This document proposes an alternate architecture for sacm (a proposed working group at the time this draft was submitted).

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

Copyright and License Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1. Introduction

[ID.waltermire-sacm-architecture] proposed an architecture for sacm. This draft proposes an alternate architecture.

2. Initial Architecture

The initial proposed architecture is copied here for convenience:

```
+-------------+           +--------------+
|             |           |              |
|  Evaluator  |<---DF1--->|  Content     |<---DF1---------+
|             |           |  Repository  |                |
|             |           |              |                |
|      ^      |              +--------------+                |
|      |      +-----------------+                        |
|      |      |                  DF1                       |
|      |      |                        |
|      |      |                     V                        V
|      +-----------------+                  +--------------+
|                      |                    |  Controller  |<---DF2--->|  Sensor  |
|                      |                    |              |           |          |
|                     V                      V                   |
|                    DF3                       |
|                        |
|                      V                      |
|                      +-----------------+                  +----------+
|                      |           |                   |          |
+--------------DF4---->|  Data     |<-----DF3-alt-----+          |
|  Storage     |           |                        |          |
|              |           |                        |          |
|              |           |                        |          |
|              +-----------+                  +----------+
```

Figure 1 - Proposed sacm Architecture

The primary issue with the proposed architecture is its abstraction. For those not in the know, it makes more sense to propose an architecture in terms of actual boxes and protocols that flow as opposed to a functional architecture.
3. Alternate Architecture

In the following figure:

- BPD is a Border Protection Device (BPD), which is a firewall and IDS (Intrusion Detection System) all rolled in to one.
- Asset is either a host or a client.
- Evaluator determines whether the asset is allowed access to the network.

Lines marked A, flowing from the asset to the Evaluator, are NEA-based protocols. The asset has a NEA client that performs posture collection, posture brokering, and posture exchange with the Evaluator. The evaluator has a NEA server that evaluates the posture, posture brokering, and posture exchange with the asset. It must be noted that the NEA client can have more than one collector (e.g., one to collect OS information, one to collect IP information, one to collect application information) and the NEA server can have...
more than one evaluator.

The initial posture assessment is best done before the asset has access to the network. [ID.draft-ietf-nea-pt-eap] provides one such solution. After network access has been granted, posture should continue to be maintained [RFC6876] provides on such solution to convey updated posture attributes.

Lines marked B, flowing from the client to the BPD are network traffic that occur after initial network access has been granted. The BPDs provide a backstop to ensure that assets are acting appropriately (e.g., a client is acting as a client and not a host). These protocols are not in sacm’s scope.

Lines marked C, flowing from the BPD to the (Evaluator or Repository?) ensure that the BPDs know how the asset are supposed to be acting.

[Question: Do BPDs interact with the database or the evaluator?]

[Question: Do BPDs need to talk to each other so that clients cannot choose multiple egress points to hide their activity.]

[Question: How do external enterprises interact with this enterprise]

4. Security Considerations

By identifying the components and where those functions reside this alternative architecture makes it easier to understand the required protocol flows.

5. IANA Considerations

There are no IANA considerations present in this document.

6. References

6.1 Normative References

Nada

6.2 Informative References

Authors’ Addresses

Russ Housley
Vigil Security, LLC
918 Spring Knoll Drive
Herndon, VA 20170
USA

Email: housley@vigilsec.com

Sean Turner
IECA, Inc.
3057 Nutley Street, Suite 106
Fairfax, VA 22031
USA

Email: turners@ieca.com
Security Automation and Continuous Monitoring (SACM) Architecture
draft-waltermire-sacm-architecture-00

Abstract

This document identifies the architectural components, data flows, and the supporting standards needed to define an interoperable automation infrastructure required to support timely, accurate and actionable situational awareness over an organization’s IT systems. This architecture is based on previous use case and requirements analysis. Automation tools implementing the continuous monitoring approach described in this document will utilize this infrastructure together with existing and emerging event, incident and network management standards to provide visibility into the state of assets, user activities and network behavior. Stakeholders will be able to use these tools to aggregate and analyze relevant security and operational data to understand the organizations security posture, quantify business risk, and make informed decisions that support organizational objectives while protecting critical information. Organizations will be able to use these tools to augment and automate information sharing activities to collaborate with partners to identify and mitigate threats. Other automation tools will be able to integrate with these capabilities to enforce policies based on human decisions to harden systems, prevent misuse and reduce the overall attack surface.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on August 15, 2013.
Table of Contents

1. Introduction .. 3
 1.1. Overview .. 3
 1.2. Terminology .. 4
 1.3. Requirements ... 4
2. Functional Components ... 4
 2.1. Controller ... 5
 2.1.1. Functions ... 5
 2.1.2. Interactions 5
 2.2. Content Repository 6
 2.3. Evaluator .. 6
 2.4. Sensor .. 6
 2.5. Data Storage ... 6
3. Data Flows .. 6
 3.1. DF1: Content Retrieval 7
 3.2. DF2: Collection Tasking 7
 3.3. DF3: Collected Data Publication 7
 3.4. DF4: Collected Data Query 7
4. Data Exchange Models and Communications Protocols 7
 4.1. Data Formats ... 8
 4.2. Communication Protocols 8
5. IANA Considerations ... 8
6. Security Considerations 8
7. Acknowledgements ... 9
8. Informative References 9
Appendix A. Additional Stuff 9
Author’s Address .. 9
1. Introduction

This document provides an architectural approach for addressing the orchestration, collection and analysis of endpoint posture. This architecture addresses the SACM Architecture milestone defined in the draft SACM charter. The focus of this architecture is to being to define an interoperable, automation infrastructure required to support timely, accurate and actionable situational awareness over an organization’s IT systems. This document enumerates components, data flows and the supporting standards needed to achieve this vision.

1.1. Overview

The architecture identified in this document provides a foundation for creating interoperable automation tools and continuous monitoring solutions that provide visibility into the state of assets, user activities, and network behavior. Stakeholders will be able to use tools based on this architecture to aggregate and analyze relevant security and operational data pertaining to endpoints to understand the organizations security posture and make informed decisions that support organizational objectives while protecting critical information. Organizations will be able to use tools supporting this architecture to augment and automate information sharing activities to collaborate with partners to identify and mitigate threats. Other automation tools will be able to integrate with these capabilities to enforce policies based on human decisions to harden systems, prevent misuse and reduce the overall attack surface.

The architecture diagram in Figure 1 illustrates the overall architecture approach. It identifies the components that participate in the architecture and the data flows (DF) that enable information to be exchanged between them.
1.2. Terminology

Add in glossary items from use cases?

1.3. Requirements

Reference the SACM use cases document.

2. Functional Components

This section describes the functional components included in this architecture.
2.1. Controller

The Controller component is responsible for directing collection activities based on organizational security policy and available relevant metadata. It manages data collection tasks it receives, orchestrating sensors as needed to fulfill the tasks. The nature of the tasks received by the Controller may vary. They may be one-time tasks focused on collecting a single data set, reoccurring tasks that occur at a predefined interval, or real-time tasks that continue to collect information based on events.

2.1.1. Functions

The controller provides the following functions:

Task Management

* The Controller processes incoming data collection task requests. It decomposes each task request into one or more data collection sub-tasks required to be performed by each Sensor.

* It creates sub-tasks for any scheduled tasking it is managing at the appropriate intervals.

* It tracks all sub-tasks currently being executed by sensors.

Sensor Management

* It dispatches any sub-tasks to the appropriate sensors.

* Collected data provided by the sensor is marshalled to the appropriate data store.

2.1.2. Interactions

The Controller interacts with other components in this architecture in the following ways:

o The Controller receives data collection tasks from the Evaluator describing a new data collection task that needs to be performed.

o The Controller retrieves content from the Content Repository that is needed to understand what specific data collections are required to be performed by each Sensor under its management to satisfy a data collection task.
The Controller interacts with each Sensor under its management that is needed to ensure that the appropriate data collection activities on the sensor are performed to address a data collection task. As data is collected and once data collection is complete the Controller receives data collection results from the sensor.

2.2. Content Repository

A repository of security metadata that can be used to drive security-oriented processes (e.g. vulnerability, configuration, asset data, assessment/collection methods). This is long-lived, infrequently changing information that is provided from a variety of external information sources.

The methods used to maintain information in a content repository is currently out of scope.

2.3. Evaluator

An upstream component that queries collected state information to perform analysis generating measurements and compliances results.

2.4. Sensor

Responsible for collecting actual system state information (e.g. configurations, software inventory, patch) based on data collection sub-tasks provided by the Controller. It uses data collection instructions provided by the content repository (e.g. SCAP-style assessment content). This could be an agent on an endpoint or a remote collection system with or without privileged access to the endpoint.

2.5. Data Storage

An upstream component that receives collected state information. This could be a data repository, an information processor that acts on the provided information or a process that routes information to other sources. This component supports SACM use cases UC2 and UC3.

3. Data Flows

The following data flows, also called interfaces, describe the nature of specific inter-component communications.
3.1. DF1: Content Retrieval

This data flow is used to provide any digital content and supporting metadata that is needed to drive data collection and analysis processes.

The following interactions are supported by this data flow:

- The Controller uses this data flow to acquire the information it needs to determine what actions to instruct the sensors to perform. The Controller may also store policy decisions for future use in the content repository for future use.

- The sensor uses this data flow to retrieve any data/content that is needed to perform collection activities.

- The Evaluator uses this data flow to retrieve any content that describes the expected state and analysis rules needed to make measurements and determine compliance with organizational policy.

3.2. DF2: Collection Tasking

This is a control channel that is used to enable dynamic management of the information collected by the Sensor. Data collection tasks containing instruction of what to collect, and potentially how to collect, are exchanged using this data flow. These instructions may point to assessment content stored in the Content Repository.

3.3. DF3: Collected Data Publication

Used to make collected information available to other "upstream" components that archive the information for future use or perform additional analysis/processing.

3.4. DF4: Collected Data Query

Used by the Evaluator and other external components to query previously collected data.

4. Data Exchange Models and Communications Protocols

Document where existing work exists, what is currently defined by SDOs, and any gaps that should be addressed. Point to existing standards when available. Describe emerging efforts that may be used for the creation of new standards. For gaps provide insight into what would be a good fit for SACM or another IETF working groups.
This will help us to identify what is needed for SACM to work on. This section will help determine which of the specifications can be normatively referenced and what needs to be addressed in the IETF. This should help us determine any protocol or guidance documentation we will need to generate.

Things to address:

For IETF related efforts, discuss work in NEA and MILE working groups. Address SNMP, NetConf and other efforts as needed.

Reference any Security Automation work that is applicable.

4.1. Data Formats

The functional capabilities described in the SACM Use Cases document require a significant number of models to be selected or defined. A "model" in this sense is a logical arrangement of information that may have more than one syntactic binding. For the purpose of this document, only the logical data model is considered. However, where appropriate, example data models that may have well-defined syntactic expressions may be referenced.

4.2. Communication Protocols

Document these.

5. IANA Considerations

This memo includes no request to IANA.

All drafts are required to have an IANA considerations section (see RFC 5226 [RFC5226] for a guide). If the draft does not require IANA to do anything, the section contains an explicit statement that this is the case (as above). If there are no requirements for IANA, the section will be removed during conversion into an RFC by the RFC Editor.

6. Security Considerations

All drafts are required to have a security considerations section. See RFC 3552 [RFC3552] for a guide.
7. Acknowledgements

The author would like to acknowledge the members of the SACM mailing list for their keen and insightful feedback on the concepts and text within this document.

8. Informative References

Appendix A. Additional Stuff

This becomes an Appendix if needed.

Author’s Address

David Waltermire (editor)
National Institute of Standards and Technology
100 Bureau Drive
Gaithersburg, Maryland 20877
USA

Phone:
Email: david.waltermire@nist.gov
Using Security Posture Assessment to Grant Access to Enterprise Network Resources
draft-waltermire-sacm-use-cases-05

Abstract

This memo documents a sampling of use cases for securely aggregating configuration and operational data and assessing that data to determine an organization’s security posture. From these operational use cases, we can derive common functional capabilities and requirements to guide development of vendor-neutral, interoperable standards for aggregating and assessing data relevant to security posture.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 16, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
2. Terms and Definitions 4
 2.1. Requirements Language 5
3. Endpoint Posture Assessment 6
 3.1. Example – Departmental Software Policy Compliance ... 6
 3.2. Main Success Scenario 6
4. Functional Capabilities and Requirements 7
 4.1. Asset Management 7
 4.1.1. Example – Asset Discovery within a subnet 7
 4.1.2. Example – Asset Discovery by IP Address 7
 4.1.3. Example – Asset Characterization using system information 7
 4.1.4. Example – Asset Characterization using the ENTITY-MIB 8
 4.1.5. Example – Asset Characterization using the HOST-RESOURCES-MIB 8
 4.1.6. Concepts .. 8
 4.1.7. Requirements 9
 4.2. Security Configuration Management 9
 4.2.1. Example – ENTITY-MIB 10
 4.2.2. Example – HOST-RESOURCES-MIB 10
 4.2.3. Example – YANG module ietf-interfaces 10
 4.2.4. Concepts .. 10
 4.2.5. Requirements 10
 4.3. Security Change Management 10
 4.3.1. Example – DHCP addressing 10
 4.3.2. Example – RADIUS network access 10
 4.3.3. Example – NAT logging 10
 4.3.4. Example – SYSLOG Authorization messages 10
 4.3.5. Concepts .. 10
 4.3.6. Requirements 11
 4.4. Security Vulnerability Management 11
 4.4.1. Example – NIDS response 11
 4.4.2. Example – Historical vulnerability analysis ... 11
 4.4.3. Source Address Validation 12
 4.4.4. Concepts .. 12
 4.4.5. Requirements 12
 4.5. Data Collection 12
 4.5.1. Concepts .. 12
 4.5.2. Requirements 12
1. Introduction

Our goal with this document is to improve our agreement on which problems we’re trying to solve. We need to start with short, simple problem statements and discuss those by email and in person. Once we agree on which problems we’re trying to solve, we can move on to propose various solutions and decide which ones to use.

This document describes example use cases for endpoint posture assessment for enterprises. It provides a sampling of use cases for securely aggregating configuration and operational data and assessing that data to determine the security posture of individual endpoints, and, in the aggregate, the security posture of an enterprise.

These use cases cross many IT security information domains. From these operational use cases, we can derive common concepts, common information expressions, functional capabilities and requirements to guide development of vendor-neutral, interoperable standards for aggregating and assessing data relevant to security posture.

Using this standard data, tools can analyse the state of endpoints, user activities and behaviour, and assess the security posture of an organization. Common expression of information should enable interoperability between tools (whether customized, commercial, or freely available), and the ability to automate portions of security processes to gain efficiency, react to new threats in a timely manner, and free up security personnel to work on more advanced problems.
The goal is to enable organizations to make informed decisions that support organizational objectives, to enforce policies for hardening systems, to prevent network misuse, to quantify business risk, and to collaborate with partners to identify and mitigate threats.

It is expected that use cases for enterprises and for service providers will largely overlap, but there are additional complications for service providers, especially in handling information that crosses administrative domains.

The output of endpoint posture assessment is expected to feed into additional processes, such as policy-based enforcement of acceptable state, verification and monitoring of security controls, and compliance to regulatory requirements.

2. Terms and Definitions

assessment

Defined in [RFC5209] as "the process of collecting posture for a set of capabilities on the endpoint (e.g., host-based firewall) such that the appropriate validators may evaluate the posture against compliance policy."

Within this document the use of the term is expanded to support other uses of collected posture (e.g. reporting, network enforcement, vulnerability detection, license management). The phrase "set of capabilities on the endpoint" includes: hardware and software installed on the endpoint."

asset

Defined in [RFC4949] as "a system resource that is (a) required to be protected by an information system’s security policy, (b) intended to be protect by a countermeasure, or (c) required for a system’s mission.

attribute

Defined in [RFC5209] as "data element including any requisite meta-data describing an observed, expected, or the operational status of an endpoint feature (e.g., anti-virus software is currently in use)."

endpoint

Defined in [RFC5209] as "any computing device that can be connected to a network. Such devices normally are associated with
a particular link layer address before joining the network and potentially an IP address once on the network. This includes: laptops, desktops, servers, cell phones, or any device that may have an IP address."

Network infrastructure devices (e.g. switches, routers, firewalls), which fit the definition, are also considered to be endpoints within this document.

Based on the previous definition of an asset, an endpoint is a type of asset.

posture

Defined in [RFC5209] as "configuration and/or status of hardware or software on an endpoint as it pertains to an organization’s security policy."

This term is used within the scope of this document to represent the state information that is collected from an endpoint (e.g. software/hardware inventory, configuration settings).

posture attributes

Defined in [RFC5209] as "attributes describing the configuration or status (posture) of a feature of the endpoint. For example, a Posture Attribute might describe the version of the operating system installed on the system."

Within this document this term represents a specific assertion about endpoint state (e.g. configuration setting, installed software, hardware). The phrase "features of the endpoint" refers to installed software or software components.

system resource

Defined in [RFC4949] as "data contained in an information system; or a service provided by a system; or a system capacity, such as processing power or communication bandwidth; or an item of system equipment (i.e., hardware, firmware, software, or documentation); or a facility that houses system operations and equipment.

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
3. Endpoint Posture Assessment

Endpoint posture assessment involves collecting information about the posture of a given endpoint. This posture information is gathered and then published to appropriate data repositories to make collected information available for further analysis supporting organizational security processes.

Endpoint posture assessment typically includes:

- Collecting the posture of a given endpoint;
- Making that posture available to the enterprise for further analysis and action; and
- Assessing that the endpoint’s posture is in compliance with enterprise standards and policy.

3.1. Example - Departmental Software Policy Compliance

In order to meet compliance requirements and ensure that corporate finance information is not revealed improperly, all computers in the finance department of Example Corporation are required to run only software contained on an approved list and to be configured to download and install software patches every night. Each computer is checked to make sure it complies with this policy whenever it connects to the network and at least once a day thereafter. These daily compliance checks assess the posture of each computer and report on its compliance with policy.

3.2. Main Success Scenario

1. Define a target endpoint to be assessed
2. Select acceptable state policies to apply to the defined target
3. Identify the endpoint being assessed
4. Collect posture attributes from the target
5. Communicate target identity and collected posture to external system for evaluation
6. Compare collected posture attributes from the target endpoint with expected state values as expressed in acceptable state policies
4. Functional Capabilities and Requirements

The capabilities in this section support assessing endpoint posture in an automated manner as described in Section 3.

4.1. Asset Management

Organizations manage a variety of assets within their enterprise including: endpoints, the hardware they are composed of, installed software, hardware/software licenses used, and configurations.

Managing endpoints and the different types of assets that compose them involves initially discovering and characterizing each asset instance, and then identify them in a common way. Characterization may take the form of logical characterization or security characterization, where logical characterization may include business context not otherwise related to security, but which may be used as information in support of decision making later in risk management.

4.1.1. Example - Asset Discovery within a subnet

Many network management systems detect the presence of assets in a subnet, such as an Ethernet subnet, by monitoring the MAC addresses broadcast within the subnet to determine who responds to broadcasts, and determine the location of the endpoint relative to a bridge. This information is useful for initially discovering and characterizing endpoints belonging to a particular type of network (e.g. Ethernet), and for detecting new nodes in the subnet. This type of information may be accessible by accessing ARP tables [RFC0826], Etherlike-MIB [RFC3535], the Link Layer Discovery Protocol MIB [RFC2922], the Interfaces MIB (IF-MIB) [RFC2863], the YANG module ietf-interfaces, and others.

4.1.2. Example - Asset Discovery by IP Address

Many network management systems periodically test for the presence of endpoints or interfaces in a network by broadcasting ICMP echo commands (pings) to a range of IP addresses and recording the addresses of nodes that respond. This helps discover the endpoints in the network, including endpoints that have suddenly appeared in a network that are not authorized to be part of the network.

4.1.3. Example - Asset Characterization using system information

The SYSTEM-MIB [RFC1213] contains information to help characterize an endpoint, including a description of the endpoint, an authoritative identifier of the type of endpoint assigned by the vendor of the endpoint, an administrative name for the endpoint, plus the
endpoint’s contact person, the location of the endpoint, system time, and an enumerator that identifies the layer of services provided by the endpoint. The system description includes the vendor, product type, model number, OS version, and networking software version. This is a key MIB module mandated for all SNMP-managed endpoints.

Similar information is available via the YANG module ietf-system. This module includes data node definitions for system identification, time-of-day management, user management, DNS resolver configuration, and some protocol operations for system management.

4.1.4. Example - Asset Characterization using the ENTITY-MIB

The ENTITY-MIB [RFC6933] contains information to describe the components of an endpoint, including physical and logical components, and the relationships between the components. The information about the physical entities includes manufacturer-assigned serial number, manufacture date, administratively-assigned AssetID, and UUID. Logical entities may be defined, and associated with the physical entities using a mapping table.

4.1.5. Example - Asset Characterization using the HOST-RESOURCES-MIB

The HOST-RESOURCES-MIB [RFC2790] contains information to describe the resources of an endpoint, including storage, memory, installed software, running software, software versions, processes, user sessions, devices (processors, disks, printers, network interfaces, etc.). This MIB module also provides monitoring of performance and error states.

4.1.6. Concepts

Managing endpoints and the different types of assets that compose them involves initially discovering and characterizing each asset instance, and then identify them in a common way. Characterization may take the form of logical characterization or security characterization, where logical characterization may include business context not otherwise related to security, but which may be used as information in support of decision making later in risk management.

Coverage involves understanding what and how many assets are under control. Assessing 80% of the enterprise assets is better than assessing 50% of the enterprise assets.

Getting asset details can be comparatively subtle - if an enterprise does not have a precise understanding of its assets, then all acquired data and consequent actions taken based on the data are considered suspect.
Assessing assets (managed and unmanaged) requires that we have visibility into the posture of endpoints, the ability to understand the composition and relationships between different assets types, and the ability to properly characterize them at the outset and over time.

The following list details some requisite Asset Management capabilities:

o Discover assets in the enterprise

o For a given endpoint, understand the composition and relationship of its constituent assets

o Characterize assets according to security and non-security asset properties

o Identify and describe assets using a common vocabulary between implementations

o Reconcile asset representations originating from disparate tools

o Manage asset information throughout the asset’s life cycle

4.1.7. Requirements

A method MUST be provided for identifying an endpoint (asset identification) as a unique entity within the its administrative domain.

The endpoint identifier SHOULD be able to be determined in an automated manner.

The endpoint identifier, as communicated between entities, SHOULD be held to a minimal size.

A method MUST be provided for defining an endpoint (asset classification) based on a set of organizationally relevant properties (e.g. organizational affiliation, criticality, function).

4.2. Security Configuration Management

Organizations manage a variety of configurations within their enterprise including: endpoints, the hardware they are composed of, installed software, hardware/software licenses used, and configurations.
4.2.1. Example - ENTITY-MIB

4.2.2. Example - HOST-RESOURCES-MIB

4.2.3. Example - YANG module ietf-interfaces

4.2.4. Concepts

Security configuration management (SCM) deals with the configuration of endpoints, including networking infrastructure devices and computing hosts. Data will include installed hardware and software, its configuration, and its use on the endpoint.

The following list details some requisite Configuration Management capabilities:

- [todo]

4.2.5. Requirements

[todo]

4.3. Security Change Management

Organizations manage a variety of changes within their enterprise including: [todo]

4.3.1. Example - DHCP addressing

4.3.2. Example - RADIUS network access

4.3.3. Example - NAT logging

4.3.4. Example - SYSLOG Authorization messages

SYSLOG [RFC5424] includes facilities for security authorization messages. These messages can be used to alert an analysts that an authorization attempt failed, and the analyst might choose to follow up and assess potential attacks on the relevant endpoint.

4.3.5. Concepts

[todo]

The following list details some requisite Change Management capabilities:

- [todo]
4.3.6. Requirements

[todo]

4.4. Security Vulnerability Management

Vulnerability management involves identifying the patch level of software installed on the device and the identification of insecure custom code (e.g. web vulnerabilities). All vulnerabilities need to be addressed as part of a comprehensive risk management program, which is a superset of software vulnerabilities. Thus, the capability of assessing non-software vulnerabilities applicable to the system is required. Additionally, it may be necessary to support non-technical assessment of data relating to assets such as aspects related to operational and management controls.

policy attribute collection

4.4.1. Example - NIDS response

1. An organization’s Network Intrusion Detection System detects a suspect packet received by an endpoint and sends an alert to an analyst. The analyst looks up the endpoint in the asset inventory database, looks up the configuration policy associated with that endpoint, and initiates an endpoint assessment of installed software and patches on the endpoint to determine if the endpoint is compliant with policy.

The analyst reviews the results of the assessment and takes action according to organization policy and procedures.

4.4.2. Example - Historical vulnerability analysis

When a serious vulnerability or a zero-day attack is discovered, one of the first priorities in any organization is to determine which endpoints may have been affected and assess those endpoints to try to determine whether they were compromised. Checking current endpoint state is not sufficient because an endpoint may have been temporarily compromised due to this vulnerability and then the infection may have removed itself. In fact, the vulnerable software may have been removed or upgraded since the compromise took place. And if the endpoint is still compromised, the malware on the endpoint may cause it to lie about its configuration. In this environment, maintaining historical information about endpoint configuration is essential. Such information can be used to find endpoints that had the vulnerable software installed at some point in time. Those endpoints can be checked for current or past indicators of compromise such as files or behavior linked to a known exploit for this vulnerability.
Endpoints found to be vulnerable can be isolated to prevent infection while remediation is done. Endpoints believed to be compromised can be isolated for analysis and to limit the spread of infection.

4.4.3. Source Address Validation

Source Address Validation Improvement methods were developed to prevent nodes attached to the same IP link from spoofing each other’s IP addresses, so as to complement ingress filtering with finer-grained, standardized IP source address validation. The framework document describes and motivates the design of the SAVI methods. Particular SAVI methods are described in other documents.

4.4.4. Concepts

The following list details some requisite Vulnerability Management capabilities:

- Collect the state of non-technical controls commonly called administrative controls (i.e. policy, process, procedure)
- Collect the state of technical controls including, but not necessarily limited to:
 - Software inventory (e.g. operating system, applications, patches)
 - Configuration settings

4.4.5. Requirements

[todo]

4.5. Data Collection

Central to any automated assessment solution is the ability to collect data from, or related to, an endpoint, such as the security state of the endpoint and its constituent assets.

4.5.1. Concepts

The following assessment capabilities support SCM:

- [todo]

4.5.2. Requirements
One or more data formats MUST be identified to describe instructions, data collection methods, to drive data collection (e.g., technical, interrogative).

One or more data formats MUST be identified to instruct what posture attributes need to be collected for a specific set of endpoints.

A method MUST be provided to include OPTIONAL instructions on describing what content must be run on the endpoint.

A method MUST be provided to include OPTIONAL instructions that determine how to collect data supporting any particular test for that endpoint.

A method MUST be provided for retrieving data collection instructions from a remote host (see Section 4.7).

One or more data formats MUST be identified to capture the results of data collection.

This expression MUST be capable of supporting the characterization of assets and any related configuration settings that together compose an endpoint.

A mechanism MUST be provided to identify the software and hardware asset instances that compose an endpoint.

An asset identifier SHOULD be able to be determined in an automated manner.

An asset identifier, as communicated between entities, SHOULD be held to a minimal size.

An asset identifier SHOULD be able to be represented in a simple unambiguous manner, such as a reference, so that its embedded use in places like applicability clauses for individual benchmark tests can be kept from making their usage unwieldy.

A mechanism MUST be provided to associate configuration settings values to the installed software.

A mechanism MUST be provided to identify additional collected posture attribute/value pairs related to an endpoint.

A mechanism MUST be provided to identify the endpoint the results pertain to (see Section 4.1).
A mechanism MUST be provided to associate the data collection method with the collected value.

A mechanism MUST be provided to include provenance information describing what sensor of software collected the data.

A mechanism MUST be provided to include entailment information, perhaps by reference, describing the methodology used to collect the data.

A method of communicating data collection results to another system for further analysis MUST be identified.

TODO: Communicate, unambiguously and to the necessary level of detail**, the asset details between software components

4.6. Assessment Result Analysis

The data collected needs to be analyzed for compliance to a standard stipulated by the enterprise. Analysis methods may vary between enterprises, but commonly take a similar form.

4.6.1. Concepts

The following capabilities support the analysis of assessment results:

- Comparing actual state to expected state
- Scoring/weighting individual comparison results
- Relating specific comparisons to benchmark-level requirements
- Relating benchmark-level requirements to one or more control frameworks

4.6.2. Requirements

A method MUST be provided for selecting acceptable state policy, describing how to evaluate collected information, based on characteristics of the endpoint and organizational policy.

A method MUST be provided for comparing collected data to expected state values (test evaluation).

Any results produced by analysis processes MUST be capable of being transformed into a human-readable format.
4.7. Content Management

The capabilities required to support risk management state measurement will yield volumes of content. The efficacy of risk management state measurement depends directly on the stability of the driving content, and, subsequently, the ability to change content according to enterprise needs.

4.7.1. Concepts

Capabilities supporting Content Management should provide the ability to create/define or modify content, as well as store and retrieve said content of at least the following types:

- Configuration checklists
- Assessment rules
- Data collection rules and methods
- Scoring models
- Vulnerability information
- Patch information
- Asset characterization data and rules

Note that the ability to modify content is in direct support of tailoring content for enterprise-specific needs.

4.7.2. Requirements

A protocol MUST be identified for retrieving SACM content from a content repository

A protocol MUST be identified for querying SACM content held in a content repository. The protocol MUST support querying content by applicability to asset characteristics.

TODO: Determine what content can or must be run on the endpoint

A protocol MUST be identified for curating SACM content in a content repository. Note: This might be an area where we can limit the scope of work relative to the initial SACM charter.

5. IANA Considerations
This memo includes no request to IANA.

6. Security Considerations

This memo documents, for Informational purposes, use cases for security automation. While it is about security, it does not affect security.

7. Acknowledgements

The National Institute of Standards and Technology (NIST) and/or the MITRE Corporation have developed specifications under the general term "Security Automation" including languages, protocols, enumerations, and metrics.

The authors would like to thank Kathleen Moriarty and Stephen Hanna for contributing text to this document. The author would also like to acknowledge the members of the SACM mailing list for their keen and insightful feedback on the concepts and text within this document.

8. Change Log

8.1. -04- to -05-

- Are we including user activities and behavior in the scope of this work? That seems to be layer 8 stuff, appropriate to an IDS/IPS application, not Internet stuff.

- I removed the references to what the WG will do because this belongs in the charter, not the (potentially long-lived) use cases document. I removed mention of charter objectives because the charter may go through multiple iterations over time; there is a website for hosting the charter; this document is not the correct place for that discussion.

- I moved the discussion of NIST specifications to the acknowledgements section.

- Removed the portion of the introduction that describes the chapters; we have a table of concepts, and the existing text seemed redundant.

- Removed marketing claims, to focus on technical concepts and technical analysis, that would enable subsequent engineering effort.
o Removed (commented out in XML) UC2 and UC3, and eliminated some
text that referred to these use cases.

o Modified IANA and Security Consideration sections.

o Moved Terms to the front, so we can use them in the subsequent
text.

o Removed the "Key Concepts" section, since the concepts of ORM and
IRM were not otherwise mentioned in the document. This would seem
more appropriate to the arch doc rather than use cases.

o Removed role=editor from David Waltmire’s info, since there are
three editors on the document. The editor is most important when
one person writes the document that represents the work of
multiple people. When there are three editors, this role marking
isn’t necessary.

o Modified text to describe that this was specific to enterprises,
and that it was expected to overlap with service provider use
cases, and described the context of this scoped work within a
larger context of policy enforcement, and verification.

o The document had asset management, but the charter mentioned
asset, change, configuration, and vulnerability management, so I
added sections for each of those categories.

o Added text to Introduction explaining goal of the document.

o Added sections on various example use cases for asset management,
config management, change management, and vulnerability
management.

9. References

9.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

9.2. Informative References

[I-D.ietf-nea-pt-eap]
Cam-Winget, N. and P. Sangster, "PT-EAP: Posture Transport
(PT) Protocol For EAP Tunnel Methods", draft-ietf-nea-pt-
eap-06 (work in progress), December 2012.

[I-D.ietf-nea-pt-tls]

[I-D.ietf-netmod-interfaces-cfg]

[I-D.ietf-netmod-system-mgmt]

[I-D.ietf-savi-framework]

Authors’ Addresses

David Waltermire
National Institute of Standards and Technology
100 Bureau Drive
Gaithersburg, Maryland 20877
USA

Email: david.waltermire@nist.gov

Adam W. Montville
Tripwire, Inc.
101 SW Main Street, Suite 1500
Portland, Oregon 97204
USA

Email: amontville@tripwire.com