IODEF Enumeration Reference Format
draft-ietf-mile-enum-reference-format-00

Abstract

The Incident Object Description Exchange Format [IODEF] provides a Reference class used to reference external entities (such as enumeration identifiers). However, the method of external entity identification has been left unstructured. This document describes a method to provide structure for referencing external entities for the [IODEF] Reference class.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/1id-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

Copyright and License Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents
1 Introduction 3
 1.1 Terminology 3
2 Referencing External Enumerations 3
3 Security Considerations 5
4 IANA Considerations 5
5 XML Schema 6
6 References 6
 6.1 Normative References 6
 6.2 Informative References 7
Authors’ Addresses 7
1 Introduction

There is an identified need to specify a format to include relevant enumeration values in an IODEF document. It is anticipated that this requirement will exist in other standardization efforts within several IETF Working Groups, but the scope of this document pertains solely to [IODEF].

1.1 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

2. Referencing External Enumerations

The need is to place enumeration identifiers and their references in [IODEF]'s Reference class. There are several ways to accomplish this goal, but the most appropriate at this point is to require a specific format for the ReferenceName string of the [IODEF] Reference class, such that an IANA table can be used to catalog a variety of reference types.

```
+------------------+
| Reference        |
+------------------+
|                  |<>----------[ ReferenceName ]
|                  |<>--{0..*}--[ URL ]
|                  |<>--{0..*}--[ Description ]
+------------------+
```

FIGURE 1: [IODEF] Reference Class

Per [IODEF] the ReferenceName is of type ML_STRING. This becomes problematic when specific references, especially enumerations such as [CVE], [CCE], [CPE] and so on, are referenced - how is an implementer to know which type of reference this is, and thus how to parse it? One solution, presented here, is to require that ReferenceName follow a particular format.

2.1 Reference Name Format

The Reference Name Format uses XML to provide the structure for enumeration identification, and requires that a specific Abbreviation and RegistryVersion be associated with the ID. An implementer can look up the ID type (as referenced by the logical tuple of Abbreviation and RegistryVersion) in the IANA table (see Section 4)
to understand how the ID is structured.

 <Reference>
 <ReferenceName>
 <EnumRef>
 <Abbreviation>CXI</Abbreviation>
 <RegistryVersion>1</RegistryVersion>
 <ID>CXI-1234-XYZ</ID>
 </EnumRef>
 </ReferenceName>
 <URL>http://cxi.example.com</URL>
 <Description>Foo</Description>
 </Reference>

Information in the IANA table (see Section 4) would include:

 Full Name: Concept X Identifier
 Abbreviation: CXI
 Registry Version: 1
 Enumeration Version: any
 Specification URI: http://cxi.example.com/spec_url

2.3 Reference Method Applicability

 While the scope of this document pertains to [IODEF], it should be
 readily apparent that any standard needing to reference an
 enumeration identified by a specially formatted string can use
 this method of providing structure after the standard has been
 published. In effect, this method provides a standardized
 interface for enumerations, thus allowing a loose coupling between
 a given standard and the enumeration identifiers it needs to
 reference now and in the future.
3 Security Considerations

None.

4 IANA Considerations

This document specifies an identifier format for the [IODEF] ReferenceName string of the Reference class.

This memo creates the following registry for IANA to manage:

Name of the Registry: "Enumeration Reference Type Identifiers"

Note that certain name requests should not be permitted as either Full Name or Abbreviation entries for the requested IANA table.

Fields to record in the registry:

Full Name: The full name of the enumeration as a string from the ASCII character set.

Abbreviation: The abbreviation of the enumeration as a string from the ASCII character set. An abbreviation may be an initialism or acronym, is free-form, but is limited to between two and ten upper-case characters (used to avoid case-specific mismatch errors) meeting the regular expression (between the quotes; Perl Regular Expressions): ^[A-Z]{2,20}$

Registry Version: The IANA-registry-specific version to which an enumeration identifier pertains as an integer greater than zero. The Registry Version is intended to be incremented for each new entry, which permits any string representation for the Enumeration Version, but explicitly structures enumeration ID versions for the purpose of the registry.

Enumeration Version: The version of the enumeration as a free-form string from the ASCII character set.

Specification URI: A list of one or more URIs [RFC3986] from which the registered specification can be obtained. The registered specification MUST be readily and publicly available from that URI.

Initial registry contents: None.

The Designated Expert is expected to consult with the MILE (Managed Incident Lightweight Exchange) working group or its successor if any such WG exists (e.g., via email to the working group’s mailing list). The Designated Expert is expected to review the request and validate the appropriateness of the enumeration for the attribute. If a specification is associated with the request, it MUST be reviewed by the Designated Expert.

The Designated Expert will need to ensure the Full Name or Abbreviation entry under consideration is appropriate for the problem domain and that information at the Specification URI is sufficient for unambiguously parsing the identifier. The Designated Expert should also validate that the next appropriate Registry Version is being used for a new registration. Additionally, the Designated Expert should prefer short Abbreviations over long ones.

5 XML Schema

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
  elementFormDefault="qualified">
  <xs:element name="EnumRef">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="Abbreviation"/>
        <xs:element ref="RegistryVersion"/>
        <xs:element ref="ID"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="Abbreviation" type="xs:NCName"/>
  <xs:element name="RegistryVersion" type="xs:integer"/>
  <xs:element name="ID" type="xs:NCName"/>
</xs:schema>
```

6 References

6.1 Normative References

[3986] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.

6.2 Informative References

Authors’ Addresses

Adam W. Montville
Center for Internet Security
EMail: adam.montville@cisecurity.org

David Black
EMC, Inc.
EMail: david.black@emc.com
IODEF Usage Guidance
draft-ietf-mile-iodef-guidance-01.txt

Abstract

The Incident Object Description Exchange Format [RFC5070] defines a data representation that provides a framework for sharing information commonly exchanged by Computer Security Incident Response Teams (CSIRTs) about computer security incidents. Since the IODEF model includes a wealth of available options that can be used to describe a security incident or issue, it can be challenging for implementers to develop tools that can leverage IODEF for incident sharing. This document provides guidelines for IODEF implementers. It will also address how common security indicators can be represented in IODEF. The goal of this document is to make IODEF’s adoption by vendors easier and encourage faster and wider adoption of the model by Computer Security Incident Response Teams (CSIRTs) around the world.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 13, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents
1. Introduction .. 3
2. Terminology ... 3
3. Implementation Strategy 3
 3.1. Recommended classes to implement 4
 3.2. Decide what IODEF will be used for 4
4. IODEF considerations and how to address them 4
 4.1. Unnecessary Fields 4
 4.2. External References 4
 4.3. Extensions .. 5
 4.4. Logic for watchlist of indications 5
 4.5. Externally defined Indicators 6
 4.6. Restrictions in IODEF 6
5. Current uses of IODEF ... 6
 5.1. Anti-Phishing Working Group 6
 5.2. Collective Intelligence Framework 6
 5.3. Other ... 7
6. Security Considerations 7
7. Acknowledgements ... 7
8. Security Considerations 7
9. References .. 7
 9.1. Normative References 7
 9.2. Informative References 7
Author’s Address ... 8
1. Introduction

The Incident Object Description Exchange Format in [RFC5070] defines a data representation that provides a framework for sharing information commonly exchanged by Computer Security Incident Response Teams (CSIRTs) about computer security incidents. The IODEF data model consists of multiple classes and data types that are used in the IODEF XML schema.

The IODEF schema was designed to be able to describe all the possible fields that would be needed in a security incident exchange. Thus, IODEF contains plenty data constructs that could potentially make it harder for IODEF implementers to decide which are the most important ones. Additionally, in the IODEF schema, there exist multiple fields and classes which do not necessarily need to be used in every possible data exchange. Moreover, there are fields that are useful only in data exchanges of non-traditional security events. This document tries to address the issues above. It will also address how common security indicators can be represented in IODEF. It will point out the most important IODEF classes for an implementer and describe other ones that are not as important. Also, it addresses some common challenges for IODEF implementers and how they should be addressed. The end goal of this document is to make IODEF’s adoption by vendors easier and encourage faster and wider adoption of the model by Computer Security Incident Response Teams (CSIRTs) around the world.

Section 3 discusses the recommended classes and how an IODEF implementer should chose the classes to implement. Section 4 presents common considerations and implementer will come across and how to address them. Section 5 goes over some basic security concepts and how they can be expressed in IODEF.

2. Terminology

The terminology used in this document follows the one defined in RFC 5070 [RFC5070] and I-D.draft-ietf-mile-sci [I-D.ietf-mile-sci].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

3. Implementation Strategy

It is important for IODEF implementers to be able to distinguish how the IODEF classes will be used for incident information exchanges.
It is critical for an implementer to follow a strategy according to which he will choose to implement various IODEF classes. It is also important to know what the most common classes that will be used to describe common security incident or indicators. Thus, this section will describe the most important classes and factors an IODEF implementer should take into consideration before designing the implementation or tool.

3.1. Recommended classes to implement

This section explains the mandatory to implement IODEF classes that are required more than once and also are useful.

[...More to be added...]

3.2. Decide what IODEF will be used for

This section describes that there is no need to implement all fields of IODEF, the ones that are necessary for your use-cases. The implementer should look into the schema and decide classes to implement (or not). Also it explains that other external schemata might be needed to describe incidents or indicators, based on SCI draft extensions.

[...More to be added...]

4. IODEF considerations and how to address them

4.1. Unnecessary Fields

This section talks about fields that do not always play an important role like Assessment, Impact

[...More to be added...]

4.2. External References

draft draft-montville-mile-enum-reference-format "This format allows the <Version> to be associated with the id rather than the id_type. By requiring that a specific type and version be associated with the identifier, an implementer can look up the type in an IANA table to understand exactly what the identifier in ReferenceName is and how s/he may expect that identifier to be structured."

[...More to be added...]
4.3. Extensions

This section explains how to describe things IODEF can’t describe ([I-D.ietf-mile-sci] draft), or extensions not yet known, or implemented, when do you use another xml schema encapsulated in iodef

[...More to be added...]

4.4. Logic for watchlist of indications

Multiple indicators occasionally need to be combined in an IODEF document. For example, a botnet might have multiple command and control servers. A consistent predicate logic should be followed in order to present such relationships in IODEF.

[I-D.ietf-mile-rfc5070-bis] defines two new category attributes in the System Class. These are watchlist-source and watchlist-destination and they serve for watchlist indicator groupings. When an IODEF Node consists of two or more System Classes with various watchlist-source and watchlist-destination attributes (watchlist of Systems) the System information should be ORed with the information in the Flow Class. In other words, either System description should be considered as a watchlist indicator. The rest of the content in the EventData Class the Node belongs to should be combined with the watchlist of Systems using AND logic. In other words, the rest of the EventData content describes a watchlist indicator for any of System in the watchlist of Systems.

IODEF’s grouping predicate logic follows the above pattern consistently. [I-D.ietf-mile-rfc5070-bis] defined the HashInformation Class that describes a file hash information as also described in [RFC5901]. The HashInformation Class is of HashSigDetails type which consists of elements that describe the file hash details. Some of the attributes of the HashSigDetails are introduced to describe watchlist groupings (i.e. PKI_email_ds_watchlist, PGP_email_ds_watchlist, file_hash_watchlist, email_hash_watchlist). If any of these attributes are used in two or more HashInformation Classes of a Record then HashInformation content is ORed for the Record. For example, if two HashInformation types are set to file_hash, the list of hash details provided are just alternate representations for the same hash (SHA256. SHA1 etc). Similarly, if multiple HashInformation are in a Record using Reference elements or others, they should all be treated as different representations of the same file hash, assuming the FileName element is not used in the HashInformation.

In some cases the predicate logic in IODEF can slightly change. [I-D.ietf-mile-rfc5070-bis] introduces the WindowsRegistryKeyModified
Class which is of type RegistryKeyModified. RegistryKeyModified has an optional type attribute which has watchlist as an option in order to include the ability to group WindowsRegistryKeyModified. In order to group multiple WindowsRegistryKeyModified of the same watchlist of indicators multiple WindowsRegistryKeysModified should be used in the same RecordData or EventData Class. If the RegistryKeyModified Classes are not under the same RecordData or EventData Class they should be treated as different indicator Keys modified.

4.5. Externally defined Indicators

set-uid,uid and its use with SCI draft [I-D.ietf-mile-sci]

[...More to be added...]

4.6. Restrictions in IODEF

This section describes how Restriction can pose challenges

[...More to be added...]

5. Current uses of IODEF

IODEF is currently used by various organizations in order to represent security incidents and share incident and threat information between security operations organizations.

5.1. Anti-Phishing Working Group

The Anti-Phishing Working Group ([APWG]) is using [RFC5070] to represent email phishing information. [APWG] also uses IODEF to aggregate and share Bot and Infected System Alerting and Notification System (BISANS) and Cyber Bullying IODEF records. Special IODEF extensions are used in order to mark the sensitivity of the exchanged information. Shared infected system or email phishing records can then be used by interested parties in order to provide mitigations. [APWG] leverages tools of its eCRISP-X toolkit in order to share and report e-Crime IODEF records.

5.2. Collective Intelligence Framework

The Collective Intelligence Framework [CIF] is a cyber threat intelligence management system that uses IODEF to combine known malicious threat information from multiple sources and use that to identify, detect and mitigate. The threat intelligence can be IP addresses, domains and URLs that are involved in malicious activity. IODEF records can be consumed by a CIF standalone client or CIF
browser plugins that a user can use to make informed decisions about threat information.

5.3. Other

IODEF is also used in various projects and products to consume and share security information. Various vendor incident reporting products have the ability to consume and export in IODEF format. Perl and Java modules exist in order to parse IODEF documents and their extensions. Additionally worldwide CERT organizations are already able to use receive incident information in IODEF.

6. Security Considerations

7. Acknowledgements

8. Security Considerations

9. References

9.1. Normative References

9.2. Informative References

Author’s Address

Panos Kampanakis
Cisco Systems
170 West Tasman Dr.
San Jose, CA 95134
US

Email: pkampana@cisco.com
The Incident Object Description Exchange Format
draft-ietf-mile-rfc5070-bis-00

Abstract

The Incident Object Description Exchange Format (IODEF) defines a
data representation that provides a framework for sharing information
commonly exchanged by Computer Security Incident Response Teams
(CSIRTs) about computer security incidents. This document describes
the information model for the IODEF and provides an associated data
model specified with XML Schema.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on November 6, 2013.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction .. 4
 1.1. Changes from 5070 .. 5
 1.2. Terminology ... 6
 1.3. Notations ... 6
 1.4. About the IODEF Data Model 6
 1.5. About the IODEF Implementation 7
2. IODEF Data Types .. 7
 2.1. Integers .. 7
 2.2. Real Numbers .. 7
 2.3. Characters and Strings 8
 2.4. Multilingual Strings 8
 2.5. Bytes .. 8
 2.6. Hexadecimal Bytes 8
 2.7. Enumerated Types 8
 2.8. Date-Time Strings 9
 2.9. Timezone String ... 9
 2.10. Port Lists ... 9
 2.11. Postal Address ... 9
 2.12. Person or Organization 9
 2.13. Telephone and Fax Numbers 10
 2.14. Email String ... 10
 2.15. Uniform Resource Locator strings 10
3. The IODEF Data Model .. 10
 3.1. IODEF-Document Class 10
 3.2. Incident Class .. 11
 3.3. IncidentID Class .. 14
 3.4. AlternativeID Class 15
 3.5. RelatedActivity Class 16
 3.6. AdditionalData Class 16
 3.7. Contact Class ... 19
 3.7.1. RegistryHandle Class 21
 3.7.2. PostalAddress Class 22
 3.7.3. Email Class ... 23
 3.7.4. Telephone and Fax Classes 23
 3.8. Time Classes .. 24
 3.8.1. StartTime ... 24
 3.8.2. EndTime ... 24
 3.8.3. DetectTime .. 24
 3.8.4. ReportTime ... 25
 3.8.5. DateTime .. 25
 3.9. Method Class .. 25
 3.9.1. Reference Class 26
1. Introduction

Organizations require help from other parties to mitigate malicious activity targeting their network and to gain insight into potential threats. This coordination might entail working with an ISP to filter attack traffic, contacting a remote site to take down a botnet, or sharing watch-lists of known malicious IP addresses in a consortium.

The Incident Object Description Exchange Format (IODEF) is a format for representing computer security information commonly exchanged between Computer Security Incident Response Teams (CSIRTs). It provides an XML representation for conveying incident information across administrative domains between parties that have an operational responsibility of remediation or a watch-and-warning over a defined constituency. The data model encodes information about hosts, networks, and the services running on these systems; attack methodology and associated forensic evidence; impact of the activity; and limited approaches for documenting workflow.

The overriding purpose of the IODEF is to enhance the operational capabilities of CSIRTs. Community adoption of the IODEF provides an improved ability to resolve incidents and convey situational awareness by simplifying collaboration and data sharing. This structured format provided by the IODEF allows for:

- increased automation in processing of incident data, since the resources of security analysts to parse free-form textual documents will be reduced;
- decreased effort in normalizing similar data (even when highly structured) from different sources; and
- a common format on which to build interoperable tools for incident handling and subsequent analysis, specifically when data comes from multiple constituencies.

Coordinating with other CSIRTs is not strictly a technical problem. There are numerous procedural, trust, and legal considerations that might prevent an organization from sharing information. The IODEF does not attempt to address them. However, operational implementations of the IODEF will need to consider this broader context.

Sections 3 and 8 specify the IODEF data model with text and an XML schema. The types used by the data model are covered in Section 2. Processing considerations, the handling of extensions, and internationalization issues related to the data model are covered in
Sections 4, 5, and 6, respectively. Examples are listed in Section 7. Section 1 provides the background for the IODEF, and Section 9 documents the security considerations.

1.1. Changes from 5070

- This document contains changes with respect to its predecessor RFC5070:

- All of the Errata that has been submitted at RFC5070 Errata has been implemented.

- Addition of xmlns:ds and import of same namespace. This is to use the digital signature hash inclusion of a file by referencing the existing standard as was done in RFC5901, RFC3275 is the reference, see RFC5901 section 5.9.5.2".

- New indicator uid and set id values in the schema. The purpose of the proposed changes is to include commonly shared indicators in the base IODEF schema. This class will contain indicators from the list below that are not represented elsewhere in the schema. IODEF extensions or embedded schemas via the SCI classes will be required to include additional data types. A table could be maintained through IANA to extend or change this class in between IODEF revisions.

- RFC5901 provides a method to include an entire email, the following included indicators are ones commonly used when you do not need the entire email

- The following are in the Service class: Email Address, Email Subject, and X-Mailer

- The following are in the Record class: File Name, File Hash (5.9.5.2 - using ds:reference), and WindowsRegistryKey (using method from RFC5901

- The following are now in the Node class as a proposed location: URL

- HTTPUserAgent is included as a SoftwareType - HTTP User Agent String

- The following are already represented elsewhere in the schema (Node): IP address, Network CIDR / ASN, Host Name, and Domain Name (additional options for RFC5901 were not included in this revision - can include point-in-time dig info)
1.2. Terminology

The key words "MUST," "MUST NOT," "REQUIRED," "SHALL," "SHALL NOT," "SHOULD," "SHOULD NOT," "RECOMMENDED," "MAY," and "OPTIONAL" in this document are to be interpreted as described in RFC2119 [6].

Definitions for some of the common computer security-related terminology used in this document can be found in Section 2 of [16].

1.3. Notations

The normative IODEF data model is specified with the text in Section 3 and the XML schema in Section 8. To help in the understanding of the data elements, Section 3 also depicts the underlying information model using Unified Modeling Language (UML). This abstract presentation of the IODEF is not normative.

For clarity in this document, the term "XML document" will be used when referring generically to any instance of an XML document. The term "IODEF document" will be used to refer to specific elements and attributes of the IODEF schema. The terms "class" and "element" will be used interchangeably to reference either the corresponding data element in the information or data models, respectively.

1.4. About the IODEF Data Model

The IODEF data model is a data representation that provides a framework for sharing information commonly exchanged by CSIRTs about computer security incidents. A number of considerations were made in the design of the data model.

- The data model serves as a transport format. Therefore, its specific representation is not the optimal representation for on-disk storage, long-term archiving, or in-memory processing.

- As there is no precise widely agreed upon definition for an incident, the data model does not attempt to dictate one through its implementation. Rather, a broad understanding is assumed in the IODEF that is flexible enough to encompass most operators.

- Describing an incident for all definitions would require an extremely complex data model. Therefore, the IODEF only intends to be a framework to convey commonly exchanged incident information. It ensures that there are ample mechanisms for extensibility to support organization-specific information, and techniques to reference information kept outside of the explicit data model.
The domain of security analysis is not fully standardized and must rely on free-form textual descriptions. The IODEF attempts to strike a balance between supporting this free-form content, while still allowing automated processing of incident information.

The IODEF is only one of several security relevant data representations being standardized. Attempts were made to ensure they were complimentary. The data model of the Intrusion Detection Message Exchange Format [17] influenced the design of the IODEF.

Further discussion of the desirable properties for the IODEF can be found in the Requirements for the Format for Incident Information Exchange (FINE) [16].

1.5. About the IODEF Implementation

Implementing the IODEF in XML provides numerous advantages. Its extensibility makes it ideal for specifying a data encoding framework that supports various character encodings. Likewise, the abundance of related technologies (e.g., XSL, XPath, XML-Signature) makes for simplified manipulation. However, XML is fundamentally a text representation, which makes it inherently inefficient when binary data must be embedded or large volumes of data must be exchanged.

2. IODEF Data Types

The various data elements of the IODEF data model are typed. This section discusses these data types. When possible, native Schema data types were adopted, but for more complicated formats, regular expressions (see Appendix F of [3]) or external standards were used.

2.1. Integers

An integer is represented by the INTEGER data type. Integer data MUST be encoded in Base 10.

The INTEGER data type is implemented as an "xs:integer" [3] in the schema.

2.2. Real Numbers

Real (floating-point) attributes are represented by the REAL data type. Real data MUST be encoded in Base 10.
The REAL data type is implemented as an "xs:float" [3] in the schema.

2.3. Characters and Strings

A single character is represented by the CHARACTER data type. A character string is represented by the STRING data type. Special characters must be encoded using entity references. See Section 4.1.

The CHARACTER and STRING data types are implement as an "xs:string" [3] in the schema.

2.4. Multilingual Strings

STRING data that represents multi-character attributes in a language different than the default encoding of the document is of the ML_STRING data type.

The ML_STRING data type is implemented as an "iodef:MLStringType" in the schema.

2.5. Bytes

A binary octet is represented by the BYTE data type. A sequence of binary octets is represented by the BYTE[] data type. These octets are encoded using base64.

The BYTE data type is implemented as an "xs:base64Binary" [3] in the schema.

2.6. Hexadecimal Bytes

A binary octet is represented by the HEXBIN (and HEXBIN[]) data type. This octet is encoded as a character tuple consisting of two hexadecimal digits.

The HEXBIN data type is implemented as an "xs:hexBinary" [3] in the schema.

2.7. Enumerated Types

Enumerated types are represented by the ENUM data type, and consist of an ordered list of acceptable values. Each value has a representative keyword. Within the IODEF schema, the enumerated type keywords are used as attribute values.

The ENUM data type is implemented as a series of "xs:NMTOKEN" in the schema.
2.8. Date-Time Strings

Date-time strings are represented by the DATETIME data type. Each date-time string identifies a particular instant in time; ranges are not supported.

Date-time strings are formatted according to a subset of ISO 8601: 2000 [13] documented in RFC 3339 [12].

The DATETIME data type is implemented as an "xs:dateTime" [3] in the schema.

2.9. Timezone String

A timezone offset from UTC is represented by the TIMEZONE data type. It is formatted according to the following regular expression: "Z|\+[\-]?[0-9][0-9]|0[0-9][0-9][0-9]".

The TIMEZONE data type is implemented as an "xs:string" with a regular expression constraint in the schema. This regular expression is identical to the timezone representation implemented in an "xs:dateTime".

2.10. Port Lists

A list of network ports are represented by the PORTLIST data type. A PORTLIST consists of a comma-separated list of numbers and ranges (N-M means ports N through M, inclusive). It is formatted according to the following regular expression: \d+(\-\d+)?(,\d+(\-\d+)?)*. For example, "2,5-15,30,32,40-50,55-60".

The PORTLIST data type is implemented as an "xs:string" with a regular expression constraint in the schema.

2.11. Postal Address

A postal address is represented by the POSTAL data type. This data type is an ML_STRING whose format is documented in Section 2.23 of RFC 4519 [10]. It defines a postal address as a free-form multi-line string separated by the "$" character.

The POSTAL data type is implemented as an "xs:string" in the schema.

2.12. Person or Organization

The name of an individual or organization is represented by the NAME data type. This data type is an ML_STRING whose format is documented in Section 2.3 of RFC 4519 [10].
The NAME data type is implemented as an "xs:string" in the schema.

2.13. Telephone and Fax Numbers

A telephone or fax number is represented by the PHONE data type. The format of the PHONE data type is documented in Section 2.35 of RFC 4519 [10].

The PHONE data type is implemented as an "xs:string" in the schema.

2.14. Email String

An email address is represented by the EMAIL data type. The format of the EMAIL data type is documented in Section 3.4.1 RFC 2822 [11].

The EMAIL data type is implemented as an "xs:string" in the schema.

2.15. Uniform Resource Locator strings

A uniform resource locator (URL) is represented by the URL data type. The format of the URL data type is documented in RFC 2396 [8].

The URL data type is implemented as an "xs:anyURI" in the schema.

3. The IODEF Data Model

In this section, the individual components of the IODEF data model will be discussed in detail. For each class, the semantics will be described and the relationship with other classes will be depicted with UML. When necessary, specific comments will be made about corresponding definition in the schema in Section 8

3.1. IODEF-Document Class

The IODEF-Document class is the top level class in the IODEF data model. All IODEF documents are an instance of this class.

```
+-----------------+
| IODEF-Document  |<>--{1..*}--[ Incident ]
+-----------------+
    |----------------+
    | STRING version | ENUM lang
    +----------------+
    | STRING formatid |
```

Figure 1: IODEF-Document Class
The aggregate class that constitute IODEF-Document is:

Incident

One or more. The information related to a single incident.

The IODEF-Document class has three attributes:

version

Required. STRING. The IODEF specification version number to which this IODEF document conforms. The value of this attribute MUST be "1.00"

lang

Required. ENUM. A valid language code per RFC 4646 [7] constrained by the definition of "xs:language". The interpretation of this code is described in Section 6.

formatid

Optional. STRING. A free-form string to convey processing instructions to the recipient of the document. Its semantics must be negotiated out-of-band.

3.2. Incident Class

Every incident is represented by an instance of the Incident class. This class provides a standardized representation for commonly exchanged incident data.

<table>
<thead>
<tr>
<th>Incident</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENUM purpose</td>
</tr>
<tr>
<td>STRING ext-purpose</td>
</tr>
<tr>
<td>ENUM lang</td>
</tr>
<tr>
<td>ENUM restriction</td>
</tr>
<tr>
<td><>--{0..1}--[IncidentID]</td>
</tr>
<tr>
<td><>--{0..1}--[AlternativeID]</td>
</tr>
<tr>
<td><>--{0..1}--[RelatedActivity]</td>
</tr>
<tr>
<td><>--{0..1}--[DetectTime]</td>
</tr>
<tr>
<td><>--{0..1}--[startTime]</td>
</tr>
<tr>
<td><>--{0..1}--[EndTime]</td>
</tr>
<tr>
<td><>----------[ReportTime]</td>
</tr>
<tr>
<td><>--{0..*}--[Description]</td>
</tr>
<tr>
<td><>--{1..*}--[Assessment]</td>
</tr>
<tr>
<td><>--{0..*}--[Method]</td>
</tr>
<tr>
<td><>--{1..*}--[Contact]</td>
</tr>
<tr>
<td><>--{0..*}--[EventData]</td>
</tr>
<tr>
<td><>--{0..1}--[History]</td>
</tr>
<tr>
<td><>--{0..*}--[AdditionalData]</td>
</tr>
</tbody>
</table>
The aggregate classes that constitute Incident are:

IncidentID
One. An incident tracking number assigned to this incident by the CSIRT that generated the IODEF document.

AlternativeID
Zero or one. The incident tracking numbers used by other CSIRTs to refer to the incident described in the document.

RelatedActivity
Zero or one. The incident tracking numbers of related incidents.

DetectTime
Zero or one. The time the incident was first detected.

StartTime
Zero or one. The time the incident started.

EndTime
Zero or one. The time the incident ended.

ReportTime
One. The time the incident was reported.

Description
Zero or more. ML_STRING. A free-form textual description of the incident.

Assessment
One or more. A characterization of the impact of the incident.

Method
Zero or more. The techniques used by the intruder in the incident.

Contact
One or more. Contact information for the parties involved in the incident.

EventData
Zero or more. Description of the events comprising the incident.
History
Zero or one. A log of significant events or actions that occurred during the course of handling the incident.

AdditionalData
Zero or more. Mechanism by which to extend the data model.

The Incident class has five attributes:

purpose
Required. ENUM. The purpose attribute represents the reason why the IODEF document was created. It is closely related to the Expectation class (Section 3.13). This attribute is defined as an enumerated list:

1. traceback. The document was sent for trace-back purposes.
2. mitigation. The document was sent to request aid in mitigating the described activity.
3. reporting. The document was sent to comply with reporting requirements.
4. other. The document was sent for purposes specified in the Expectation class.
5. ext-value. An escape value used to extend this attribute. See Section 5.1.

ext-purpose
Optional. STRING. A means by which to extend the purpose attribute. See Section 5.1.

lang
Optional. ENUM. A valid language code per RFC 4646 [7] constrained by the definition of "xs:language". The interpretation of this code is described in Section 6.

restriction
Optional. ENUM. This attribute indicates the disclosure guidelines to which the sender expects the recipient to adhere for the information represented in this class and its children. This guideline provides no security since there are no specified technical means to ensure that the recipient of the document handles the information as the sender requested.
The value of this attribute is logically inherited by the children of this class. That is to say, the disclosure rules applied to this class, also apply to its children.

It is possible to set a granular disclosure policy, since all of the high-level classes (i.e., children of the Incident class) have a restriction attribute. Therefore, a child can override the guidelines of a parent class, be it to restrict or relax the disclosure rules (e.g., a child has a weaker policy than an ancestor; or an ancestor has a weak policy, and the children selectively apply more rigid controls). The implicit value of the restriction attribute for a class that did not specify one can be found in the closest ancestor that did specify a value.

This attribute is defined as an enumerated value with a default value of "private". Note that the default value of the restriction attribute is only defined in the context of the Incident class. In other classes where this attribute is used, no default is specified.

1. public. There are no restrictions placed in the information.
2. need-to-know. The information may be shared with other parties that are involved in the incident as determined by the recipient of this document (e.g., multiple victim sites can be informed of each other).
3. private. The information may not be shared.
4. default. The information can be shared according to an information disclosure policy pre-arranged by the communicating parties.
5. Optional. STRING. The indicator set ID is used to group related indicators.

3.3. IncidentID Class

The IncidentID class represents an incident tracking number that is unique in the context of the CSIRT and identifies the activity characterized in an IODEF Document. This identifier would serve as an index into the CSIRT incident handling system. The combination of the name attribute and the string in the element content MUST be a globally unique identifier describing the activity. Documents generated by a given CSIRT MUST NOT reuse the same value unless they are referencing the same incident.
The IncidentID class has three attributes:

name
 Required. STRING. An identifier describing the CSIRT that created the document. In order to have a globally unique CSIRT name, the fully qualified domain name associated with the CSIRT MUST be used.

instance
 Optional. STRING. An identifier referencing a subset of the named incident.

restriction
 Optional. ENUM. This attribute has been defined in Section 3.2. The default value is "public".

3.4. AlternativeID Class

The AlternativeID class lists the incident tracking numbers used by CSIRTs, other than the one generating the document, to refer to the identical activity described in the IODEF document. A tracking number listed as an AlternativeID references the same incident detected by another CSIRT. The incident tracking numbers of the CSIRT that generated the IODEF document should never be considered an AlternativeID.
The aggregate class that constitutes AlternativeID is:

IncidentID

One or more. The incident tracking number of another CSIRT.

The AlternativeID class has one attribute:

restriction

Optional. ENUM. This attribute has been defined in Section 3.2.

3.5. RelatedActivity Class

The RelatedActivity class lists either incident tracking numbers of incidents or URLs (not both) that refer to activity related to the one described in the IODEF document. These references may be to local incident tracking numbers or to those of other CSIRTs.

The specifics of how a CSIRT comes to believe that two incidents are related are considered out of scope.

```
+------------------+
| RelatedActivity  |
+------------------+
   +------------------+
   | ENUM restriction |<>--{1..*}--[ IncidentID ]
   |                |<>--{1..*}--[ URL       ]
   +------------------+
```

Figure 5: RelatedActivity Class

The aggregate classes that constitutes RelatedActivity are:

IncidentID

One or more. The incident tracking number of a related incident.

URL

One or more. URL. A URL to activity related to this incident.

The RelatedActivity class has one attribute:

restriction

Optional. ENUM. This attribute has been defined in Section 3.2.

3.6. AdditionalData Class

The AdditionalData class serves as an extension mechanism for information not otherwise represented in the data model. For relatively simple information, atomic data types (e.g., integers,
strings) are provided with a mechanism to annotate their meaning. The class can also be used to extend the data model (and the associated Schema) to support proprietary extensions by encapsulating entire XML documents conforming to another Schema (e.g., IDMEF). A detailed discussion for extending the data model and the schema can be found in Section 5.

Unlike XML, which is self-describing, atomic data must be documented to convey its meaning. This information is described in the 'meaning' attribute. Since these description are outside the scope of the specification, some additional coordination may be required to ensure that a recipient of a document using the AdditionalData classes can make sense of the custom extensions.

The AdditionalData class has five attributes:

dtype
Required. ENUM. The data type of the element content. The permitted values for this attribute are shown below. The default value is "string".

1. boolean. The element content is of type BOOLEAN.
2. byte. The element content is of type BYTE.
3. character. The element content is of type CHARACTER.
4. date-time. The element content is of type DATETIME.
5. integer. The element content is of type INTEGER.
6. portlist. The element content is of type PORTLIST.
7. real. The element content is of type REAL.

8. string. The element content is of type STRING.

9. file. The element content is a base64 encoded binary file encoded as a BYTE[] type.

10. frame. The element content is a layer-2 frame encoded as a HEXBIN type.

11. packet. The element content is a layer-3 packet encoded as a HEXBIN type.

12. ipv4-packet. The element content is an IPv4 packet encoded as a HEXBIN type.

13. ipv6-packet. The element content is an IPv6 packet encoded as a HEXBIN type.

14. path. The element content is a file-system path encoded as a STRING type.

15. url. The element content is of type URL.

16. csv. The element content is a common separated value (CSV) list per Section 2 of [20] encoded as a STRING type.

17. winreg. The element content is a Windows registry key encoded as a STRING type.

18. xml. The element content is XML (see Section 5).

19. ext-value. An escape value used to extend this attribute. See Section 5.1.

 ext-dtype
 Optional. STRING. A means by which to extend the dtype attribute. See Section 5.1.

 meaning
 Optional. STRING. A free-form description of the element content.

 formatid
 Optional. STRING. An identifier referencing the format and semantics of the element content.
3.7. Contact Class

The Contact class describes contact information for organizations and personnel involved in the incident. This class allows for the naming of the involved party, specifying contact information for them, and identifying their role in the incident.

People and organizations are treated interchangeably as contacts; one can be associated with the other using the recursive definition of the class (the Contact class is aggregated into the Contact class). The 'type' attribute disambiguates the type of contact information being provided.

The inheriting definition of Contact provides a way to relate information without requiring the explicit use of identifiers in the classes or duplication of data. A complete point of contact is derived by a particular traversal from the root Contact class to the leaf Contact class. As such, multiple points of contact might be specified in a single instance of a Contact class. Each child Contact class logically inherits contact information from its ancestors.

```
+------------------+
| Contact          |
+------------------+
    ENUM role      <->{(0..1)}-[ ContactName ]
    STRING ext-role <->{(0..* )}--[ Description ]
    ENUM type       <->{(0..* )}--[ RegistryHandle ]
    STRING ext-type <->{(0..1)}--[ PostalAddress ]
    ENUM restriction <->{(0..* )}--[ Email ]
  <->{(0..* )}--[ Telephone ]
  <->{(0..1)}--[ Fax ]
  <->{(0..1)}--[ Timezone ]
  <->{(0..* )}--[ Contact ]
  <->{(0..* )}--[ AdditionalData ]
```

Figure 7: The Contact Class

The aggregate classes that constitute the Contact class are:
ContactName
 Zero or one. ML_STRING. The name of the contact. The contact may either be an organization or a person. The type attribute disambiguates the semantics.

Description
 Zero or many. ML_STRING. A free-form description of this contact. In the case of a person, this is often the organizational title of the individual.

RegistryHandle
 Zero or many. A handle name into the registry of the contact.

PostalAddress
 Zero or one. The postal address of the contact.

Email
 Zero or many. The email address of the contact.

Telephone
 Zero or many. The telephone number of the contact.

Fax
 Zero or one. The facsimile telephone number of the contact.

Timezone
 Zero or one. TIMEZONE. The timezone in which the contact resides formatted according to Section 2.9.

Contact
 Zero or many. A Contact instance contained within another Contact instance inherits the values of the parent(s). This recursive definition can be used to group common data pertaining to multiple points of contact and is especially useful when listing multiple contacts at the same organization.

AdditionalData
 Zero or many. A mechanism by which to extend the data model.

At least one of the aggregate classes MUST be present in an instance of the Contact class. This is not enforced in the IODEF schema as there is no simple way to accomplish it.

The Contact class has five attributes:
role
 Required. ENUM. Indicates the role the contact fulfills. This attribute is defined as an enumerated list:

 1. creator. The entity that generate the document.
 2. admin. An administrative contact for a host or network.
 3. tech. A technical contact for a host or network.
 4. irt. The CSIRT involved in handling the incident.
 5. cc. An entity that is to be kept informed about the handling of the incident.
 6. ext-value. An escape value used to extend this attribute. See Section 5.1.

ext-role
 Optional. STRING. A means by which to extend the role attribute. See Section 5.1.

type
 Required. ENUM. Indicates the type of contact being described. This attribute is defined as an enumerated list:

 1. person. The information for this contact references an individual.
 2. organization. The information for this contact references an organization.
 3. ext-value. An escape value used to extend this attribute. See Section 5.1.

ext-type
 Optional. STRING. A means by which to extend the type attribute. See Section 5.1.

restriction
 Optional. ENUM. This attribute is defined in Section 3.2.

3.7.1. RegistryHandle Class

The RegistryHandle class represents a handle into an Internet registry or community-specific database. The handle is specified in the element content and the type attribute specifies the database.
The RegistryHandle class has two attributes:

registry
 Required. ENUM. The database to which the handle belongs. The possible values are:
 1. internic. Internet Network Information Center
 2. apnic. Asia Pacific Network Information Center
 3. arin. American Registry for Internet Numbers
 4. lacnic. Latin-American and Caribbean IP Address Registry
 5. ripe. Reseaux IP Europeens
 6. afrinic. African Internet Numbers Registry
 7. local. A database local to the CSIRT
 8. ext-value. An escape value used to extend this attribute. See Section 5.1.

ext-registry
 Optional. STRING. A means by which to extend the registry attribute. See Section 5.1.

3.7.2. PostalAddress Class

The PostalAddress class specifies a postal address formatted according to the POSTAL data type (Section 2.11).
Figure 9: The PostalAddress Class

The PostalAddress class has two attributes:

- **meaning**
 - Optional. ENUM. A free-form description of the element content.

- **lang**
 - Optional. ENUM. A valid language code per RFC 4646 [7] constrained by the definition of "xs:language". The interpretation of this code is described in Section 6.

3.7.3. Email Class

The Email class specifies an email address formatted according to EMAIL data type (Section 2.14).

Figure 10: The Email Class

The Email class has one attribute:

- **meaning**
 - Optional. ENUM. A free-form description of the element content.

3.7.4. Telephone and Fax Classes

The Telephone and Fax classes specify a voice or fax telephone number respectively, and are formatted according to PHONE data type (Section 2.13).
3.8. Time Classes

The data model uses five different classes to represent a timestamp. Their definition is identical, but each has a distinct name to convey a difference in semantics.

The element content of each class is a timestamp formatted according to the DATETIME data type (see Section 2.8).

3.8.1. StartTime

The StartTime class represents the time the incident began.

3.8.2. EndTime

The EndTime class represents the time the incident ended.

3.8.3. DetectTime

The DetectTime class represents the time the first activity of the incident was detected.
3.8.4. ReportTime

The ReportTime class represents the time the incident was reported. This timestamp SHOULD coincide to the time at which the IODEF document is generated.

3.8.5. DateTime

The DateTime class is a generic representation of a timestamp. Its semantics should be inferred from the parent class in which it is aggregated.

3.9. Method Class

The Method class describes the methodology used by the intruder to perpetrate the events of the incident. This class consists of a list of references describing the attack method and a free-form description of the technique.

```
+------------------+
| Method           |
+------------------+
| ENUM restriction |<>--(0..*)--[ Reference ]
|                  |<>--(0..*)--[ Description ]
|                  |<>--(0..*)--[ AdditionalData ]
+------------------+
```

Figure 13: The Method Class

The Method class is composed of three aggregate classes.

Reference

Zero or many. A reference to a vulnerability, malware sample, advisory, or analysis of an attack technique.

Description

Zero or many. ML_STRING. A free-form text description of the methodology used by the intruder.

AdditionalData

Zero or many. A mechanism by which to extend the data model.

Either an instance of the Reference or Description class MUST be present.

The Method class has one attribute:
3.9.1. Reference Class

The Reference class is a reference to a vulnerability, IDS alert, malware sample, advisory, or attack technique. A reference consists of a name, a URL to this reference, and an optional description.

```
+------------------+
| Reference        |
+------------------+
    +--------------+
    | ReferenceName |
    +--------------+
    | (0..*)--[ URL ] |
    +--------------+
    | (0..*)--[ Description ] |
+------------------+
```

Figure 14: The Reference Class

The aggregate classes that constitute Reference:

- ReferenceName
 - One. ML_STRING. Name of the reference.

- URL
 - Zero or many. URL. A URL associated with the reference.

- Description
 - Zero or many. ML_STRING. A free-form text description of this reference.

The Reference class has 4 attributes.

- indicator-uid
 - Optional. STRING. A unique identifier for an Indicator.

- indicator-set-id
 - Optional. STRING. The indicator set ID is used to group related indicators.

- attacktype
 - Optional. ENUM. A unique identifier for an Indicator.

- ext-attacktype
 - Optional. STRING. A mechanism by which to extend the Attack Type.
3.10. Assessment Class

The Assessment class describes the technical and non-technical repercussions of the incident on the CSIRT’s constituency.

This class was derived from the IDMEF[17].

```
+------------------+
| Assessment       |
+------------------+
  ENUM occurrence  <--> (0..*)--[ Impact ]
  ENUM restriction <--> (0..*)--[ TimeImpact ]
                      <--> (0..*)--[ MonetaryImpact ]
                      <--> (0..*)--[ Counter ]
                      <--> (0..1)--[ Confidence ]
                      <--> (0..*)--[ AdditionalData ]
+------------------+
```

Figure 15: Assessment Class

The aggregate classes that constitute Assessment are:

Impact
Zero or many. Technical impact of the incident on a network.

TimeImpact
Zero or many. Impact of the activity measured with respect to time.

MonetaryImpact
Zero or many. Impact of the activity measured with respect to financial loss.

Counter
Zero or more. A counter with which to summarize the magnitude of the activity.

Confidence
Zero or one. An estimate of confidence in the assessment.

AdditionalData
Zero or many. A mechanism by which to extend the data model.

A least one instance of the possible three impact classes (i.e., Impact, TimeImpact, or MonetaryImpact) MUST be present.

The Assessment class has four attributes:
occurrence
 Optional. ENUM. Specifies whether the assessment is describing actual or potential outcomes.

 1. actual. This assessment describes activity that has occurred.
 2. potential. This assessment describes potential activity that might occur.

restriction
 Optional. ENUM. This attribute is defined in Section 3.2.

indicator-uid
 Optional. STRING. A unique identifier for an Indicator.

indicator-set-id
 Optional. STRING. The indicator set ID is used to group related indicators.

3.10.1. Impact Class

The Impact class allows for categorizing and describing the technical impact of the incident on the network of an organization.

This class is based on the IDMEF [17].

+------------------+
| Impact |
| +------------------+
| ML_STRING |
| ENUM lang |
| ENUM severity |
| ENUM completion |
| ENUM type |
| STRING ext-type |
+------------------+

Figure 16: Impact Class

The element content will be a free-form textual description of the impact.

The Impact class has five attributes:
lang
 Optional. ENUM. A valid language code per RFC 4646 [7] constrained by the definition of "xs:language". The interpretation of this code is described in Section 6.

severity
 Optional. ENUM. An estimate of the relative severity of the activity. The permitted values are shown below. There is no default value.
 1. low. Low severity
 2. medium. Medium severity
 3. high. High severity

completion
 Optional. ENUM. An indication whether the described activity was successful. The permitted values are shown below. There is no default value.
 1. failed. The attempted activity was not successful.
 2. succeeded. The attempted activity succeeded.

type
 Required. ENUM. Classifies the malicious activity into incident categories. The permitted values are shown below. The default value is "other".
 1. admin. Administrative privileges were attempted.
 2. dos. A denial of service was attempted.
 3. file. An action that impacts the integrity of a file or database was attempted.
 4. info-leak. An attempt was made to exfiltrate information.
 5. misconfiguration. An attempt was made to exploit a misconfiguration in a system.
 6. policy. Activity violating site’s policy was attempted.
 7. recon. Reconnaissance activity was attempted.
 8. social-engineering. A social engineering attack was attempted.
9. user. User privileges were attempted.

10. unknown. The classification of this activity is unknown.

11. ext-value. An escape value used to extend this attribute. See Section 5.1.

ext-type
Optional. STRING. A means by which to extend the type attribute. See Section 5.1.

3.10.2. TimeImpact Class

The TimeImpact class describes the impact of the incident on an organization as a function of time. It provides a way to convey down time and recovery time.

```
+---------------------+
| TimeImpact          |
| +---------------------+
| REAL                |
| ENUM severity       |
| ENUM metric         |
| STRING ext-metric   |
| ENUM duration       |
| STRING ext-duration |
```

Figure 17: TimeImpact Class

The element content is a positive, floating point (REAL) number specifying a unit of time. The duration and metric attributes will imply the semantics of the element content.

The TimeImpact class has five attributes:

severity
Optional. ENUM. An estimate of the relative severity of the activity. The permitted values are shown below. There is no default value.

1. low. Low severity

2. medium. Medium severity
3. high. High severity

metric
Required. ENUM. Defines the metric in which the time is expressed. The permitted values are shown below. There is no default value.

1. labor. Total staff-time to recovery from the activity (e.g., 2 employees working 4 hours each would be 8 hours).

2. elapsed. Elapsed time from the beginning of the recovery to its completion (i.e., wall-clock time).

3. downtime. Duration of time for which some provided service(s) was not available.

4. ext-value. An escape value used to extend this attribute. See Section 5.1.

ext-metric
Optional. STRING. A means by which to extend the metric attribute. See Section 5.1.

duration
Optional. ENUM. Defines a unit of time, that when combined with the metric attribute, fully describes a metric of impact that will be conveyed in the element content. The permitted values are shown below. The default value is "hour".

1. second. The unit of the element content is seconds.

2. minute. The unit of the element content is minutes.

3. hour. The unit of the element content is hours.

4. day. The unit of the element content is days.

5. month. The unit of the element content is months.

6. quarter. The unit of the element content is quarters.

7. year. The unit of the element content is years.

8. ext-value. An escape value used to extend this attribute. See Section 5.1.
ext-duration
Optional. STRING. A means by which to extend the duration attribute. See Section 5.1.

3.10.3. MonetaryImpact Class

The MonetaryImpact class describes the financial impact of the activity on an organization. For example, this impact may consider losses due to the cost of the investigation or recovery, diminished productivity of the staff, or a tarnished reputation that will affect future opportunities.

```
+------------------+
| MonetaryImpact   |
+------------------+
    +------------------+
    | REAL             |
    +------------------+
    | ENUM severity    |
    +------------------+
    | STRING currency  |
    +------------------+
```

Figure 18: MonetaryImpact Class

The element content is a positive, floating point number (REAL) specifying a unit of currency described in the currency attribute.

The MonetaryImpact class has two attributes:

severity
Optional. ENUM. An estimate of the relative severity of the activity. The permitted values are shown below. There is no default value.

1. low. Low severity
2. medium. Medium severity
3. high. High severity

currency
Optional. STRING. Defines the currency in which the monetary impact is expressed. The permitted values are defined in ISO 4217:2001, Codes for the representation of currencies and funds [14]. There is no default value.
3.10.4. Confidence Class

The Confidence class represents a best estimate of the validity and accuracy of the described impact (see Section 3.10) of the incident activity. This estimate can be expressed as a category or a numeric calculation.

This class if based upon the IDMEF [17]).

+------------------+
| Confidence |
+------------------+
 +---------------+
 | REAL |
 +---------------+
 | ENUM rating |
+------------------+

Figure 19: Confidence Class

The element content expresses a numerical assessment in the confidence of the data when the value of the rating attribute is "numeric". Otherwise, this element should be empty.

The Confidence class has one attribute.

rating

Required. ENUM. A rating of the analytical validity of the specified Assessment. The permitted values are shown below. There is no default value.

1. low. Low confidence in the validity.
2. medium. Medium confidence in the validity.
3. high. High confidence in the validity.
4. numeric. The element content contains a number that conveys the confidence of the data. The semantics of this number outside the scope of this specification.
5. unknown. The confidence rating value is not known.
3.11. History Class

The History class is a log of the significant events or actions performed by the involved parties during the course of handling the incident.

The level of detail maintained in this log is left up to the discretion of those handling the incident.

```
+------------------+
| History          |
+------------------+
| ENUM restriction |<>--{1..*}--[ HistoryItem ]
+------------------+
```

Figure 20: The History Class

The class that constitutes History is:

HistoryItem

One or many. Entry in the history log of significant events or actions performed by the involved parties.

The History class has one attribute:

restriction

Optional. ENUM. This attribute is defined in Section 3.2. The default value is "default".

3.11.1. HistoryItem Class

The HistoryItem class is an entry in the History (Section 3.11) log that documents a particular action or event that occurred in the course of handling the incident. The details of the entry are a free-form description, but each can be categorized with the type attribute.
The aggregate classes that constitute HistoryItem are:

DateTime
One. Timestamp of this entry in the history log (e.g., when the action described in the Description was taken).

IncidentID
Zero or One. In a history log created by multiple parties, the IncidentID provides a mechanism to specify which CSIRT created a particular entry and references this organization’s incident tracking number. When a single organization is maintaining the log, this class can be ignored.

Contact
Zero or One. Provides contact information for the person that performed the action documented in this class.

Description
Zero or many. ML_STRING. A free-form textual description of the action or event.

AdditionalData
Zero or many. A mechanism by which to extend the data model.
it has been completed. See Section 3.13.

ext-action
Optional. STRING. A means by which to extend the action attribute. See Section 5.1.

indicator-uid
Optional. STRING. A unique identifier for an Indicator.

indicator-set-id
Optional. STRING. The indicator set ID is used to group related indicators.

3.12. EventData Class

The EventData class describes a particular event of the incident for a given set of hosts or networks. This description includes the systems from which the activity originated and those targeted, an assessment of the techniques used by the intruder, the impact of the activity on the organization, and any forensic evidence discovered.

```
+------------------+
| EventData        |
+------------------+
     ENUM restriction |<>--{0..*}--[ Description ]
     |<>--{0..1}--[ DetectTime ]
     |<>--{0..1}--[ StartTime ]
     |<>--{0..1}--[ EndTime ]
     |<>--{0..1}--[ Contact ]
     |<>--{0..1}--[ Assessment ]
     |<>--{0..*}--[ Method ]
     |<>--{0..*}--[ Flow ]
     |<>--{0..*}--[ Expectation ]
     |<>--{0..1}--[ Record ]
     |<>--{0..*}--[ EventData ]
     |<>--{0..*}--[ AdditionalData ]

Figure 22: The EventData Class
```

The aggregate classes that constitute EventData are:

Description
Zero or more. ML_STRING. A free-form textual description of the event.
DetectTime
 Zero or one. The time the event was detected.

StartTime
 Zero or one. The time the event started.

EndTime
 Zero or one. The time the event ended.

Contact
 Zero or more. Contact information for the parties involved in the event.

Assessment
 Zero or one. The impact of the event on the target and the actions taken.

Method
 Zero or more. The technique used by the intruder in the event.

Flow
 Zero or more. A description of the systems or networks involved.

Expectation
 Zero or more. The expected action to be performed by the recipient for the described event.

Record
 Zero or one. Supportive data (e.g., log files) that provides additional information about the event.

EventData
 Zero or more. EventData instances contained within another EventData instance inherit the values of the parent(s); this recursive definition can be used to group common data pertaining to multiple events. When EventData elements are defined recursively, only the leaf instances (those EventData instances not containing other EventData instances) represent actual events.

AdditionalData
 Zero or more. An extension mechanism for data not explicitly represented in the data model.

At least one of the aggregate classes MUST be present in an instance of the EventData class. This is not enforced in the IODEF schema as there is no simple way to accomplish it.

The EventData class has two attributes:
3.12.1. Relating the Incident and EventData Classes

There is substantial overlap in the Incident and EventData classes. Nevertheless, the semantics of these classes are quite different. The Incident class provides summary information about the entire incident, while the EventData class provides information about the individual events comprising the incident. In the most common case, the EventData class will provide more specific information for the general description provided in the Incident class. However, it may also be possible that the overall summarized information about the incident conflicts with some individual information in an EventData class when there is a substantial composition of various events in the incident. In such a case, the interpretation of the more specific EventData MUST supersede the more generic information provided in IncidentData.

3.12.2. Cardinality of EventData

The EventData class can be thought of as a container for the properties of an event in an incident. These properties include: the hosts involved, impact of the incident activity on the hosts, forensic logs, etc. With an instance of the EventData class, hosts (i.e., System class) are grouped around these common properties.

The recursive definition (or instance property inheritance) of the EventData class (the EventData class is aggregated into the EventData class) provides a way to related information without requiring the explicit use of unique attribute identifiers in the classes or duplicating information. Instead, the relative depth (nesting) of a class is used to group (relate) information.

For example, an EventData class might be used to describe two machines involved in an incident. This description can be achieved using multiple instances of the Flow class. It happens that there is a common technical contact (i.e., Contact class) for these two machines, but the impact (i.e., Assessment class) on them is different. A depiction of the representation for this situation can be found in Figure 23.
3.13. Expectation Class

The Expectation class conveys to the recipient of the IODEF document the actions the sender is requesting. The scope of the requested action is limited to purview of the EventData class in which this class is aggregated.

```
+-------------------+
| Expectation       |
+-------------------+
| ENUM restriction  |<--(0..*)--[ Description ]
| ENUM severity     |<--(0..1)--[ StartTime   ]
| ENUM action       |<--(0..1)--[ EndTime     ]
| STRING ext-action |<--(0..1)--[ Contact     ]
+-------------------+
```

The aggregate classes that constitute Expectation are:

Description
Zero or many. ML_STRING. A free-form description of the desired action(s).

StartTime
Zero or one. The time at which the action should be performed. A timestamp that is earlier than the ReportTime specified in the Incident class denotes that the expectation should be fulfilled as soon as possible. The absence of this element leaves the execution of the expectation to the discretion of the recipient.
EndTime
Zero or one. The time by which the action should be completed.
If the action is not carried out by this time, it should no longer
be performed.

Contact
Zero or one. The expected actor for the action.

The Expectations class has six attributes:

restriction
Optional. ENUM. This attribute is defined in Section 3.2. The
default value is "default".

severity
Optional. ENUM. Indicates the desired priority of the action.
This attribute is an enumerated list with no default value, and
the semantics of these relative measures are context dependant.

1. low. Low priority
2. medium. Medium priority
3. high. High priority

action
Optional. ENUM. Classifies the type of action requested. This
attribute is an enumerated list with a default value of "other".

1. nothing. No action is requested. Do nothing with the
 information.
2. contact-source-site. Contact the site(s) identified as the
 source of the activity.
3. contact-target-site. Contact the site(s) identified as the
 target of the activity.
4. contact-sender. Contact the originator of the document.
5. investigate. Investigate the systems(s) listed in the event.
6. block-host. Block traffic from the machine(s) listed as
 sources the event.
7. block-network. Block traffic from the network(s) lists as
 sources in the event.
8. block-port. Block the port listed as sources in the event.

9. rate-limit-host. Rate-limit the traffic from the machine(s) listed as sources in the event.

10. rate-limit-network. Rate-limit the traffic from the network(s) lists as sources in the event.

11. rate-limit-port. Rate-limit the port(s) listed as sources in the event.

12. remediate-other. Remediate the activity in a way other than by rate limiting or blocking.

14. status-new-info. Conveys that new information was received for this incident.

15. other. Perform some custom action described in the Description class.

16. ext-value. An escape value used to extend this attribute. See Section 5.1.

ext-action
 Optional. STRING. A means by which to extend the action attribute. See Section 5.1.

indicator-uid
 Optional. STRING. A unique identifier for an Indicator.

indicator-set-id
 Optional. STRING. The indicator set ID is used to group related indicators.

3.14. Flow Class

The Flow class groups related the source and target hosts.

```
+------------------+
| Flow             |
+------------------+
|                  |<>--{1..*}--[ System   
+------------------+
```
Figure 25: The Flow Class

The aggregate class that constitutes Flow is:

System
 One or More. A host or network involved in an event.

The Flow System class has no attributes.

3.15. System Class

The System class describes a system or network involved in an event. The systems or networks represented by this class are categorized according to the role they played in the incident through the category attribute. The value of this category attribute dictates the semantics of the aggregated classes in the System class. If the category attribute has a value of "source", then the aggregated classes denote the machine and service from which the activity is originating. With a category attribute value of "target" or "intermediary", then the machine or service is the one targeted in the activity. A value of "sensor" dictates that this System was part of an instrumentation to monitor the network.

Figure 26: The System Class

The aggregate classes that constitute System are:

Node
 One. A host or network involved in the incident.

Service
 Zero or more. A network service running on the system.

OperatingSystem
 Zero or more. The operating system running on the system.
Counter
Zero or more. A counter with which to summarize properties of this host or network.

Description
Zero or more. ML_STRING. A free-form text description of the System.

AdditionalData
Zero or many. A mechanism by which to extend the data model.

The System class has six attributes:

restriction
Optional. ENUM. This attribute is defined in Section 3.2.

category
Optional. ENUM. Classifies the role the host or network played in the incident. The possible values are:

1. source. The System was the source of the event.
2. target. The System was the target of the event.
3. watchlist-source. The source of the event was on a watchlist.
4. watchlist-target. The target of the event was on a watchlist.
5. intermediate. The System was an intermediary in the event.
6. sensor. The System was a sensor monitoring the event.
7. infrastructure. The System was an infrastructure node of IODEF document exchange.
8. ext-value. An escape value used to extend this attribute. See Section 5.1.

ext-category
Optional. STRING. A means by which to extend the category attribute. See Section 5.1.

indicator-set-id
Optional. STRING. The indicator set ID is used to group related indicators.
interface
Optional. STRING. Specifies the interface on which the event(s)
on this System originated. If the Node class specifies a network
rather than a host, this attribute has no meaning.

spoofed
Optional. ENUM. An indication of confidence in whether this
System was the true target or attacking host. The permitted
values for this attribute are shown below. The default value is
"unknown".

1. unknown. The accuracy of the category attribute value is
unknown.

2. yes. The category attribute value is probably incorrect. In
the case of a source, the System is likely a decoy; with a
target, the System was likely not the intended victim.

3. no. The category attribute value is believed to be correct.

3.16. Node Class

The Node class names a system (e.g., PC, router) or network.

This class was derived from the IDMEF [17].

```
+--------------+
| Node          |
+--------------+
|               |<--{0..*}--[ NodeName ]
|               |<--{0..*}--[ DomainData ]
|               |<--{0..*}--[ Address ]
|               |<--{0..1}--[ Location ]
|               |<--{0..1}--[ DateTime ]
|               |<--{0..*}--[ NodeRole ]
|               |<--{0..*}--[ Counter ]
+--------------+
```

Figure 27: The Node Class

The aggregate classes that constitute Node are:

nodeName
Zero or more. ML_STRING. The name of the Node (e.g., fully
qualified domain name). This information MUST be provided if no
Address information is given.
DomainData
 Zero or more. ML_STRING. The DomainData Class and Subclasses from RFC 5901.

Address
 Zero or more. The hardware, network, or application address of the Node. If a NodeName is not provided, at least one Address MUST be specified.

Location
 Zero or one. ML_STRING. A free-from description of the physical location of the equipment.

DateTime
 Zero or one. A timestamp of when the resolution between the name and address was performed. This information SHOULD be provided if both an Address and NodeName are specified.

NodeRole
 Zero or more. The intended purpose of the Node.

Counter
 Zero or more. A counter with which to summarizes properties of this host or network.

3.16.1. Counter Class

 The Counter class summarize multiple occurrences of some event, or conveys counts or rates on various features (e.g., packets, sessions, events).

 The value of the counter is the element content with its units represented in the type attribute. A rate for a given feature can be expressed by setting the duration attribute. The complete semantics are entirely context dependant based on the class in which the Counter is aggregated.
The Counter class has three attribute:

type
 Required. ENUM. Specifies the units of the element content.
 1. byte. Count of bytes.
 2. packet. Count of packets.
 3. flow. Count of flow (e.g., NetFlow records).
 4. session. Count of sessions.
 5. alert. Count of notifications generated by another system (e.g., IDS or SIM).
 6. message. Count of messages (e.g., mail messages).
 7. event. Count of events.
 8. host. Count of hosts.
 9. site. Count of site.
 10. organization. Count of organizations.
 11. ext-value. An escape value used to extend this attribute. See Section 5.1.

ext-type
 Optional. STRING. A means by which to extend the type attribute. See Section 5.1.
duration
 Optional. ENUM. If present, the Counter class represents a rate rather than a count over the entire event. In that case, this attribute specifies the denominator of the rate (where the type attribute specified the nominator). The possible values of this attribute are defined in Section 3.10.2

ext-duration
 Optional. STRING. A means by which to extend the duration attribute. See Section 5.1.

3.16.2. Address Class

The Address class represents a hardware (layer-2), network (layer-3), or application (layer-7) address.

This class was derived from the IDMEF [17].

+---------------------+
| Address |
+---------------------+
| ENUM category |
| STRING ext-category |
| STRING vlan-name |
| INTEGER vlan-num |
+---------------------+

Figure 29: The Address Class

The Address class has five attributes:

category
 Optional. ENUM. The type of address represented. The permitted values for this attribute are shown below. The default value is "ipv4-addr".

1. asn. Autonomous System Number
2. atm. Asynchronous Transfer Mode (ATM) address
3. e-mail. Electronic mail address (RFC 822)
4. ipv4-addr. IPv4 host address in dotted-decimal notation (a.b.c.d)
5. ipv4-net. IPv4 network address in dotted-decimal notation, slash, significant bits (a.b.c.d/nn)
6. ipv4-net-mask. IPv4 network address in dotted-decimal notation, slash, network mask in dotted-decimal notation (a.b.c.d/w.x.y.z)

7. ipv6-addr. IPv6 host address

8. ipv6-net. IPv6 network address, slash, significant bits

9. ipv6-net-mask. IPv6 network address, slash, network mask

10. mac. Media Access Control (MAC) address

11. site-uri. A URL or URI for a site.

12. ext-value. An escape value used to extend this attribute. See Section 5.1.

ext-category
 Optional. STRING. A means by which to extend the category attribute. See Section 5.1.

vlan-name
 Optional. STRING. The name of the Virtual LAN to which the address belongs.

vlan-num
 Optional. STRING. The number of the Virtual LAN to which the address belongs.

indicator-uid
 Optional. STRING. A unique identifier for an Indicator.

3.16.3. NodeRole Class

The NodeRole class describes the intended function performed by a particular host.

+---------------------+
| NodeRole |
+---------------------+
| ENUM category |
| STRING ext-category |
| ENUM lang |

Figure 30: The NodeRole Class
The NodeRole class has three attributes:

category
 Required. ENUM. Functionality provided by a node.
 1. client. Client computer
 2. server-internal. Server with internal services
 3. server-public. Server with public services
 4. www. WWW server
 5. mail. Mail server
 6. messaging. Messaging server (e.g., NNTP, IRC, IM)
 7. streaming. Streaming-media server
 8. voice. Voice server (e.g., SIP, H.323)
 9. file. File server (e.g., SMB, CVS, AFS)
 10. ftp. FTP server
 11. p2p. Peer-to-peer node
 12. name. Name server (e.g., DNS, WINS)
 13. directory. Directory server (e.g., LDAP, finger, whois)
 14. credential. Credential server (e.g., domain controller, Kerberos)
 15. print. Print server
 16. application. Application server
 17. database. Database server
 18. infra. Infrastructure server (e.g., router, firewall, DHCP)
 19. log. Logserver (e.g., syslog)
 20. ext-value. An escape value used to extend this attribute.
 See Section 5.1.
ext-category
 Optional. STRING. A means by which to extend the category
 attribute. See Section 5.1.

lang
 Optional. ENUM. A valid language code per RFC 4646 [7]
 constrained by the definition of "xs:language". The
 interpretation of this code is described in Section 6.

3.17. Service Class

The Service class describes a network service of a host or network.
The service is identified by specific port or list of ports, along
with the application listening on that port.

When Service occurs as an aggregate class of a System that is a
source, then this service is the one from which activity of interest
is originating. Conversely, when Service occurs as an aggregate
class of a System that is a target, then that service is the one to
which activity of interest is directed.

This class was derived from the IDMEF [17].

+---------------------+
| Service |
+---------------------+
 +--------------+
 | INTEGER ip_protocol |<--{0..1}--[Port
 +--------------+
 | |<--{0..1}--[Portlist
 +--------------+
 | |<--{0..1}--[ProtoCode
 +--------------+
 | |<--{0..1}--[ProtoType
 +--------------+
 | |<--{0..1}--[ProtoField
 +--------------+
 | |<--{0..1}--[Application |

Figure 31: The Service Class

The aggregate classes that constitute Service are:

Port
 Zero or one. INTEGER. A port number.

Portlist
 Zero or one. PORTLIST. A list of port numbers formatted
 according to Section 2.10.
ProtoCode
Zero or one. INTEGER. A layer-4 protocol-specific code field (e.g., ICMP code field).

ProtoType
Zero or one. INTEGER. A layer-4 protocol specific type field (e.g., ICMP type field).

ProtoField
Zero or one. INTEGER. A layer-4 protocol specific flag field (e.g., TCP flag field).

Application
Zero or one. The application bound to the specified Port or Portlist.

Either a Port or Portlist class MUST be specified for a given instance of a Service class.

For a given source, System@type="source", a corresponding target, System@type="target", maybe defined, or vice versa. When a Portlist class is defined in the Service class of both the source and target in a given instance of the Flow class, there MUST be symmetry in the enumeration of the ports. Thus, if n-ports are listed for a source, n-ports should be listed for the target. Likewise, the ports should be listed in an identical sequence such that the n-th port in the source corresponds to the n-th port of the target. This symmetry in listing and sequencing of ports applies whether there are 1-to-1, 1-to-many, or many-to-many sources-to-targets. In the 1-to-many or many-to-many, the exact order in which the System classes are enumerated in the Flow class is significant.

The Service class has three attributes:

ip_protocol
Required. INTEGER. The IANA protocol number.

indicator-uid
Optional. STRING. A unique identifier for an Indicator.

indicator-set-id
Optional. STRING. The indicator set ID is used to group related indicators.
3.17.1. Application Class

The Application class describes an application running on a System providing a Service.

```
+--------------------+
<table>
<thead>
<tr>
<th>Application</th>
</tr>
</thead>
</table>
| STRING swid        |<>--{0..1}--[ URL          ]
| STRING configid    |
| STRING vendor      |
| STRING family      |
| STRING name        |
| STRING version     |
| STRING patch       |
+--------------------+
```

Figure 32: The Application Class

The aggregate class that constitute Application is:

URL
Zero or one. URL. A URL describing the application.

The Application class has seven attributes:

swid
Optional. STRING. An identifier that can be used to reference this software, where the default value is "0".

configid
Optional. STRING. An identifier that can be used to reference a particular configuration of this software, where the default value is "0".

vendor
Optional. STRING. Vendor name of the software.

family
Optional. STRING. Family of the software.

name
Optional. STRING. Name of the software.
version
 Optional. STRING. Version of the software.

patch
 Optional. STRING. Patch or service pack level of the software.

3.18. OperatingSystem Class

The OperatingSystem class describes the operating system running on a
System. The definition is identical to the Application class
(Section 3.17.1).

3.19. Record Class

The Record class is a container class for log and audit data that
provides supportive information about the incident. The source of
this data will often be the output of monitoring tools. These logs
should substantiate the activity described in the document.

+------------------+
| Record |
+------------------+
 ENUM restriction |<>--{1..*}--[RecordData]
+------------------+

Figure 33: Record Class

The aggregate class that constitutes Record is:

RecordData
 One or more. Log or audit data generated by a particular type of
 sensor. Separate instances of the RecordData class SHOULD be used
 for each sensor type.

The Record class has one attribute:

restriction
 Optional. ENUM. This attribute has been defined in Section 3.2.

3.19.1. RecordData Class

The RecordData class groups log or audit data from a given sensor
(e.g., IDS, firewall log) and provides a way to annotate the output.
The aggregate classes that constitutes RecordData is:

DateTime
Zero or one. Timestamp of the RecordItem data.

Description
Zero or more. ML_STRING. Free-form textual description of the provided RecordItem data. At minimum, this description should convey the significance of the provided RecordItem data.

Application
Zero or one. Information about the sensor used to generate the RecordItem data.

RecordPattern
Zero or more. A search string to precisely find the relevant data in a RecordItem.

RecordItem
Zero or more. Log, audit, or forensic data.

HashInformation
Zero or one. ML_STRING. The file name and hash of a file indicator.

WindowsRegistryKeysModified
Zero or more. The registry keys that were modified that are indicator(s).

AdditionalData
Zero or more. An extension mechanism for data not explicitly represented in the data model.
The RecordData class has three attributes:

- restriction
 Optional. ENUM. This attribute has been defined in Section 3.2.

- indicator-uid
 Optional. STRING. A unique identifier for an Indicator.

- indicator-set-id
 Optional. STRING. The indicator set ID is used to group related indicators.

3.19.2. RecordPattern Class

The RecordPattern class describes where in the content of the RecordItem relevant information can be found. It provides a way to reference subsets of information, identified by a pattern, in a large log file, audit trail, or forensic data.

```
+-----------------------+
| RecordPattern         |
+-----------------------+
| STRING                |
| ENUM type             |
| STRING ext-type       |
| INTEGER offset        |
| ENUM offsetunit       |
| STRING ext-offsetunit |
| INTEGER instance      |
+-----------------------+
```

Figure 35: The RecordPattern Class

The specific pattern to search with in the RecordItem is defined in the body of the element. It is further annotated by four attributes:

- type
 Required. ENUM. Describes the type of pattern being specified in the element content. The default is "regex".

 1. regex. regular expression, per Appendix F of [3].

 2. binary. Binhex encoded binary pattern, per the HEXBIN data type.
3. xpath. XML Path (XPath) [5]

4. ext-value. An escape value used to extend this attribute.
 See Section 5.1.

 ext-type
 Optional. STRING. A means by which to extend the type attribute.
 See Section 5.1.

 offset
 Optional. INTEGER. Amount of units (determined by the offsetunit
 attribute) to seek into the RecordItem data before matching the
 pattern.

 offsetunit
 Optional. ENUM. Describes the units of the offset attribute.
 The default is "line".
 1. line. Offset is a count of lines.
 2. byte. Offset is a count of bytes.
 3. ext-value. An escape value used to extend this attribute.
 See Section 5.1.

 ext-offsetunit
 Optional. STRING. A means by which to extend the offsetunit
 attribute. See Section 5.1.

 instance
 Optional. INTEGER. Number of types to apply the specified
 pattern.

3.19.3. RecordItem Class

The RecordItem class provides a way to incorporate relevant logs,
audit trails, or forensic data to support the conclusions made during
the course of analyzing the incident. The class supports both the
direct encapsulation of the data, as well as, provides primitives to
reference data stored elsewhere.

This class is identical to AdditionalData class (Section 3.6).

3.20. Registry Key Modified Class

The Registry Key Modified class represents operating system registry
keys that have been modified as part and may constitute an indicator
of compromise.
Figure 36: The Registry Key Modified Class

The aggregate class that constitutes the Registry Key Modified class is:

Key
One. The Window Registry Key.

3.20.1. Key Class

The Key class shows name and value pairs representing an operating system registry key and its value. The key and value are encoded as in Microsoft .reg files.

Figure 37: The Key Class

The aggregate classes that constitutes Key are:

KeyName
Zero or more. The name of the registry key.

Value
Zero or more. The value of the registry key.

The Key class has six attributes:

registryaction
Optional. ENUM. The type of action.
1. add_key. Registry key added.

2. add_value. Value added to registry key.

3. delete_key. Registry key deleted.

4. delete_value. Value deleted from registry key.

5. modify_key. Registry key modified.

6. modify_value. Value modified for registry key.

7. ext-value. External value.

ext-category
Optional. Extension category.

type
Optional. Type

1. watchlist. Registry key information that is provided in a watchlist.

2. ext-value. Registry key information from an external source.

indicator-uid
Optional. STRING. A unique identifier for an Indicator.

indicator-set-id
Optional. STRING. The indicator set ID is used to group related indicators.

3.21. Hash Sig Details Class

This class are the hash and signature details that are needed for providing context for indicators.

+-------------------------------+
| HashSigDetails |
+-------------------------------+
ENUM type		--(0..*)-- [FileName]
STRING ext-category		--(0..*)-- [FileSize]
BOOL valid		--(0..*)-- [ds:Signature]
STRING indicator-uid		--(0..*)-- [ds:KeyInfo]
STRING indicator-set-id		--(0..*)-- [ds:Reference]
+-------------------------------+
The aggregate classes that constitute HashSigDetails are:

FileName
- Zero or more. The name of the file.

FileSize
- Zero or more. The size of the file.

ds:Signature
- Zero or more. The name of the file.

ds:KeyInfo
- Zero or more.

ds:Reference
- Zero or more. The algorithm identification and value of a hash computed over the malware executable. This entire element is imported from [RFC3275]. Refer to RFC 5901.

The HashSigDetails class has five attributes:

type
- Optional. ENUM. The Hash Type.

1. PKI_email_ds. PKI email digital signature.
2. PKI_file_ds. PKI file digital signature.
5. PGP_email_ds. PGP email digital signature.
6. PGP_file_ds. PGP file digital signature.
7. PGP_email_ds_watchlist. Watchlist of PGP email digital signatures.
10. email_hash. An email hash.

11. file_hash_watchlist. Watchlist of file hashes

12. email_hash_watchlist. Watchlist of email hashes

13. ext-value. Extension value.

indicator-uid
 Optional. STRING. A unique identifier for an Indicator.

indicator-set-id
 Optional. STRING. The indicator set ID is used to group related indicators.

4. Processing Considerations

 This section defines additional requirements on creating and parsing IODEF documents.

4.1. Encoding

 Every IODEF document MUST begin with an XML declaration, and MUST specify the XML version used. If UTF-8 encoding is not used, the character encoding MUST also be explicitly specified. The IODEF conforms to all XML data encoding conventions and constraints.

 The XML declaration with no character encoding will read as follows:

 <?xml version="1.0" ?>

 When a character encoding is specified, the XML declaration will read like the following:

 <?xml version="1.0" encoding="charset" ?>

 Where "charset" is the name of the character encoding as registered with the Internet Assigned Numbers Authority (IANA), see [9].

 The following characters have special meaning in XML and MUST be escaped with their entity reference equivalent: "&", "<", ">", "\" (double quotation mark), and "'" (apostrophe). These entity references are "&", "<", ">", """, and "'" respectively.
4.2. IODEF Namespace

The IODEF schema declares a namespace of "urn:ietf:params:xml:ns:iodef-1.0" and registers it per [4]. Each IODEF document SHOULD include a valid reference to the IODEF schema using the "xsi:schemaLocation" attribute. An example of such a declaration would look as follows:

```xml
<IODEF-Document
    version="1.00" lang="en-US"
    xmlns:iodef="urn:ietf:params:xml:ns:iodef-1.0"
    xsi:schemaLocation="urn:ietf:params:xmls:schema:iodef-1.0"
```

4.3. Validation

The IODEF documents MUST be well-formed XML and SHOULD be validated against the schema described in Section 8. However, mere conformance to the schema is not sufficient for a semantically valid IODEF document. There is additional specification in the text of Section 3 that cannot be readily encoded in the schema and it must also be considered by an IODEF parser. The following is a list of discrepancies in what is more strictly specified in the normative text (Section 3), but not enforced in the IODEF schema:

- The elements or attributes that are defined as POSTAL, NAME, PHONE, and EMAIL data-types are implemented as "xs:string", but more rigid formatting requirements are specified in the text.
- The IODEF-Document@lang and MLStringType@lang attributes are declared as an "xs:language" that constrains values with a regular expression. However, the value of this attribute still needs to be validated against the list of possible enumerated values is defined in [7].
- The MonetaryImpact@currency attribute is declared as an "xs:string", but the list of valid values as defined in [14].
- All of the aggregated classes Contact and EventData are optional in the schema, but at least one of these aggregated classes MUST be present.
- There are multiple conventions that can be used to categorize a system using the NodeRole class or to specify software with the Application and OperatingSystem classes. IODEF parsers MUST accept incident reports that do not use these fields in accordance with local conventions.
The Confidence@rating attribute determines whether the element content of Confidence should be empty.

The Address@type attribute determines the format of the element content.

The attributes AdditionalData@dtype and RecordItem@dtype derived from iodef:ExtensionType determine the semantics and formatting of the element content.

Symmetry in the enumerated ports of a Portlist class is required between sources and targets. See Section 3.17.

5. Extending the IODEF

In order to support the changing activity of CSIRTS, the IODEF data model will need to evolve along with them. This section discusses how new data elements that have no current representation in the data model can be incorporated into the IODEF. These techniques are designed so that adding new data will not require a change to the IODEF schema. With proven value, well documented extensions can be incorporated into future versions of the specification. However, this approach also supports private extensions relevant only to a closed consortium.

5.1. Extending the Enumerated Values of Attributes

The data model supports a means by which to add new enumerated values to an attribute. For each attribute that supports this extension technique, there is a corresponding attribute in the same element whose name is identical, less a prefix of "ext-". This special attribute is referred to as the extension attribute, and the attribute being extended is referred to as an extensible attribute. For example, an extensible attribute named "foo" will have a corresponding extension attribute named "ext-foo". An element may have many extensible, and therefore many extension, attributes.

In addition to a corresponding extension attribute, each extensible attribute has "ext-value" as one its possible values. This particular value serves as an escape sequence and has no valid meaning.

In order to add a new enumerated value to an extensible attribute, the value of this attribute MUST be set to "ext-value", and the new desired value MUST be set in the corresponding extension attribute. For example, an extended instance of the type attribute of the Impact class would look as follows:
A given extension attribute MUST NOT be set unless the corresponding extensible attribute has been set to "ext-value".

5.2. Extending Classes

The classes of the data model can be extended only through the use of the AdditionalData and RecordItem classes. These container classes, collectively referred to as the extensible classes, are implemented with the iodef:ExtensionType data type in the schema. They provide the ability to have new atomic or XML-encoded data elements in all of the top-level classes of the Incident class and a few of the more complicated subordinate classes. As there are multiple instances of the extensible classes in the data model, there is discretion on where to add a new data element. It is RECOMMENDED that the extension be placed in the most closely related class to the new information.

Extensions using the atomic data types (i.e., all values of the dtype attributes other than "xml") MUST:

1. Set the element content of extensible class to the desired value, and
2. Set the dtype attribute to correspond to the data type of the element content.

The following guidelines exist for extensions using XML:

1. The element content of the extensible class MUST be set to the desired value and the dtype attribute MUST be set to "xml".
2. The extension schema MUST declare a separate namespace. It is RECOMMENDED that these extensions have the prefix "iodef-".
3. It is RECOMMENDED that extension schemas follow the naming convention of the IODEF data model. The names of all elements are capitalized. For composed names, a capital letter is used for each word. Attribute names are lower case.
4. When a parser encounters an IODEF document with an extension it does not understand, this extension MUST be ignored (and not processed), but the remainder of the document MUST be processed. Parsers will able to identify these extensions for which they have no processing logic through the namespace declaration. Parsers that encounter an unrecognized element in a namespace that they do support SHOULD reject the document as a syntax error.
error.

5. Implementations SHOULD NOT download schemas at runtime due to the security implications, and extensions MUST NOT be required to provide a resolvable location of their schema.

The following schema and XML document excerpt provide a template for an extension schema and its use in the IODEF document.

This example schema defines a namespace of "iodef-extension1" and a single element named "newdata".

```xml
<xs:schema
targetNamespace="iodef-extension1.xsd"
xmlns:iodf-extension1="iodef-extension1.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
  attributeFormDefault="unqualified"
  elementFormDefault="qualified">
  <xs:import
    namespace="urn:ietf:params:xml:ns:iodef-1.0"
    schemaLocation=" urn:ietf:params:xml:schema:iodef-1.0"/>

  <xs:element name="newdata" type="xs:string" />
</xs:schema>
```

The following XML excerpt demonstrates the use of the above schema as an extension to the IODEF.

```xml
<IODEF-Document
  version="1.00" lang="en-US"
  xmlns="urn:ietf:params:xml:ns:iodef-1.0"
  xmlns:iodf=" urn:ietf:params:xml:ns:iodef-1.0"
  xmlns:iodf-extension1="iodef-extension1.xsd"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="iodef-extension1.xsd">
  <Incident purpose="reporting">
    ...<AdditionalData dtype="xml" meaning="xml">
      <iodef-extension1:newdata>
        Field that could not be represented elsewhere
      </iodef-extension1:newdata>
    </AdditionalData>
  </Incident>
</IODEF-Document>
```
6. Internationalization Issues

Internationalization and localization is of specific concern to the IODEF, since it is only through collaboration, often across language barriers, that certain incidents be resolved. The IODEF supports this goal by depending on XML constructs, and through explicit design choices in the data model.

Since IODEF is implemented as an XML Schema, it implicitly supports all the different character encodings, such as UTF-8 and UTF-16, possible with XML. Additionally, each IODEF document MUST specify the language in which their contents are encoded. The language can be specified with the attribute "xml:lang" (per Section 2.12 of [1]) in the top-level element (i.e., IODEF-Document@lang) and letting all other elements inherit that definition. All IODEF classes with a free-form text definition (i.e., all those defined of type iodef:MLStringType) can also specify a language different from the rest of the document. The valid language codes for the "xml:lang" attribute are described in RFC 4646 [7].

The data model supports multiple translations of free-form text. In the places where free-text is used for descriptive purposes, the given class always has a one-to-many cardinality to its parent (e.g., Description class). The intent is to allow the identical text to be encoded in different instances of the same class, but each being in a different language. This approach allows an IODEF document author to send recipients speaking different languages an identical document. The IODEF parser SHOULD extract the appropriate language relevant to the recipient.

While the intent of the data model is to provide internationalization and localization, the intent is not to do so at the detriment of interoperability. While the IODEF does support different languages, the data model also relies heavily on standardized enumerated attributes that can crudely approximate the contents of the document. With this approach, a CSIRT should be able to make some sense of an IODEF document it receives even if the text based data elements are written in a language unfamiliar to the analyst.

7. Examples

This section provides examples of an incident encoded in the IODEF. These examples do not necessarily represent the only way to encode a particular incident.
7.1. Worm

An example of a CSIRT reporting an instance of the Code Red worm.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- This example demonstrates a report for a very old worm (Code Red) -->
<IODEF-Document version="1.00" lang="en"
xmlns="urn:ietf:params:xml:ns:iodef-1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:ietf:params:xml:schema:iodef-1.0">
<Incident purpose="reporting">
  <IncidentID name="csirt.example.com">189493</IncidentID>
  <ReportTime>2001-09-13T23:19:24+00:00</ReportTime>
  <Description>Host sending out Code Red probes</Description>
  <!-- An administrative privilege was attempted, but failed -->
  <Assessment>
    <Impact completion="failed" type="admin"/>
  </Assessment>
  <Contact role="creator" type="organization">
    <ContactName>Example.com CSIRT</ContactName>
    <RegistryHandle registry="arin">example-com</RegistryHandle>
    <Email>contact@csirt.example.com</Email>
  </Contact>
  <EventData>
    <Flow>
      <System category="source">
        <Node>
          <Address category="ipv4-addr">192.0.2.200</Address>
          <Counter type="event">57</Counter>
        </Node>
      </System>
      <System category="target">
        <Node>
          <Address category="ipv4-net">192.0.2.16/28</Address>
        </Node>
        <Service ip_protocol="6">
          <Port>80</Port>
        </Service>
      </System>
    </Flow>
    <Expectation action="block-host"/>
  </EventData>
</Incident>
</IODEF-Document>
```
7.2. Reconnaissance

An example of a CSIRT reporting a scanning activity.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- This example describes reconnaissance activity: one-to-one and one-to-many scanning -->
<IODEF-Document version="1.00" lang="en"
xmlns="urn:ietf:params:xml:ns:iodef-1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:ietf:params:xml:schema:iodef-1.0">
<Incident purpose="reporting">
<IncidentID name="csirt.example.com">59334</IncidentID>
<ReportTime>2006-08-02T05:54:02-05:00</ReportTime>
<Assessment>
<Impact type="recon" completion="succeeded" />
</Assessment>
<Method>
<!-- Reference to the scanning tool "nmap" -->
<Reference>
<ReferenceName>nmap</ReferenceName>
<URL>http://nmap.toolsite.example.com</URL>
</Reference>

<!-- Organizational contact and that for staff in that organization -->
<Contact role="creator" type="organization">
 <ContactName>CSIRT for example.com</ContactName>
 <Email>contact@csirt.example.com</Email>
 <Telephone>+1 412 555 12345</Telephone>
</Contact>

<!-- Since this <Contact> is nested, Joe Smith is part of the CSIRT for example.com -->
<Contact role="tech" type="person" restriction="need-to-know">
 <ContactName>Joe Smith</ContactName>
 <Email>smith@csirt.example.com</Email>
</Contact>

<EventData>
 <!-- Scanning activity as follows:
 192.0.2.1:60524 >> 192.0.2.3:137
 192.0.2.1:60526 >> 192.0.2.3:138
 192.0.2.1:60527 >> 192.0.2.3:139
 192.0.2.1:60531 >> 192.0.2.3:445
 -->
 <Flow>
 <System category="source">
 <Node>
 <Address category="ipv4-addr">192.0.2.200</Address>
 </Node>
 <Service ip_protocol="6">
 <Portlist>60524,60526,60527,60531</Portlist>
 </Service>
 </System>
 <System category="target">
 <Node>
 <Address category="ipv4-addr">192.0.2.201</Address>
 </Node>
 <Service ip_protocol="6">
 <Portlist>137-139,445</Portlist>
 </Service>
 </System>
 </Flow>
 <!-- Scanning activity as follows:
 192.0.2.2 >> 192.0.2.3/28:445 -->
 <Flow>
 <System category="source">
 <Node>
 <Address category="ipv4-addr">192.0.2.240</Address>
 </Node>
 </System>
 </Flow>
</EventData>
7.3. Bot-Net Reporting

An example of a CSIRT reporting a bot-network.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- This example describes a compromise and subsequent installation
of bots -->
<IODEF-Document version="1.00" lang="en"
xmlns="urn:ietf:params:xml:ns:iodef-1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:ietf:params:xml:schema:iodef-1.0">
<Incident purpose="mitigation">
 <IncidentID name="csirt.example.com">908711</IncidentID>
 <ReportTime>2006-06-08T05:44:53-05:00</ReportTime>
 <Description>Large bot-net</Description>
 <Assessment>
 <Impact type="dos" severity="high" completion="succeeded"/>
 </Assessment>
 <Method>
 <!-- References a given piece of malware, "GT Bot" -->
 <Reference>
 <ReferenceName>GT Bot</ReferenceName>
 </Reference>
 <!-- References the vulnerability used to compromise the
machines -->
 <Reference>
 <ReferenceName>CA-2003-22</ReferenceName>
 <Description>Root compromise via this IE vulnerability to
install the GT Bot</Description>
 </Method>
</Incident>
</IODEF-Document>
<!-- A member of the CSIRT that is coordinating this incident -->
<Contact type="person" role="irt">
 <ContactName>Joe Smith</ContactName>
 <Email>jsmith@csirt.example.com</Email>
</Contact>
<EventData>
 <Description>These hosts are compromised and acting as bots communicating with irc.example.com.</Description>
 <Flow>
 <!-- bot running on 192.0.2.1 and sending DoS traffic at 10,000 bytes/second -->
 <System category="source">
 <Node>
 <Address category="ipv4-addr">192.0.2.1</Address>
 </Node>
 <Counter type="byte" duration="second">10000</Counter>
 <Description>bot</Description>
 </System>
 <!-- a second bot on 192.0.2.3 -->
 <System category="source">
 <Node>
 <Address category="ipv4-addr">192.0.2.3</Address>
 </Node>
 <Counter type="byte" duration="second">250000</Counter>
 <Description>bot</Description>
 </System>
 <!-- Command-and-control IRC server for these bots-->
 <System category="intermediate">
 <Node>
 <NodeName>irc.example.com</NodeName>
 <Address category="ipv4-addr">192.0.2.20</Address>
 <DateTime>2006-06-08T01:03:00-05:00</DateTime>
 </Node>
 <Description>IRC server on #give-me-cmd channel</Description>
 </System>
 </Flow>
 <!-- Request to take these machines offline -->
 <Expectation action="investigate">
 <Description>Confirm the source and take machines off-line and remediate</Description>
 </Expectation>
</EventData>
</Incident>
</IODEF-Document>
7.4. Watch List

An example of a CSIRT conveying a watch-list.

```xml
<?xml version="1.0" encoding="UTF-8" ?>
<!-- This example demonstrates a trivial IP watch-list -->
<!-- @formatid is set to "watch-list-043" to demonstrate how additional
   semantics about this document could be conveyed assuming both
   parties understood it-->
<IODEF-Document version="1.00" lang="en" formatid="watch-list-043"
xmlns="urn:ietf:params:xml:ns:iodef-1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:ietf:params:xml:schema:iodef-1.0">
<Incident purpose="reporting" restriction="private">
    <IncidentID name="csirt.example.com">908711</IncidentID>
    <ReportTime>2006-08-01T00:00:00-05:00</ReportTime>
    <Description>Watch-list of known bad IPs or networks</Description>
    <Assessment>
        <Impact type="admin" completion="succeeded" />
        <Impact type="recon" completion="succeeded" />
    </Assessment>
    <Contact type="organization" role="creator">
        <ContactName>CSIRT for example.com</ContactName>
        <Email>contact@csirt.example.com</Email>
    </Contact>
</Incident>
<!-- Separate <EventData> used to convey different <Expectation> -->
<EventData>
    <Flow>
        <System category="source">
            <Node>
                <Address category="ipv4-addr">192.0.2.53</Address>
            </Node>
            <Description>Source of numerous attacks</Description>
        </System>
    </Flow>
    <Expectation action="contact-sender" />
</EventData>
<EventData>
    <Flow>
        <System category="source">
            <Node>
                <Address category="ipv4-net">192.0.2.16/28</Address>
            </Node>
        </System>
    </Flow>
</EventData>
```

Danyliw & Stoecker Expires November 6, 2013 [Page 71]
Source of heavy scanning over past 1-month
</Description>
</System>
</Flow>
<Flow>
<System category="source">
<Node>
<Address category="ipv4-addr">192.0.2.241</Address>
</Node>
<Description>C2 IRC server</Description>
</System>
</Flow>
<!-- Expectation class recommends that these networks be filtered -->
<Expectation action="block-host" />
</EventData>
</Incident>
</IODEF-Document>

8. The IODEF Schema

<!-- CHANGE: See above addition of xmlns:ds and import of same namespace. This is to use the digital signature hash inclusion of a file by referencing the existing standard as was done in RFC5901, RFC3275 is the reference, see RFC5901 section 5.9.5.2 -->
<!-- Change: See above addition of xmlns:ds and import of same namespace. This is to use the digital signature hash inclusion of a file by referencing the existing standard as was done in RFC5901, RFC3275 is the reference, see RFC5901 section 5.9.5.2 -->
CHANGE - new indicator values in the schema

The purpose of the proposed changes is to include commonly shared indicators in the base IODEF schema. This class will contain indicators from the list below that are not represented elsewhere in the schema. IODEF extensions or embedded schemas via the SCI classes will be required to include additional data types. A table could be maintained through IANA to extend or change this class in between IODEF revisions.

RFC5901 provides a method to include an entire email, the following included indicators are ones commonly used when you do not need the entire email

The following are in the Service Class:
- Email address
- Email subject
- X-Mailer

The following are in the Record class:
- File Name
- File Hash - 5.9.5.2 - using ds:reference
- WindowsRegistryKey - using method from RFC5901

The following are now in the Node class as a proposed location.
- URL
- HTTPUserAgent is included as a SoftwareType
- HTTP User Agent String

The following are already represented elsewhere in the schema (Node):
- IP address
- Network CIDR / ASN
- Host Name
- Domain Name (additional options for RFC5901 were not included in this revision - can include point-in-time dig info)

-->
<!--
==
== IODEF-Document class ==
==
-->
<x:s:element name="IODEF-Document">
 <x:s:complexType>
 <x:s:sequence>
 <x:s:element ref="iodef:Incident"
 maxOccurs="unbounded"/>
 </x:s:sequence>
 <x:s:attribute name="version"
 type="xs:string" fixed="1.00"/>
 <x:s:attribute name="lang"
 type="xs:language" use="required"/>
 </x:s:complexType>
</x:s:element>
<xs:attribute name="formatid" type="xs:string"/>
</xs:complexType>
</xs:element>
<!--
==
=== Incident class
==
-->
<xs:element name="Incident">
<xs:complexType>
<xs:sequence>
<xs:choice>
<xs:element ref="iodef:IncidentID"/>
<!-- CHANGE - the incidentID can still be used, but when you have a set of indicaors or include a watch list, a ReportID may be preferred. If this is agreed upon, do we make them both unique so the same key can be used in databases? This should not be used as your index value unless you are the issuing entity. -->
<xs:element ref="iodef:ReportID"/>
</xs:choice>
<xs:element ref="iodef:AlternativeID" minOccurs="0"/>
<xs:element ref="iodef:RelatedActivity" minOccurs="0"/>
<xs:element ref="iodef:DetectTime" minOccurs="0"/>
<xs:element ref="iodef:StartTime" minOccurs="0"/>
<xs:element ref="iodef:EndTime" minOccurs="0"/>
<xs:element ref="iodef:ReportTime"/>
<xs:element ref="iodef:Description" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="iodef:Assessment" maxOccurs="unbounded"/>
<xs:element ref="iodef:Method" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="iodef:Contact" maxOccurs="unbounded"/>
<xs:element ref="iodef:EventData" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="iodef:History" minOccurs="0"/>
<xs:element ref="iodef:AdditionalData" minOccurs="0" maxOccurs="unbounded"/>
<xs:complexType name="iodef:restriction-type">
 <xs:attribute name="purpose" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="traceback"/>
 <xs:enumeration value="mitigation"/>
 <xs:enumeration value="reporting"/>
 <xs:enumeration value="other"/>
 <xs:enumeration value="ext-value"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="ext-purpose" type="xs:string" use="optional"/>
 <xs:attribute name="lang" type="xs:language"/>
 <xs:attribute name="restriction" type="iodef:restriction-type" default="private"/>
 <!-- CHANGE - adding an attribute to mark sets of indicators -->
 <xs:attribute name="indicator-set-id" type="xs:string" use="optional"/>
</xs:complexType>
</xs:element>

<!-- IncidentID class -->
== IncidentID class ==

<xsl:element name="IncidentID" type="iodef:IncidentIDType"/>
<xsl:complexType name="IncidentIDType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="instance" type="xs:string" use="optional"/>
 <xs:attribute name="restriction" type="iodef:restriction-type" default="public"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

<!-- ReportID class -->
== ReportID class ==

<xsl:element name="ReportID">
<xs:complexType>
 <xs:sequence>
 <xs:element ref="iodef:IncidentID"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="restriction"
 type="iodef:restriction-type"/>
</xs:complexType>
</xs:element>

<!--
==
== AlternativeID class ==
==
-->
<xs:element name="AlternativeID">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="iodef:IncidentID"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="restriction"
 type="iodef:restriction-type"/>
 </xs:complexType>
</xs:element>

<!--
==
== RelatedActivity class ==
==
-->
<xs:element name="RelatedActivity">
 <xs:complexType>
 <xs:choice>
 <xs:element ref="iodef:IncidentID"
 maxOccurs="unbounded"/>
 <xs:element ref="iodef:URL"
 maxOccurs="unbounded"/>
 </xs:choice>
 <xs:attribute name="restriction"
 type="iodef:restriction-type"/>
 </xs:complexType>
</xs:element>

<!--
==
=== AdditionalData class ===
==
-->
<xs:element name="AdditionalData" type="iodef:ExtensionType"/>

<!--
<xs:element name="Contact">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="iodef:ContactName" minOccurs="0"/>
 <xs:element ref="iodef:Description" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="iodef:RegistryHandle" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="iodef:PostalAddress" minOccurs="0"/>
 <xs:element ref="iodef:Email" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="iodef:Telephone" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="iodef:Fax" minOccurs="0"/>
 <xs:element ref="iodef:Timezone" minOccurs="0"/>
 <xs:element ref="iodef:Contact" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="iodef:AdditionalData" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="role" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="creator"/>
 <xs:enumeration value="admin"/>
 <xs:enumeration value="tech"/>
 <xs:enumeration value="irt"/>
 <xs:enumeration value="cc"/>
 <xs:enumeration value="ext-value"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="ext-role" type="xs:string" use="optional"/>
 <xs:attribute name="type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="person"/>
 <xs:enumeration value="organization"/>
 <xs:enumeration value="ext-value"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
</xs:element>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="ext-type" type="xs:string" use="optional"/>
<xs:attribute name="restriction" type="iodef:restriction-type"/>
</xs:complexType>
</xs:element>
<!-- CHANGE - UML states the type disambiguates the type of Name person or organization. Do we want this added to the schema? -->
<xs:element name="ContactName" type="iodef:MLStringType"/>
<xs:element name="RegistryHandle">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="registry" type="xs:NMTOKEN">
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="internic"/>
<xs:enumeration value="apnic"/>
<xs:enumeration value="arin"/>
<xs:enumeration value="lacnic"/>
<xs:enumeration value="ripe"/>
<xs:enumeration value="afrinic"/>
<xs:enumeration value="local"/>
<xs:enumeration value="ext-value"/>
</xs:restriction>
</xs:attribute>
<xs:attribute name="ext-registry" type="xs:string" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="PostalAddress">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="iodef:MLStringType">
<xs:attribute name="meaning" type="xs:string" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="Email" type="iodef:ContactMeansType"/>
<xs:element name="Telephone" type="iodef:ContactMeansType"/>
<xs:element name="Fax" type="iodef:ContactMeansType"/>

<xs:complexType name="ContactMeansType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="meaning" type="xs:string" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

<!--
==
=== Time-based classes ===
==
-->
<xs:element name="DateTime" type="xs:dateTime"/>
<xs:element name="ReportTime" type="xs:dateTime"/>
<xs:element name="DetectTime" type="xs:dateTime"/>
<xs:element name="StartTime" type="xs:dateTime"/>
<xs:element name="EndTime" type="xs:dateTime"/>
<xs:element name="Timezone" type="iodef:TimezoneType"/>
<xs:simpleType name="TimezoneType">
 <xs:restriction base="xs:string">
 <xs:pattern value="Z|\[\+\-\](0[0-9]|1[0-4]):[0-5][0-9]"/>
 </xs:restriction>
</xs:simpleType>

<!--
==
=== History class ===
==
-->
<xs:element name="History">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="iodef:HistoryItem" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="restriction" type="iodef:restriction-type" default="default"/>
 </xs:complexType>
</xs:element>
<xs:element name="HistoryItem">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="iodef:DateTime"/>
 <xs:element ref="iodef:IncidentID" minOccurs="0"/>
 <xs:element ref="iodef:Contact" minOccurs="0"/>
 <xs:element ref="iodef:Description" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="iodef:AdditionalData" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="restriction" type="iodef:restriction-type"/>
 <xs:attribute name="action" type="iodef:action-type" use="required"/>
 <xs:attribute name="ext-action" type="xs:string" use="optional"/>
 <!-- CHANGE: Including a unique ID for indicators, may be used to connect indicators in different representations -->
 <xs:attribute name="indicator-uid" type="xs:string" use="optional"/>
 <!-- CHANGE: Including an indicator set ID that may be used to detail changes in the history class as it relates to indicators or sets. -->
 <xs:attribute name="indicator-set-id" type="xs:string" use="optional"/>
 </xs:complexType>
</xs:element>

<xs:element name="Expectation">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="iodef:Description" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="iodef:StartTime" minOccurs="0"/>
 <xs:element ref="iodef:EndTime" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<!---
=== Expectation class
--->

Danyliw & Stoecker Expires November 6, 2013 [Page 80]
<xs:element ref="iodef:Contact" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="restriction" type="iodef:restriction-type" default="default"/>
<xs:attribute name="severity" type="iodef:severity-type"/>
<xs:attribute name="action" type="iodef:action-type" default="other"/>
<xs:attribute name="ext-action" type="xs:string" use="optional"/>
<!-- CHANGE - adding indicator set id to connect the reference to the appropriate set of indicators -->
<xs:attribute name="indicator-set-id" type="xs:string" use="optional"/>
<!-- CHANGE: Including a unique ID for indicators, may be used to connect indicators in different representations -->
<xs:attribute name="indicator-uid" type="xs:string" use="optional"/>
</xs:complexType>
</xs:element>
<!--
==
=== Method class ===
==
-->
<xs:element name="Method">
<xs:complexType>
<xs:sequence>
<xs:choice maxOccurs="unbounded">
<xs:element ref="iodef:Reference"/>
<xs:element ref="iodef:Description"/>
</xs:choice>
<xs:element ref="iodef:AdditionalData" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="restriction" type="iodef:restriction-type"/>
</xs:complexType>
</xs:element>
<!--
==
=== Reference class ===
==
-->
<xs:element name="Reference">
<xs:complexType>
<xs:sequence>
</xs:sequence>
<xs:attribute name="restriction" type="iodef:restriction-type"/>
</xs:complexType>
</xs:element>
<!--
==
=== Reference class ===
==
-->
<xs:element name="ReferenceName" type="iodef:MLStringType"/>
<xs:element ref="iodef:URL" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="iodef:Description" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<!-- CHANGE: Do we want an indicator_set_id here to connect data in the reference class to specific indicators? Is there a better way to do this? Should the indicator_uid be used to mark data so that you have a way to limit who you share that data with in products? -->
<xs:attribute name="indicator-set-id" type="xs:string" use="optional"/>
<!-- CHANGE: Including a unique ID for indicators, may be used to connect indicators in different representations -->
<xs:attribute name="indicator-uid" type="xs:string" use="optional"/>
<!-- Adding in Attack Type -->
<xs:attribute name="attacktype" type="att-type" use="optional"/>
<xs:attribute name="ext-attacktype" type="xs:string" use="optional"/>
</xs:complexType>
</xs:element>
<!--==
=== Assessment class
==-->
<xs:element name="Assessment">
<xs:complexType>
<xs:sequence>
<xs:choice maxOccurs="unbounded">
<xs:element ref="iodef:Impact"/>
<xs:element ref="iodef:TimeImpact"/>
<xs:element ref="iodef:MonetaryImpact"/>
</xs:choice>
<xs:element ref="iodef:Counter" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="iodef:Confidence" minOccurs="0"/>
<xs:element ref="iodef:AdditionalData" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="occurrence" type="xs:string" use="optional"/>
</xs:complexType>
</xs:element>
<xs:simpleType>
 <xs:restriction base="xs:QName"><xs:enumeration value="actual"/>
 <xs:enumeration value="potential"/></xs:restriction>
</xs:simpleType>

<xs:attribute name="restriction" type="iodef:restriction-type"/>
<xs:attribute name="indicator-set-id" type="xs:string" use="optional"/>
<xs:attribute name="indicator-uid" type="xs:string" use="optional"/>
</xs:complexType>
</xs:element>

<xs:element name="Impact">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="iodef:MLStringType">
 <xs:attribute name="severity" type="iodef:severity-type"/>
 <xs:attribute name="completion" type="iodef:completion-type"/>
 <xs:attribute name="type" use="optional" default="unknown">
 <xs:restriction base="xs:QName">
 <xs:enumeration value="admin"/>
 <xs:enumeration value="dos"/>
 <xs:enumeration value="extortion"/>
 <xs:enumeration value="file"/>
 <xs:enumeration value="info-leak"/>
 <xs:enumeration value="misconfiguration"/>
 </xs:restriction>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>
<xs:enumeration value="recon"/>
<xs:enumeration value="policy"/>
<xs:enumeration value="social-engineering"/>
<xs:enumeration value="user"/>
<xs:enumeration value="unknown"/>
<xs:enumeration value="ext-value"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="ext-type" type="xs:string" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="TimeImpact">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="iodef:PositiveFloatType">
<xs:attribute name="severity" type="iodef:severity-type"/>
<xs:attribute name="metric" use="required">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="labor"/>
<xs:enumeration value="elapsed"/>
<xs:enumeration value="downtime"/>
<xs:enumeration value="ext-value"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="ext-metric" type="xs:string" use="optional"/>
<xs:attribute name="duration" type="iodef:duration-type"/>
<xs:attribute name="ext-duration" type="xs:string" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="MonetaryImpact">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="iodef:PositiveFloatType">
<xs:attribute name="severity" type="iodef:severity-type"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:attribute name="currency" type="xs:string"/>
</xs:extension>
</xs:complexType>
</xs:element>
<xs:element name="Confidence">
<xs:complexType mixed="true">
<xs:attribute name="rating" use="required">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="low"/>
<xs:enumeration value="medium"/>
<xs:enumeration value="high"/>
<xs:enumeration value="numeric"/>
<xs:enumeration value="unknown"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
</xs:complexType>
</xs:element>
<!--
==
=== EventData class ===
==
-->
<xs:element name="EventData">
<xs:complexType>
<xs:sequence>
<xs:element ref="iodef:Description" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="iodef:DetectTime" minOccurs="0"/>
<xs:element ref="iodef:StartTime" minOccurs="0"/>
<xs:element ref="iodef:EndTime" minOccurs="0"/>
<xs:element ref="iodef:Contact" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="iodef:Assessment" minOccurs="0"/>
<xs:element ref="iodef:Method" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="iodef:Flow" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="iodef:Expectation" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="iodef:Record"/>
<xs:element ref="iodef:EventData"
 minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="iodef:AdditionalData"
 minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="restriction"
 type="iodef:restriction-type" default="default"/>
<!-- CHANGE - adding an attribute to mark sets of indicators -->
<xs:attribute name="indicator-set-id"
 type="xs:string" use="optional"/>
</xs:complexType>
</xs:element>

<!-- Added System unbounded for use only when the source or target watchlist
is in use, otherwise only one system entry is expected. -->
<xs:element name="Flow">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="iodef:System" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="System">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="iodef:Node" maxOccurs="unbounded"/>
 <xs:element ref="iodef:Service"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="iodef:OperatingSystem"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="iodef:Counter"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="iodef:Description"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="iodef:AdditionalData"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="restriction"
 type="iodef:restriction-type"/>
 </xs:complexType>
</xs:element>
<xs:attribute name="interface" type="xs:string"/>
<xs:attribute name="category">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="source"/>
 <xs:enumeration value="target"/>
 <!-- CHANGE - adding two new values to cover watchlist groups -->
 <xs:enumeration value="watchlist-source"/>
 <xs:enumeration value="watchlist-target"/>
 <xs:enumeration value="intermediate"/>
 <xs:enumeration value="sensor"/>
 <xs:enumeration value="infrastructure"/>
 <xs:enumeration value="ext-value"/>
 </xs:restriction>
 </xs:simpleType>
</xs:attribute>
<xs:attribute name="ext-category" type="xs:string" use="optional"/>
<!-- CHANGE - adding an attribute to mark sets of indicators -->
<xs:attribute name="indicator-set-id" type="xs:string" use="optional"/>
<xs:attribute name="spoofed" default="unknown">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="unknown"/>
 <xs:enumeration value="yes"/>
 <xs:enumeration value="no"/>
 </xs:restriction>
 </xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<!--==
=== Node class ===
==-->

<xs:element name="Node">
 <xs:complexType>
 <xs:sequence>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="NodeName" type="iodef:MLStringType" minOccurs="0"/>
 <!-- CHANGE - added DomainData class and subclasses from RFC5901 -->
 <xs:element ref="iodef:DomainData" minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Danyliw & Stoecker Expires November 6, 2013 [Page 87]
<xs:element ref="iodef:Address"
 minOccurs="0" maxOccurs="unbounded"/>

<!-- Proposed CHANGE: include a URI indicator.
 Common complaint that URIs were only in the
 IODEF schema as references and not part of the
 incident or included indicators.
 Included right now as an address type, below is a
 second option for how to add it.
 <xs:element ref="iodef:URL"
 minOccurs="0" maxOccurs="unbounded"/>
 -->
 </xs:choice>
 <xs:element ref="iodef:Location"
 minOccurs="0"/>
 <xs:element ref="iodef:DateTime"
 minOccurs="0"/>
 <xs:element ref="iodef:NodeRole"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="iodef:Counter"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>
</xs:element>

<xsl:element name="Address">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="category" default="ipv4-addr">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="asn"/>
 <xs:enumeration value="atm"/>
 <xs:enumeration value="e-mail"/>
 <xs:enumeration value="mac"/>
 <xs:enumeration value="ipv4-addr"/>
 <xs:enumeration value="ipv4-net"/>
 <xs:enumeration value="ipv4-net-mask"/>
 <xs:enumeration value="ipv6-addr"/>
 <xs:enumeration value="ipv6-net"/>
 <xs:enumeration value="ipv6-net-mask"/>
 <!-- CHANGE - added uri type for site url/uris -->
 <xs:enumeration value="site-uri"/>
 <xs:enumeration value="ext-value"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="ext-category" type="xs:string" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>
<xs:attribute name="vlan-name"
 type="xs:string"/>
<xs:attribute name="vlan-num"
 type="xs:integer"/>
<!-- CHANGE: Including a unique ID for indicators, may be
used to connect indicators in different representations
-->
<xs:attribute name="indicator-uid"
 type="xs:string" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="Location" type="iodef:MLStringType"/>
<xs:element name="NodeRole">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="iodef:MLStringType">
 <xs:attribute name="category" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="client"/>
 <xs:enumeration value="server-internal"/>
 <xs:enumeration value="server-public"/>
 <xs:enumeration value="www"/>
 <xs:enumeration value="mail"/>
 <xs:enumeration value="messaging"/>
 <xs:enumeration value="streaming"/>
 <xs:enumeration value="voice"/>
 <xs:enumeration value="file"/>
 <xs:enumeration value="ftp"/>
 <xs:enumeration value="p2p"/>
 <xs:enumeration value="name"/>
 <xs:enumeration value="directory"/>
 <xs:enumeration value="credential"/>
 <xs:enumeration value="print"/>
 <xs:enumeration value="application"/>
 <xs:enumeration value="database"/>
 <xs:enumeration value="infra"/>
 <xs:enumeration value="log"/>
 <xs:enumeration value="ext-value"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="ext-category" type="xs:string" use="optional"/>
 <xs:attribute name="attacktype" type="att-type" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

== Service Class ==

-->
<xs:element name="Service">
 <xs:complexType>
 <xs:sequence>
 <xs:choice minOccurs="0">
 <xs:element name="Port"
 type="xs:integer"/>
 <xs:element name="Portlist"
 type="iodef:PortlistType"/>
 </xs:choice>
 <xs:element name="ProtoType"
 type="xs:integer" minOccurs="0"/>
 <xs:element name="ProtoCode"
 type="xs:integer" minOccurs="0"/>
 <xs:element name="ProtoField"
 type="xs:integer" minOccurs="0"/>
 <xs:element ref="iodef:Application"
 minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="ip_protocol"
 type="xs:integer" use="required"/>
 <xs:attribute name="indicator-uid"
 type="xs:string" use="optional"/>
 <xs:attribute name="indicator-set-id"
 type="xs:string" use="optional"/>
 </xs:complexType>
</xs:element>
</xs:complexType>
</xs:element>
<xs:simpleType name="PortlistType">
 <xs:restriction base="xs:string">
 <xs:pattern value="\d+(\-\d+)?(,\d+(\-\d+)?)*"/>
 </xs:restriction>
</xs:simpleType>
</!--
==
=== Counter class ===
==
-->
<xs:element name="Counter">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:double">
 <xs:attribute name="type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="byte"/>
 <xs:enumeration value="packet"/>
 <xs:enumeration value="flow"/>
 <xs:enumeration value="session"/>
 <xs:enumeration value="event"/>
 <xs:enumeration value="alert"/>
 <xs:enumeration value="message"/>
 <xs:enumeration value="host"/>
 <xs:enumeration value="site"/>
 <xs:enumeration value="organization"/>
 <xs:enumeration value="ext-value"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="ext-type" type="xs:string" use="optional"/>
 <xs:attribute name="meaning" type="xs:string" use="optional"/>
 <xs:attribute name="duration" type="iodef:duration-type"/>
 <xs:attribute name="ext-duration" type="xs:string" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>
</!--
==
=== EMailDetails class ===
==
-->
-->

<!-- CHANGE: added the email details in a subclass for use when you
do not need all of the email details provided in the RFC5901 or ARF
extensions. No extension mechanism here, is it needed?
Possible to create an IANA table to extend this class if needed
in the future outside of schema edit cycles -->

<xsd:complexType name="EmailDetails">
 <xsd:sequence>
 <!-- Email is the From email -->
 <xsd:element ref="Email" minOccurs="0"/>
 <xsd:element name="EmailSubject"
 type="iodef:MLStringType" minOccurs="0"/>
 <xsd:element name="X-Mailer"
 type="iodef:MLStringType" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="indicator-uid"
 type="xsd:string" use="optional"/>
</xsd:complexType>

<!--
==
=== DomainData class - from RFC5901
==
-->

<xsd:element name="DomainData">
 <xsd:complexType id="DomainData.type">
 <xsd:sequence>
 <xsd:element maxOccurs="1" name="Name" type="iodef:MLStringType"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="DateDomainWasChecked" type="xsd:dateTime"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="RegistrationDate" type="xsd:dateTime"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="ExpirationDate" type="xsd:dateTime"/>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="RelatedDNS" type="iodef:RelatedDNSEntryType"/>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="Nameservers" type="iodef:MLStringType"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

<xsd:choice id="DomainContacts" maxOccurs="1" minOccurs="0"
<xs:element name="SameDomainContact"
type="iodef:MLStringType"/>
<xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="1"
 ref="iodef:Contact"/>
</xs:sequence>
</xs:choice>
</xs:sequence>
<xs:attribute name="SystemStatus">
 <xs:simpleType id="SystemStatus.type">
 <xs:restriction base="xs:string">
 <xs:enumeration value="spoofed"/>
 <xs:enumeration value="fraudulent"/>
 <xs:enumeration value="innocent-hacked"/>
 <xs:enumeration value="innocent-hijacked"/>
 <xs:enumeration value="unknown"/>
 </xs:restriction>
 </xs:simpleType>
</xs:attribute>

<xs:attribute name="DomainStatus">
 <xs:simpleType id="DomainStatus.type">
 <xs:restriction base="xs:string">
 <xs:enumeration value="reservedDelegation"/>
 <xs:enumeration value="assignedAndActive"/>
 <xs:enumeration value="assignedAndInactive"/>
 <xs:enumeration value="assignedAndOnHold"/>
 <xs:enumeration value="revoked"/>
 <xs:enumeration value="transferPending"/>
 <xs:enumeration value="registryLock"/>
 <xs:enumeration value="registrarLock"/>
 <xs:enumeration value="other"/>
 <xs:enumeration value="unknown"/>
 </xs:restriction>
 </xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>

<xs:element name="RelatedDNS"
type="iodef:RelatedDNSEntryType"/>
<xs:complexType name="RelatedDNSEntryType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="RecordType" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="RR"/>
 <xs:enumeration value="SOA"/>
 <xs:enumeration value="NS"/>
 <xs:enumeration value="MX"/>
 <xs:enumeration value="CNAME"/>
 <xs:enumeration value="TXT"/>
 <xs:enumeration value="AAAA"/>
 <xs:enumeration value="SRV"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>
<xs:enumeration value="A"/>
<xs:enumeration value="AAAA"/>
<xs:enumeration value="AFSDB"/>
<xs:enumeration value="APL"/>
<xs:enumeration value="AXFR"/>
<xs:enumeration value="CAA"/>
<xs:enumeration value="CERT"/>
<xs:enumeration value="CNAME"/>
<xs:enumeration value="DHCID"/>
<xs:enumeration value="DLV"/>
<xs:enumeration value="DNSNAME"/>
<xs:enumeration value="DNSKEY"/>
<xs:enumeration value="DNAME"/>
<xs:enumeration value="HIP"/>
<xs:enumeration value="IXFR"/>
<xs:enumeration value="IPSECKEY"/>
<xs:enumeration value="LOC"/>
<xs:enumeration value="MX"/>
<xs:enumeration value="NAPTR"/>
<xs:enumeration value="NS"/>
<xs:enumeration value="NSEC"/>
<xs:enumeration value="NSEC3"/>
<xs:enumeration value="NSEC3PARAM"/>
<xs:enumeration value="OPT"/>
<xs:enumeration value="PTR"/>
<xs:enumeration value="RRSIG"/>
<xs:enumeration value="RP"/>
<xs:enumeration value="SIG"/>
<xs:enumeration value="SOA"/>
<xs:enumeration value="SPF"/>
<xs:enumeration value="SRV"/>
<xs:enumeration value="SSHFP"/>
<xs:enumeration value="TA"/>
<xs:enumeration value="TKEY"/>
<xs:enumeration value="TLSA"/>
<xs:enumeration value="TSIG"/>
<xs:enumeration value="TXT"/>
<xs:enumeration value="ext-value"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:element name="Record">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="iodef:RecordData" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="restriction" type="iodef:restriction-type"/>
 </xs:complexType>
</xs:element>

<xs:element name="RecordData">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="iodef:DateTime" minOccurs="0"/>
 <xs:element ref="iodef:Description" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="iodef:Application" minOccurs="0"/>
 <xs:element ref="iodef:RecordPattern" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="iodef:RecordItem" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="restriction" type="iodef:restriction-type"/>
 </xs:complexType>
</xs:element>

<!-- Added a minOccurs of 0 since you can just have HashInformation now -->

<xs:element ref="iodef:RecordItem" minOccurs="0" maxOccurs="unbounded"/>

<!-- CHANGE: Class to represent file and hash or digital signature information -->

<xs:element name="HashInformation" type="HashSigDetails" minOccurs="0" maxOccurs="unbounded"/>

<!-- CHANGE: Windows Registry Key Modifications:
Here, we include the classes from iodef-phish, to prevent the need to pull in the full schema.
Ensure reference to RFC5901 Section 5.9.7 remains included in UML description. -->

<xs:element name="WindowsRegistryKeysModified" type="RegistryKeyModified" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="iodef:AdditionalData" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="restriction" type="iodef:restriction-type"/>

<!-- CHANGE: Including a unique ID for an indicator. -->

<xs:attribute name="indicator-uid"
type="xs:string" use="optional"/>
 <!-- CHANGE: Including a unique ID for sets of indicators, may be
 used to connect indicators in different representations
 -->
 <xs:attribute name="indicator-set-id"
 type="xs:string" use="optional"/>
 </xs:complexType>
</xs:element>

<xs:element name="RecordPattern">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="regex"/>
 <xs:enumeration value="binary"/>
 <xs:enumeration value="xpath"/>
 <xs:enumeration value="ext-value"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="ext-type" type="xs:string" use="optional"/>
 <xs:attribute name="offset" type="xs:integer" use="optional"/>
 <xs:attribute name="offsetunit" use="optional" default="line">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="line"/>
 <xs:enumeration value="byte"/>
 <xs:enumeration value="ext-value"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="ext-offsetunit" type="xs:string" use="optional"/>
 <xs:attribute name="instance" type="xs:integer" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

<xs:element name="RecordItem" type="iodef:ExtensionType"/>

<!--
<xs:complexType name="RegistryKeyModified">
 <xs:sequence>
 <xs:element name="Key" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <!-- Allows for the value to be optional for cases such as
 the registry key was deleted -->
 <xs:element name="KeyName" type="xs:string"/>
 <xs:element name="Value" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="registryaction">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="add_key"/>
 <xs:enumeration value="add_value"/>
 <xs:enumeration value="delete_key"/>
 <xs:enumeration value="delete_value"/>
 <xs:enumeration value="modify_key"/>
 <xs:enumeration value="modify_value"/>
 <xs:enumeration value="ext-value"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="ext-category" type="xs:string" use="optional"/>
 <!-- CHANGE: Including the ability to set the grouping as a
 watchlist. -->
 <xs:attribute name="type" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="watchlist"/>
 <xs:enumeration value="ext-value"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="ext-type" type="xs:string" use="optional"/>
 <!-- CHANGE: Including a unique ID for indicators, may be
 used to connect indicators in different representations
 -->
 <xs:attribute name="indicator-uid" type="xs:string" use="optional"/>
 <!-- CHANGE: Including an indicator set ID that may be used
 to detail changes in the history class as it relates to
 indicators or sets. -->
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

Danyliw & Stoecker Expires November 6, 2013 [Page 97]
<xs:complexType name="HashSigDetails">
 <xs:sequence>
 <xs:element name="FileName" type="iodef:MLStringType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="FileSize" type="xs:integer" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="type" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <!-- W3C digsig should be used to denote PGP or PKI -->
 <xs:enumeration value="PKI_email_ds"/>
 <xs:enumeration value="PKI_file_ds"/>
 <xs:enumeration value="PKI_email_ds_watchlist"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
</xs:complexType>

<!-- QUESTION: For FileSize, need to specify the unit this is provided in assume kb? -->
<!-- QUESTION: Do we want an AdditionalData here? -->
<xs:enumeration value="PKI_file_ds_watchlist"/>
<xs:enumeration value="PGP_email_ds"/>
<xs:enumeration value="PGP_file_ds"/>
<xs:enumeration value="PGP_email_ds_watchlist"/>
<xs:enumeration value="PGP_file_ds_watchlist"/>

<!-- hash of the file or email and not a digital signature hash -->
<xs:enumeration value="file_hash"/>
<xs:enumeration value="email_hash"/>
<xs:enumeration value="file_hash_watchlist"/>
<xs:enumeration value="email_hash_watchlist"/>

<!-- QUESTION: Are values needed to differentiate the key information
shared when the ds:KeyInfo class is referenced? -->
<xs:enumeration value="ext-value"/>

</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="ext-category"
type="xs:string" use="optional"/>

<!-- Adding a boolean yes/no, 0/1 option to indicate if the
signature or hash is valid -->
<xs:attribute name="valid" type="xs:boolean" use="optional"></xs:attribute>

<!-- Indicator-uid and indicator-set-id to connect to the related
file or email indicators outside of this class -->
<xs:attribute name="indicator-uid"
type="xs:string" use="optional"/>
<xs:attribute name="indicator-set-id"
type="xs:string" use="optional"/>
<xs:attribute name="restriction"
type="iodef:restriction-type"/>
</xs:complexType>

<!--
==
=== Classes that describe software ===
==
-->
<xs:complexType name="SoftwareType">
 <xs:sequence>
 <xs:element ref="iodef:URL"
 minOccurs="0"/>
 </xs:sequence>

 <xs:attribute name="swid"
type="xs:string" default="0"/>
 <xs:attribute name="configid"
type="xs:string" default="0"/>
 <xs:attribute name="vendor"
type="xs:string"/>
 <xs:attribute name="family"
type="xs:string"/>
</xs:complexType>
<xs:attribute name="name"
 type="xs:string"/>

<!-- CHANGE: Should UserAgent or HTTPUserAgent fit in SoftwareTypes? This is typically intended to mean servers, but the category seems more appropriate than others. -->
<xs:attribute name="user-agent"
 type="xs:string"/>
<xs:attribute name="version"
 type="xs:string"/>
<xs:attribute name="patch"
 type="xs:string"/>
</xs:complexType>
<xs:element name="Application"
 type="iodef:SoftwareType"/>
<xs:element name="OperatingSystem"
 type="iodef:SoftwareType"/>

<!--
=== Miscellaneous simple classes ===
==

<xs:element name="Description"
 type="iodef:MLStringType"/>
<xs:element name="URL"
 type="xs:anyURI"/>
<!--
=== Data Types ===
==

<xs:simpleType name="PositiveFloatType">
 <xs:restriction base="xs:float">
 <xs:minExclusive value="0"/>
 </xs:restriction>
</xs:simpleType>
<xs:complexType name="MLStringType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="lang"
 type="xs:language" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>
<xs:complexType name="ExtensionType" mixed="true">
 <xs:sequence>
 </xs:sequence>
<xs:any namespace="##any" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="dtype"
 type="iodef:dtype-type" use="required"/>
<xs:attribute name="ext-dtype"
 type="xs:string" use="optional"/>
<xs:attribute name="meaning"
 type="xs:string"/>
<xs:attribute name="formatid"
 type="xs:string"/>
<xs:attribute name="restriction"
 type="iodef:restriction-type"/>
</xs:complexType>
<!--
==
=== Global attribute type declarations ===
==
-->
<xs:simpleType name="restriction-type">
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="default"/>
 <xs:enumeration value="public"/>
 <xs:enumeration value="need-to-know"/>
 <xs:enumeration value="private"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="severity-type">
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="low"/>
 <xs:enumeration value="medium"/>
 <xs:enumeration value="high"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="duration-type">
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="second"/>
 <xs:enumeration value="minute"/>
 <xs:enumeration value="hour"/>
 <xs:enumeration value="day"/>
 <xs:enumeration value="month"/>
 <xs:enumeration value="quarter"/>
 <xs:enumeration value="year"/>
 <xs:enumeration value="ext-value"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="action-type">
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="nothing"/>
 <xs:enumeration value="contact-source-site"/>
 <xs:enumeration value="contact-target-site"/>
 <xs:enumeration value="contact-sender"/>
 <xs:enumeration value="investigate"/>
 <xs:enumeration value="block-host"/>
 <xs:enumeration value="block-network"/>
 <xs:enumeration value="block-port"/>
 <xs:enumeration value="rate-limit-host"/>
 <xs:enumeration value="rate-limit-network"/>
 <xs:enumeration value="rate-limit-port"/>
 <xs:enumeration value="remediate-other"/>
 <xs:enumeration value="status-triage"/>
 <xs:enumeration value="status-new-info"/>
 <xs:enumeration value="other"/>
 <xs:enumeration value="ext-value"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="dtype-type">
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="boolean"/>
 <xs:enumeration value="byte"/>
 <xs:enumeration value="character"/>
 <xs:enumeration value="date-time"/>
 <xs:enumeration value="integer"/>
 <xs:enumeration value="ntpstamp"/>
 <xs:enumeration value="portlist"/>
 <xs:enumeration value="real"/>
 <xs:enumeration value="string"/>
 <xs:enumeration value="file"/>
 <xs:enumeration value="path"/>
 <xs:enumeration value="frame"/>
 <xs:enumeration value="packet"/>
 <xs:enumeration value="ipv4-packet"/>
 <xs:enumeration value="ipv6-packet"/>
 <xs:enumeration value="url"/>
 <xs:enumeration value="csv"/>
 <xs:enumeration value="winreg"/>
 <xs:enumeration value="xml"/>
 <xs:enumeration value="ext-value"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="att-type">
 <xs:restriction base="xs:NMTOKEN">
 </xs:restriction>
</xs:simpleType>
<xs:enumeration value="c2-server"/>
<xs:enumeration value="sink-hole"/>
<xs:enumeration value="malware-distribution"/>
<xs:enumeration value="phishing"/>
<xs:enumeration value="spear-phishing"/>
<xs:enumeration value="recruiting"/>
<xs:enumeration value="fraudulent-site"/>
<xs:enumeration value="dns-spoof"/>
<xs:enumeration value="other"/>
<xs:enumeration value="unknown"/>
<xs:enumeration value="ext-value"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

9. Security Considerations

The IODEF data model itself does not directly introduce security issues. Rather, it simply defines a representation for incident information. As the data encoded by the IODEF might be considered privacy sensitive by the parties exchanging the information or by those described by it, care needs to be taken in ensuring the appropriate disclosure during both document exchange and subsequent processing. The former must be handled by a messaging format, but the latter risk must be addressed by the systems that process, store, and archive IODEF documents and information derived from them.

The contents of an IODEF document may include a request for action or an IODEF parser may independently have logic to take certain actions based on information that it finds. For this reason, care must be taken by the parser to properly authenticate the recipient of the document and ascribe an appropriate confidence to the data prior to action.

The underlying messaging format and protocol used to exchange instances of the IODEF MUST provide appropriate guarantees of confidentiality, integrity, and authenticity. The use of a standardized security protocol is encouraged. The Real-time Internetwork Defense (RID) protocol [18] and its associated transport binding IODEF/RID over SOAP [19] provide such security.

In order to suggest data processing and handling guidelines of the encoded information, the IODEF allows a document sender to convey a
privacy policy using the restriction attribute. The various
instances of this attribute allow different data elements of the
document to be covered by dissimilar policies. While flexible, it
must be stressed that this approach only serves as a guideline from
the sender, as the recipient is free to ignore it. The issue of
enforcement is not a technical problem.

10. IANA Considerations

This document uses URNs to describe an XML namespace and schema
conforming to a registry mechanism described in [15]

Registration for the IODEF namespace:

- URI: urn:ietf:params:xml:ns:iodef-1.0
- Registrant Contact: See the first author of the "Author’s Address"
 section of this document.
- XML: None. Namespace URIs do not represent an XML specification.

Registration for the IODEF XML schema:

- URI: urn:ietf:params:xml:schema:iodef-1.0
- Registrant Contact: See the first author of the "Author’s Address"
 section of this document.
- XML: See the "IODEF Schema" in Section 8 of this document.

11. Acknowledgments

The following groups and individuals, listed alphabetically,
contributed substantially to this document and should be recognized
for their efforts.

- Patrick Cain, Cooper-Cain Group, Inc.
- The eCSIRT.net Project
- The Incident Object Description and Exchange Format Working-Group
 of the TERENA task-force (TF-CSIRT)
- Glenn Mansfield Keeni, Cyber Solutions, Inc.
- Hiroyuki Kido, NARA Institute of Science and Technology
12. References

12.1. Normative References

12.2. Informative References

Authors' Addresses

Roman Danyliw
CERT - Software Engineering Institute
Pittsburgh, PA
USA

EMail: rdd@cert.org
Paul Stoecker
RSA
Reston, VA
USA

EMail: paul.stoecker@rsa.com
IODEF-extension for structured cybersecurity information
draft-ietf-mile-sci-08.txt

Abstract

This document extends the Incident Object Description Exchange Format (IODEF) defined in RFC 5070 [RFC5070] to exchange enriched cybersecurity information among cybersecurity entities and facilitate their operations. It provides the capability of embedding structured information, such as identifier- and XML-based information.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 5, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents.
carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 3
3. Applicability . 3
4. Extension Definition . 4
 4.1. IANA Table for Structured Cybersecurity Information . . . 4
 4.2. Extended Data Type: XMLDATA 5
 4.3. Extended Classes . 6
 4.3.1. AttackPattern . 7
 4.3.2. Platform . 8
 4.3.3. Vulnerability . 9
 4.3.4. Scoring . 10
 4.3.5. Weakness . 11
 4.3.6. EventReport . 12
 4.3.7. Verification . 13
 4.3.8. Remediation . 14
5. Mandatory to Implement features 16
 5.1. An Example XML . 16
 5.2. An XML Schema for the Extension 18
6. Security Considerations . 22
 6.1. Transport-Specific Concerns 23
7. IANA Considerations . 23
8. Acknowledgment . 24
9. Appendix I: Candidate Specifications for the IANA Table . . . 25
10. Appendix II: MMDEF version 1.2 schema 29
11. Appendix III: An Example XML using Candidate Specifications . 40
12. References . 42
 12.1. Normative References 42
 12.2. Informative References 43
Authors’ Addresses . 45
1. Introduction

The number of cyber attacks is growing day by day, and incident information needs to be reported, exchanged, and shared among organizations in order to cope with the situation. IODEF is one of the tools enabling such exchange, and is already in use.

To efficiently run cybersecurity operations, these exchanged information needs to be machine-readable. IODEF provides a structured means to describe the information, but it needs to embed various non-structured such information in order to convey detailed information. Further structure within IODEF increases IODEF documents’ machine-readability and thus facilitates streamlining cybersecurity operations.

On the other hand, there exist various other activities facilitating detailed and structured description of cybersecurity information, as listed in Section 9. Since such structured description facilitates cybersecurity operations, it would be beneficial to embed and convey these information inside IODEF document.

To enable that, this document extends the IODEF to embed and convey various structured cybersecurity information, with which cybersecurity operations can be facilitated. Since IODEF defines a flexible and extensible format and supports a granular level of specificity, this document defines an extension to IODEF instead of defining a new report format. For clarity, and to eliminate duplication, only the additional structures necessary for describing the exchange of such structured information are provided.

2. Terminology

The terminology used in this document follows the one defined in RFC 5070 [RFC5070].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

3. Applicability

To maintain cybersecurity, organization needs to exchange cybersecurity information, which includes the following information: attack pattern, platform information, vulnerability and weakness, countermeasure instruction, computer event log, and the severity.
IODEF provides a scheme to describe and exchange such information among interested parties. However, it does not define the detailed format to describe such information.

On the other hand, there already exist structured and detailed formats for describing those information and facilitating such exchange. Major of them are listed in Section 9. By embedding them into the IODEF document, the document can convey more detailed contents to the receivers, and the document can be easily reused.

These structured cybersecurity information facilitates cybersecurity operation at the receiver side. Since the information is machine-readable, the data can be processed by computers. That expedites the automation of cybersecurity operations.

For instance, an organization wishing to report a security incident wants to describe what vulnerability was exploited. Then the sender can simply use IODEF, where an XML [XML1.0] -based attack pattern record that follows the syntax and vocabulary defined by an industry specification is embedded instead of describing everything in free format text. Receiver can identify the needed details of the attack pattern by looking up some of the XML tags defined by the specification. Receiver can accumulate the attack pattern record in its database and could distribute it to the interested parties if needed, without needing human interventions.

Another example is that, when an administrator wishes to check the configuration of host computers in his organization, he may send a query to host computers, which may automatically generate XML-based software configuration information upon receiving the query by running a software and may embed that to an IODEF document, which is then sent back to the administrator.

4. Extension Definition

This draft extends IODEF to embed structured cybersecurity information by introducing new classes, with which these information can be embedded inside IODEF document as element contents of AdditionalData and RecordItem classes.

4.1. IANA Table for Structured Cybersecurity Information

This extension embeds structured cybersecurity information defined by the other specifications. The list of supported specifications is managed by IANA, and this draft defines the needed field for the list’s entry.
Each entry has namespace [XMLNames], specification name, version, reference URI, and applicable classes for each specification. Arbitrary URIs that may help readers to understand the specification could be embedded inside the Reference URI field, but it is recommended that standard/informational URI describing the specification is prepared and is embedded here.

The initial IANA table has only one entry, as below.

<table>
<thead>
<tr>
<th>Namespace:</th>
<th>http://xml/metadataSharing.xsd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification Name:</td>
<td>Malware Metadata Exchange Format</td>
</tr>
<tr>
<td>Version:</td>
<td>1.2</td>
</tr>
<tr>
<td>Reference URI:</td>
<td>http://standards.ieee.org/developindconn/icsg/mndef.html</td>
</tr>
<tr>
<td>Applicable Classes:</td>
<td>AttackPattern</td>
</tr>
</tbody>
</table>

Note that the specification was developed by The Institute of Electrical and Electronics Engineers, Incorporated (IEEE), through the Industry Connections Security Group (ICSG) of its Standards Association.

The table is to be managed by IANA using the Expert Review [RFC5226] and Specification Required [RFC5226] allocation policies as further specified in Section 7.

The SpecID attributes of extended classes (Section 4.3) must allow the values of the specifications’ namespace fields, but otherwise, implementations are not required to support all specifications of the IANA table and may choose which specifications to support, though the specification listed in the initial table needs to be minimally supported, as described in Section 5. In case an implementation received a data it does not support, it may expand its functionality by looking up the IANA table or notify the sender of its inability to parse the data by using any means defined outside the scope of this specification.

4.2. Extended Data Type: XMLDATA

This extension inherits all of the data types defined in the IODEF model. One data type is added: XMLDATA. An embedded XML data is represented by the XMLDATA data type. This type is defined as the extension to the iodef:ExtensionType [RFC5070], whose dtype attribute is set to "xml."
4.3. Extended Classes

The IODEF Incident element [RFC5070] is summarized below. It is expressed in Unified Modeling Language (UML) syntax as used in the IODEF specification. The UML representation is for illustrative purposes only; elements are specified in XML as defined in Appendix A.

Figure 1: Incident class

This extension defines the following seven elements.

4.3.1. AttackPattern

An AttackPattern consists of an extension to the Incident.Method.AdditionalData element with a dtype of "xml". The extension describes attack patterns of incidents or events.

It is recommended that Method class SHOULD contain one or more of the extension elements whenever available.

An AttackPattern class is structured as follows.

```
+------------------------+
| AttackPattern          |
+------------------------+
| ENUM SpecID            |<>--(0..*)-[ RawData ]
| STRING ext-SpecID      |<>--(0..*)-[ Reference ]
| STRING AttackPatternID |<>--(0..*)-[ Platform ]
+------------------------+
```

Figure 2: AttackPattern class

This class has the following attributes.

SpecID: REQUIRED. ENUM. A specification’s identifier that specifies the format of a structured cybersecurity information. The value should be chosen from the namespaces [XMLNames] listed in the IANA table (Section 4.1) or "private". The value "private" is prepared for conveying RawData based on a format that is not listed in the table. This is usually used for conveying data formatted according to an organization’s private schema. When the value "private" is used, ext-SpecID element MUST be used.

ext-SpecID: OPTIONAL. STRING. A specification’s identifier that specifies the format of a structured cybersecurity information. When this element is used, the value of SpecID element must be "private."

AttackPatternID: OPTIONAL. STRING. An identifier of an attack pattern to be reported. This attribute SHOULD be used whenever such identifier is available. Both RawData and Reference elements MUST NOT be used when this attribute is used, while either of them MUST be used if this attribute is omitted.

The AttackPattern class is composed of the following aggregate classes.
RawData: Zero or more. XMLDATA. A complete document that is formatted according to the specification and its version identified by the SpecID/ext-SpecID. When this element is used, writers/senders MUST ensure that the namespace specified by SpecID/ext-SpecID and the one used in the RawData element are consistent; if not, the namespace identified by SpecID SHOULD be preferred, and the inconsistency SHOULD be logged so a human can correct the problem.

Reference: Zero or more of iodef:Reference [RFC5070] . This element allows an IODEF document to include a link to a structured information instead of directly embedding it into a RawData element.

Platform: Zero or more. An identifier of software platform involved in the specific attack pattern, which is elaborated in Section 4.3.2 .

4.3.2. Platform

A Platform identifies a software platform. It is recommended that AttackPattern, Vulnerability, Weakness, and System classes contain this elements whenever available.

A Platform element is structured as follows.

```
+----------------------+
| Platform             |
+----------------------+
 | ENUM SpecID          |<--(0..*)-[ RawData ]
 | STRING ext-SpecID    |<--(0..*)-[ Reference ]
 | STRING PlatformID    |
+----------------------+
```

Figure 3: Platform class

This class has the following attributes.

SpecID: REQUIRED. ENUM. The meaning of this attribute is the same as that of the AttackPattern class (Section 4.3.1) .

ext-SpecID: OPTIONAL. STRING. The meaning of this attribute is the same as that of the AttackPattern class (Section 4.3.1) .
PlatformID: OPTIONAL. STRING. An identifier of a platform to be reported. This attribute SHOULD be used whenever such identifier is available. Both RawData and Reference elements MUST NOT be used when this attribute is used, while either of them MUST be used if this attribute is omitted.

This class is composed of the following aggregate classes.

RawData: Zero or more. XMLDATA. The meaning of this element is the same as that of the AttackPattern class (Section 4.3.1).

Reference: Zero or more of iodef:Reference [RFC5070]. The meaning of this element is the same as that of the AttackPattern class (Section 4.3.1).

4.3.3. Vulnerability

A Vulnerability consists of an extension to the Incident.Method.AdditionalData element with a dtype of "xml". The extension describes the (candidate) vulnerabilities of incidents or events.

It is recommended that Method class SHOULD contain one or more of the extension elements whenever available.

A Vulnerability element is structured as follows.

```
+------------------------+
<table>
<thead>
<tr>
<th>Vulnerability</th>
</tr>
</thead>
</table>
| ENUM SpecID            |<-->-(0..*)-[ RawData ]
| STRING ext-SpecID      |<-->-(0..*)-[ Reference ]
| STRING VulnerabilityID |<-->-(0..*)-[ Platform ]
|                        |<-->-(0..*)-[ Scoring ]
+------------------------+
```

Figure 4: Vulnerability class

This class has the following attributes.

SpecID: REQUIRED. ENUM. The meaning of this attribute is the same as that of the AttackPattern class (Section 4.3.1).
ext-SpecID: OPTIONAL. STRING. The meaning of this attribute is the same as that of the AttackPattern class (Section 4.3.1).

VulnerabilityID: OPTIONAL. STRING. An identifier of a vulnerability to be reported. This attribute SHOULD be used whenever such identifier is available. Both RawData and Reference elements MUST NOT be used when this attribute is used, while either of them MUST be used if this attribute is omitted.

This class is composed of the following aggregate classes.

RawData: Zero or more. XMLDATA. The meaning of this element is the same as that of the AttackPattern class (Section 4.3.1).

Reference: Zero or more of iodef:Reference [RFC5070]. The meaning of this element is the same as that of the AttackPattern class (Section 4.3.1).

Platform: Zero or more. An identifier of software platform affected by the vulnerability, which is elaborated in Section 4.3.2.

Scoring: Zero or more. An indicator of the severity of the vulnerability, such as CVSS and CCSS scores, which is elaborated in Section 4.3.4. Some of the structured information may include scores within it. In this case, the Scoring element SHOULD NOT be used since the RawData element contains the scores. If a reader/receiver detects scores in both RawData and Scoring elements and their inconsistency, it SHOULD prefer the scores derived from the RawData element, and SHOULD log the inconsistency so a human can correct the problem.

4.3.4. Scoring

A Scoring class describes the scores of the severity in terms of security. It is recommended that Vulnerability and Weakness classes contain the elements whenever available.

A Scoring class is structured as follows.
This class has two attributes.

SpecID: REQUIRED. ENUM. The meaning of this attribute is the same as that of the AttackPattern class (Section 4.3.1).

ext-SpecID: OPTIONAL. STRING. The meaning of this attribute is the same as that of the AttackPattern class (Section 4.3.1).

This class is composed of an aggregate class.

ScoreSet: One. XMLDATA. A complete document that is formatted according to the specification and its version identified by the SpecID/ext-SpecID. This element includes a set of score information. When this element is used, writers/senders MUST ensure that the namespace specified by SpecID/ext-SpecID and the one used in the RawData element are consistent; if not, the namespace identified by SpecID SHOULD be preferred, and the inconsistency SHOULD be logged so a human can correct the problem.

Writers/senders MUST ensure the specification name and version identified by the SpecID are consistent with the contents of the Score; if a reader/receiver detects an inconsistency, it SHOULD prefer the specification name and version derived from the content, and SHOULD log the inconsistency so a human can correct the problem.

4.3.5. Weakness

A Weakness consists of an extension to the Incident.Method.AdditionalData element with a dtype of "xml". The extension describes the weakness types of incidents or events.

It is recommended that Method class SHOULD contain one or more of the extension elements whenever available.

A Weakness element is structured as follows.

```
+----------------------+
| Weakness             |
+----------------------+
| ENUM SpecID          |<>--(0..*)-[ RawData ]
| STRING ext-SpecID    |<>--(0..*)-[ Reference ]
| STRING WeaknessID    |<>--(0..*)-[ Platform ]
|                      |<>--(0..*)-[ Scoring ]
+----------------------+
```
Figure 6: Weakness class

This class has the following attributes.

SpecID: REQUIRED. ENUM. The meaning of this attribute is the same as that of the AttackPattern class (Section 4.3.1).

ext-SpecID: OPTIONAL. STRING. The meaning of this attribute is the same as that of the AttackPattern class (Section 4.3.1).

WeaknessID: OPTIONAL. STRING. An identifier of a weakness to be reported. This attribute SHOULD be used whenever such identifier is available. Both RawData and Reference elements MUST NOT be used when this attribute is used, while either of them MUST be used if this attribute is omitted.

This class is composed of the following aggregate classes.

RawData: Zero or more. XMLDATA. The meaning of this element is the same as that of the AttackPattern class (Section 4.3.1).

Reference: Zero or more of iodef:Reference [RFC5070]. The meaning of this element is the same as that of the AttackPattern class (Section 4.3.1).

Platform: Zero or more. An identifier of software platform affected by the weakness, which is elaborated in Section 4.3.2.

Scoring: Zero or more. An indicator of the severity of the weakness, such as CWSS score, which is elaborated in Section 4.3.4.

4.3.6. EventReport

An EventReport consists of an extension to the Incident.EventData.Record.RecordData.RecordItem element with a dtype of "xml". The extension embeds structured event reports.

It is recommended that RecordItem class SHOULD contain one or more of the extension elements whenever available.

An EventReport element is structured as follows.
This class has the following attributes.

SpecID: REQUIRED. ENUM. The meaning of this attribute is the same as that of the AttackPattern class (Section 4.3.1).

ext-SpecID: OPTIONAL. STRING. The meaning of this attribute is the same as that of the AttackPattern class (Section 4.3.1).

EventID: OPTIONAL. STRING. An identifier of an event to be reported. This attribute SHOULD be used whenever such identifier is available. Both RawData and Reference elements MUST NOT be used when this attribute is used, while either of them MUST be used if this attribute is omitted.

This class is composed of three aggregate classes.

RawData: Zero or more. XMLDATA. The meaning of this element is the same as that of the AttackPattern class (Section 4.3.1).

Reference: Zero or more of iodef:Reference [RFC5070]. The meaning of this element is the same as that of the AttackPattern class (Section 4.3.1).

This class MUST contain at least one of RawData or Reference elements. Writers/senders MUST ensure the specification name and version identified by the SpecID are consistent with the contents of the RawData; if a reader/receiver detects an inconsistency, it SHOULD prefer the specification name and version derived from the content, and SHOULD log the inconsistency so a human can correct the problem.

4.3.7. Verification

A Verification consists of an extension to the Incident.AdditionalData element with a dtype of "xml". The extension elements describes incident on verifying incidents.

A Verification class is structured as follows.
This class has the following attributes.

SpecID: REQUIRED. ENUM. The meaning of this attribute is the same as that of the AttackPattern class (Section 4.3.1).

ext-SpecID: OPTIONAL. STRING. The meaning of this attribute is the same as that of the AttackPattern class (Section 4.3.1).

VerificationID: OPTIONAL. STRING. An identifier of an check item to be reported. This attribute SHOULD be used whenever such identifier is available. Both RawData and Reference elements MUST NOT be used when this attribute is used, while either of them MUST be used if this attribute is omitted.

This class is composed of two aggregate classes.

RawData: Zero or more. XMLDATA. The meaning of this element is the same as that of the AttackPattern class (Section 4.3.1).

Reference: Zero or more of iodef:Reference [RFC5070]. The meaning of this element is the same as that of the AttackPattern class (Section 4.3.1).

This class MUST contain at least either of RawData and Reference elements. Writers/senders MUST ensure the specification name and version identified by the SpecID are consistent with the contents of the RawData; if a reader/receiver detects an inconsistency, it SHOULD prefer the specification name and version derived from the content, and SHOULD log the inconsistency so a human can correct the problem.

4.3.8. Remediation

A Remediation consists of an extension to the Incident.AdditionalData element with a dtype of "xml". The extension elements describes incident remediation information including instructions.

It is recommended that Incident class SHOULD contain one or more of
this extension elements whenever available.

A Remediation class is structured as follows.

```
+----------------------+
| Remediation          |
+----------------------+
| ENUM SpecID          |<>--(0..*)-[ RawData ]
| STRING ext-SpecID    |<>--(0..*)-[ Reference ]
| String RemediationID |
```

Figure 9: Remediation class

This class has the following attributes.

SpecID: REQUIRED. ENUM. The meaning of this attribute is the same as that of the AttackPattern class (Section 4.3.1).

ext-SpecID: OPTIONAL. STRING. The meaning of this attribute is the same as that of the AttackPattern class (Section 4.3.1).

RemediationID: OPTIONAL. STRING. An identifier of a remediation information to be reported. This attribute SHOULD be used whenever such identifier is available. Both RawData and Reference elements MUST NOT be used when this attribute is used, while either of them MUST be used if this attribute is omitted.

This class is composed of two aggregate classes.

RawData: Zero or more. XMLDATA. The meaning of this element is the same as that of the AttackPattern class (Section 4.3.1).

Reference: Zero or more of iodef:Reference [RFC5070]. The meaning of this element is the same as that of the AttackPattern class (Section 4.3.1).

This class MUST contain at least either of RawData and Reference elements. Writers/senders MUST ensure the specification name and version identified by the SpecID are consistent with the contents of the RawData; if a reader/receiver detects an inconsistency, it SHOULD prefer the specification name and version derived from the content, and SHOULD log the inconsistency so a human can correct the problem.
5. Mandatory to Implement features

The implementation of this draft MUST be capable of sending and receiving the XML conforming to the specification listed in the initial IANA table described in Section 4.1, i.e., MMDEF version 1.2, without error.

The receiver MUST be capable of validating received XML documents that are embedded inside that against their schemata. Note that the receiver can look up the namespace in the IANA table to understand what specifications the embedded XML documents follows.

This section provides an XML conformant to this draft, and a schema for that.

Note that the schema of MMDEF version 1.2 is found in Section 10.

5.1. An Example XML

An example IODEF document for checking implementation’s MTI conformance is provided here. The document carries MMDEF metadata. Note that the metadata is generated by genMMDEF [MMDEF] with EICAR [EICAR] files. Implementations of this specification must be capable of parsing the example XML since MMDEF is specified as the draft’s MTI specification.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<IODEF version="1.0" lang="en"
 xmlns="urn:ietf:params:xml:ns:iodef-1.0"
 xmlns:iodef="urn:ietf:params:xml:ns:iodef-1.0"
 xmlns:iodef-sci="urn:ietf:params:xml:ns:iodef-sci-1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <Incident purpose="reporting">
    <IncidentID name="iodef-sci.example.com">189493</IncidentID>
    <ReportTime>2013-06-18T23:19:24+00:00</ReportTime>
    <Description>a candidate security incident</Description>
    <Assessment>
      <Impact completion="failed" type="admin" />
    </Assessment>
    <Method>
      <Description>A candidate attack event</Description>
      <AdditionalData dtype="xml">
        <iodef-sci:AttackPattern
          SpecID="http://xml/metadataSharing.xsd"/>
      </AdditionalData>
    </Method>
  </Incident>
</IODEF>
```
5.2. An XML Schema for the Extension

An XML Schema describing the elements defined in this draft is given here. Any XMLs compliant to this draft including the ones in Section 5.1 and Section 11 should be verified against this schema by automated tools.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="urn:ietf:params:xml:ns:iodef-sci-1.0"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:iodef="urn:ietf:params:xml:ns:iodxf-1.0"
xmlns:iodxf-scii="urn:ietf:params:xml:ns:iodxf-sci-1.0"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xsd:import namespace="urn:ietf:params:xml:ns:iodxf-1.0"
schemaLocation="urn:ietf:params:xml:schema:iodxf-1.0"/>

<xsd:complexType name="XMLDATA">
 <xsd:complexContent>
 <xsd:restriction base="iodef:ExtensionType">
 <xsd:sequence>
 <xsd:any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="dtype" type="iodef:dtype-type"
 use="required" fixed="xml"/>
 <xsd:attribute name="ext-dtype" type="xsd:string" use="optional"/>
 <xsd:attribute name="meaning" type="xsd:string"/>
 <xsd:attribute name="formatid" type="xsd:string"/>
 <xsd:attribute name="restriction" type="iodef:restriction-type"/>
 </xsd:restriction>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="Scoring">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ScoreSet" type="iodef-sci:XMLDATA"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="SpecID" type="xsd:string" use="required"/>
 <xsd:attribute name="ext-SpecID" type="xsd:string" use="optional"/>
 </xsd:complexType>
</xsd:element>

<xsd:element name="AttackPattern">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="RawData" type="iodef-sci:XMLDATA"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="iodef:Reference" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:choice>
 <xsd:element ref="iodef-sci:Platform" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

</xsd:complexType>
</xsd:element>

<xsd:element name="Vulnerability">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="RawData" type="iodef-sci:XMLDATA" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="iodef:Reference" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:choice>
 <xsd:element ref="iodef-sci:Platform" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="iodef-sci:Scoring" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="SpecID" type="xsd:string" use="required"/>
 <xsd:attribute name="ext-SpecID" type="xsd:string" use="optional"/>
 <xsd:attribute name="VulnerabilityID" type="xsd:string" use="optional"/>
 </xsd:complexType>
</xsd:element>

<xsd:element name="Weakness">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="RawData" type="iodef-sci:XMLDATA" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="iodef:Reference" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:choice>
 <xsd:element ref="iodef-sci:Platform" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="iodef-sci:Scoring" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="SpecID" type="xsd:string" use="required"/>
 <xsd:attribute name="ext-SpecID" type="xsd:string" use="optional"/>
 </xsd:complexType>
</xsd:element>
<xsd:element name="Platform">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="RawData" type="iodef-sci:XMLDATA"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="iodef:Reference" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="SpecID" type="xsd:string" use="required"/>
 <xsd:attribute name="ext-SpecID" type="xsd:string" use="optional"/>
 <xsd:attribute name="PlatformID" type="xsd:string" use="optional"/>
 </xsd:complexType>
</xsd:element>

<xsd:element name="EventReport">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="RawData" type="iodef-sci:XMLDATA"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="iodef:Reference" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="SpecID" type="xsd:string" use="required"/>
 <xsd:attribute name="ext-SpecID" type="xsd:string" use="optional"/>
 <xsd:attribute name="EventID" type="xsd:string" use="optional"/>
 </xsd:complexType>
</xsd:element>

<xsd:element name="Verification">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="RawData" type="iodef-sci:XMLDATA"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="iodef:Reference" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="SpecID" type="xsd:string" use="required"/>
 <xsd:attribute name="ext-SpecID" type="xsd:string" use="optional"/>
 <xsd:attribute name="Verification" type="xsd:string"
 use="optional"/>
 </xsd:complexType>
</xsd:element>
maxOccurs="unbounded"/>
</xsd:choice>
</xsd:sequence>
<xsd:attribute name="SpecID" type="xsd:string" use="required"/>
<xsd:attribute name="ext-SpecID" type="xsd:string" use="optional"/>
<xsd:attribute name="VerificationID" type="xsd:string" use="optional"/>
</xsd:complexType>
</xsd:element>

<xsd:element name="Remediation">
<xsd:complexType>
<xsd:sequence>
<xsd:choice>
<xsd:element name="RawData" type="iodef-sci:XMLDATA" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="iodef:Reference" minOccurs="0" maxOccurs="unbounded"/>
</xsd:choice>
</xsd:sequence>
<xsd:attribute name="SpecID" type="xsd:string" use="required"/>
<xsd:attribute name="ext-SpecID" type="xsd:string" use="optional"/>
<xsd:attribute name="RemediationID" type="xsd:string" use="optional"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

6. Security Considerations

This document specifies a format for encoding a particular class of security incidents appropriate for exchange across organizations. As merely a data representation, it does not directly introduce security issues. However, it is guaranteed that parties exchanging instances of this specification will have certain concerns. For this reason, the underlying message format and transport protocol used MUST ensure the appropriate degree of confidentiality, integrity, and authenticity for the specific environment.

Organizations that exchange data using this document are URGED to develop operating procedures that document the following areas of concern.
6.1. Transport-Specific Concerns

The underlying messaging format and protocol used to exchange instances of the IODEF MUST provide appropriate guarantees of confidentiality, integrity, and authenticity. The use of a standardized security protocol is encouraged. The Real-time Inter-network Defense (RID) protocol [RFC6045] and its associated transport binding [RFC6046] provide such security.

The critical security concerns are that these structured information may be falsified or they may become corrupt during transit. In areas where transmission security or secrecy is questionable, the application of a digital signature and/or message encryption on each report will counteract both of these concerns. We expect that each exchanging organization will determine the need, and mechanism, for transport protection.

7. IANA Considerations

This document uses URNs to describe XML namespaces and XML schemata [XMLschemaPart1] [XMLschemaPart2] conforming to a registry mechanism described in [RFC3688].

Registration request for the IODEF structured cybersecurity information extension namespace:

URI: urn:ietf:params:xml:ns:iodef-sci-1.0

Registrant Contact: Refer here to the authors’ addresses section of the document.

XML: None

Registration request for the IODEF structured cybersecurity information extension XML schema:

URI: urn:ietf:params:xml:schema:iodef-sci-1.0

Registrant Contact: Refer here to the authors’ addresses section of the document.

XML: Refer here to the XML Schema in the appendix of the document.

This memo creates the following registry for IANA to manage:
Name of the registry: "IODEF Structured Cyber Security Information Specifications"

Namespace details: A registry entry for a Structured Cyber Security Information Specification (SCI specification) consists of:

Namespace: A URI [RFC3986] that is the XML namespace name used by the registered SCI specification.

Specification Name: A string containing the spelled-out name of the SCI specification in human-readable form.

Reference URI: A list of one or more of the URIs [RFC3986] from which the registered specification can be obtained. The registered specification MUST be readily and publicly available from that URI.

Applicable Classes: A list of one or more of the Extended Classes specified in Section 4.3 of this document. The registered SCI specification MUST only be used with the Extended Classes in the registry entry.

Information that must be provided to assign a new value: The above list of information.

Fields to record in the registry: Namespace/Specification Name/ Version/Applicable Classes.

Initial registry contents: none

The Designated Expert is expected to consult with the mile (Managed Incident Lightweight Exchange) working group or its successor if any such WG exists (e.g., via email to the working group’s mailing list). The Designated Expert is expected to retrieve the SCI specification from the provided URI in order to check the public availability of the specification and verify the correctness of the URI. An important responsibility of the Designated Expert is to ensure that the registered Applicable Classes are appropriate for the registered SCI specification.

8. Acknowledgment

We would like to acknowledge Mr. David Black from EMC, who kindly...
provided generous support, especially on the IANA registry issues. We also would like to thank Jon Baker from MITRE, Paul Cichonski from NIST, Panos Kampanakis from CISCO, Ivan Kirillov from MITRE, Robert Martin from MITRE, Kathleen Moriarty from EMC, Lagadec Philippe from NATO, Shuhei Yamaguchi from NICT, Anthony Rutkowski from Yaana Technology, Brian Trammel from CERT/NetSA, David Waltermire from NIST, and James Wendorf from IEEE, for their sincere discussion and feedback on this document.

9. Appendix I: Candidate Specifications for the IANA Table

This draft defined the structure of the IANA table in Section 4.1. Though the management of the table is up to IANA, this appendix provides candidate entries. Note that OVAL and CVE are registered trademarks, and CAPEC, CCE, CEE, CPE, CWE, CWSS, MAEC, and OCIL are trademarks, of The MITRE Corporation.

1. CAPEC 1.6

Namespace: http://capec.mitre.org/observables
Specification Name: Common Attack Pattern Enumeration and Classification
Version: 1.6
Reference URI: http://capec.mitre.org/
Applicable Classes: AttackPattern

2. CCE 5.0

Namespace: http://cce.mitre.org
Specification Name: Common Configuration Enumeration
Version: 5.0
Reference URI: http://cce.mitre.org/
Applicable Classes: Verification

3. CCSS 1.0

Namespace: N/A
Specification Name: Common Configuration Scoring System
Version: 1.0
Reference URI: http://csrc.nist.gov/publications/PubsNISTIRs.html
#NIST-IR-7502
Applicable Classes: Scoring
4. CEE 1.0 alpha

Namespace: http://cee.mitre.org
Specification Name: Common Event Expression
Version: 1.0 alpha
Reference URI: http://cee.mitre.org/
Applicable Classes: EventReport

5. CPE 2.3 Language

Namespace: http://cpe.mitre.org/language/2.0
Specification Name: Common Platform Enumeration Reference
Version: 2.3
Reference URI: http://scap.nist.gov/specifications/cpe/,
http://csrc.nist.gov/publications/PubsNISTIRs.html
#NIST-IR-7695
Applicable Classes: Platform

6. CPE 2.3 Dictionary

Namespace: http://cpe.mitre.org/dictionary/2.0
Specification Name: Common Platform Enumeration Dictionary
Version: 2.3
Reference URI: http://scap.nist.gov/specifications/cpe/,
http://csrc.nist.gov/publications/PubsNISTIRs.html
#NIST-IR-7697
Applicable Classes: Platform

7. CVE 1.0

Namespace: http://cve.mitre.org/cve/downloads/1.0
Specification Name: Common Vulnerability and Exposures
Version: 1.0
Reference URI: http://cve.mitre.org/
Applicable Classes: Vulnerability

8. CVRF 1.0
9. CVSS 2.0

Namespace: http://scap.nist.gov/schema/cvss-v2/1.0
Specification Name: Common Vulnerability Scoring System
Version: 2
Reference URI: http://www.first.org/cvss
Applicable Classes: Scoring

10. CWE 5.0

Namespace: N/A
Specification Name: Common Weakness Enumeration
Version: 5.1
Reference URI: http://cwe.mitre.org/
Applicable Classes: Weakness

11. CWSS 0.8

Namespace: N/A
Specification Name: Common Weakness Scoring System
Version: 0.8
Reference URI: http://cwe.mitre.org/cwss/
Applicable Classes: Scoring

12. MAEC 2.0

Specification Name: Malware Attribute Enumeration and Characterization
Version: 2.0
Reference URI: http://maec.mitre.org/
Applicable Classes: EventReport, AttackPattern
13. OCIL 2.0

Namespace: http://scap.nist.gov/schema/ocil/2.0
Specification Name: Open Checklist Interactive Language
Version: 2.0
Reference URI: http://scap.nist.gov/specifications/ocil/,
 http://csrc.nist.gov/publications/PubsNISTIRs.html
 #NIST-IR-7692
Applicable Classes: Verification

14. OVAL 5.10.1 Definitions

Specification Name: Open Vulnerability and Assessment Language
Version: 5.10.1
Reference URI: http://oval.mitre.org/
Applicable Classes: Verification

15. OVAL 5.10.1 Results

Specification Name: Open Vulnerability and Assessment Language
Version: 5.10.1
Reference URI: http://oval.mitre.org/
Applicable Classes: Verification

16. OVAL 5.10.1 Common

Specification Name: Open Vulnerability and Assessment Language
Version: 5.10.1
Reference URI: http://oval.mitre.org/
Applicable Classes: Verification

17. XCCDF 1.2
10. Appendix II: MMDEF version 1.2 scheema

This draft identified MMDEF version 1.2 as its MTI, and its schema (without annotations) is provided here.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
   targetNamespace="http://xml/metadataSharing.xsd"
   xmlns="http://xml/metadataSharing.xsd"
   elementFormDefault="qualified" version="1.8">

  <xs:simpleType name="intBetween0and100">
    <xs:restriction base="xs:integer">
      <xs:minInclusive value="0"/>
      <xs:maxInclusive value="100"/>
    </xs:restriction>
  </xs:simpleType>

  <xs:simpleType name="NoQuestionMark">
    <xs:restriction base="xs:string">
      <xs:pattern value="[^?]+"/>
    </xs:restriction>
  </xs:simpleType>

  <xs:simpleType name="IPRange">
    <xs:restriction base="xs:string">
      <xs:pattern value="[0-9.]+-[0-9.]+"/>
    </xs:restriction>
  </xs:simpleType>

  <xs:simpleType name="RelationshipTypeEnum">
    <xs:restriction base="xs:string">
      <xs:enumeration value="relatedTo"/>
      <xs:enumeration value="isClassifiedAs"/>
      <xs:enumeration value="hosts"/>
      <xs:enumeration value="installed"/>
    </xs:restriction>
  </xs:simpleType>
</xs:schema>
```
<xs:enumeration value="isParentOf"/>
<xs:enumeration value="causesToInstall"/>
<xs:enumeration value="downloads"/>
<xs:enumeration value="runs"/>
<xs:enumeration value="usesCNC"/>
<xs:enumeration value="isNameServerOf"/>
<xs:enumeration value="resolvesTo"/>
<xs:enumeration value="verifiedBy"/>
<xs:enumeration value="isServerOfService"/>
<xs:enumeration value="hasAssociatedConfiguration"/>
<xs:enumeration value="operatedByEntity"/>
<xs:enumeration value="downloadedFrom"/>
<xs:enumeration value="contactedBy"/>
<xs:enumeration value="partOfPackage"/>
<xs:enumeration value="sourcedFrom"/>
<xs:enumeration value="createdBy"/>
<xs:enumeration value="hasSignature"/>
<xs:enumeration value="hasTaggant"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="ClassificationTypeEnum">
 <xs:restriction base="xs:string">
 <xs:enumeration value="clean"/>
 <xs:enumeration value="dirty"/>
 <xs:enumeration value="unknown"/>
 <xs:enumeration value="unwanted"/>
 <xs:enumeration value="neutral"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="LocationTypeEnum">
 <xs:restriction base="xs:string">
 <xs:enumeration value="countryCodeISO3166-2"/>
 <xs:enumeration value="countryCodeISO3166-3"/>
 <xs:enumeration value="countryCodeFIPS"/>
 <xs:enumeration value="city"/>
 <xs:enumeration value="region"/>
 <xs:enumeration value="isp"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="VolumeUnitsEnum">
 <xs:restriction base="xs:string">
 <xs:enumeration value="numberUsersAffected"/>
 <xs:enumeration value="numberMachinesAffected"/>
 <xs:enumeration value="numberSeenInSpam"/>
 <xs:enumeration value="numberSeenInMalwareSamples"/>
 </xs:restriction>
</xs:simpleType>
<xs:enumeration value="numberOfWebsitesHosting"/>
<xs:enumeration value="numberOfWebsitesRedirecting"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="IPTypeEnum">
<xs:restriction base="xs:string">
<xs:enumeration value="ipv4"/>
<xs:enumeration value="ipv6"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="RegionTypeEnum">
<xs:restriction base="xs:string">
<xs:enumeration value="NorthAmerica"/>
<xs:enumeration value="SouthAmerica"/>
<xs:enumeration value="CentralAmerica"/>
<xs:enumeration value="Europe"/>
<xs:enumeration value="Africa"/>
<xs:enumeration value="APAC"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="OriginTypeEnum">
<xs:restriction base="xs:string">
<xs:enumeration value="user"/>
<xs:enumeration value="desktop"/>
<xs:enumeration value="lan"/>
<xs:enumeration value="gateway"/>
<xs:enumeration value="isp"/>
<xs:enumeration value="honeypot"/>
<xs:enumeration value="collection"/>
<xs:enumeration value="spam"/>
<xs:enumeration value="wan"/>
<xs:enumeration value="internal"/>
<xs:enumeration value="partner"/>
<xs:enumeration value="unknown"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="PropertyTypeEnum">
<xs:restriction base="xs:string">
<xs:enumeration value="filename"/>
<xs:enumeration value="filepath"/>
<xs:enumeration value="locationUrl"/>
<xs:enumeration value="isKernel"/>
<xs:enumeration value="isParasitic"/>
<xs:enumeration value="isStealth"/>
</xs:restriction>
</xs:simpleType>
<xs:enumeration value="isPolymorphic"/>
<xs:enumeration value="isVirus"/>
<xs:enumeration value="isNonReplicating"/>
<xs:enumeration value="isDamaged"/>
<xs:enumeration value="registryValueData"/>
<xs:enumeration value="urlParameterString"/>
<xs:enumeration value="postData"/>
<xs:enumeration value="registrant"/>
<xs:enumeration value="registrationDate"/>
<xs:enumeration value="ownerAddress"/>
<xs:enumeration value="adminContact"/>
<xs:enumeration value="technicalContact"/>
<xs:enumeration value="nameServer"/>
<xs:enumeration value="countryCodeISO3166-2"/>
<xs:enumeration value="countryCodeISO3166-3"/>
<xs:enumeration value="countryCodeFIPS"/>
<xs:enumeration value="city"/>
<xs:enumeration value="region"/>
<xs:enumeration value="isp"/>
<xs:enumeration value="httpMethod"/>
<xs:enumeration value="referrer"/>
<xs:enumeration value="operatingSystem"/>
<xs:enumeration value="userAgent"/>
<xs:enumeration value="browser"/>
<xs:enumeration value="comment"/>
</xs:restriction>
</xs:simpleType>

<xs:element name="malwareMetaData">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="company" type="xs:string"/>
 <xs:element name="author" type="xs:string"/>
 <xs:element name="comment" type="xs:string"/>
 <xs:element name="timestamp" type="xs:dateTime"/>
 <xs:element name="objects" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="file" type="fileObject" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="uri" type="uriObject" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="domain" type="domainObject" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="registry" type="registryObject" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="ip" type="IPObject" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="asn" type="ASNObject" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="entity" type="entityObject" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="classification" type="classificationObject" minOccurs="0" maxOccurs="unbounded"/>
<xs:element maxOccurs="unbounded" minOccurs="0" name="softwarePackage" type="softwarePackageObject"/>
<xs:element maxOccurs="unbounded" minOccurs="0" name="digitalSignature" type="digitalSignatureObject"/>
<xs:element maxOccurs="unbounded" minOccurs="0" name="taggant" type="taggantObject"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="objectProperties" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="objectProperty" type="objectProperty" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="relationships" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="relationship" type="relationship" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="fieldData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="fieldDataEntry" type="fieldDataEntry" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:attribute use="required" name="version" type="xs:decimal" fixed="1.2"/>
<xs:attribute use="required" name="id" type="xs:string"/>
</xs:complexType>
</xs:element>
<xs:complexType name="fileObject">
 <xs:sequence>
 <xs:element name="md5" type="xs:hexBinary" minOccurs="1"/>
 <xs:element name="sha1" type="xs:hexBinary" minOccurs="0"/>
 <xs:element name="sha256" type="xs:hexBinary" minOccurs="0"/>
 <xs:element name="sha512" type="xs:hexBinary" minOccurs="0"/>
 <xs:element name="size" type="xs:int" minOccurs="0"/>
 <xs:element name="crc32" type="xs:string" minOccurs="0"/>
 <xs:element name="fileType" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="extraHash" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="type" use="required" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="filename" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="normalizedNativePath" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="filenameWithinInstaller" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="folderWithinInstaller" type="xs:string"/>
 <xs:element minOccurs="0" name="vendor" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="internalName" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="language" type="xs:string"/>
 <xs:element minOccurs="1" minOccurs="0" name="productName" type="xs:string"/>
 <xs:element minOccurs="0" name="fileVersion" type="xs:string"/>
 <xs:element minOccurs="0" name="productVersion" type="xs:string"/>
 <xs:element minOccurs="0" name="developmentEnvironment" type="xs:string"/>
 <xs:element minOccurs="0" name="checksum" type="xs:hexBinary"/>
 <xs:element minOccurs="0" name="architecture" type="xs:string"/>
 <xs:element minOccurs="0" name="buildTimeDateStamp" type="xs:dateTime"/>
 <xs:element minOccurs="0" name="compilerVersion" type="xs:string"/>
 <xs:element minOccurs="0" name="linkerVersion" type="xs:float"/>
 <xs:element minOccurs="0" name="minOSVersionCPE" type="xs:string"/>
 <xs:element minOccurs="1" minOccurs="0" name="numberOfSections" type="xs:int"/>
 <xs:element minOccurs="0" name="MIMEType" type="xs:string"/>
 </xs:sequence>
</xs:complexType>
<xs:element minOccurs="0" name="requiredPrivilege" type="xs:string"/>
<xs:element minOccurs="0" name="digitalSignature" type="digitalSignatureObject"/>
<xs:element minOccurs="0" name="taggant" type="taggantObject"/>
<xs:attribute name="id" use="required" type="xs:hexBinary"/>

<xs:complexType name="registryObject">
 <xs:sequence>
 <xs:element name="key" type="xs:string"/>
 <xs:element name="valueName" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:string"/>
</xs:complexType>

<xs:complexType name="entityObject">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:string"/>
</xs:complexType>

<xs:complexType name="uriObject">
 <xs:sequence>
 <xs:element name="uriString" type="NoQuestionMark"/>
 <xs:element name="protocol" type="xs:string" minOccurs="0"/>
 <xs:element name="hostname" type="xs:string" minOccurs="0"/>
 <xs:element name="domain" type="xs:string" minOccurs="0"/>
 <xs:element name="port" type="xs:int" minOccurs="0"/>
 <xs:element name="path" type="xs:string" minOccurs="0"/>
 <xs:element name="ipProtocol" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="id" use="required" type="NoQuestionMark"/>
</xs:complexType>

<xs:complexType name="IPObject">
 <xs:sequence>
 <xs:element name="startAddress" type="IPAddress"/>
 <xs:element name="endAddress" type="IPAddress"/>
 </xs:sequence>
 <xs:attribute name="id" use="required" type="IPRange"/>
</xs:complexType>

<xs:complexType name="IPAddress">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:element name="requiredPrivilege" type="xs:string"/>
 <xs:element name="digitalSignature" type="digitalSignatureObject"/>
 <xs:element minOccurs="1" minOccurs="0" name="taggant" type="taggantObject"/>
 <xs:attribute name="id" use="required" type="xs:hexBinary"/>
 </xs:complexType>
 </xs:complexType>

<xs:complexType name="domainObject">
 <xs:sequence>
 <xs:element name="domain" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:string"/>
</xs:complexType>

<xs:complexType name="ASNObject">
 <xs:sequence>
 <xs:element name="as-number" type="xs:int"/>
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:int"/>
</xs:complexType>

<xs:complexType name="classificationObject">
 <xs:sequence>
 <xs:element name="classificationName" type="xs:string"/>
 <xs:element name="companyName" type="xs:string"/>
 <xs:element name="category" minOccurs="0" type="xs:string"/>
 <xs:element name="classificationDetails" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="definitionVersion" type="xs:string" minOccurs="0"/>
 <xs:element name="detectionAddedTimeStamp" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="detectionShippedTimeStamp" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="product" type="xs:string" minOccurs="0"/>
 <xs:element name="productVersion" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
 <xs:attribute name="type" type="ClassificationTypeEnum" use="required"/>
</xs:complexType>

<xs:complexType name="fieldDataEntry">
 <xs:sequence>
 <xs:element name="references">
 <xs:complexType>
 <xs:sequence>
 <!-- references content here -->
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:element name="ref" type="reference" minOccurs="1" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>

<xs:element name="startDate" type="xs:dateTime" />
<xs:element name="endDate" type="xs:dateTime" />
<xs:element name="firstSeenDate" type="xs:dateTime" minOccurs="0" />
<xs:element name="origin" type="OriginTypeEnum" />
<xs:element name="commonality" type="intBetween0and100" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:int">
 <xs:attribute name="units" type="VolumeUnitsEnum" use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>
<xs:element name="importance" type="intBetween0and100" minOccurs="0" />
<xs:element name="location" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="type" type="LocationTypeEnum" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

<xs:complexType name="reference">
 <xs:simpleContent>
 <xs:extension base="xs:string" />
 </xs:simpleContent>
</xs:complexType>

<xs:complexType name="property">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="type" type="PropertyTypeEnum" use="required" />
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

<xs:complexType name="objectProperty">
 <xs:sequence>
 <xs:element name="ref" type="reference" minOccurs="1" maxOccurs="unbounded" />
 <xs:element name="startDate" type="xs:dateTime" />
 <xs:element name="endDate" type="xs:dateTime" />
 <xs:element name="firstSeenDate" type="xs:dateTime" minOccurs="0" />
 <xs:element name="origin" type="OriginTypeEnum" />
 <xs:element name="commonality" type="intBetween0and100" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:int">
 <xs:attribute name="units" type="VolumeUnitsEnum" use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:element name="references">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ref" type="reference" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="timestamp" type="xs:dateTime"/>

<xs:element name="property" type="property" maxOccurs="unbounded"/>

<xs:attribute name="id" type="xs:anySimpleType" use="optional"/>
</xs:complexType>

<xs:complexType name="relationship">
 <xs:sequence>
 <xs:element name="source">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ref" minOccurs="1" maxOccurs="unbounded" type="reference"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="target">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ref" minOccurs="1" maxOccurs="unbounded" type="reference"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="id" type="xs:anySimpleType" use="optional"/>
 <xs:attribute name="type" type="RelationshipTypeEnum" use="required"/>
</xs:complexType>

<xs:complexType name="softwarePackageObject">
 <xs:sequence>
 <xs:element minOccurs="1" name="vendor" type="xs:string"/>
 <xs:element minOccurs="0" name="productgroup" type="xs:string"/>
 <xs:element minOccurs="1" name="product" type="xs:string"/>
 <xs:element minOccurs="0" name="version" type="xs:string"/>
 <xs:element minOccurs="0" name="update" type="xs:string"/>
 </xs:sequence>
</xs:complexType>
<xs:element minOccurs="0" name="edition" type="xs:string"/>
<xs:element minOccurs="0" name="language" type="xs:string"/>
<xs:element minOccurs="0" name="CPEname">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="cpeVersion" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="digitalSignatureObject">
 <xs:element minOccurs="1" name="certificateIssuer" type="xs:string"/>
 <xs:element minOccurs="0" name="certificateSubject" type="xs:string"/>
 <xs:element minOccurs="1" name="certificateValidity" type="xs:boolean"/>
 <xs:element minOccurs="0" name="certificateRevocationTimestamp" type="xs:dateTime"/>
 <xs:element minOccurs="0" name="signingTimestamp">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:dateTime">
 <xs:attribute name="valid" type="xs:boolean"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="taggantObject">
 <xs:element minOccurs="1" name="vendorID" type="xs:string"/>
 <xs:element minOccurs="0" name="taggantValidity" type="xs:boolean"/>
 <xs:element minOccurs="0" name="signingTimestamp">
 <xs:complexType>
 <xs:simpleContent>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
</xs:sequence>
<xs:attribute name="type">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="CatalogSigned"/>
 <xs:enumeration value="CodeSigned"/>
 </xs:restriction>
 </xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:complexType name="taggantObject">
 <xs:element minOccurs="1" name="vendorID" type="xs:string"/>
 <xs:element minOccurs="0" name="taggantValidity" type="xs:boolean"/>
 <xs:element minOccurs="0" name="signingTimestamp">
 <xs:complexType>
 <xs:simpleContent>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
</xs:sequence>
<xs:attribute name="type">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="CatalogSigned"/>
 <xs:enumeration value="CodeSigned"/>
 </xs:restriction>
 </xs:simpleType>
</xs:attribute>
</xs:complexType>
11. Appendix III: An Example XML using Candidate Specifications

This section provides an example of an incident encoded in the IODEF. This do not necessarily represent the only way to encode a particular incident. This example reports an attack to a CSIRT and is extended from the example described in [RFC5070]. It uses identifiers whose dictionary follows CVE 1.0 schema, and it embeds XML following CEE 0.6. Though these specifications are not listed in the IANA table at this moment, this section shows the example to demonstrate the usability of the draft.

<?xml version="1.0" encoding="UTF-8"?>
<IODEF-Document version="1.00" lang="en"
xm...
<ContactName>Example.com CSIRT</ContactName>
<RegistryHandle registry="arin">example-com</RegistryHandle>
<Email>contact@csirt.example.com</Email>
</Contact>
<EventData>
<Flow>
<System category="source">
<Node>
<Address category="ipv4-addr">192.0.2.200</Address>
<Counter type="event">57</Counter>
</Node>
</System>
<System category="target">
<Node>
<Address category="ipv4-net">192.0.2.16/28</Address>
<Port>80</Port>
</Node>
<Service ip_protocol="6">
<Port>80</Port>
</Service>
<AdditionalData dtype="xml">
<iodef-sci:Platform SpecID="http://cpe.mitre.org/dictionary/2.0"
PlatformID="cpe://microsoft:windows:xp:pro:sp2"/>
</AdditionalData>
</System>
</Flow>
<Expectation action="block-host" />
<Expectation action="other"/>
<!-- <RecordItem> has an excerpt from a log -->
<Record>
<RecordData>
<DateTime>2001-09-13T18:11:21+02:00</DateTime>
<Description>a Web-server event record</Description>
<RecordItem dtype="xml">
<iodef-sci:RawData dtype="xml">
<cee:cee xmlns="http://cee.mitre.org/1.0/profile/
xmlns:cee="http://cee.mitre.org/1.0/">
<cee:event>
<host>system.example.com</host>
<pname>auth</pname>
<time>2011-12-20T12:38:05.123456-05:00</time>
<appname>application</appname>
<pid>123</pid>
<sev>10</sev>
<action>login</action>
<domain>app</domain>
<object>account</object>
</cee:event>
</cee:cee>
</iodef-sci:RawData>
</iodef-sci:EventReport>
</RecordItem>
</RecordData>
</Record>
12. References

12.1. Normative References

12.2. Informative References

[CAPEC] The MITRE Corporation, "Common Attack Pattern Enumeration and Classification (CAPEC)".

[CCE] The MITRE Corporation, "Common Configuration Enumeration (CCE)".

[CEE] The MITRE Corporation, "Common Event Expression (CEE)".

[CVE] The MITRE Corporation, "Common Vulnerability and Exposures (CVE)".

[CVRF] ICASI, "Common Vulnerability Reporting Framework (CVRF)".

[CVSS] Peter Mell, Karen Scarfone, and Sasha Romanosky, "The Common Vulnerability Scoring System (CVSS) and Its Applicability to Federal Agency Systems".

[CWE] The MITRE Corporation, "Common Weakness Enumeration (CWE)".

[CWSS] The MITRE Corporation, "Common Weakness Scoring System (CWSS)".

[MAEC] The MITRE Corporation, "Malware Attribute Enumeration and Characterization".

[OVAL] The MITRE Corporation, "Open Vulnerability and Assessment Language (OVAL)".

Authors’ Addresses

Takeshi Takahashi
National Institute of Information and Communications Technology
4-2-1 Nukui-Kitamachi Koganei
184-8795 Tokyo
Japan
Phone: +80 423 27 5862
Email: takeshi_takahashi@nict.go.jp

Kent Landfield
McAfee, Inc
5000 Headquarters Drive
Plano, TX 75024
USA
Email: Kent_Landfield@McAfee.com

Thomas Millar
245 Murray Lane SW, Building 410, MS #732
Washington, DC 20598
USA
Phone: +1 888 282 0870
Email: thomas.millar@us-cert.gov

Youki Kadobayashi
Nara Institute of Science and Technology
8916-5 Takayama, Ikoma
630-0192 Nara
Japan
Email: youki-k@is.aist-nara.ac.jp