identity is used with a service, it may or may not
 be a good idea (depending on the service) to visually indiciate in
 some way that the process has been successful, in order that the user
 understands what is happening and is then prepared for future
 authentication attempts.

9.2. Reporting Authentication Success

 On an on-going basis you may or may not wish to indiciate visually to
 the user a successful authentication to a service. This relates to
 Section 7.2.

10. Contributors

 The following individuals made important contributions to the text of
 this document: Sam Hartman (Painless Security LLC), and Maria Turk
 (Codethink Ltd).

11. Acknowledgements

 TODO

12. Security Considerations

 TODO

13. IANA Considerations

 This document does not require actions by IANA.

14. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4282] Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
 Network Access Identifier", RFC 4282, December 2005.

Smith Expires July 12, 2013 [Page 14]

Internet-Draft ABFAB UI Considerations January 2013

Appendix A. Change Log

 Note to RFC Editor: if this document does not obsolete an existing
 RFC, please remove this appendix before publication as an RFC.

 Draft -02 to draft -03

 1. Bumping version to keep it alive.

 Draft -01 to draft -02

 1. Completed the major consideration sections, lots of rewording
 throughout.

 Draft -00 to draft -01

 1. None, republishing to refresh the document. Other than adding
 this comment...

Appendix B. Open Issues

 Note to RFC Editor: please remove this appendix before publication as
 an RFC.

Author’s Address

 Dr. Rhys Smith
 Cardiff University
 39-41 Park Place
 Cardiff CF10 3BB
 United Kingdom

 Phone: +44 29 2087 0126
 EMail: smith@cardiff.ac.uk

Smith Expires July 12, 2013 [Page 15]

	draft-ietf-abfab-aaa-saml-14
	draft-ietf-abfab-arch-13
	draft-ietf-abfab-eapapplicability-06
	draft-ietf-abfab-gss-eap-09
	draft-ietf-abfab-gss-eap-naming-07
	draft-ietf-abfab-usecases-05
	draft-smith-abfab-usability-ui-considerations-03

