The OCB Authenticated-Encryption Algorithm
draft-irtf-cfrg-ocb-03

Abstract

This document specifies OCB, a shared-key blockcipher-based
encryption scheme that provides privacy and authenticity for
plaintexts and authenticity for associated data. This document is a
product of the Crypto Forum Research Group (CFRG).

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 14, 2013.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
1. Introduction

Schemes for authenticated encryption (AE) simultaneously provide for privacy and authentication. While this goal would traditionally be achieved by melding separate encryption and authentication mechanisms, each using its own key, integrated AE schemes intertwine what is needed for privacy and what is needed for authenticity. By conceptualizing AE as a single cryptographic goal, AE schemes are less likely to be misused than conventional encryption schemes. Also, integrated AE schemes can be significantly faster than what one sees from composing separate privacy and authenticity means.

When an AE scheme allows for the authentication of unencrypted data at the same time that a plaintext is being encrypted and authenticated, the scheme is an authenticated encryption with associated data (AEAD) scheme. Associated data can be useful when, for example, a network packet has unencrypted routing information and an encrypted payload.

OCB is an AEAD scheme that depends on a blockcipher. This document fully defines OCB encryption and decryption except for the choice of the blockcipher and the length of authentication tag that is part of the ciphertext. The blockcipher must have a 128-bit blocksize. Each choice of blockcipher and tag length specifies a different variant of OCB. Several AES-based variants are defined in Section 3.1.
OCB encryption and decryption employ a nonce \( N \), which must be distinct for each invocation of the OCB encryption operation. OCB requires the associated data \( A \) to be specified when one encrypts or decrypts, but it may be zero-length. The plaintext \( P \) and the associated data \( A \) can have any bitlength. The ciphertext \( C \) one gets by encrypting \( P \) in the presence of \( A \) consists of a ciphertext-core having the same length as \( P \), plus an authentication tag. One can view the resulting ciphertext as either the pair (ciphertext-core, tag) or their concatenation (ciphertext-core || tag), the difference being purely how one assembles and parses ciphertexts. This document uses concatenation.

OCB encryption protects the privacy of \( P \) and the authenticity of \( A \), \( N \), and \( P \). It does this using, on average, about \( a + m + 1.02 \) blockcipher calls, where \( a \) is the blocklength of \( A \) and \( m \) is the blocklength of \( P \) and the nonce \( N \) is implemented as a counter (if \( N \) is random then OCB uses \( a + m + 2 \) blockcipher calls). If \( A \) is fixed during a session then, after preprocessing, there is effectively no cost to having \( A \) authenticated on subsequent encryptions, and the mode will average \( m + 1.02 \) blockcipher calls. OCB requires a single key \( K \) for the underlying blockcipher, and all blockcipher calls are keyed by \( K \). OCB is on-line: one need not know the length of \( A \) or \( P \) to proceed with encryption, nor need one know the length of \( A \) or \( C \) to proceed with decryption. OCB is parallelizable: the bulk of its blockcipher calls can be performed simultaneously. Computational work beyond blockcipher calls consists of a small and fixed number of logical operations per call. OCB enjoys provable security: the mode of operation is secure assuming that the underlying blockcipher is secure. As with most modes of operation, security degrades in the square of the number of blocks of texts divided by two to the blocklength.

For reasons of generality, OCB is defined to operate on arbitrary bit-strings. But for reasons of simplicity and efficiency, most implementations will assume that strings operated on are byte-strings (i.e., strings that are a multiple of 8 bits). To promote interoperability, implementations of OCB that communicate with implementations of unknown capabilities should restrict all provided values (nonces, tags, plaintexts, ciphertexts, and associated data) to byte-strings.

The version of OCB defined in this document is a refinement of two prior schemes. The original OCB version was published in 2001 [OCB1] and was listed as an optional component in IEEE 802.11i. A second version was published in 2004 [OCB2] and is specified in ISO 19772. The scheme described here is called OCB3 in the 2011 paper describing the mode [OCB3]; it shall be referred to simply as OCB throughout this document. The only difference between the algorithm of this RFC
and that of the [OCB3] paper is that the tag length is now encoded into the internally formatted nonce. See [OCB3] for complete references, timing information, and a discussion of the differences between the algorithms.

OCB has received years of in-depth analysis previous to its submission to the CFRG, and has been under review by the members of the CFRG for over a year. It is the consensus of the CFRG that the security mechanisms provided by the OCB AEAD algorithm described in this document are suitable for use in providing privacy and authentication.

2. Notation and Basic Operations

There are two types of variables used in this specification, strings and integers. Although strings processed by most implementations of OCB will be strings of bytes, bit-level operations are used throughout this specification document for defining OCB. String variables are always written with an initial upper-case letter while integer variables are written in all lower-case. Following C’s convention, a single equals ("=") indicates variable assignment and double equals ("==") is the equality relation. Whenever a variable is followed by an underscore ("_"), the underscore is intended to denote a subscript, with the subscripted expression requiring evaluation to resolve the meaning of the variable. For example, when i == 2, then P_i refers to the variable P_2.

\( c^i \)  
The integer \( c \) raised to the \( i \)-th power.

\( \text{bitlen}(S) \)  
The length of string \( S \) in bits (eg, \( \text{bitlen}(101) == 3 \)).

\( \text{zeros}(n) \)  
The string made of \( n \) zero-bits.

\( \text{ntz}(n) \)  
The number of trailing zero bits in the base-2 representation of the positive integer \( n \). More formally, \( \text{ntz}(n) \) is the largest integer \( x \) for which \( 2^x \) divides \( n \).

\( S \text{xor} T \)  
The string that is the bitwise exclusive-or of \( S \) and \( T \). Strings \( S \) and \( T \) will always have the same length.

\( S[i] \)  
The \( i \)-th bit of the string \( S \) (indices begin at 1, so if \( S \) is 011 then \( S[1] == 0, S[2] == 1, S[3] == 1 \)).

\( S[i..j] \)  
The substring of \( S \) consisting of bits \( i \) through \( j \), inclusive.
3. OCB Global Parameters

To be complete, the algorithms in this document require specification of two global parameters: a blockcipher operating on 128-bit blocks and the length of authentication tags in use.

Specifying a blockcipher implicitly defines the following symbols.

KEYLEN The blockcipher’s key length, in bits.

ENCIPHER(K,P) The blockcipher function mapping 128-bit plaintext block P to its corresponding ciphertext block using KEYLEN-bit key K.

DECIPHER(K,C) The inverse blockcipher function mapping 128-bit ciphertext block C to its corresponding plaintext block using KEYLEN-bit key K.

The TAGLEN parameter specifies the length of authentication tag used by OCB and may be any value up to 128. Greater values for TAGLEN provide greater assurances of authenticity, but ciphertexts produced by OCB are longer than their corresponding plaintext by TAGLEN bits. See Section 5 for details about TAGLEN and security.

As an example, if 128-bit authentication tags and AES with 192-bit keys are to be used, then KEYLEN is 192, ENCIPHER refers to the AES-192 cipher, DECIPHER refers to the AES-192 inverse cipher, and TAGLEN is 128 [AES].

3.1. Named OCB Parameter Sets and RFC 5116 Constants

The following table gives names to common OCB global parameter sets. Each of the AES variants is defined in [AES].
<table>
<thead>
<tr>
<th>Name</th>
<th>Blockcipher</th>
<th>TAGLEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEAD_AES_128_OCB_TAGLEN128</td>
<td>AES-128</td>
<td>128</td>
</tr>
<tr>
<td>AEAD_AES_128_OCB_TAGLEN96</td>
<td>AES-128</td>
<td>96</td>
</tr>
<tr>
<td>AEAD_AES_128_OCB_TAGLEN64</td>
<td>AES-128</td>
<td>64</td>
</tr>
<tr>
<td>AEAD_AES_192_OCB_TAGLEN128</td>
<td>AES-192</td>
<td>128</td>
</tr>
<tr>
<td>AEAD_AES_192_OCB_TAGLEN96</td>
<td>AES-192</td>
<td>96</td>
</tr>
<tr>
<td>AEAD_AES_192_OCB_TAGLEN64</td>
<td>AES-192</td>
<td>64</td>
</tr>
<tr>
<td>AEAD_AES_256_OCB_TAGLEN128</td>
<td>AES-256</td>
<td>128</td>
</tr>
<tr>
<td>AEAD_AES_256_OCB_TAGLEN96</td>
<td>AES-256</td>
<td>96</td>
</tr>
<tr>
<td>AEAD_AES_256_OCB_TAGLEN64</td>
<td>AES-256</td>
<td>64</td>
</tr>
</tbody>
</table>

RFC 5116 defines an interface for authenticated encryption schemes [RFC5116]. RFC 5116 requires the specification of certain constants for each named AEAD scheme. For each of the OCB parameter sets listed above: P_MAX, A_MAX, and C_MAX are all unbounded; N_MIN is 1 byte and N_MAX is 15 bytes. The parameter-sets indicating the use of AES-128, AES-192 and AES-256 have K_LEN equal to 16, 24 and 32 bytes, respectively.

4. OCB Algorithms

OCB is described in this section using pseudocode. Given any collection of inputs of the required types, following the pseudocode description for a function will produce the correct output of the promised type.

4.1. Associated-Data Processing: HASH

OCB has the ability to authenticate unencrypted associated data at the same time that it provides for authentication and encrypts a plaintext. The following hash function is central to providing this functionality. If an application has no associated data, then the associated data should be considered to exist and to be the empty string. HASH, conveniently, always returns zeros(128) when the associated data is the empty string.

Function name:

    HASH

Input:

    K, string of KEYLEN bits // Key
    A, string of any length // Associated data

Output:

    Sum, string of 128 bits // Hash result
Sum is defined as follows.

```
// Key-dependent variables
//
// L_* = ENCIPHER(K, zeros(128))
// L_$_ = double(L_*)
// L_0 = double(L_$_)
// L_i = double(L_(i-1)) for every integer i > 0
//
// Consider A as a sequence of 128-bit blocks
//
// Let m be the largest integer so that 128m <= bitlen(A)
// Let A_1, A_2, ..., A_m and A_* be strings so that
// A == A_1 || A_2 || ... || A_m || A_*, and
// bitlen(A_i) == 128 for each 1 <= i <= m.
// Note: A_* may possibly be the empty string.
//
// Process any whole blocks
//
// Sum_0 = zeros(128)
// Offset_0 = zeros(128)
// for each 1 <= i <= m
//   Offset_i = Offset_(i-1) xor L_{ntz(i)}
//   Sum_i = Sum_(i-1) xor ENCIPHER(K, A_i xor Offset_i)
// end for
//
// Process any final partial block; compute final hash value
//
// if bitlen(A_*) > 0 then
//   Offset_* = Offset_m xor L_*
//   CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_*
//   Sum = Sum_m xor ENCIPHER(K, CipherInput)
// else
//   Sum = Sum_m
// end if
```

4.2. Encryption: OCB-ENCRYPT

This function computes a ciphertext (which includes a bundled authentication tag) when given a plaintext, associated data, nonce and key. For each invocation of OCB-ENCRYPT using the same key K, the value of the nonce input N must be distinct.
Function name: OCB-ENCRYPT

Input:
- K, string of KEYLEN bits // Key
- N, string of no more than 120 bits // Nonce
- A, string of any length // Associated data
- P, string of any length // Plaintext

Output:
- C, string of length bitlen(P) + TAGLEN bits // Ciphertext

C is defined as follows.

// Key-dependent variables
//
L_* = ENCIPHER(K, zeros(128))
L$_ = double(L_*)
L_0 = double(L$_)
L_i = double(L_{i-1}) for every integer i > 0

// Consider P as a sequence of 128-bit blocks
//
Let m be the largest integer so that 128m <= bitlen(P)
Let P_1, P_2, ..., P_m and P_* be strings so that
P == P_1 || P_2 || ... || P_m || P_*, and
bitlen(P_i) == 128 for each 1 <= i <= m.
Note: P_* may possibly be the empty string.

// Nonce-dependent and per-encryption variables
//
Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N
bottom = str2num(Nonce[123..128])
Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6))
Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72])
Offset_0 = Stretch[1+bottom..128+bottom]
Checksum_0 = zeros(128)

// Process any whole blocks
//
for each 1 <= i <= m
  Offset_i = Offset_{i-1} xor L_{ntz(i)}
  C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i)
  Checksum_i = Checksum_{i-1} xor P_i
end for
// Process any final partial block and compute raw tag
//
// if bitlen(P_*) > 0 then
Offset_* = Offset_m xor L_*
Pad = ENCIPHER(K, Offset_*)
C_* = P_* xor Pad[1..bitlen(P_*)]
Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A)
else
C_* = <empty string>
Tag = ENCIPHER(K, Checksum_m xor Offset_m xor L_$) xor HASH(K,A)
end if

// Assemble ciphertext
//
C = C_1 || C_2 || ... || C_m || C_* || Tag[1..TAGLEN]

4.3. Decryption: OCB-DECRYPT

This function computes a plaintext when given a ciphertext, associated data, nonce and key. An authentication tag is embedded in the ciphertext. If the tag is not correct for the ciphertext, associated data, nonce and key, then an INVALID signal is produced.

Function name:
OCB-DECRYPT
Input:
K, string of KEYLEN bits          // Key
N, string of no more than 120 bits // Nonce
A, string of any length           // Associated data
C, string of at least TAGLEN bits  // Ciphertext
Output:
P, string of length bitlen(C) - TAGLEN bits, // Plaintext
or INVALID indicating authentication failure

P is defined as follows.

//
// Key-dependent variables
//
L_* = ENCIPHER(K, zeros(128))
L_$ = double(L_*)
L_0 = double(L_$)
L_i = double(L_(i-1)) for every integer i > 0
// Consider C as a sequence of 128-bit blocks
// Let m be the largest integer so that 128m <= bitlen(C) - TAGLEN
// Let C_1, C_2, ..., C_m, C_* and T be strings so that
// C == C_1 || C_2 || ... || C_m || C_* || T,
// bitlen(C_i) == 128 for each 1 <= i <= m, and
// bitlen(T) == TAGLEN.
// Note: C_* may possibly be the empty string.

// Nonce-dependent and per-decryption variables
// Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N
// bottom = str2num(Nonce[123..128])
// Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6))
// Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72])
// Offset_0 = Stretch[1+bottom..128+bottom]
// Checksum_0 = zeros(128)

// Process any whole blocks
// for each 1 <= i <= m
// Offset_i = Offset_{i-1} xor L_{ntz(i)}
// P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i)
// Checksum_i = Checksum_{i-1} xor P_i
// end for

// Process any final partial block and compute raw tag
// if bitlen(C_*) > 0 then
// Offset_* = Offset_m xor L_*
// Pad = ENCIPHER(K, Offset_*)
// P_* = C_* xor Pad[1..bitlen(C_)]
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
// Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_*) xor HASH(K,A)
// else
// P_* = <empty string>
// Tag = ENCIPHER(K, Checksum_m xor Offset_m xor L_*) xor HASH(K,A)
// end if

// Check for validity and assemble plaintext
// if (Tag[1..TAGLEN] == T) then
// P = P_1 || P_2 || ... || P_m || P_*
P = INVALID
end if

5. Security Considerations

OCB achieves two security properties, privacy and authenticity. Privacy is defined via "indistinguishability from random bits", meaning that an adversary is unable to distinguish OCB-outputs from an equal number of random bits. Authenticity is defined via "authenticity of ciphertexts", meaning that an adversary is unable to produce any valid nonce-ciphertext pair that it has not already acquired. The security guarantees depend on the underlying blockcipher being secure in the sense of a strong pseudorandom permutation. Thus if OCB is used with a blockcipher that is not secure as a strong pseudorandom permutation, the security guarantees vanish. The need for the strong pseudorandom permutation property means that OCB should be used with a conservatively designed, well-trusted blockcipher, such as AES.

Both the privacy and the authenticity properties of OCB degrade as per $s^2 / 2^{128}$, where $s$ is the total number of blocks that the adversary acquires. The consequence of this formula is that the proven security disappears when $s$ becomes as large as $2^{64}$. Thus the user should never use a key to generate an amount of ciphertext that is near to, or exceeds, $2^{64}$ blocks. In order to ensure that $s^2 / 2^{128}$ remains small, a given key should be used to encrypt at most $2^{48}$ blocks ($2^{55}$ bits or 4 petabytes), including the associated data. To ensure these limits are not crossed, automated key management is recommended in systems exchanging large amounts of data [RFC4107].

When a ciphertext decrypts as INVALID it is the implementor’s responsibility to make sure that no information beyond this fact is made adversarially available.

OCB encryption and decryption produce an internal 128-bit authentication tag. The parameter TAGLEN determines how many bits of this internal tag are included in ciphertexts and used for authentication. The value of TAGLEN has two impacts: An adversary can trivially forge with probability $2^{-TAGLEN}$, and ciphertexts are TAGLEN bits longer than their corresponding plaintexts. It is up to the application designer to choose an appropriate value for TAGLEN. Long tags cost no more computationally than short ones.

Normally, a given key should be used to create ciphertexts with a single tag length, TAGLEN, and an application should reject any
ciphertext that claims authenticity under the same key but a
different tag length. While the ciphertext core and all of the bits
of the tag do depend on the tag length, this is done for added
robustness to misuse and should not suggest that receivers accept
ciphertexts employing variable tag lengths under a single key.

Timing attacks are not a part of the formal security model and an
implementation should take care to mitigate them in contexts where
this is a concern. To render timing attacks impotent, the amount of
time to encrypt or decrypt a string should be independent of the key
and the contents of the string. The only explicitly conditional OCB
operation that depends on private data is double(), which means that
using constant-time blockcipher and double() implementations
eliminates most (if not all) sources of timing attacks on OCB.
Power-usage attacks are likewise out of scope of the formal model,
and should be considered for environments where they are threatening.

The OCB encryption scheme reveals in the ciphertext the length of the
plaintext. Sometimes the length of the plaintext is a valuable piece
of information that should be hidden. For environments where
"traffic analysis" is a concern, techniques beyond OCB encryption
(typically involving padding) would be necessary.

Defining the ciphertext that results from OCB-ENCRYPT to be the pair
\((C_1 || C_2 || \ldots || C_m || C_*, \text{Tag}[1..\text{TAGLEN}])\) instead of the
concatenation \(C_1 || C_2 || \ldots || C_m || C_* || \text{Tag}[1..\text{TAGLEN}]\)
introduces no security concerns. Because TAGLEN is fixed, both
versions allows ciphertexts to be parsed unambiguously.

5.1. Nonce Requirements

It is crucial that, as one encrypts, one does not repeat a nonce.
The inadvertent reuse of the same nonce by two invocations of the OCB
encryption operation, with the same key, but with distinct plaintext
values, undermines the confidentiality of the plaintexts protected in
those two invocations, and undermines all of the authenticity and
integrity protection provided by that key. For this reason, OCB
should only be used whenever nonce uniqueness can be provided with
certainty. Note that it is acceptable to input the same nonce value
multiple times to the decryption operation. We emphasize that the
security consequences are quite serious if an attacker observes two
ciphertexts that were created using the same nonce and key values,
unless the plaintext and AD values in both invocations of the encrypt
operation were identical. First, a loss of confidentiality ensues
because the attacker will be able to infer relationships between the
two plaintext values. Second, a loss of authenticity ensues because
the attacker will be able to recover secret information used to
provide authenticity, making subsequent forgeries trivial. Note that
there are AEAD schemes, particularly SIV [RFC5297], appropriate for environments where nonces are unavailable or unreliable. OCB is not such a scheme.

Nonces need not be secret, and a counter may be used for them. If two parties send OCB-encrypted plaintexts to one another using the same key, then the space of nonces used by the two parties must be partitioned so that no nonce that could be used by one party to encrypt could be used by the other to encrypt (e.g., odd and even counters).

6. IANA Considerations

The Internet Assigned Numbers Authority (IANA) has defined a registry for Authenticated Encryption with Associated Data parameters. The IANA has added the following entries to the AEAD Registry. Each name refers to a set of parameters defined in Section 3.1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Reference</th>
<th>Numeric Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEAD_AES_128_OCB_TAGLEN128</td>
<td>Section 3.1</td>
<td>XX</td>
</tr>
<tr>
<td>AEAD_AES_128_OCB_TAGLEN96</td>
<td>Section 3.1</td>
<td>XX</td>
</tr>
<tr>
<td>AEAD_AES_128_OCB_TAGLEN64</td>
<td>Section 3.1</td>
<td>XX</td>
</tr>
<tr>
<td>AEAD_AES_192_OCB_TAGLEN128</td>
<td>Section 3.1</td>
<td>XX</td>
</tr>
<tr>
<td>AEAD_AES_192_OCB_TAGLEN96</td>
<td>Section 3.1</td>
<td>XX</td>
</tr>
<tr>
<td>AEAD_AES_192_OCB_TAGLEN64</td>
<td>Section 3.1</td>
<td>XX</td>
</tr>
<tr>
<td>AEAD_AES_256_OCB_TAGLEN128</td>
<td>Section 3.1</td>
<td>XX</td>
</tr>
<tr>
<td>AEAD_AES_256_OCB_TAGLEN96</td>
<td>Section 3.1</td>
<td>XX</td>
</tr>
<tr>
<td>AEAD_AES_256_OCB_TAGLEN64</td>
<td>Section 3.1</td>
<td>XX</td>
</tr>
</tbody>
</table>

7. Acknowledgements

The design of the original OCB scheme [OCB1] was done while Phil Rogaway was at Chiang Mai University, Thailand. Follow-up work [OCB2] was done with support of NSF grant 0208842 and a gift from Cisco. The final work by Krovetz and Rogaway [OCB3] that has resulted in this spec was supported by NSF grant 0904380. Thanks go to the Crypto Forum Research Group (CFRG) for providing feedback on earlier drafts. Thanks in particular to David McGrew for contributing text to Section 5, to James Manger for initiating a productive discussion on tag-length dependency, and to Matt Caswell for his careful reading and suggestions.

8. References
8.1. Normative References


8.2. Informative References


Appendix A. Sample Results

This section gives sample output values for various inputs when using the AEAD_AES_128_OCB_TAGLEN128 parameters defined in Section 3.1. All strings are represented in hexadecimal (eg, 0F represents the bitstring 00001111).

Each of the following (A,P,C) triples show the ciphertext C that results from OCB-ENCRYPT(K,N,A,P) when K and N are fixed with the values

Krovetz & Rogaway Expires December 14, 2013 [Page 14]
K : 000102030405060708090A0B0C0D0E0F
N : 000102030405060708090A0B

An empty entry indicates the empty string.

A:
P:
C: 197B9C3C441D3C83EAFB2BEF633B9182

A: 0001020304050607
P: 0001020304050607
C: 92B657130A74B85A16DC76A46D47E1EAD537209E8A96D14E

A: 0001020304050607
P:
C: 98B91552C8009185044E30A6EB2FE21

A:
P: 0001020304050607
C: 92B657130A74B85A971EFFCAE19AD4716F88E87B871FBEED

A: 000102030405060708090A0B0C0D0E0F
P: 000102030405060708090A0B0C0D0E0F
C: BEA5E8798DBE7110031C144DA0B26122776C9924D6723A1F
     C4524532AC3E5BEB

A: 000102030405060708090A0B0C0D0E0F
P:
C: 7DDB8E6CEA6814866212509619B19CC6

A:
P: 000102030405060708090A0B0C0D0E0F
C: BEA5E8798DBE7110031C144DA0B2612213CC8B747807121A
     4CBB3E4BD6456AF

A: 000102030405060708090A0B0C0D0E0F1011121314151617
P: 000102030405060708090A0B0C0D0E0F1011121314151617
C: BEA5E8798DBE7110031C144DA0B261222FCFCEE7A2A8D4D48
     5FA94FC3F38820F1DC3F31FD4E55E1C

A: 000102030405060708090A0B0C0D0E0F1011121314151617
P:
C: 282026DA3068BC9FA118681D559F10F6

A:
P: 000102030405060708090A0B0C0D0E0F1011121314151617
C: BEA5E8798DBE7110031C144DA0B261222FCFCEE7A2A8D4D48
Next are several internal values generated during the OCB-ENCRYPT computation for the last test vector listed above.

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bottom</td>
<td>11</td>
</tr>
<tr>
<td>Checksum_1</td>
<td>0001020304050060708090A0B0C0D0E0F</td>
</tr>
<tr>
<td>Checksum_2</td>
<td>1012212324252627</td>
</tr>
<tr>
<td>Checksum_*</td>
<td>303132333435363738393A0101010101010101010101010101010101010101</td>
</tr>
</tbody>
</table>

Krovetz & Rogaway     Expires December 14, 2013     [Page 16]
The following algorithm tests a wider variety of inputs. Results are given for each parameter set defined in Section 3.1.

\[
\begin{align*}
K &= \text{zeros}(\text{KEYLEN}) & \text{Keylength of AES in use} \\
C &= \text{<empty string>} \\
\text{for } i &= 0 \text{ to } 127 \text{ do} \\
S &= \text{zeros}(8i) & \text{i bytes of zeros} \\
N &= \text{zeros}(88) || \text{num2str}(i,8) & \text{11 byte zero then 1 byte } i \\
\text{C} &= \text{C} \| \text{OCB-ENCRYPT}(K,N,S,S) & \text{OCB-ENCRYPT}(K,N,S,S) \\
\text{C} &= \text{C} \| \text{OCB-ENCRYPT}(K,N,\text{<empty string>},S) & \text{OCB-ENCRYPT}(K,N,\text{<empty string>}) \\
\text{C} &= \text{C} \| \text{OCB-ENCRYPT}(K,N,\text{<empty string>}) & \text{OCB-ENCRYPT}(K,N,\text{<empty string>}) \\
\text{end for} \\
N &= \text{zeros}(96) \\
\text{Output} &= \text{OCB-ENCRYPT}(K,N,C,\text{<empty string>})
\end{align*}
\]

Iteration \(i\) of the loop adds \(2i + \left(3 \times \text{TAGLEN} / 8\right)\) bytes to \(C\), resulting in an ultimate length for \(C\) of 22,400 bytes when \(\text{TAGLEN} = 128\), 20,864 bytes when \(\text{TAGLEN} = 192\), and 19,328 bytes when \(\text{TAGLEN} = 64\). The final OCB-ENCRYPT has an empty plaintext component, so serves only to authenticate \(C\). The output should be:

\[
\begin{align*}
\text{AEAD_AES_128_OCB_TAGLEN128 Output: } B2B41CBF9B05037DA7F16C24A35C1C94 \\
\text{AEAD_AES_192_OCB_TAGLEN128 Output: } 1529F894659D2B51B776740211E7D083 \\
\text{AEAD_AES_256_OCB_TAGLEN128 Output: } 42B83106E473C0EEE086C8D631FD4C7B \\
\text{AEAD_AES_128_OCB_TAGLEN96 Output: } 1A4F0654277709A5BDA0D380 \\
\text{AEAD_AES_192_OCB_TAGLEN96 Output: } AD819483E01DD648978F4522 \\
\text{AEAD_AES_256_OCB_TAGLEN96 Output: } CD2E41379C7C4458CCFB4A \\
\text{AEAD_AES_128_OCB_TAGLEN64 Output: } B7ECE9D381FE437F \\
\text{AEAD_AES_192_OCB_TAGLEN64 Output: } DE0574C87FF06DF9 \\
\text{AEAD_AES_256_OCB_TAGLEN64 Output: } 833E45FF7D332F7E
\end{align*}
\]
SM2 Digital Signature Algorithm
draft-shen-sm2-ecdsa-01

Abstract

This document describes an Digital Signature Algorithm based on elliptic curves which is invented by Xiaoyun Wang et al. This digital signature algorithm is published by Chinese Commercial Cryptography Administration Office for the use of electronic authentication service system.

The document *** published by Chinese Commercial Cryptography Administration Office includes four parts: general introduction, Digital Signature Algorithm, Key Exchange Protocol and Public Key Encryption Algorithm. This document only gives the general introduction and digital signature algorithm.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 15, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

Table of Contents

1. Introduction .................................................. ancho
2. Conventions Used in this Document .......................... ancho
3. Symbols and Terms ............................................. ancho
   3.1. Symbols .................................................. ancho
   3.2. Terms .................................................... ancho
4. General Introduction to ECC ................................. ancho
5. Digital Signature Algorithm ................................ ancho
   5.1. Digital Signature System ................................ ancho
   5.1.1. General Rules ........................................ ancho
   5.1.2. Parameters of Elliptic Curve System ................ancho
   5.1.3. Key pairs ............................................. ancho
   5.1.4. Auxiliary Functions ................................. ancho
   5.2. Generation of Signature ................................. ancho
   5.2.1. Digital Signature Generation Algorithm ........... ancho
   5.2.2. Flow Chart of Digital Signature Generation ....... ancho
   5.3. Verification of Signature ............................... ancho
   5.3.1. Digital Signature Verification Algorithm .......... ancho
   5.3.2. Flow Chart of Digital Signature Verification ... ancho
6. SM2 Key Exchange Protocol ................................. ancho
   6.1. Parameters of the Algorithm and Auxiliary Functions .. ancho
   6.1.1. General Rules ........................................ ancho
   6.1.2. Parameters of Elliptic Curve System ................ ancho
   6.1.3. Key pairs ............................................. ancho
   6.1.4. Auxiliary Functions ................................ ancho
   6.1.5. Other User Information ............................... ancho
   6.2. Key Exchange Protocol and the Flow Chart ........... ancho
   6.2.1. Key Exchange Protocol ............................... ancho

Shen & Lee               Expires January 15, 2014                [Page 2]
6.2.2. Flow Chart of Key Exchange Protocol

7. SM2 Public Key Encryption Algorithm
   7.1. Parameters of the Algorithm and Auxiliary Functions
      7.1.1. General Rules
      7.1.2. Parameters of Elliptic Curve System
      7.1.3. Key pairs
      7.1.4. Auxiliary Functions
   7.2. Algorithm for Encryption and the Flow Chart
      7.2.1. Algorithm for Encryption
      7.2.2. Flow Chart of Algorithm for Encryption
   7.3. Algorithm for Decryption and the Flow Chart
      7.3.1. Algorithm for Decryption
      7.3.2. Flow Chart of Algorithm for Decryption

8. References
   8.1. Normative References
   8.2. Informative References

Appendix A. Examples of Digital Signatures
   A.1. General Introduction
   A.2. Digital Signature of over E(Fp)
   A.3. Digital Signature of over E(F2^m)

Appendix B. Examples of Key Exchanges
   B.1. General Introduction
   B.2. Key Exchange Protocol over E(Fp)
   B.3. Key Exchange Protocol over E(F2^m)

Appendix C. Example of Public Key Encryption
   C.1. General Introduction
   C.2. Encryption and Decryption over E(Fp)
   C.3. Encryption and Decryption over E(F2^m)
1. Introduction

This document is mainly the translation of the algorithm published by Chinese Commercial Cryptography Administration Office for the convenience of IETF and IRTF community. The credit of inventing this algorithm goes to the authors of the algorithm.

2. Conventions Used in this Document

The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY" in this document are to be interpreted as defined in "Key words for use in RFCs to Indicate Requirement Levels" [RFC2119].

3. Symbols and Terms

3.1. Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, b</td>
<td>Elements in finite field $\mathbb{F}_q$ and they defines a Elliptic Curve $E$ over $\mathbb{F}_q$</td>
</tr>
<tr>
<td>B</td>
<td>The MOV threshold. This is a positive integer $B$ such that taking discrete logarithms over $GF(q^B)$ is judged to be at least as difficult as taking elliptic discrete logarithms over $GF(q)$.</td>
</tr>
<tr>
<td>$\text{deg}(f)$</td>
<td>The degree of a polynomial $f(x)$</td>
</tr>
<tr>
<td>E</td>
<td>The elliptic curve defined by $a$ and $b$ over a finite field $\mathbb{F}_q$</td>
</tr>
<tr>
<td>$E(\mathbb{F}_q)$</td>
<td>The set of all the rational points of $E$</td>
</tr>
<tr>
<td>$#E(\mathbb{F}_q)$</td>
<td>The number of elements in $E(\mathbb{F}_q)$, the degree of elliptic curve $E(\mathbb{F}_q)$</td>
</tr>
<tr>
<td>ECDLP</td>
<td>Elliptic Curve Discrete Logarithm Problem</td>
</tr>
<tr>
<td>$\mathbb{F}_p$</td>
<td>A prime field with $p$ elements</td>
</tr>
<tr>
<td>$\mathbb{F}_q$</td>
<td>A prime field with $q$ elements</td>
</tr>
<tr>
<td>$\mathbb{F}_q^*$</td>
<td>The multiplicative group composed of all non-zero elements in $\mathbb{F}_q$</td>
</tr>
<tr>
<td>$\mathbb{F}_2^m$</td>
<td>The binary field extension with $2^m$ elements</td>
</tr>
<tr>
<td>G</td>
<td>A base point on the elliptic curve $E$, with prime order</td>
</tr>
<tr>
<td>$\text{gcd}(x;y)$</td>
<td>The greatest common divisor of $x$ and $y$</td>
</tr>
<tr>
<td>$h$</td>
<td>The cofactor $h = #E(\mathbb{F}_p)/n$, where $n$ is the degree of a base point $G$</td>
</tr>
<tr>
<td>$\text{LeftRotate}(\ )$</td>
<td>The operation of Rotation to left</td>
</tr>
<tr>
<td>$\text{imax}$</td>
<td>The upper limit of the largest prime factor of the cofactor $h$</td>
</tr>
<tr>
<td>m</td>
<td>The extension degree of the field $\mathbb{F}_2^m$ over the binary field $\mathbb{F}_2$</td>
</tr>
<tr>
<td>mod$\mathbb{F}(x)$</td>
<td>The operation module the polynomial $f(x)$. All the coefficients mod 2 when $f(x)$ is a polynomial over $\mathbb{F}_2$.</td>
</tr>
<tr>
<td>mod$n$</td>
<td>The operation of modulo $n$, for example, $23 \mod 7 = 2$</td>
</tr>
<tr>
<td>n</td>
<td>The degree of a base point $G$ ($n$ is a prime factor of $#E(\mathbb{F}_q)$</td>
</tr>
<tr>
<td>O</td>
<td>The point of infinity (or zero) on the elliptic curve $E$.</td>
</tr>
<tr>
<td>P</td>
<td>A point $P$ on the elliptic curve $E$ which is not $O$. The coordinates $x_P$ and $y_P$ satisfies the elliptic curve equation</td>
</tr>
<tr>
<td>$P_1+P_2$</td>
<td>The summation of the two points $P_1$ and $P_2$ on elliptic curve $E$</td>
</tr>
</tbody>
</table>
p       A prime number greater than 3
q       The number of elements in the finite field Fq
rmin    The lower limit of the degree n of a base point G
Tr( )   The trace function
xP      The x-coordinate of the point P
yP      The y-coordinate of the point P
x^(-1)  The only y such that x*y=1 (modn), 1 < = y < = n, gcd(x, n)=1
x||y    The concatenation of x and y, where x and y are bit string or byte string
x == y (modn)  x modn = y modn
** y^P   The point compression expression of yP
zp      The ring of integers modulo p
G       A base point on the elliptic curve E
[k]P    The k multiple of a point P over elliptic curve, where k is a positive integer
[x;y]   The set of integers which greater than or equal to x and less than or equal to y
/r\     The smallest integer greater than or equal to r, for example AGBPA[not]/7\\=7, /8.3\\=9
/x/     The largest integer less than or equal to x, for example AGBPA[not]/7\\=7, /8.3\\=8
XOR     The exclusive-or operation of two bit strings or byte strings of same length
*********
A,B     The two users using the public key system
a, b    Elements in finite field Fq and they defines a Elliptic Curve E over Fq
dA      The private key of the user A
e(Fq)   The set of all the rational points of E
e       The hash of message M
e'      The hash of message M'
Fq      A prime field with q elements
G       A base point on the elliptic curve E, with prime order
Hv( )   The hash function with output of length v bits
IDA     The identifier of user A
M       The message for signature
MA!a&65533;     The message for verification
modn    The operation of modulo n, for example, 23 mod7 = 2
n       The degree of base point G (n is a prime factor of #E(Fq))
O       The point of infinity (or zero) on the elliptic curve E
PA      The public key of user A
q       The number of elements in the finite field Fq
x||y    The concatenation of x and y, where x and y are bit string or byte string
za      The identifier of user A, part of parameters of elliptic curve and hash value of PA
(r,s)   The sent signature
(r',s')  The received signature
[k]P    The k multiple of a point P over elliptic curve, where k is a positive integer
[x;y]   The set of integers which greater than or equal to x and less than or equal to y
/r\     The smallest integer greater than or equal to r, for example AGBPA[not]/7\\=7, /8.3\\=9
/x/     The largest integer less than or equal to x, for example AGBPA[not]/7\\=7, /8.3\\=8
#E(Fq)  The number of elements in E(Fq), the degree of elliptic curve E(Fq)
*********
3.2. Terms

The following terms are used in this document.

digital signature
The metadata over some data. It should provide authentication, integrity protection and non repudiation.  
[ANSI X9.63-2001]

message
The bits string of arbitrary length.  
[ISO/IEC 15946-4 3.7]

signed message
The data composed of a message and its digital signature. 
[ISO/IEC 15946-4 3.14]

key
A parameter for cryptographic calculation. It was used for encryption or decryption, shared secret and verification of digital signature.  
[ANSI X9.63-2001]

4. General Introduction to ECC

TBD

5. Digital Signature Algorithm

5.1. Digital Signature System

5.1.1. General Rules

In the digital signature algorithm, one signer generate digital signature over given data and one verifier verifies the validation of the signature. Each signer owns one public key and one private key. The private key was used for signing and verifier verifies the signature using the public key. Before generation of the digital signature, the message M and ZA need to be compressed via a hash function; before the verification of the digital signature, the message M' and ZA need to be compressed via a hash function.

5.1.2. Parameters of Elliptic Curve System

The parameters of an elliptic curve system include the size q of a finite field Fq (when q=2^m, also include basis representation and irreducible polynomial); the two elements a and b (in Fq) which defines the elliptic curve equation; the base point G=(xG, yG) (G not
euqals 0), where xG and yG are ellements in Fq; the degree n of G and
other optional parameter such as cofactor h.

5.1.3. Key pairs

The user A’s key pair include his private key dA and public key

5.1.4. Auxiliary Functions

5.1.4.1. Introduction

The auxiliary functions in the elliptic curve digital signature
algorithm in this document include hash algorithm and random number
generator.

5.1.4.2. Hash Functions

The sm2 digital signature algorithm requires the hash functions
approved by Chinese Commercial Cryptography Administration Office,
such as sm3.

5.1.4.3. Random Number Generator

The sm2 digital signature algorithm requires random number generators
approved by by Chinese Commercial Cryptography Administration Office.

5.1.4.4. Other User Information

As teh signer, User A has the identifier IDA of length entlenA bits,
denote ENTLA as the two bytes transformed from the integer entlenA.
In the digital signature algorithms in this document, both signer and
verifier need to obtain ZA by calculating the hash value of ZA.

ZA=H256(ENTLA || IDA || a || b || xG || yG || xA || yA)

5.2. Generation of Signature

5.2.1. Digital Signature Generation Algorithm

Let M be the message for signing, in order to obtain the signature
(r, s), the signer A need to perform the following:
A1: set $M' = ZA || M$
A2: calculate $e = Hv(M')$
A3: pick a random number $k$ in $[1, n-1]$ via a random number generator
A4: calculate the elliptic curve point $(x_1, y_1) = [k]G$
A5: calculate $r = (e + x_1) \mod n$, return to A3 if $r = 0$ or $r + k = n$
A6: calculate $s = ((1 + dA)^{-1} \cdot (k - r \cdot dA)) \mod n$, return to A3 if $s = 0$
A7: the digital signature of $M$ is $(r, s)$

5.2.2. Flow Chart of Digital Signature Generation
Figure 1: Flow Chart of Digital Signature Generation

5.3. Verification of Signature

5.3.1. Digital Signature Verification Algorithm

To verify the received message $M'$ and its digital signature, the verifier need to perform the following:
B1: verify whether \( r' \) in \([1,n-1]\), verification failed if not
B2: verify whether \( s' \) in \([1,n-1]\), verification failed if not
B3: set \( M'' =ZA || M' \)
B4: calculate \( e' = Hv(M'') \)
B5: calculate \( t = (r' + s') \mod n \), verification failed if \( t = 0 \)
B6: calculate the point \( (x_1', y_1') = [s']G + [t]PA \)
B7: calculate \( R = (e' + x_1') \mod n \), verification pass if yes, otherwise failed

Note: The verification will certainly fail if \( ZA \) does not correspond to the hash value of \( A \).

5.3.2. Flow Chart of Digital Signature Verification
B3: set \( M' = ZA \parallel M' \) < --+ |
B4: calculate \( e' = Hv(M') \) <-- | |
B5: calculate \( t = (r' + s') \mod n \) <--- | |
\( \text{YES} \) | R = t ? | \( \text{NO} \) |
\( \text{YES} \) | r = 0 ? | \( \text{NO} \) |
B6: calculate \( s = ((1 + dA)^{-1} \cdot (k - r \cdot dA)) \mod n \) |
\( \text{YES} \) | R = x' ? | \( \text{NO} \) |
B7: calculate \( (x', y') = [s]G + [t]PA \) <--- | |
\( \text{YES} \) | R = r' ? | \( \text{NO} \) |
B3: set \( M' = ZA \parallel M' \) < --+ |

6. SM2 Key Exchange Protocol

6.1. Parameters of the Algorithm and Auxiliary Functions

6.1.1. General Rules

In the key exchange protocol, user A and user B use respective private key and opposite public key to get agreement on a secret key only known by themselves through alternate communications. The shared secret key is generally used in a symmetric cryptographic algorithm. The key exchange protocol can be used in key management and key agreement.

6.1.2. Parameters of Elliptic Curve System

The parameters of an elliptic curve system include the size \( q \) of a finite field \( \mathbb{F}_q \) (when \( q=2^m \), also include basis representation and irreducible polynomial); the two elements \( a \) and \( b \) (in \( \mathbb{F}_q \)) which defines the elliptic curve equation; the base point \( \mathbf{G}=(x_G, y_G) \) (\( \mathbf{G} \) not equals \( 0 \)), where \( x_G \) and \( y_G \) are elements in \( \mathbb{F}_q \); the degree \( n \) of \( \mathbf{G} \) and other optional parameter such as cofactor \( h \).

6.1.3. Key pairs

The user A’s key pair include his private key \( d_A \) and public key \( \mathbf{P}_A=[d_A]\mathbf{G}=(x_A, y_A) \). The user B’s key pair include his private key \( d_B \) and public key \( \mathbf{P}_B=[d_B]\mathbf{G}=(x_B, y_B) \).

6.1.4. Auxiliary Functions

6.1.4.1. Introduction

The auxiliary functions in the elliptic curve key exchange protocol in this document include hash functions, key derivation function and random number generator.
6.1.4.2. Hash Function

The sm2 key exchange protocol requires the hash functions approved by Chinese Commercial Cryptography Administration Office, such as sm3.

6.1.4.3. Key derivation function

The key derivation function is used for deriving a secret key from a shared secret bit string. In the process of key agreement, the key derivation function acts on a secret bit string shared through key exchange to generate a secret key used for communication or further encryption. The key derivation function needs to call the hash function.

Let \( H_v( ) \) be the hash function whose outputs are hash values of \( v \) bits in length.

The key derivation function \( KDF(Z, klen) \):
Input: a bit string \( Z \), an integer \( klen \) (denoted as the length in bits of secret keys to be obtained, which is supposed to be less than \( (2^{32}-1)*v \)).
Output: a bit string of \( klen \) bits in length as the secret key.

a) Initialize a counter of 32 bits, i.e. \( ct=0x00000001 \);
b) From \( i=1 \) to \( \lfloor klen/v \rfloor \), do:
   b.1) calculate \( Ha(i)=H_v(Z || ct) \);
   b.2) \( ct++ \);
c) Let \( Ha(/ klen/v \) \) equal \( Ha(/ klen/v \) \) if \( klen/v \) is an integer, and let \( Ha(/ klen/v \) \)
   be the left \( (klen-\lfloor v* \ klen/v \rfloor) \) bits of \( Ha(/ klen/v \) \) if not.

6.1.4.4. Random Number Generator

The sm2 key exchange protocol requires random number generators approved by Chinese Commercial Cryptography Administration Office.

6.1.5. Other User Information

User A has the identifier \( IDA \) of length \( entlenA \) bits, denote \( ENTLA \) as the two bytes transformed from the integer \( entlenA \); User B has the identifier \( IDB \) of length \( entlenB \) bits, denote \( ENTLB \) as the two bytes transformed from the integer \( entlenB \). In the key exchange protocol in this document, both A and B as the participants of key agreement need to obtain \( ZA \) and \( ZB \) by calculating the hash value of \( ZA \) and \( ZB \).

\[
ZA=H_{256}(ENTLA || IDA || a || b || xG || yG || xA || yA)
\]
\[
ZB=H_{256}(ENTLB || IDB || a || b || xG || yG || xB || yB)
\]
6.2. Key Exchange Protocol and the Flow Chart

6.2.1. Key Exchange Protocol

Let user A be the initiator, user B be the responder and klen be the length in bits of the secret key agreed by user A and user B.

In order to obtain the identical secret key by both user A and user B, they need to perform the following:

Set \( w = \lfloor \log_2(n) / 2 \rfloor - 1 \)

**USER A:**

A1: pick a random number \( r_A \) in \([1, n-1]\) via a random number generator;
A2: calculate the elliptic curve point \( R_A = [r_A]G = (x_1, y_1) \);
A3: send \( R_A \) to user B;

**USER B:**

B1: pick a random number \( r_B \) in \([1, n-1]\) via a random number generator;
B2: calculate the elliptic curve point \( R_B = [r_B]G = (x_2, y_2) \);
B3: calculate \( x_2^* = 2^w + (x_2 \land (2^w - 1)) \);
B4: calculate \( t_B = (d_B + x_2^* r_B) \mod n \);
B5: verify whether \( R_A \) satisfies the elliptic curve equation, agreement failed if not; otherwise calculate \( x_1^* = 2^w + (x_1 \land (2^w - 1)) \);
B6: calculate the elliptic curve point \( V = [h \cdot t_B](P_A + [x_1^*]R_A) = (x_V, y_V) \), agreement of B failed if \( V \) is the point of infinity;
B7: calculate \( K_B = KDF(x_V || y_V || Z_A || Z_B, klen) \);
B8: (option) calculate \( S_B = Hash(0x02 || y_V || Hash(x_V || Z_A || Z_B || x_1 || y_1 || x_2 || y_2)) \);
B9: (option) send \( R_B \), (option \( S_B \)) to user A;

**USER A:**

A4: calculate \( x_1^* = 2^w + (x_1 \land (2^w - 1)) \);
A5: calculate \( t_A = (d_A + x_1^* r_A) \mod n \);
A6: verify whether \( R_B \) satisfies the elliptic curve equation, agreement failed if not; otherwise calculate \( x_2^* = 2^w + (x_2 \land (2^w - 1)) \);
A7: calculate the elliptic curve point \( U = [h \cdot t_A](P_B + [x_2^*]R_B) = (x_U, y_U) \), agreement of A failed if \( U \) is the point of infinity;
A8: calculate \( K_A = KDF(x_U || y_U || Z_A || Z_B, klen) \);
A9: (option) calculate \( S_A = Hash(0x03 || y_U || Hash(x_U || Z_A || Z_B || x_1 || y_1 || x_2 || y_2)) \), verify whether \( S_A \) equals \( S_B \), key confirmation from B to A failed if not; A10: (option) calculate \( S_1 = Hash(0x03 || y_U || Hash(x_U || Z_A || Z_B || x_1 || y_1 || x_2 || y_2)) \), send \( S_A \) to user B;

**USER B:**

B10: (option) calculate \( S_2 = Hash(0x03 || y_V || Hash(x_V || Z_A || Z_B || x_1 || y_1 || x_2 || y_2)) \), verify whether \( S_2 \) equals \( S_A \), key confirmation from A to B failed if not;

Note: The agreement of the shared secret key will certainly fail if \( Z_A \) or \( Z_B \) does not correspond to the hash value of A or B.
6.2.2. Flow Chart of Key Exchange Protocol

the original data of
the initiator user A
(parameters of elliptic curve
system, ZA, ZB, dA, PA, PB)

the original data of
the responder user B
(parameters of elliptic curve
system, ZA, ZB, dB, PB, PA)

A1: pick a random number
rA in [1, n-1]
A2: calculate RA=[rA]G=(x1, y1)
A3: send RA to user B

B1: pick a random number
rB in [1, n-1]
B2: calculate RB=[rB]G=(x2, y2)
B3: calculate
x2'=2^w+(x2 AND (2^w-1))
B4: calculate
tB=(dB+x2'*rB) modn

A4: calculate
x1'=2^w+(x1 AND (2^w-1))
A5: calculate
tA=(dA+x1'*rA) modn

B5: calculate
x1'=2^w+(x1 AND (2^w-1))
B6: calculate the point
V=[h*tB](PA+[x1']*RA)=(xV, yV)

A6: calculate
x2'=2^w+(x2 AND (2^w-1))
A7: calculate the point
U=[h*tA](PB+[x2']*RB)=(xU, yU)

B7: calculate
KB=KDF(xV||yV||ZA||ZB, klen)
B8: (option) calculate
Figure 1: Flow Chart of Key Exchange Protocol

7. SM2 Public Key Encryption Algorithm

7.1. Parameters of the Algorithm and Auxiliary Functions

7.1.1. General Rules

In the public key encryption algorithm, the sender generates ciphertext by encrypting the message with the receiver’s public key, and the receiver recovers the original message by decrypting the ciphertext received with his own private key.
7.1.2. Parameters of Elliptic Curve System

The parameters of an elliptic curve system include the size \( q \) of a finite field \( \mathbb{F}_q \) (when \( q=2^m \), also include basis representation and irreducible polynomial); the two elements \( a \) and \( b \) (in \( \mathbb{F}_q \)) which defines the elliptic curve equation; the base point \( G=(x_G, y_G) \) (\( G \) not equals \( O \)), where \( x_G \) and \( y_G \) are elements in \( \mathbb{F}_q \); the degree \( n \) of \( G \) and other optional parameter such as cofactor \( h \).

7.1.3. Key pairs

The user B’s key pair include his private key \( d_B \) and public key \( P_B=[d_B]G=(x_B, y_B) \).

7.1.4. Auxiliary Functions

7.1.4.1. Introduction

The auxiliary functions in the elliptic curve public key encryption algorithm in this document include hash functions, key derivation function and random number generator.

7.1.4.2. Hash Function

The sm2 public key encryption algorithm requires the hash functions approved by Chinese Commercial Cryptography Administration Office, such as sm3.

7.1.4.3. Key derivation function

The key derivation function is used for deriving a secret key from a shared secret bit string. In the process of key agreement, the key derivation function acts on a secret bit string shared through key exchange to generate a secret key used for communication or further encryption. The key derivation function needs to call the hash function. Let \( H_v(\cdot) \) be the hash function whose outputs are hash values of \( v \) bits in length.

The key derivation function \( KDF(Z, klen) \):
- Input: a bit string \( Z \), an integer \( klen \)(denoted as the length in bits of secret keys to be obtained, which is supposed to be less than \( (2^{32}-1)*v \)).
- Output: a bit string of \( klen \) bits in length as the secret key.
  a) Initialize a counter of 32 bits, i.e. \( ct=0x00000001 \);
  b) From \( i=1 \) to \( klen/v \), do:
     b.1) calculate \( H_a(i)=H_v(Z || ct) \);
     b.2) \( ct++ \);
  c) Let \( H_a(\lfloor klen/v \rfloor) \) equal \( H_a(\lfloor klen/v \rfloor) \) if \( klen/v \) is an integer, and let \( H_a(\lfloor klen/v \rfloor) \) be the left \( (klen-(v*\lfloor klen/v \rfloor)) \) bits of \( H_a(\lfloor klen/v \rfloor) \) if not.
d) let K=Ha(1) || Ha(2) || ... || Ha(/ klen/v \-1) || Ha!(/ klen/v \).

7.1.4.4. Random Number Generator

The sm2 public key encryption algorithm requires random number generators approved by Chinese Commercial Cryptography Administration Office.

7.2. Algorithm for Encryption and the Flow Chart

7.2.1. Algorithm for Encryption

Let the bit string M be the message for sending, klen be the length in bits of M.

In order to encrypt M, user A need to perform the following:
A1: pick a random number k in [1, n-1] via a random number generator;
A2: calculate the elliptic curve point C1=[k]G=(x1, y1);
A3: calculate the elliptic curve point S=[h]PB, report error and quit if S is the point of infinity;
A4: calculate the elliptic curve point [k]PB=(x2, y2);
A5: calculate t=KDF(x2 || y2, klen), return to A1 if t is an all zero bit string;
A6: calculate C2=M XOR t;
A7: calculate C3=Hash(x2 || M || y2);
A8: output the ciphertext C=C1 || C2 || C3).

7.2.2. Flow Chart of Algorithm for Encryption

```
+-------------------------------------------+     |
|       the original data of user A         |     |
|  (parameters of elliptic curve system,   |     |
|    message M of klen bits in length,     |     |
|           public key PB)                 |     |
+-------------------------------------------+     |
                           v                |
                           +---------------------+       |
                           | A1: pick a random number |       |
                           +--->|     k in [1, n-1]        |       |
                           |     +---------------------+       |
                           |     |                     |     |
                           |     |    v                  |     |
                           |     +---------------------+     |
                           |     | A2: calculate C1=[k]G=(x1, y1)|
```
7.3. Algorithm for Decryption and the Flow Chart

7.3.1. Algorithm for Decryption

Let klen be the length in bits of C2 in the ciphertext. In order to decrypt the ciphertext \( C = C_1 \parallel C_2 \parallel C_3 \), user B need to perform the following:

- B1: pick out the bit string \( C_1 \) from \( C \) and transform it into the point on the elliptic curve, verify whether \( C_1 \) satisfies the elliptic curve equation, report error and quit if not;
- B2: calculate the elliptic curve point \( S = [h]C_1 \), report error and quit if \( S \) is the point of infinity;
- B3: calculate \( [dB]C_1 = (x_2, y_2) \);
- B4: calculate \( t = KDF(x_2 \parallel y_2, klen) \), report error and quit if \( t \) is an all zero bit string;
- B5: pick out the bit string \( C_2 \) from \( C \), calculate \( M' = C_2 \oplus t \);
- B6: calculate \( u = \text{Hash}(x_2 \parallel M' \parallel y_2) \), pick out the bit string \( C_3 \) from \( C \), report error and quit if \( u \) does not equal \( C_3 \);
- B7: output the plaintext \( M' \).

7.3.2. Flow Chart of Algorithm for Decryption
Figure 2: Flow Chart of Algorithm for Decryption

8. References

8.1. Normative References


8.2. Informative References


Appendix A. Examples of Digital Signatures

A.1. General Introduction

This appendix uses the hash algorithm described in draft-shen-sm3-hash-00, which applies on a bit string of length less than 2^54 and output a hash value of size 256, denotes as H256().

In this appendix, all the hexadecimal number has high digits on the left and low digits on the right.

In this appendix, all the messages are in ASCII code.

Let the user A’s identity be: ALICE123@YAHOO.COM. Denoted in ASCII code IDA:

414C 49434531 32334059 41484F4F 2E434F4
ENTLA=0090.

A.2. Digital Signature of over E(Fp)

The elliptic curve equation is:

\[ y^2 = x^3 + ax + b \]
Example 1: Fp-256

A Prime p:
8542D69E 4C044F18 E8B92435 BF6FF7DE 45728391 5C45517D 722EDB8B 08F1DFC3

The coefficient a:
787968B4 FA32C3FD 2417842E 73BBFEFF 2F3C848B 6831D7E0 EC65228B 3937E498

The coefficient b:
63E4C6D3 B23B0C84 9CF84241 484BFE48 F61D59A5 B16BA06E 6E12D1DA 27C5249A

The base point G=(xG,yG) AGBPA[not]whose degree is n:
x-coordinate xG:
421DEBD6 1B62EAB6 746434EB C3CC315E 32220B3B ADD50BDC 4C4E6C14 7FEDD34D
y-coordinate yG:
0680512B CBB42C07 D47349D2 153B70C4 E5D7FDFC BFA36EA1 A85841B9 E46E09A2
degree n:
8542D69E 4C044F18 E8B92435 BF6FF7DD 29772063 0485628D 5AE74EE7 C32E79B7

The message M to be signed:message digest

The private key dA:
128B2FA8 BD433C6C 068C8D80 3DF7979 2A519A55 171B1B65 0C23661D 15897263

The public key PA=(xA,yA):
x-coordinate xA:
0AE4C779 8AA0F119 471BEE11 825BE462 02BB79E2 A5844495 E97C04FF 4DF2548A
y-coordinate yA:
7C0240F8 881FDE11 6352A73C 17B7F16F 07353E53 A176D684 A9FEC6B B798E857

Hash value ZA=H256(ENTLA || IDA || a || b || xG || yG || xA || yA)
ZA:
F4A38489 E32B45B6 F876E3AC 2168CA39 2362DC8F 23459C1D 1146FC3D BFB7BC9A

The intermediate value during signing processing:
M'=ZA || M:
F4A38489 E32B45B6 F876E3AC 2168CA39 2362DC8F 23459C1D 1146FC3D BFB7BC9A
6D657373 61676520 64696765 7374
hash value e=H256(M):
B524F552 CD82B8B0 28476E00 5C377FB1 9A87E6FC 682D48BB 5D42E3D9 B9EFFE76
random number k:
6CB28D99 385C175C 94F94E93 4817663F C176D925 DD72B727 260DBAAE 1FB2F96F
point (x1,y1)=[k]G:
x-coordinate x1:
110FCD65 7615705D 5E7B9324 AC4B856D 23E6D918 8B2AE477 59514657 CE25D112
y-coordinate y1:
1C65D68A 4A08601D F24B431E 0CAB4EBE 084772B3 817EB581 1A8510B2 DF7ECA1A
r=(e+x1) mod n:
A.3.  Digital Signature of over \( E(\mathbb{F}_2^m) \)

The elliptic curve equation is:

\[ y^2 + xy = x^3 + ax + b \]

Example 1: \( \mathbb{F}_2^m -257 \)

The polynomial to generate base field is: \( x^{257} + x^{12} + 1 \)

The coefficient a:

0
The coefficient b:
00 E78BCD09 746C2023 78A7E72B 12BCE002 66B9627E CB0B5A25 367AD1AD 4CC6242B

The base point G=(xG,yG)\notin\mathbb{F}_p whose degree is n:
x-coordinate xG:
00 CDB9CA7F 1E6B0441 F658343F 4B10297C 0EF9B649 1082400A 62E7A748 5735FADD
y-coordinate yG:
01 3DE74DA6 5951C4D7 6DC89220 D5F7777A 611B1C38 BAE260B1 75951DC8 060C2B3E
degree n:
7FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF BC972CF7 E6B6F900 945B3C6A 0CF6161D

The message M to be signed:message digest

The private key dA:
771EF3DB FF5F1CDC 32B9C572 93047619 1998B2BF 7CB981D7 F5B39202 64F50931

The public key PA=(xA,yA):
x-coordinate xA:
01 65961645 281A8626 607B917F 657D7E93 82F1EA5C D931F40F 6627F357 542653B2
y-coordinate yA:
01 68652213 0D590FB8 DE635D8F CA715CC6 BF3D05BE F3F75DA5 D4345444 8166612

Hash value ZA=H256(ENTLA || IDA || a || b || xG || yG || xA || yA)
ZA:
26352AF8 2EC19F20 7BBC6F94 74E11E90 CE0F7DDA CE03B27F 801817E8 97A81FD5

The intermediate value during signing processing:
M˜=ZA || M:
26352AF8 2EC19F20 7BBC6F94 74E11E90 CE0F7DDA CE03B27F 801817E8 97A81FD5
6D657373 61676520 64696765 7374

hash value e=H256(M˜):
AD673CBBD A3114171 29A9EAA5 F9AB1AA1 633AD477 18A84DFD 46C17C6F A0AA3B12
random number k:
36CD79FC 8E24B735 7A8A7B4A 6D454C3 97703D64 98158C60 5399B341 ADA186D6
point (xl,yl)=[k]G:
x-coordinate xl:
00 3FD87D69 47A15F94 25B32EDD 39381ADF D5E71CD4 BB357E3C 6A6E0397 EEA7CD66
y-coordinate yl:
00 89711114 6D73951E 9EB373A6 58214054 B7B56D1D 50B4CD6E B32ED387 A65AA6A2
r=(e+xl) mod n:
6D3FB2A6 EAB2A105 4F5D1983 32E33581 7C8AC453 ED26D339 1CD4439D 825BF25B
(1 + dA)^(-1):
73AF2954 F951A9DF F5B4C8F7 119DA1C 230C9BAD E60568D0 5BC3F432 1E1F4260
s = ((1 + dA)^(-1)) * (k - r * dA) mod n:
3124C568 8D95F0A1 0252A9BE D033BEC8 4439DA38 4621B6D6 FAD77F94 B74A9556
Digital Signature of the message M: (r,s)

r: 6D3FBA26 EAB2A105 4F5D1983 32E33581 7C8AC453 ED26D339 1CD4439D 825BF25B
s: 3124C568 8D95F0A1 0252A9BE D033BEC8 4439DA38 4621B6D6 FAD77F94 B74A9556

The intermediate value during verification processing:
hash value e' = H256(M'˜):
AD673CBD A3114171 29A9EAA5 F9AB1AA1 633AD477 18A84DFD 46C17C6F A0AA3B12
t=(rA!aa^3A!aS. modn:
1E647F8F 7B4891A6 51AFC342 0316F44A 042D7194 4C91910F 835086C8 2CB07194
point (x0A!aa y0)=[s']G:
x-coordinate x0:
00 252CF6B6 3A044FCE 553EAA77 3E1E9264 44E0DAA1 0E4B8873 89D11552 EA6418F7
y-coordinate y0:
00 776F3C5D B3AOD312 9EAE44E0 21C28667 92E4264B E1BEEBCA 3B8159DC A3B2653A
point (x00', y00')=[t]PA:
x-coordinate x00:
07DA3F04 0EF9C28 1E107EC C389F56F E76A680B B5FDEE1D D554DC11 EB477C88
y-coordinate y00:
01 7B2A845D C65945C3 D48926C7 0C953A1A F29CE2E1 9A7EEE6B E0269FB4 803CA6BB
point (x1', y1')=[s']G + [t]PA:
x-coordinate x1:
00 3FD87D69 47A15F94 25B32E4D 39381ADF D5E71CD4 BB357E3C 6A6E0397 EEA7CD66
y-coordinate y1:
00 80771114 6D73951E 9EB373A6 58214054 B7B56D1D 50B4CD6E B32ED387 A65AA6A2
R = (e' + x1') modn:
6D3FBA26 EAB2A105 4F5D1983 32E33581 7C8AC453 ED26D339 1CD4439D 825BF25B

Appendix B. Examples of Key Exchanges

B.1. General Introduction

This appendix uses the hash algorithm described in draft-shen-sm3-hash-00, which applies on a bit string of length less than 2^64 and output a hash value of size 256, denotes as H256( ).

In this appendix, all the hexadecimal number has high digits on the left and low digits on the right.

Let the user A’s identity be: ALICE123@YAHOO.COM. Denoted in ASCII code IDA:
414C 49434531 32334059 41484F44 F2E434F4D
ENTLA=0090.

Let the user B’s identity be: BILL456@YAHOO.COM. Denoted in ASCII
B.2. Key Exchange Protocol over E(Fp)

The elliptic curve equation is:

\[ y^2 = x^3 + ax + b \]

Example 1: Fp-256

A prime p:

8542D69E 4C044F18 E8B92435 BF67F7DE 45728391 5C45517D 722EDB8B 08F1DFC3

The coefficient a:

787968B4 FA32C3FD 2417842E 73BBFEFF 2F3C84B8 6831D7E0 EC6522B8 3937E498

The coefficient b:

63E4C6D3 B23B0C84 9CF84241 484BFE48 F61D59A5 B16BA06E 6E1D2B1DA 27C2D49A

The cofactor h: 1

The base point G=(xG, yG), whose degree is n:

x-coordinate xG:

421DEBD6 1B62EAB6 746435EB C3CC315E 32220B3B ADD50BDC 4C4E6C14 7FEDD43D

y-coordinate yG:

068052B D4B42C07 D47349D2 153B70C4 E5D7F7FC BFA36EA1 A85841B9 E46E09A2

degree n:

8542D69E 4C044F18 E8B92435 BF67F7DE 29772063 0485628D 5AE74EE7 C32E79B7

The private key dA:

6FCBA2EF 9AE0AB90 2BC3BDE3 FF915D44 BA44C78F 88E2F8E8 F8996D3B 8CCEDEEE

The public key PA=(xA, yA):

x-coordinate xA:

3099093B F3C137D8 FCBBCDF4 A2AE50F3 B0F216C3 122D7942 5FE03A45 DBFE1655

y-coordinate yA:

3DF79E8D AC1CF0EC BAA2F2B4 9D51A4B3 87F2EFAF 4823390B 6A27AE0 5BAED98B

The private key dB:

5E35D7D3 F3C54DBA C72E6184 9E73B0B1 9A84208C A3A35E4C 2E353DFC CB2A3B53

The public key PB=(xB, yB):

x-coordinate xB:
245493D4 46C38D8C C0F11837 4690E7DF 633A8A4B FB3329B5 ECE604B2 B4F37F43
y-coordinate yB:
53C0869F 4B9E1777 3DE68FEC 45E14904 E0DEA45B F6CECF99 18C85EA0 47C60A4C
Hash value ZA=H256(ENTLA || IDA || a || b || xG || yG || xA || yA)
ZA:
E4D1D0C3 CA4C7F11 BC8FF8CB 3F4C02A7 8F108FA0 98E51A66 8487240F 75E20F31
Hash value ZB=H256(ENTLB || IDB || a || b || xG || yG || xB || yB)
ZB:
6B4B6D0E 276691BD 4A11BF72 F4FB501A E309FDAC B72FA6CC 336E6656 119ABD67

The intermediate value during key exchange processing A1-A3:
random number rA:
83A2C9C8 B96E5AF7 0BD480B4 72409A9A 327257F1 EBB73F5B 073354B2 48668563
point RA=[rA]G=(x1, y1):
x-coordinate x1:
6CB56338 16F4DD56 0B1DEC45 8310CBCC 6856C095 05324A6D 23150C40 8F162BF0
y-coordinate y1:
0D6FCF62 F1036C0A 1B6DACCF 57399223 A65F7D7B F2D9637E 5BBBE8B5 7961BF1A

The intermediate value during key exchange processing B1-B9:
random number rB:
33FE2194 0342161C 55619C4A 0C060293 D543C80A F19748CE 176D8347 7DE71C80
point RB=[rB]G=(x2, y2):
x-coordinate x2:
1799B2A2 C7782953 00D9A232 5C686129 B8F2B533 7B3DCF45 14E8B8B1 9D9000E5
y-coordinate y2:
54C9288C 82733EDF F7808AE7 F27D0E73 2F7C73A7 D9AC98B7 D8740A91 D0DB3CF4
x2˜=2^127+(x2 AND (2^127-1)):
B8F2B533 7B3DCF45 14E8B8B1 9D9000E5
tB=(dB+x2˜*rB) modn:
2B2E11CB F03641FC 3D939262 FC0B652A 70AACA25 B5369AD3 8B375C02 65490C9F
x1˜=2^127+(x1 AND (2^127-1)):
E856C095 05324A6D 23150C40 8F162BF0
point [x1˜]RA=(xA0, yA0):
x-coordinate xA0:
2079015F 1A2A3C13 2B67CA90 75BB2803 1D6F2239 8DD8331E 72529555 204B495B
y-coordinate yA0:
6B3FE6FB 0F5D5664 DCA16128 B5E7CFCD AFA5456C 1E5A914D 1300DB61 F37888ED
point PA+[x1˜]RA=(xA1, yA1):
x-coordinate xA1:
1C006A3B FF97C651 B7F70DD0 E0FC09D2 3AA2BE7A 8E9FF7DA F32673B4 16349B92
y-coordinate yA1:
5DC74F8A CC114FC6 F1A75CB2 86864F34 7F9B2CF2 9326A270 79B7D37A FC1C145B
point V=[h*tB](PA+[x1˜]RA)=(xV, yV):
x-coordinate \( x \):
47C82653 4DC2F6F1 FBF28728 DD65F821 E174F481 79ACF29F 00F8B7F5 66E40905
y-coordinate \( y \):
2AF8E6FE 732CF12A D0E09A1F 2556CC65 D9CCCE3 E249866B BB5C6846 A4C4A295
KB=KDF(xV || yV || ZA || ZB, klen):
xV || yV || ZA || ZB:
47C82653 4DC2F6F1 FBF28728 DD65F821 E174F481 79ACF29F 00F8B7F5 66E40905
shared secret key KB:
55B0AC62 A6B927BA 23703832 C853DED4
option SB=Hash(0x02 || yV || Hash(xV || ZA || ZB || x1 || y1 || x2 || y2)):
0x02 || yV || Hash(xV || ZA || ZB || x1 || y1 || x2 || y2):
FF49D95B D45FCE99 ED54A8AD 7A709110 9F513944 42916BD1 54D1DE43 79D97647
option SB:
284C8F19 8F141B50 2E81250F 1581C7E9 EEB4CA69 90F9E02D F388B454 71F5BC5C
The intermediate value during key exchange processing A4-A10:
x1'=2^127+(x1 AND (2^127-1)):
E856C095 05324A6D 23150C40 8F162BF0
ta=(da+x1'*ra) modn:
236CF0C7 A177C65C 7B55E12D 361F7A6C 174A7869 8AC099C0 874AD065 8A4743DC
x2'=2^127+(x2 AND (2^127-1)):
B8F2B533 7B3DCF45 14E8BEC1 9D900EE5
point [x2']RB=(xB0, yB0):
x-coordinate xB0:
66864274 6BF0C66A 1E731ECF FF51131B DC81CF60 9701CB8C 657B25BF 55B7015D
y-coordinate yB0:
1988A76C 81CEB150 9AC69F49 D72AE60E 8B71DB6C E087AF84 99FEE4F4 CD523064
point PB+[x2']RB=(xB1, yB1):
x-coordinate xB1:
7D2B4435 1088ADB7 CA3911CF 2019EC07 078AFF11 6E0FC409 A9F75A39 01F306CD
y-coordinate yB1:
331F06C6 0FE08D40 5FEBD3B0 7BC255D6 8196563B DCA68B9C BA100E73 197E5D24
point U=[h*tA](PB+[x2']RB)=(xU, yU):

x-coordinate $x_U$:
47C82653 4DC2F6F1 FBF28728 DD65F281 E174F481 79ACEF29 00F8B7F5 66E40905
y-coordinate $y_U$:
2AF86EFE 732CF12A D0E09A1F 2556CC65 0D9CCCE3 E249866B BB5C6846 A4C4A295
KA=KDF($x_U$ || $y_U$ || $Z_A$ || $Z_B$, klen):

xU  || yU  || ZA  || ZB, klen:
47C82653 4DC2F6F1 FBF28728 DD658F21 E174F481 79ACEF29 00F8B7F5 66E40905
2AF86EFE 732CF12A D0E09A1F 2556CC65 0D9CCCE3 E249866B BB5C6846 A4C4A295
E4D1D0C3 CA4C7F11 BC8FF8CB 3F4C02A7 8F108FA0 98E51A66 8487240F 75E20F31
6B4B6DOE 276691BD 4A11BF72 F4FB501A E309FDAC B72FA6CC 336E6656 119ABD67
klen=128
shared secret key KA:
55B0AC62 A6B927BA 23703832 C853DED4
option S1=Hash(0x02 || $y_U$ || Hash(xU || $Z_A$ || $Z_B$ || $x_1$ || $y_1$ || $x_2$ || $y_2$)):
xU  || $Z_A$  || $Z_B$  || $x_1$  || $y_1$  || $x_2$  || $y_2$:
47C82653 4DC2F6F1 FBF28728 DD658F21 E174F481 79ACEF29 00F8B7F5 66E40905
E4D1D0C3 CA4C7F11 BC8FF8CB 3F4C02A7 8F108FA0 98E51A66 8487240F 75E20F31
6B4B6DOE 276691BD 4A11BF72 F4FB501A E309FDAC B72FA6CC 336E6656 119ABD67
6CB56338 16F4D5D6 0B1 DEC45 8310C BBC 6856C095 0532A46D 23150C40 8F162BF0
0D6FCF62 F1036C0A 186DACCF 57399223 A65F7DBF F2D9637E 5BBBEB85 7961BF1A
1799B2A2 C7782953 009DA232 5CB68129 B8F2B533 7B3DCF45 14EBBC1 9D900EE5
54C9288C 82733EFD F7808AE7 F2700E73 2F7C73A7 D8740A91 DDB3CF4
Hash(xU || $Z_A$ || $Z_B$): FF49D95B D45FCE99 ED54A8AD 7A709110 9F513944 42916BD1 54D1DE43 79D97647
0x02  || $y_U$  || Hash(xU || $Z_A$ || $Z_B$ || $x_1$ || $y_1$ || $x_2$ || $y_2$):
02 2AF86EFE 732CF12A D0E09A1F 2556CC65 0D9CCCE3 E249866B BB5C6846 A4C4A295
FF49D95B D45FCE99 ED54A8AD 7A709110 9F513944 42916BD1 54D1DE43 79D97647
option S1:
284C8F19 8F141B50 2E81250F 1581C7E9 EEB4CA69 90F9E02D F388B454 71F5BC5C
option SA=Hash(0x03 || $y_U$ || Hash(xU || $Z_A$ || $Z_B$ || $x_1$ || $y_1$ || $x_2$ || $y_2$)):
xU  || $Z_A$  || $Z_B$  || $x_1$  || $y_1$  || $x_2$  || $y_2$:
47C82653 4DC2F6F1 FBF28728 DD658F21 E174F481 79ACEF29 00F8B7F5 66E40905
E4D1D0C3 CA4C7F11 BC8FF8CB 3F4C02A7 8F108FA0 98E51A66 8487240F 75E20F31
6B4B6DOE 276691BD 4A11BF72 F4FB501A E309FDAC B72FA6CC 336E6656 119ABD67
6CB56338 16F4D5D6 0B1 DEC45 8310C BBC 6856C095 0532A46D 23150C40 8F162BF0
0D6FCF62 F1036C0A 186DACCF 57399223 A65F7DBF F2D9637E 5BBBEB85 7961BF1A
1799B2A2 C7782953 009DA232 5CB68129 B8F2B533 7B3DCF45 14EBBC1 9D900EE5
54C9288C 82733EFD F7808AE7 F2700E73 2F7C73A7 D8740A91 DDB3CF4
Hash(xU || $Z_A$ || $Z_B$): FF49D95B D45FCE99 ED54A8AD 7A709110 9F513944 42916BD1 54D1DE43 79D97647
0x03  || $y_U$  || Hash(xU || $Z_A$ || $Z_B$ || $x_1$ || $y_1$ || $x_2$ || $y_2$):
03 2AF86EFE 732CF12A D0E09A1F 2556CC65 0D9CCCE3 E249866B BB5C6846 A4C4A295
FF49D95B D45FCE99 ED54A8AD 7A709110 9F513944 42916BD1 54D1DE43 79D97647
option SA:
23444DAF 8ED75343 66CB901C 84B3DBBB 63504F60 65C1116C 91A4C00E 97E6CF7A
The intermediate value during key exchange processing B10:
option S2=Hash(0x03 || $y_V$ || Hash(xV || $Z_A$ || $Z_B$ || $x_1$ || $y_1$ || $x_2$ || $y_2$)): 
xV || ZA || ZB || x1 || y1 || x2 || y2:
47C82653 4DC2F6F1 FBF28728 DD658F21 E174F481 79ACEF29 00F8B7F5 66E40905
E4D1D0C3 CA4C7F11 BC8FF8CB 3F4C02A7 8F108FA0 98E51A66 8487240F 75E20F31
6B4B6D0E 276691BD 4A11BF72 F4FB501A E309FDC4 B72FA6CC 336E6656 119ABD67
6CB56338 16F4DD56 0B1DEC45 8310CBCC 6856129B B8F2B533 7B3DCF45 14E8BBC1 9D900EE5
54C9288C 82733EF5 F7808AE7 F27D0E73 2F7C73A7 D9AC98B7 D8740A91 D0DB3CF4
Hash(xV || ZA || ZB || x1 || y1 || x2 || y2):
FF49D95B D45FCE99 ED54A8AD 7A709110 9F513944 42916BD1 54D1DE43 79D97647
0x03 || yV || Hash(xV || ZA || ZB || x1 || y1 || x2 || y2):
03 2AF86EFE 732CF12A D0E09A1F 2556CC65 0D9CCE3 E24986B6 BB5C6846 A4C4A295
FF49D95B D45FCE99 ED54A8AD 7A709110 9F513944 42916BD1 54D1DE43 79D97647
option S2:
2344DAF 8ED75343 66CB901C 84B38D9F 6350A2F0 65C11E1C 91A4C006 97E6C77A

B.3. Key Exchange Protocol over $E(F^{2^m})$

The elliptic curve equation is:

$$y^2 + xy = x^3 + ax + b$$

Example 2: $F^{2^m} - 257$
The polynomial to generate base field is: $x^{257} + x^{12} + 1$

The coefficient $a$:
0

The coefficient $b$:
00 E78BCD09 746C2023 78A7E72B 12BCE002 66B9627E CB0B5A25 367AD1AD 4CC6242B

The cofactor $h$: 4

The base point $G=(xG, yG)$, whose degree is $n$:
x-coordinate $xG$:
00 CDB9CA7F 1B6B0441 F658343F 4B10297C 0EF9B649 1082400A 62E7A748 5735FADD
y-coordinate $yG$:
01 3DE74DA6 5951CD7 6DC9229 D5F7777A 611B1C38 BAE260B1 75951DC8 060C2B3E
degree $n$:
7FFFFFFF FFFFFFFFF FFFFFFFFF FFFFFFFF BC972CF7 E6B6F900 945B3C6A 0CF6161D

The private key $dA$:
4813903D 254F2C20 A94BC570 42384969 54BB5279 F861952E F2C5298E 84D2CEAA

The public key $P_A=(xA, yA)$:
x-coordinate $xA$:
The private key dB:
08F41BAE 0922F47C 212803FE 681AD52B 9BF28A35 E1CD0EC2 73A2CF81 3E8FD1DC

The public key PB=(xB, yB):
x-coordinate xB:
00 34297DD8 3AB14D5B 393B6712 F32B2F2E 938D4690 B095424B 89DA880C 52D4A7D9
y-coordinate yB:
01 99BBF11A C95A0EA3 4BBD00CA 50B93EC2 4ACB6833 5D20BA5D CFE3B33B DBD2B62D

Hash value ZA=H256(ENTLA || IDA || a || b || xG || yG || xA || yA)
ZA:
ECF00802 15977B2E 5D6D61B9 8A99442F 03E8803D C39E349F 8DCA5621 A9ACDF2B

Hash value ZB=H256(ENTLB || IDB || a || b || xG || yG || xB || yB)
ZB:
557BAD30 E183559A EEC3B225 6E1C7C11 F870D22B 165D015A CF9465B0 98B7B527

The intermediate value during key exchange processing A1-A3:
random number rA:
54A3D667 3FP3A6BD 6B02EBB1 64C2A3AF 6D4A4906 229D9BFC E68CC366 A2E64BA4
point RA=[rA]G=(x1, y1):
x-coordinate x1:
01 81076543 ED19058C 38B313D7 39921D46 B80094D9 61A13673 D4A5CF8C 7159E304
y-coordinate y1:
01 D8CF87C A27A01A2 E88C1867 3748FDE9 A74C1F9B 45646ECA 0997293C 15C34DD8

The intermediate value during key exchange processing B1-B9:
random number rB:
1F219333 87BEF781 D0A8F7FD 708C5AEC 64C36AE3 6464E2F0 6C53F7AD
point RB=[rB]G=(x2, y2):
x-coordinate x2:
00 2A4832B4 DCD399BA AB3FFFE7 DD6CE6ED 68CC43FF A5F2623B 9BD04E46 8D322A2A
y-coordinate y2:
00 16599BB5 2ED9EAFA D01CFA45 3CF3052E 6D0184D2 EECFD42B 52DB7411 0B984C23
x2~=(2^127+(x2 AND (2^127-1))):
EB8CC43FF A5F2623B 9BD04E46 8D322A2A
tB=(dB+x2*rB) modn:
3D51D331 14A453A0 5791DB63 5B45F8DB CS4686D7 E2212D49 E4A717C6 B10DEDB0
h*tB modn:
75474CC4 52914E81 5E4768D8 6D17E36F 5882EE67 A1CDBC26 FE4122B0 B741A0A3
x1~=(2^127+(x1 AND (2^127-1))):
B80094D9 61A13673 D4A5CF8C 7159E304
point \([x^1\cdot]A=(x_A, y_A)\):
    - x-coordinate \(x_A\):
      \[
      \begin{array}{c}
      01 \text{98AB5F14} \text{349B6A46} \text{F77FBFCB} \text{DDBFC34} \text{320DC1F4} \text{C546D13C} \text{3A9F0E83} \text{0C39B579} \\
      00 \text{BF} \text{B42224} \text{ACCE2E51} \text{04CD4519} \text{C0CB3AD} \text{0C19BF11} \text{805BE108} \text{59069A6} \text{93171A2B7} \\
      \end{array}
      \]
    - y-coordinate \(y_A\):
      \[
      \begin{array}{c}
      00 \text{BF} \text{B49224} \text{ACCE2E51} \text{04CD4519} \text{C0CB3AD} \text{0C19BF11} \text{805BE108} \text{59069A6} \text{93171A2B7} \\
      \end{array}
      \]

point \(P+A\cdot(x^1\cdot)A=(x_A1, y_A1)\):
    - x-coordinate \(x_A1\):
      \[
      \begin{array}{c}
      00 \text{24A92F64} \text{66A37C5C} \text{12A2C68D} \text{58BF08F0} \text{32F2B976} \text{60957CB0} \text{5E63F661} \text{F160F5E7} \\
      \end{array}
      \]
    - y-coordinate \(y_A1\):
      \[
      \begin{array}{c}
      00 \text{F74A4F17} \text{DC560A55} \text{FDE0F1AB} \text{16EBCBF7} \text{6502E240} \text{BA2D6B6} \text{BE65D79} \text{16B288FC} \\
      \end{array}
      \]

point \(V=[h\cdot]B(P+A\cdot(x^1\cdot)A)=(x_V, y_V)\):
    - x-coordinate \(x_V\):
      \[
      \begin{array}{c}
      00 \text{DADD0874} \text{06221D65} \text{7BC3FA79} \text{FF329BB0} \text{22E9CB7D} \text{DFC0FCCF} \text{E277BE8C} \text{4AE9B54} \\
      \end{array}
      \]
    - y-coordinate \(y_V\):
      \[
      \begin{array}{c}
      00 \text{DADD0874} \text{06221D65} \text{7BC3FA79} \text{FF329BB0} \text{22E9CB7D} \text{DFC0FCCF} \text{E277BE8C} \text{4AE9B54} \\
      \end{array}
      \]

KB=KDF(x_V||y_V||ZA||ZB, klen):
    - x_V||y_V||ZA||ZB:
      \[
      \begin{array}{c}
      00 \text{DADD0874} \text{06221D65} \text{7BC3FA79} \text{FF329BB0} \text{22E9CB7D} \text{DFC0FCCF} \text{E277BE8C} \text{4AE9B54} \\
      \end{array}
      \]

Klen=128
shared secret key KB:
    - 4E587E5C 66634F22 D973A7D9 8FB8FBE23

option SB=Hash(0x02||y_V||Hash(x_V||ZA||ZB||x1||y1||x2||y2)):
    - x_V||y_V||ZA||ZB||x1||y1||x2||y2:
    - 00 \text{DADD0874} \text{06221D65} \text{7BC3FA79} \text{FF329BB0} \text{22E9CB7D} \text{DFC0FCCF} \text{E277BE8C} \text{4AE9B54} \\

The intermediate value during key exchange processing A4-A10:
    - \(x_1=2^\cdot127+(x_1 \text{ AND } (2^\cdot127-1))\):
    - \(B0094D9 \text{ 61A3673} \text{ D4A5CF8C} \text{ 7159E304}\)
    - \(tA=(dA+x_1\cdot rA) \mod n\):
      \[
      \begin{array}{c}
      \text{18A1C649} \text{ B94044DF} \text{ 16DC8634} \text{ 993F14A4} \text{ EE3F6426} \text{ DFE14AC1} \text{ 3644306A} \text{ A59A4187} \\
      \end{array}
      \]
**Internet-Draft**       SM2 Digital Signature Algorithm           July 2013

h*tA modn:
62871926 E501137C 5B7218D2 64FC692B B8FD909B 7F852B04 D910C1AA 96A5061C
x^2=2^127+(x AND (2^127-1)):
E8CC43FF A5F2623B 714BCFBB AA1AD627 11FCB03C 0C25B366 BF176A2D C7B8E62E
point [x^2]RB=(xB0, yB0):
x-coordinate xB0:
01 0AA3BAC9 7786B629 22F93414 57AC64F7 01F87D28 8F53C46C 714BCFBB AA1AD627 11FCB03C 0C25B366 BF176A2D C7B8E62E
y-coordinate yB0:
00 C10837F4 8F53C46C 714BCFBB AA1AD627 11FCB03C 0C25B366 BF176A2D C7B8E62E
point PB+[x^2]RB=(xB1, yB1):
x-coordinate xB1:
00 01F87D28 8F53C46C 714BCFBB AA1AD627 11FCB03C 0C25B366 BF176A2D C7B8E62E
y-coordinate yB1:
00 C10837F4 8F53C46C 714BCFBB AA1AD627 11FCB03C 0C25B366 BF176A2D C7B8E62E
point U=[h*tA](PB+[x^2]RB)=(xU, yU):
x-coordinate xU:
00 01F87D28 8F53C46C 714BCFBB AA1AD627 11FCB03C 0C25B366 BF176A2D C7B8E62E
y-coordinate yU:
01 0AA3BAC9 7786B629 22F93414 57AC64F7 01F87D28 8F53C46C 714BCFBB AA1AD627 11FCB03C 0C25B366 BF176A2D C7B8E62E
KA=KDF(xU || yU || ZA || ZB, klen):
xU || yU || ZA || ZB:
00 01F87D28 8F53C46C 714BCFBB AA1AD627 11FCB03C 0C25B366 BF176A2D C7B8E62E
klen=128
shared secret key KA:
4E587E5C 66634F22 D973A7D9 8BF8BE23
option S1=Hash(0x02 || yU || Hash(xU || ZA || ZB || x1 || y1 || x2 || y2)):
xU || ZA || ZB || x1 || y1 || x2 || y2:
00 01F87D28 8F53C46C 714BCFBB AA1AD627 11FCB03C 0C25B366 BF176A2D C7B8E62E
option SA=Hash(0x03 || yU || Hash(xU || ZA || ZB || x1 || y1 || x2 || y2)):
xU || ZA || ZB || x1 || y1 || x2 || y2:
Appendix C. Example of Public Key Encryption

C.1. General Introduction

This appendix uses the hash algorithm described in draft-shen-sm3-hash-00, which applies on a bit string of length less than 2^64 and output a hash value of size 256, denoted as H256( ).

In this appendix, all the hexadecimal number has high digits on the left and low digits on the right.

In this appendix, all the plaintexts are in ASCII code.
C.2. Encryption and Decryption over $E(F_p)$

The elliptic curve equation is:

$$y^2 = x^3 + ax + b$$

Example 1: $F_p$-256
A Prime $p$: 8542D69E 4C044F18 E8B92435 BF6FF7DE 45728391 5C45517D 722EDB8B 08F1DFC3

The coefficient $a$: 787968B4 FA32C3FD 2417842E 73BBFEFF 2F3C848B 6831D7E0 EC65228B 3937E498

The coefficient $b$: 63E4C6D3 B23B0C84 9CF84241 484BFE48 F61D59A5 B16BA06E 6E12D1DA 27C5249A

The base point $G=(x_G, y_G)$, whose degree is $n$:
- x-coordinate $x_G$: 421DEBD6 1B62EAB6 746343E5 322220B3B ADD50BDC 4C4E6C14 7FEDD43D
- y-coordinate $y_G$: 0680512B CBB42C07 D47349D2 153B70C4 E5D7FDFC BFA36EA1 A85841B9 E46E09A2
- degree $n$: 8542D69E 4C044F18 E8B92435 BF6FF7DD 29772063 0485628D 5AE74EE7 C32E79B7

The message $M$ to be encrypted: encryption standard
$M$ denoted in hexadecimal: 656E63 72797074 696F6E20 7374616E 64617264

The private key $d_B$: 1649AB77 A00637BD 5E2EFE28 3FBF3535 34AA7F7C B89463F2 08DDBC29 20BB0DA0

The public key $PB=(x_B,y_B)$:
- x-coordinate $x_B$: 435B39CC A8F3B508 C1488AFC 67BE491A 0F7BA07E 581A0E48 49A5CF70 628A7E0A
- y-coordinate $y_B$: 75DDBA78 F15FEECB 4C7895E2 C1CDF5FE 01DEBB2C DBADF453 99CCF77B BA076A42

The intermediate value during encrypting processing:
random number $k$: 4C62EEFD 6ECFC2B9 5B92FD6C 3D957514 8AFA1742 5546D490 18E5388D 49DD7B4F
point $C_1=[k]G=(x_1,y_1)$:
- x-coordinate $x_1$: 245C26FB 6B1DDDDD B12C4B6B F9F2B6D5 FE60A383 B0D18D1C 4144ABF1 7F6252E7
- y-coordinate $y_1$: 76CB9264 C2A7E88E 52B19903 FDC47378 F605E368 11F5C074 23A24B84 400F01B8

The point $C_1$ here is uncompressed and can be transformed into a byte string...
PC || x1 || x2, where PC is the byte 04. The byte string is still denoted as C1.
point \[k\]PB=(x2,y2):
  x-coordinate x2:
  64D20D27 D0632957 F802C1E 024F6B02 EDF23102
  A566C932 AE8BD613 A8E865FE
  y-coordinate y2:
  5BD225EC A784AE30 0A81A2D4 8281A828
  E1CEDF11 C4219099 84026537 5077BF78
  the length of message M: klen=152
  t=KDF(x2 || y2,klen):
  006E30 DAEE231B0 71DFAD8A A379E902
  64491603
  C2=M XOR t:
  650053 A98B41C4 18B0C3AA D00D886C
  00286467
  C3=Hash(x2 || M || y2):
  x2 || M || y2:
  64D20D27 D0632957 F802C1E 024F6B02 EDF23102 A566C932 AE8BD613
  A8E865FE
  656E6372 79707469 6F6E2073 74616E64
  61726458 D225ECA7 84AE300A 81A2D482
  81A828E1 CEDF11C4 21909984
  02653750 77BF78
  C3:
  9C3D7360 C30156FA B7C80A02 76712DA9
  D8094A63 4B766D3A 285E0748
  0653426D
  ciphertext C=C1 || C2 || C3:
  04245C26 FB6B81DD DDB12C4B
  6BF9F2B6 D5FE60A3 83B0D18D
  1C4144AB F17F6252
  E776C992 64C2A7E8
  8E52B199 03FDC473
  78F605E3 6811F5C0
  7423A248 84400F01
  BB650053 A89B41C4 18B0C3AA D00D886C
  00286467 9C3D7360 C30156FA B7C80A02
  76712DA9 D8094A63 4B766D3A
  285E0748 0653426D

The intermediate value during decrypting processing:
point \[dB\]C1=(x2,y2):
  x-coordinate x2:
  64D20D27 D0632957 F802C1E 024F6B02
  EDF23102 A566C932 AE8BD613 A8E865FE
  y-coordinate y2:
  5BD225EC A784AE30 0A81A2D4
  8281A828 E1CEDF11 C4219099
  84026537 5077BF78
  t=KDF(x2 || y2,klen):
  006E30 DAEE231B0
  71DFAD8A A379E902
  64491603
  M'=C2 XOR t:
  656E63 72797074
  69F6E20 7374616E
  64617264
  u=Hash(x2 || M' || y2):
  9C3D7360 C30156FA
  B7C80A02 76712DA9
  D8094A63 4B766D3A
  285E0748 0653426D
  plaintext M':
  656E63 72797074
  69F6E20 7374616E
  64617264

C.3. Encryption and Decryption over E(F2^m)

The elliptic curve equation is:

\[ y^2 + xy = x^3 + ax + b \]
Example 2: $F_2^m - 257$

The polynomial to generate base field is: $x^{257} + x^{12} + 1$

The coefficient $a$:

0

The coefficient $b$:

00 E78BCD09 746C2023 78A7E72B 12BCE002 66B9627E CB0B5A25 367AD1AD 4CC6242B

The base point $G=(x_G, y_G)$, whose degree is $n$:

- x-coordinate $x_G$:
  00 CDB9CA7F 1E6B0441 F658343F 4B10297C 0EF9B649 1082400A 62E7A748 5735FADD
- y-coordinate $y_G$:
  01 3DE74DA6 5951C4D7 6DC89220 D5F7777A 611B1C38 BAE260B1 75951DC8 060C2B3E

degree $n$:

7FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF BC972CF7 E6B6F900 945B3C6A 0CF6161D

The message $M$ to be encrypted: encryption standard

$M$ denoted in hexadecimal:

656E63 72797074 696F6E20 7374616E 64617264

The private key $d_B$:

56A270D1 7377AA9A 367CFA82 E46FA526 7713A9B9 1101D077 7B07FCE0 18C757EB

The public key $PB=(x_B, y_B)$:

- x-coordinate $x_B$:
  00 A67941E6 DE8A6180 5F7BCFF0 985BB3BE D986F1C2 97E4D888 0D82B821 C624EE57
- y-coordinate $y_B$:
  01 93ED5A67 07B59087 81B86084 1085F52E EFA7FE32 9A5C8118 43533A87 4D027271

The intermediate value during encrypting processing:

random number $k$:

6D3B4971 53E3E925 24E5C122 682DBDC8 705062E2 0B917A5F 8FCDB8EE 4C66663D

point $C_1=[k]G=(x_1, y_1)$:

- x-coordinate $x_1$:
  01 9D236DDB 305009AD 52C51BB9 32709BD5 34D476FB B700DF95 42A8A4D8 90A3F2E1
- y-coordinate $y_1$:
  00 B23B938D 0A94D1D F8F42CF4 5D2D6601 BF638C3D 7DE75A29 F02AFB7E 45E91771

The point $C_1$ here is uncompressed and can be transformed into a byte string $PC \| x_1 \| x_2$, where $PC$ is the byte 04. The byte string is still denoted as $C_1$.

point $[k]PB=(x_2, y_2)$:

- x-coordinate $x_2$:
  00 83E628CF 701EE314 1E8873FE 55936ADF 24963F5D C9C64805 66C80F8A 1D8CC51B
- y-coordinate $y_2$:
  01 524C647F 0C0412DE FD46BBDA 3AE0E5A8 0FCC8F5C 990FEE11 60292923 2DCD9F36

the length of message $M$: $klen=152$

t=$KDF(x_2 \| y_2, klen)$:
C2=M \text{ XOR } t:
FD55AC 6213C2A8 A040E4CA B5B26A9C FCDA7373 FCDA7373
C3=Hash(x2 \mid \mid M \mid \mid y2):
0083E628 CF701EE3 141E8873 FE55936A DF24963F 5DC9C648 0566C80F 8A1D8CC5
1B656E63 72797074 696F6E20 7374616E 64617264 01524C64 7F0C0412 DEFD468B
DA3AE0E5 A80FCC8F 5C990FEE 11602929 232DCD9F 36
C3:
73A48625 D3758FA3 7B3EAB80 E9CFCABA 665E3199 EA15A1FA 8189D96F 579125E4
ciphertext C=C1 \mid \mid C2 \mid \mid C3:
04019D23 6DDB3050 09AD52C5 1BB93270 9BD534D4 76FBB7B0 DF9542A8 A4D890A3
F2E100B2 3B9386C0 A94D1DF8 F42CF45D 2D6601BF 638C3D7D E75A29F0 2AFB7E45
E91771FD 55AC6213 C2A80400 E4CAB5B2 6A9CFCD5 737377A4 8625D375 8FA37B3E
AB80E9CF CABA665E 3199EA15 A1FA8189 D96F5791 25E4

The intermediate value during decrypting processing:
point [dB]C1=(x2,y2):
x-coordinate x2:
00 83E628CF 701EE314 1E8873FE 55936ADF 24963F5D C9C64805 66C80F8A 1D8CC51B
y-coordinate y2:
01 524C647F 0C0412DE FD46BBDA 3AE0E5A8 0FCC8F5C 990FEE11 60292923 2DCD9F36
t=KDF(x2 \mid \mid y2,klen):
983BCF 106AB2DC C92F8AEA C6C60BF2 98BB0117
M'=C2 \text{ XOR } t:
65E63 72797074 696F6E20 7374616E 64617264
u=Hash(x2 \mid \mid M' \mid \mid y2):
73A48625 D3758FA3 7B3EAB80 E9CFCABA 665E3199 EA15A1FA 8189D96F 579125E4
plaintext M':
65E63 72797074 696F6E20 7374616E 64617264
M': encryption standard

Authors' Addresses

Sean Shen (editor)
Chinese Academy of Science
No.4 South 4th Zhongguancun Street
Beijing, 100190
China

Phone: +86 10-58813038
EMail: shenshuo@cnnic.cn