
Network Working Group P. Kyzivat
Internet-Draft L. Xiao
Intended status: Standards Track C. Groves
Expires: August 18, 2014 Huawei
 R. Hansen
 Cisco Systems
 February 14, 2014

 CLUE Signaling
 draft-kyzivat-clue-signaling-07

Abstract

 This document specifies how CLUE-specific signaling such as the CLUE
 protocol [I-D.presta-clue-protocol] and the CLUE data channel
 [I-D.holmberg-clue-datachannel] are used with each other and with
 existing signaling mechanisms such as SIP and SDP to produce a
 telepresence call.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 18, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Kyzivat, et al. Expires August 18, 2014 [Page 1]

Internet-Draft CLUE Signaling February 2014

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 2. Terminology . 4
 3. CLUE call establishment 5
 3.1. Establishment of the CLUE data channel 5
 3.2. Initial media transmission 5
 3.3. Interoperability with non-CLUE devices 6
 3.4. Mid-call changes to CLUE status 6
 4. CLUE use of SDP O/A . 6
 4.1. Signalling CLUE Encodings 6
 4.1.1. Alternate encoding limit syntaxes 7
 4.2. Negotiating receipt of CLUE capture encodings in SDP . . . 7
 4.3. Signaling CLUE control of "m" lines 7
 4.4. Media line directionality 8
 4.5. Multiplexing CLUE media lines 8
 5. Interaction of CLUE protocol and SDP negotiations 9
 5.1. Independence of SDP and CLUE negotiation 9
 5.2. Recommendations for operating with non-atomic
 operations . 9
 5.3. Constraints on sending media 10
 6. Example: A call between two CLUE-capable endpoints 10
 7. Example: A call between a CLUE-capable and non-CLUE
 endpoint . 18
 8. CLUE requirements on SDP O/A 19
 9. SIP Signaling . 19
 10. CLUE over RTCWEB . 20
 11. Open Issues . 20
 12. What else? . 20
 13. Acknowledgements . 20
 14. IANA Considerations . 20
 15. Security Considerations 20
 16. Change History . 21
 17. References . 22
 17.1. Normative References 22
 17.2. Informative References 23
 Appendix A. CLUE Signalling and data channel concerns 24
 A.1. Protocol Versioning and Options 24
 A.1.1. Versioning Objectives 24
 A.1.2. Versioning Overview 24
 A.1.3. Version Negotiation 26
 A.1.4. Option Negotiation 27
 A.1.5. Option Elements 27

Kyzivat, et al. Expires August 18, 2014 [Page 2]

Internet-Draft CLUE Signaling February 2014

 A.1.5.1. <mediaProvider> 28
 A.1.6. Version & option negotiation errors 28
 A.1.7. Definition and Use of Version Numbers 29
 A.1.8. Version & Option Negotiation Examples 30
 A.1.8.1. Successful Negotiation - Multi-version 30
 A.1.8.2. Successful Negotiation - Consumer-Only Endpoint . 32
 A.1.8.3. Successful Negotiation - Provider-Only Endpoint . 33
 A.1.8.4. Version Incompatibility 33
 A.1.8.5. Option Incompatibility 34
 A.1.8.6. Syntax Error 35
 A.2. Message Transport . 35
 A.2.1. CLUE Channel Lifetime 35
 A.2.2. Channel Error Handling 36
 A.3. Message Framing . 36
 Authors’ Addresses . 36

Kyzivat, et al. Expires August 18, 2014 [Page 3]

Internet-Draft CLUE Signaling February 2014

1. Introduction

 To enable devices to participate in a telepresence call, selecting
 the sources they wish to view, receiving those media sources and
 displaying them in an optimal fashion, CLUE involves two principal
 and inter-related protocol negotiations. SDP, conveyed via SIP, is
 used to negotiate the specific media capabilities that can be
 delivered to specific addresses on a device. Meanwhile, a CLUE
 protocol [I-D.presta-clue-protocol], transported via a CLUE data
 channel [I-D.holmberg-clue-datachannel], is used to negotiate the
 capture sources available, their attributes and any constraints in
 their use, along which which captures the far end provides a device
 wishes to receive.

 Beyond negotiating the CLUE channel, SDP is also used to negotiate
 the details of supported media streams and the maximum capability of
 each of those streams. As the CLUE Framework
 [I-D.ietf-clue-framework] defines a manner in which the media
 provider expresses their maximum encoding capabilities, SDP is also
 used to express the encoding limits for each potential encoding.

 Backwards-compatibility is an important consideration of the
 document: it is vital that a CLUE-capable device contacting a device
 that does not support CLUE is able to fall back to a fully functional
 non-CLUE call. The document also defines how a non-CLUE call may be
 upgraded to CLUE in mid-call, and similarly how CLUE functionality
 can be removed mid-call to return to a standard non-CLUE call.

 This document originally also defined the CLUE protocol itself.
 These details have mostly been split out into
 [I-D.presta-clue-protocol] and expanded, but at present some details
 remain in this document.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This document draws liberally from the terminology defined in the
 CLUE Framework [I-D.ietf-clue-framework].

 Other terms introduced here:

Kyzivat, et al. Expires August 18, 2014 [Page 4]

Internet-Draft CLUE Signaling February 2014

 CLUE data channel: A reliable, bidirectional, transport mechanism
 used to convey CLUE messages. See [I-D.holmberg-clue-datachannel]
 for more details..
 CLUE-capable device: A device that supports the CLUE data channel
 [I-D.holmberg-clue-datachannel], the CLUE protocol
 [I-D.presta-clue-protocol] and the principles of CLUE negotiation.
 CLUE-enabled device: A CLUE-capable device that wishes to negotiate
 a CLUE data channel and send and/or receive CLUe-controlled media.
 Non-CLUE device: A device that supports standard SIP and SDP, but
 either does not support CLUE, or that does but does not currently
 wish to invoke CLUE capabilities.
 CLUE-controlled media: A media "m" line that is under CLUE control;
 the caprute source that provides the media on this "m" line is
 negotiated in CLUE. There is a corresponding "non-CLUE-
 controlled" media term. See Section 4 for details of how this
 control is signalled in SDP

3. CLUE call establishment

3.1. Establishment of the CLUE data channel

 The CLUE data channel [I-D.holmberg-clue-datachannel] is a
 bidirectional SCTP over DTLS channel used for the transport of CLUE
 messages. This channel must be established before CLUE protocol
 messages can be exchanged and CLUE-controlled media can be sent.

 Presence of the CLUE data channel in an SDP offer or answer also
 served as an indication that the device supports CLUE and wishes to
 upgrade the call to include CLUE-controlled media. A CLUE-enabled
 device SHOULD include an "m" line for the CLUE channel in its initial
 SDP offer, and SHOULD include an "m" line in subsequent offers and
 answers, when allowed by [RFC3264].

 In cases where both devices in an SDP negotiation are CLUE-enabled
 and include an "m" line for the data channel, see
 [I-D.holmberg-clue-datachannel] for negotiation details. If
 negotiation is successful, the call is now considered CLUE-enabled,
 and sending of CLUE protocol [I-D.presta-clue-protocol] messages can
 begin.

3.2. Initial media transmission

 In the event that the CLUE data channel is successfully negotiated, a
 CLUE-enabled device MAY choose not to send media on the non-CLUE-
 controlled channels during the period in which control of the CLUE-
 controlled media lines is negotiated. However, a CLUE-enabled device
 MUST still be prepared to receive media on non-CLUE-controlled media

Kyzivat, et al. Expires August 18, 2014 [Page 5]

Internet-Draft CLUE Signaling February 2014

 lines as defined in [RFC3264].

3.3. Interoperability with non-CLUE devices

 A CLUE-enabled device sending an initial SDP offer SHOULD NOT include
 any "m" line for CLUE-controlled media beyond the "m" line for the
 CLUE data channel, and SHOULD include at least one non-CLUE-
 controlled media "m" line.

 In the event that the CLUE data channel is not negotiated in the
 initial offer/answer then CLUE is not in use in the call, and the
 CLUE-enabled devices MUST either revert to non-CLUE behaviour or
 terminate the call.

3.4. Mid-call changes to CLUE status

 A CLUE-enabled device that receives an initial SDP offer from a non-
 CLUE device with no CLUE data channel "m" line SHOULD include a new
 data channel "m" line in any subsequent offers it sends, to indicate
 that it is CLUE-enabled.

 If, in an ongoing non-CLUE call, one or both sides of the call
 subsequently add the CLUE data channel "m" line to their SDP and the
 CLUE data channel is then negotiated successfully the call is then
 considered CLUE-enabled, and sending of CLUE protocol
 [I-D.presta-clue-protocol] messages can begin.

 If, in an ongoing CLUE-enabled call, an SDP offer-answer negotiation
 completes in a fashion in which the CLUE data channel is no longer
 active, the call is no longer considered CLUE-enabled. Devices in
 the call must revert to non-CLUE behaviour or terminate the call.

4. CLUE use of SDP O/A

4.1. Signalling CLUE Encodings

 The CLUE Framework [I-D.ietf-clue-framework] defines the concept of
 "encodings", which represent the sender’s encode ability. Each
 encoding the media provider wishes to signal is signalled via an "m"
 line of the appropriate media type, which MUST be marked as sendonly
 with the "a=sendonly" attribute or as inactive with the "a=inactive"
 attribute.

 The encoder limits of active (eg, "a=sendonly") encodings can then be
 expressed using existing SDP syntax. For instance, for H.264 see
 Table 6 in [RFC6184] for a list of valid parameters for representing
 encoder sender stream limits.

Kyzivat, et al. Expires August 18, 2014 [Page 6]

Internet-Draft CLUE Signaling February 2014

 Every "m" line representing a CLUE encoding SHOULD contain a "label"
 attribute as defined in [RFC4574]. This label is used to identify
 the encoding by the sender in CLUE ADVERTISEMENT messages and by the
 receiver in CLUE CONFIGURE messages.

4.1.1. Alternate encoding limit syntaxes

 Note that while the expressing of CLUE encoding limits in SDP has
 been discussed at some length by the working group and it has been
 agreed that this is the current, working assumption, formal consensus
 has not been agreed on this. Alternatives include placing encoding
 limits in the CLUE ADVERTISEMENT message, or by using alternate SDP
 syntax, such as is suggested in [I-D.groves-clue-latent-config].

4.2. Negotiating receipt of CLUE capture encodings in SDP

 A receiver who wishes to receive a CLUE stream via a specific
 encoding requires an "a=recvonly" "m" line that matches the
 "a=sendonly" encoding. As well as the normal restrictions defined in
 [RFC3264] media MUST NOT be sent on this stream until the sender has
 received a valid CLUE CONFIGURE message specifying the capture to be
 used for this stream.

4.3. Signaling CLUE control of "m" lines

 In many cases an implementation may wish to mix media channels that
 are under CLUE control with those that are not. It may want to
 ensure that there are non-CLUE streams for purposes of
 interoperability, or that can provide media from the start of the
 call before CLUE negotiation completes, or because the implementation
 wants CLUE-controlled video but traditional audio, or for any other
 reasons.

 Which "m" lines in an SDP body are under control of the CLUE channel
 is signalled via the SDP Grouping Framework [RFC5888]. Devices that
 wish to negotiate CLUE MUST support the grouping framework.

 A new semantic for the "group" session-level attribute, "CLUE", is
 used to signal which "m" lines are under the control of a CLUE
 channel. As per the framework, all of the "m" lines of a session
 description that uses "group" MUST be identified with a "mid"
 attribute whether they are controlled by CLUE or not. The "mid" id
 of any "m" lines controlled by a CLUE channel MUST be included in the
 "CLUE" group attribute alongside the "mid" id of the CLUE channel
 controlling them.

 The CLUE group MUST NOT include more than one "m" line for a CLUE
 data channel. If a CLUE data channel is part of the CLUE group

Kyzivat, et al. Expires August 18, 2014 [Page 7]

Internet-Draft CLUE Signaling February 2014

 attribute other media "m" lines included in the group are under the
 control of that CLUE channel; media MUST NOT be sent or received on
 these "m" lines until the CLUE channel has been negotiated and media
 has been negotiated via the CLUE protocol. If no CLUE data channel
 is part of the CLUE group attribute then media MUST NOT be sent or
 received on these "m" lines.

 "m" lines not specified as under CLUE control follow normal rules for
 media streams negotiated in SDP as defined in documents such as
 [RFC3264].

 An SDP MAY include more than one group attribute with the "CLUE"
 semantic. An "mid" id for a given "m" line MUST NOT be included in
 more than one CLUE group.

4.4. Media line directionality

 Presently, this specification mandates that CLUE-controlled "m"-lines
 must be unidirectional. This is because setting "m"-lines to
 "a=sendonly" allows the encoder limits to be expressed, whereas in
 other cases codec attributes express the receive capabilities of a
 media line.

 It is possible that in future versions of this draft or its successor
 this restriction will be relaxed. If a device does not feel there is
 a benefit to expressing encode limitations, or if there are no
 meaningful codec-specific limitations to express (such as with many
 audio codecs) there are benefits to allowing bidirectional "m"-lines.
 With bidirectional media lines recipients do not always need to
 create a new offer to add their own "m"-lines to express their send
 capabilities; if they can produce an equal or lesser number of
 streams to send then they may not need additional "m"-lines.

 However, at present the need to express encode limitations and the
 wish to simplify the offer/answer procedure means that for the time
 being only unidirectional media lines are allowed for CLUE-controlled
 media. The highly asymmetric nature of CLUE means that the
 probability of the recipient of the initial offer needing to make
 their own offer to add additional "m"-lines is significantly higher
 than it is for most other SIP call scenarios, in which there is a
 tendancy for both sides to have similar numbers of potential audio
 and video streams they can send.

4.5. Multiplexing CLUE media lines

 There is a desire in many use-cases to be able to multiplex multiple
 RTP streams onto a single port. However, the syntax for doing this
 in a CLUE or a generic MMUSIC fashion has not yet been determined.

Kyzivat, et al. Expires August 18, 2014 [Page 8]

Internet-Draft CLUE Signaling February 2014

 Because there will always also be a need for non-multiplexed
 operation, the decision was made to move forward with non-multiplexed
 syntax, and add multiplexing capabilities when syntax for that has
 been defined.

5. Interaction of CLUE protocol and SDP negotiations

 Information about media streams in CLUE is split between two message
 types: SDP, which defines media addresses and limits, and the CLUE
 channel, which defines properties of capture devices available, scene
 information and additional constraints. As a result certain
 operations, such as advertising support for a new transmissible
 capture with associated stream, cannot be performed atomically, as
 they require changes to both SDP and CLUE messaging.

 This section defines how the negotiation of the two protocols
 interact, provides some recommendations on dealing with intermediary
 stages in non-atomic operations, and mandates additional constraints
 on when CLUE-configured media can be sent.

5.1. Independence of SDP and CLUE negotiation

 To avoid complicated state machines with the potential to reach
 invalid states if messages were to be lost, or be rewritten en-route
 by middle boxes, the current proposal is that SDP and CLUE messages
 are independent. The state of the CLUE channel does not restrict
 when an implementation may send a new SDP offer or answer, and
 likewise the implementation’s ability to send a new CLUE
 ADVERTISEMENT or CONFIGURE message is not restricted by the results
 of or the state of the most recent SDP negotiation.

 The primary implication of this is that a device may receive an SDP
 with a CLUE encoding it does not yet have capture information for, or
 receive a CLUE CONFIGURE message specifying a capture encoding for
 which the far end has not negotiated a media stream in SDP.

 CLUE messages contain an EncodingID which is used to identify a
 specific encoding in SDP. The non-atomic nature of CLUE negotiation
 means that a sender may wish to send a new ADVERTISEMENT before the
 corresponding SDP message. As such the sender of the CLUE message
 MAY include an EncodingID which does not currently match an extant id
 in SDP.

5.2. Recommendations for operating with non-atomic operations

 Generally, implementations that receive messages for which they have
 incomplete information SHOULD wait until they have the corresponding

Kyzivat, et al. Expires August 18, 2014 [Page 9]

Internet-Draft CLUE Signaling February 2014

 information they lack before sending messages to make changes related
 to that information. For instance, an implementation that receives a
 new SDP offer with three new "a=sendonly" CLUE "m" lines that has not
 received the corresponding CLUE ADVERTISEMENT providing the capture
 information for those streams SHOULD NOT include corresponding
 "a=recvonly" lines in its answer, but instead should make a new SDP
 offer when and if a new ADVERTISEMENT arrives with captures relevant
 to those encodings.

 Because of the constraints of offer/answer and because new SDP
 negotiations are generally more ’costly’ than sending a new CLUE
 message, implementations needing to make changes to both channels
 SHOULD prioritize sending the updated CLUE message over sending the
 new SDP message. The aim is for the recipient to receive the CLUE
 changes before the SDP changes, allowing the recipient to send their
 SDP answers without incomplete information, reducing the number of
 new SDP offers required.

5.3. Constraints on sending media

 While SDP and CLUE message states do not impose constraints on each
 other, both impose constraints on the sending of media - media MUST
 NOT be sent unless it has been negotiated in both CLUE and SDP: an
 implementation MUST NOT send a specific CLUE capture encoding unless
 its most recent SDP exchange contains an active media channel for
 that encoding AND the far end has sent a CLUE CONFIGURE message
 specifying a valid capture for that encoding.

6. Example: A call between two CLUE-capable endpoints

 This example illustrates a call between two CLUE-capable endpoints.
 Alice, initiating the call, is a system with three cameras and three
 screens. Bob, receiving the call, is a system with two cameras and
 two screens. A call-flow diagram is presented, followed by an
 summary of each message.

 To manage the size of this section only video is considered, and SDP
 snippets only illustrate video ’m’ lines. ACKs are not discussed.

 +----------+ +-----------+
 | Alice | | Bob |
 | | | |
 +----+-----+ +-----+-----+
 | |
 | |

Kyzivat, et al. Expires August 18, 2014 [Page 10]

Internet-Draft CLUE Signaling February 2014

 | SIP INVITE 1 (BASIC SDP+COMEDIA) |
 |--------------------------------->|
 | |
 | |
 | SIP 200 OK 1 (BASIC SDP+COMEDIA) |
 |<---------------------------------|
 | |
 | |
 | SIP ACK 1 |
 |--------------------------------->|
 | |
 | |
 | |
 |<########### MEDIA 1 ############>|
 | 1 video A->B, 1 video B->A |
 |<################################>|
 | |
 | |
 | |
 |<================================>|
 | CLUE CTRL CHANNEL ESTABLISHED |
 |<================================>|
 | |
 | |
 | CLUE ADVERTISEMENT 1 |
 |*********************************>|
 | |
 | |
 | CLUE ADVERTISEMENT 2 |
 |<*********************************|
 | |
 | |
 | SIP INVITE 2 (+3 sendonly) |
 |--------------------------------->|
 | |
 | |
 | CLUE CONFIGURE 1 |
 |<*********************************|
 | |
 | |
 | CLUE RESPONSE 1 |
 |*********************************>|
 | |
 | |
 | SIP 200 OK 2 (+2 recvonly) |
 |<---------------------------------|
 | |
 | |

Kyzivat, et al. Expires August 18, 2014 [Page 11]

Internet-Draft CLUE Signaling February 2014

 | SIP ACK 2 |
 |--------------------------------->|
 | |
 | |
 | |
 |<########### MEDIA 2 ############>|
 | 2 video A->B, 1 video B->A |
 |<################################>|
 | |
 | |
 | SIP INVITE 3 (+2 sendonly) |
 |<---------------------------------|
 | |
 | |
 | CLUE CONFIGURE 2 |
 |*********************************>|
 | |
 | |
 | CLUE RESPONSE 2 |
 |<*********************************|
 | |
 | |
 | SIP 200 OK 3 (+2 recvonly) |
 |--------------------------------->|
 | |
 | |
 | |
 | SIP ACK 3 |
 |<---------------------------------|
 | |
 | |
 | |
 |<########### MEDIA 3 ############>|
 | 2 video A->B, 2 video B->A |
 |<################################>|
 | |
 | |
 | |
 v v

 In INVITE 1, Alice sends Bob a SIP INVITE including in the SDP body
 the basilar audio and video capabilities ("BASIC SDP") and the
 information needed for opening a control channel to be used for CLUE
 protocol messages exchange, according to what is envisioned in the
 COMEDIA approach ("COMEDIA") for DTLS/SCTP channel
 [I-D.ietf-mmusic-sctp-sdp]. A snippet of the SDP showing the
 grouping attribute and the video m-line are shown below (mid 3

Kyzivat, et al. Expires August 18, 2014 [Page 12]

Internet-Draft CLUE Signaling February 2014

 represents the CLUE channel):

 ...
 a=group:CLUE 3
 ...
 m=video 6002 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
 a=sendrecv
 a=mid:2

 Bob responds with a similar SDP (200 OK 1); due to their similiarity
 no SDP snippet is shown here. Alice and Bob are each able to send a
 single audio and video stream (whether they choose to send this
 initial media before CLUE has been negotiated is implementation-
 dependent). This is illustrated as MEDIA 1.

 With the successful initial O/A Alice and Bob are also free to
 negotiate the CLUE channel. Once this is successfully established
 CLUE negotiation can begin. This is illustrated as CLUE CHANNEL
 ESTABLISHED.

 Alice now sends her CLUE Advertisement (ADVERTISEMENT 1). She
 advertises three static captures representing her three cameras. She
 also includes switched captures suitable for two- and one-screen
 systems. All of these captures are in a single capture scene, with
 suitable capture scene entries to tell Bob that he should either
 subscribe to the three static captures, the two switched capture view
 or the one switched capture view. Alice has no simultaneity
 constraints, so includes all six captures in one simultaneous set.
 Finally, Alice includes an encoding group with three encoding IDs:
 "enc1", "enc2" and "enc3". These encoding ids aren’t currently
 valid, but will match the next SDP offer she sends.

 Bob received ADVERTISEMENT 1 but does not yet send a Configure
 message, because he has not yet received Alice’s encoding
 information, so as yet he does not know if she will have sufficient
 resources to send him the two streams he ideally wants at a quality
 he is happy with.

 Bob also sends his CLUE ADVERTISEMENT (ADVERTISEMENT 2). He
 advertises two static captures representing his cameras. He also
 includes a single composed capture for single-screen systems, in
 which he will composite the two camera views into a single video
 stream. All three captures are in a single capture scene, with
 suitable capture scene entries to tell Alice that she should either

Kyzivat, et al. Expires August 18, 2014 [Page 13]

Internet-Draft CLUE Signaling February 2014

 subscribe to the two static captures, or the single composed capture.
 Bob also has no simultaneity constraints, so includes all three
 captures in one simultaneous set. Bob also includes a single
 encoding group with two encoding IDs: "foo" and "bar".

 Similarly, Alices receives ADVERTISEMENT 2 but does not yet send a
 CONFIGURE message, because she has not yet received Bob’s encoding
 information.

 Alice now sends INVITE 2. She maintains the sendrecv audio, video
 and CLUE m-lines, and she adds three new sendonly m-lines to
 represents the maximum three encodings she can send. Each of these
 m-lines has a label corresponding to one of the encoding ids from
 ADVERTISEMENT 1. Each also has its mid added to the grouping
 attribute to show they are controlled by the CLUE channel. A snippet
 of the SDP showing the grouping attribute and the video m-lines are
 shown below (mid 3 represents the CLUE channel):

 ...
 a=group:CLUE 3 4 5 6
 ...
 m=video 6002 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
 a=sendrecv
 a=mid:2
 ...
 m=video 6004 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016
 a=sendonly
 a=mid:4
 a=label:enc1
 m=video 6006 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016
 a=sendonly
 a=mid:5
 a=label:enc2
 m=video 6008 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016
 a=sendonly
 a=mid:6
 a=label:enc3

Kyzivat, et al. Expires August 18, 2014 [Page 14]

Internet-Draft CLUE Signaling February 2014

 Bob now has all the information he needs to decide which streams to
 configure. As such he now sends CONFIGURE 1. This requests the pair
 of switched captures that represent Alice’s scene, and he configures
 them with encoder ids "enc1" and "enc2". This also serves as an ack
 for Alice’s ADVERTISMENT 1.

 Alice receives Bob’s message CONFIGURE 1 and sends RESPONSE 1 to ack
 its receptions. She does not yet send the capture encodings
 specified, because at this stage Bob hasn’t negotiated the ability to
 receive these streams in SDP.

 Bob now sends his SDP answer as part of 200 OK 2. Alongside his
 original audio, video and CLUE m-lines he includes two active
 recvonly m-lines and a zeroed m-line for the third. He adds their
 mid values to the grouping attribute to show they are controlled by
 the CLUE channel. A snippet of the SDP showing the grouping
 attribute and the video m-lines are shown below (mid 100 represents
 the CLUE channel):

 ...
 a=group:CLUE 11 12 100
 ...
 m=video 58722 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
 a=sendrecv
 a=mid:10
 ...
 m=video 58724 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
 a=recvonly
 a=mid:11
 m=video 58726 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
 a=recvonly
 a=mid:12
 m=video 0 RTP/AVP 96

 On receiving 200 OK 2 from Bob Alice is now able to send the two
 streams of video Bob requested - this is illustrated as MEDIA 2.

 The constraints of offer/answer meant that Bob could not include his
 encoder information as new m-lines in 200 OK 2. As such Bob now
 sends INVITE 3 to generate a new offer. Along with all the streams

Kyzivat, et al. Expires August 18, 2014 [Page 15]

Internet-Draft CLUE Signaling February 2014

 from 200 OK 2 Bob also includes two new sendonly streams. Each
 stream has a label corresponding to the encoding ids in his
 ADVERTISEMENT 2 message. He also adds their mid values to the
 grouping attribute to show they are controlled by the CLUE channel.
 A snippet of the SDP showing the grouping attribute and the video
 m-lines are shown below (mid 100 represents the CLUE channel):

 ...
 a=group:CLUE 11 12 13 14 100
 ...
 m=video 58722 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
 a=sendrecv
 a=mid:10
 ...
 m=video 58724 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
 a=recvonly
 a=mid:11
 m=video 58726 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
 a=recvonly
 a=mid:12
 m=video 0 RTP/AVP 96
 m=video 58728 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016
 a=sendonly
 a=label:foo
 a=mid:13
 m=video 58730 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016
 a=sendonly
 a=label:bar
 a=mid:14

 Having received this Alice now has all the information she needs to
 send CONFIGURE 2. She requests the two static captures from Bob, to
 be sent on encodings "foo" and "bar".

 Bob receives Alice’s message CONFIGURE 2 and sends RESPONSE 2 to ack
 its receptions. Bob does not yet send the capture encodings

Kyzivat, et al. Expires August 18, 2014 [Page 16]

Internet-Draft CLUE Signaling February 2014

 specified, because Alice hasn’t yet negotiated the ability to receive
 these streams in SDP.

 Alice now sends 200 OK 3, matching two recvonly m-lines to Bob’s new
 sendonly lines. She includes their mid values in the grouping
 attribute to show they are controlled by the CLUE channel. A snippet
 of the SDP showing the grouping attribute and the video m-lines are
 shown below (mid 3 represents the CLUE channel):

 ...
 a=group:CLUE 3 4 5 7 8
 ...
 m=video 6002 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
 a=sendrecv
 a=mid:2
 ...
 m=video 6004 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016
 a=sendonly
 a=mid:4
 a=label:enc1
 m=video 6006 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016
 a=sendonly
 a=mid:5
 a=label:enc2
 m=video 0 RTP/AVP 96
 m=video 6010 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
 a=recvonly
 a=mid:7
 m=video 6012 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
 a=recvonly
 a=mid:8

 Finally, on receiving 200 OK 3 Bob is now able to send the two
 streams of video Alice requested - this is illustrated as MEDIA 3.

 Both sides of the call are now sending multiple video streams with

Kyzivat, et al. Expires August 18, 2014 [Page 17]

Internet-Draft CLUE Signaling February 2014

 their sources defined via CLUE negotiation. As the call progresses
 either side can send new ADVERTISEMENT or CONFIGURE or new SDP
 negotiation to add, remove or change what they have available or want
 to receive.

7. Example: A call between a CLUE-capable and non-CLUE endpoint

 In this brief example Alice is a CLUE-capable endpoint making a call
 to Bob, who is not CLUE-capable, i.e., it is not able to use the CLUE
 protocol.

 +----------+ +-----------+
 | EP1 | | EP2 |
 | | | |
 +----+-----+ +-----+-----+
 | |
 | |
 | SIP INVITE 1 (BASIC SDP+COMEDIA) |
 |--------------------------------->|
 | |
 | |
 | 200 0K 1 (BASIC SDP+*NO*COMEDIA) |
 |<---------------------------------|
 | |
 | |
 | ACK 1 |
 |--------------------------------->|
 | |
 | |
 | |
 |<########### MEDIA 1 ############>|
 | 1 video A->B, 1 video B->A |
 |<################################>|
 | |
 | |
 | |
 | |
 v v

 In INVITE 1, Alice sends Bob a SIP INVITE including in the SDP body
 the basilar audio and video capabilities ("BASIC SDP") and the
 information needed for opening a control channel to be used for CLUE
 protocol messages exchange, according to what is envisioned in the
 COMEDIA approach ("COMEDIA") for DTLS/SCTP channel

Kyzivat, et al. Expires August 18, 2014 [Page 18]

Internet-Draft CLUE Signaling February 2014

 [I-D.ietf-mmusic-sctp-sdp]. A snippet of the SDP showing the
 grouping attribute and the video m-line are shown below (mid 3
 represents the CLUE channel):

 ...
 a=group:CLUE 3
 ...
 m=video 6002 RTP/AVP 96
 a=rtpmap:96 H264/90000
 a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
 a=sendrecv
 a=mid:2

 Bob is not CLUE capable, and hence does not recognize the "CLUE"
 semantic for the grouping attribute, not does he support the CLUE
 channel. He responds with an answer with audio and video, but with
 the CLUE channel zeroed.

 From the lack of the CLUE channel Alice understands that Bob does not
 support CLUE, or does not wish to use it. Both sides are now able to
 send a single audio and video stream to each other. Alice at this
 point begins to send her fallback video: in this case likely a
 switched view from whichever camera shows the current loudest
 participant on her side.

8. CLUE requirements on SDP O/A

 The current proposal calls for a new "CLUE" semantic for the SDP
 Grouping Framework [RFC5888].

 Any other SDP extensions required to support CLUE signaling should
 also be specified here. Then we will need to take action within
 MMUSIC to make those happen. This section should be empty and
 removed before this document becomes an RFC.

 NOTE: The RTP mapping document [I-D.even-clue-rtp-mapping] is also
 likely to call for SDP extensions. We will have to reconcile how to
 coordinate these two documents.

9. SIP Signaling

 (Placeholder) This may be unremarkable. If so we can drop it.

Kyzivat, et al. Expires August 18, 2014 [Page 19]

Internet-Draft CLUE Signaling February 2014

10. CLUE over RTCWEB

 We may want to rule this out of scope for now. But we should be
 thinking about this.

11. Open Issues

 Here are issues pertinent to signaling that need resolution.
 Resolution will probably result in changes somewhere in this
 document, but may also impact other documents.
 o While the preference is to multiplex multiple capture encodings
 over a single RTP session, this will not always be desirable or
 possible. The factors that prevent multiplexing may come from
 either the provider or the consumer. So the extent of
 multiplexing must be negotiated. The decision about how to
 multiplex affects the number and grouping of m-lines in the SDP.
 The endpoint of a CLUE session that sends an offer needs to know
 the mapping of capture encodings to m-lines for both sides.

 AFAIK this issue hasn’t yet been considered at all.
 o The current method for expressing encodings in SDP limits the
 parameters available when describing H264 encoder capabilities to
 those defined in Table 6 in [RFC6184]

12. What else?

13. Acknowledgements

 The team focusing on this draft consists of: Roni Even, Rob Hansen,
 Christer Holmberg, Paul Kyzivat, Simon Pietro-Romano, Roberta Presta.

 Christian Groves has contributed detailed comments and suggestions.

 The author list should be updated as people contribute substantial
 text to this document.

14. IANA Considerations

 TBD

15. Security Considerations

 TBD

Kyzivat, et al. Expires August 18, 2014 [Page 20]

Internet-Draft CLUE Signaling February 2014

16. Change History

 -07: Revisions by Rob Hansen
 * Removed the text providing arguments for encoding limits being
 in SDP and encoding groups in the CLUE protocol in favor of the
 specifics of how to negotiate encodings in SDP
 * Added normative language on the setting up of a CLUE call, and
 added sections on mid-call changes to the CLUE status.
 * Added references to [I-D.holmberg-clue-datachannel] where
 appropriate.
 * Added some terminology for various types of CLUE and non-CLUE
 states of operation.
 * Moved language related to topics that should be in
 [I-D.holmberg-clue-datachannel] and [I-D.presta-clue-protocol],
 but that has not yet been resolved in those documents, into an
 appendix.
 -06: Revisions by Rob Hansen
 * Removed CLUE message XML schema and details that are now in
 draft-presta-clue-protocol
 * Encoding limits in SDP section updated to note that this has
 been investigated and discussed and is the current working
 assumption of the WG, though consensus has not been fully
 achieved.
 * A section has also been added on the current mandation of
 unidirectional "m"-lines.
 * Updated CLUE messaging in example call flow to match
 draft-presta-clue-protocol-03
 -05: Revisions by pkyzivat:
 * Specified versioning model and mechanism.
 * Added explicit response to all messages.
 * Rearranged text to work with the above changes. (Which
 rendered diff almost useless.)
 -04: Revisions by Rob Hansen: ???
 -03: Revisions by pkyzivat:
 * Added a syntax section with an XML schema for CLUE messages.
 This is a strawhorse, and is very incomplete, but it
 establishes a template for doing this based on elements defined
 in the data model. (Thanks to Roberta for help with this!)
 * Did some rewording to fit the syntax section in and reference
 it.
 * Did some relatively minor restructuring of the document to make
 it flow better in a logical way.
 -02: A bunch of revisions by pkyzivat:
 * Moved roberta’s call flows to a more appropriate place in the
 document.
 * New section on versioning.

Kyzivat, et al. Expires August 18, 2014 [Page 21]

Internet-Draft CLUE Signaling February 2014

 * New section on NAK.
 * A couple of possible alternatives for message acknowledgment.
 * Some discussion of when/how to signal changes in provider
 state.
 * Some discussion about the handling of transport errors.
 * Added a change history section.
 These were developed by Lennard Xiao, Christian Groves and Paul,
 so added Lennard and Christian as authors.
 -01: Updated by roberta to include some sample call flows.
 -00: Initial version by pkyzivat. Established general outline for
 the document, and specified a few things thought to represent wg
 consensus.

17. References

17.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [I-D.ietf-clue-framework]
 Duckworth, M., Pepperell, A., and S. Wenger, "Framework
 for Telepresence Multi-Streams",
 draft-ietf-clue-framework-14 (work in progress),
 February 2014.

 [I-D.presta-clue-data-model-schema]
 Presta, R. and S. Romano, "An XML Schema for the CLUE data
 model", draft-presta-clue-data-model-schema-03 (work in
 progress), March 2013.

 [I-D.presta-clue-protocol]
 Presta, R. and S. Romano, "CLUE protocol",
 draft-presta-clue-protocol-03 (work in progress),
 November 2013.

 [I-D.holmberg-clue-datachannel]
 Holmberg, C., "CLUE Protocol Data Channel",
 draft-holmberg-clue-datachannel-03 (work in progress),
 February 2014.

 [I-D.groves-clue-latent-config]
 Groves, C., Yang, W., and R. Even, "CLUE and latent
 configurations", draft-groves-clue-latent-config-00 (work
 in progress), January 2014.

 [I-D.ietf-mmusic-sctp-sdp]

Kyzivat, et al. Expires August 18, 2014 [Page 22]

Internet-Draft CLUE Signaling February 2014

 Loreto, S. and G. Camarillo, "Stream Control Transmission
 Protocol (SCTP)-Based Media Transport in the Session
 Description Protocol (SDP)", draft-ietf-mmusic-sctp-sdp-06
 (work in progress), February 2014.

 [I-D.tuexen-tsvwg-sctp-dtls-encaps]
 Jesup, R., Loreto, S., Stewart, R., and M. Tuexen, "DTLS
 Encapsulation of SCTP Packets for RTCWEB",
 draft-tuexen-tsvwg-sctp-dtls-encaps-01 (work in progress),
 July 2012.

 [RFC4574] Levin, O. and G. Camarillo, "The Session Description
 Protocol (SDP) Label Attribute", RFC 4574, August 2006.

 [RFC5888] Camarillo, G. and H. Schulzrinne, "The Session Description
 Protocol (SDP) Grouping Framework", RFC 5888, June 2010.

17.2. Informative References

 [RFC4353] Rosenberg, J., "A Framework for Conferencing with the
 Session Initiation Protocol (SIP)", RFC 4353,
 February 2006.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 June 2002.

 [RFC6120] Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, March 2011.

 [RFC6184] Wang, Y., Even, R., Kristensen, T., and R. Jesup, "RTP
 Payload Format for H.264 Video", RFC 6184, May 2011.

 [I-D.even-clue-sdp-clue-relation]
 Even, R., "Signalling of CLUE and SDP offer/answer",
 draft-even-clue-sdp-clue-relation-01 (work in progress),
 October 2012.

 [I-D.even-clue-rtp-mapping]
 Even, R. and J. Lennox, "Mapping RTP streams to CLUE media
 captures", draft-even-clue-rtp-mapping-05 (work in
 progress), February 2013.

 [I-D.hansen-clue-sdp-interaction]
 Hansen, R., "SDP and CLUE message interactions",
 draft-hansen-clue-sdp-interaction-01 (work in progress),
 February 2013.

Kyzivat, et al. Expires August 18, 2014 [Page 23]

Internet-Draft CLUE Signaling February 2014

Appendix A. CLUE Signalling and data channel concerns

 [The specifics of the CLUE signaling protocol are in the process of
 being defined in [I-D.presta-clue-protocol], while the negotiation of
 the CLUE data channel is being defined in
 [I-D.holmberg-clue-datachannel]. As such, considerable text
 originally in this section have been transitioned to these document.
 The following text relates to issues that are no longer the focus of
 this document, but remain important and unresolved, and so have been
 preserved here.]

A.1. Protocol Versioning and Options

A.1.1. Versioning Objectives

 The CLUE versioning mechanism addresses the following needs:

 o Coverage:
 * Versioning of basic behavior and options,
 * CLUE message exchange,
 * CLUE message exchange,
 * coordinated use of SIP and SDP,
 * required media behavior.
 o Remain fixed for the duration of the CLUE channel
 o Be extensible for configuration of new options.
 o Be sufficient (with extensions) for all envisioned future
 versions.

A.1.2. Versioning Overview

 An initial message exchange on the CLUE channel handles the
 negotiation of version and options.

 o Dedicated message types are used for this negotiation.
 o The negotiation is repeated if the CLUE channel is reestablished.

 The version usage is similar in philosophy to XMPP:

 o See [RFC6120] section 4.7.5.
 o A version has major and minor components. (Each a non-negative
 integer.)
 o Major version changes denote non-interoperable changes.
 o Minor version changes denote schema changes that are backward
 compatible by ignoring unknown XML elements, or other backward
 compatible changes.
 o If a common major version cannot be negotiated, then CLUE MUST NOT
 be used.

Kyzivat, et al. Expires August 18, 2014 [Page 24]

Internet-Draft CLUE Signaling February 2014

 o The same message exchange also negotiates options.
 o Each option is denoted by a unique XML element in the negotiation.

 Figure 1 shows the negotiation in simplified form:

 | Supported Supported |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | Required Required |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | Advertise/Configure/... |
 |<------------------------->|

 Figure 1: Basic Option Negotiation (simplified)

 Dedicated message types are used for the negotiation because:

 o The protocol can then ensure that the negotiation is done first,
 and once. Not changing mid-session means an endpoint can plan
 ahead, and predict what may be used and what might be received.
 o This provides extensible framework for negotiating optional
 features.
 o A full option negotiation can be completed before other messages
 are exchanged.

 Figure 2 and Figure 3 are simplified examples of the Supported and
 Required messages:

 <supported>
 <version major="1" minor="0">
 <!- May repeat version if multiple
 major versions supported. ->
 <!- Options follow ->
 <mediaProvider/>
 ...
 </supported>

 Figure 2: Supported Message (simplified)

Kyzivat, et al. Expires August 18, 2014 [Page 25]

Internet-Draft CLUE Signaling February 2014

 <required>
 <version major="1" minor="0">
 <!- Requested options of peer follow ->
 <!- Options follow ->
 <mediaProvider/>
 ...
 </required>

 Figure 3: Required Message (simplified)

A.1.3. Version Negotiation

 The Supported message includes one or more <version> elements, each
 denoting a major/minor version combination that the sender of the
 message is capable of supporting.

 The <version> element contains both a major and minor version. Each
 is a non-negative integer. Each <version> element in the message
 MUST contain a unique major version number, distinct from the major
 version number in all the other <version> elements in the message.
 The minor version in a <version> element denotes the largest minor
 version the sender supports for the corresponding major version.
 (Minor versions are always backwards compatible, so support for a
 minor version implies support for all smaller minor versions.)

 Each endpoint of the CLUE channel sends a Supported message, and
 receives the Supported message sent by the other end. Then each end
 compares the versions sent and the versions received to determine the
 version to be used for this CLUE session.

 o If there is no major version in common between the two ends,
 negotiation fails.
 o The <version> elements from the two ends that have the largest
 matching major version are selected.
 o After exchange each end determines compatible version numbers to
 be used for encoding and decoding messages, and other behavior in
 the CLUE session.
 * The <version> elements from the two ends that have the largest
 matching major version are selected.
 * The side that sent the smaller minor version chooses the one it
 sent.
 * The side that sent the larger minor version may choose the
 minor version it received, or the one it sent, or any value
 between those two.
 o Each end then sends a Required message with a single <version>
 element containing the major and minor versions it has chosen.

 [[Note: "required" is the wrong semantic for this. Might want a

Kyzivat, et al. Expires August 18, 2014 [Page 26]

Internet-Draft CLUE Signaling February 2014

 better message name.]]
 o Each end then behaves in accord with the specifications denoted by
 the version it chose. This continues until the end of the CLUE
 session, or until changed as a result of another version
 negotiation when the CLUE channel is reestablished.

 [[Note: The version negotiation remains in effect even if the CLUE
 channel is lost.]]

A.1.4. Option Negotiation

 Option negotiation is used to agree upon which options will be
 available for use within the CLUE session. (It does not say that
 these options must be used.) This may be used for both standard and
 proprietary options. (As used here, and option could be either a
 feature described as part of this specification that is optional to
 implement, or a feature defined in a separate specification that
 extends this one.)

 Each end includes, within the Supported message it sends, elements
 describing those options it is willing and able to use with this CLUE
 session.

 Each side, upon receiving a Supported message, selects from that
 message those option elements that it wishes the peer to use. (If/
 when occasion for that use arises.) It then includes those selected
 elements into the Required message that it sends.

 Within a received Supported message, unknown option elements MUST be
 ignored. This includes elements that are of a known type that is not
 known to denote an option.

A.1.5. Option Elements

 Each option is denoted, in the Supported and Required messages, by an
 XML element. There are no special rules for these elements - they
 can be any XML element. The attributes and body of the element may
 carry further information about the option. The same element type is
 used to denote the option in the Supported message and the
 corresponding Required message, but the attributes and body may
 differ according to option-specific rules. This may be used to
 negotiate aspects of a particular option. The ordering of option
 elements is irrelevant within the Supported and Required messages,
 and need not be consistent in the two.

 Only one option element is defined in this document: <mediaProvider>.

Kyzivat, et al. Expires August 18, 2014 [Page 27]

Internet-Draft CLUE Signaling February 2014

A.1.5.1. <mediaProvider>

 The <mediaProvider> element, when placed in a Supported message,
 indicates that the sender is willing and able to send ADVERTISEMENT
 messages and receive CONFIGURE messages. When placed in a Required
 message, the <mediaProvider> element indicates that the sender is
 willing, able, and desirous of receiving ADVERTISEMENT messages and
 sending CONFIGURE messages. If an endpoint does not receive
 <mediaProvider> in a Required message, it MUST NOT send ADVERTISEMENT
 messages. For common cases <mediaProvider> should be supported and
 required by both endpoints, to enable bidirectional exchange of
 media. If not required by either end, the CLUE session is useless.
 This is an error condition, and SHOULD result in termination of the
 CLUE channel.

 The <mediaProvider> element has no defined attributes or body.

A.1.6. Version & option negotiation errors

 The following are errors that may be detected and reported during
 version negotiation:

 o Version incompatibility

 There is no common value between the major version numbers sent in
 a Supported message and those in the received Supported message.
 o Option incompatibility

 This can occur if options supported by one endpoint are
 inconsistent with those supported by the other endpoint. E.g.,
 The <mediaProvider> option is not specified by either endpoint.
 Options SHOULD be specified so as to make it difficult for this
 problem to occur.

 This error may also be used to indicate that insufficient options
 have been required among the two ends for a useful session to
 result. This can occur with a feature that needs to be present on
 at least one end, but not on a specific end. E.g., The
 <mediaProvider> option was Supported by at least one of the
 endpoints, but it was not Required by either.

 This may also be used to indicate that an option element in the
 Required message has attributes or body content that is
 syntactically correct, but in inconsistent with the rules for
 option negotiation specified for that particular element. The
 definition of each option must specify the negotiation rules for
 that option.

Kyzivat, et al. Expires August 18, 2014 [Page 28]

Internet-Draft CLUE Signaling February 2014

 o Unsupported option

 An option element type received in a Required message did not
 appear in the corresponding Supported element.

 (Unsupported options received in a Supported message do not
 trigger this error. They are ignored.)

 These errors are reported using the normal message error reporting
 mechanism.

 Other applicable error codes may also be returned in response to a
 Supported or Required message.

 Errors that occur at this stage result in negotiation failure. When
 this occurs, CLUE cannot be used until the end of the SIP session, or
 until a new CLUE channel is negotiated and a subsequent version
 negotiation succeeds. The SIP session may continue without CLUE
 features.

A.1.7. Definition and Use of Version Numbers

 [[NOTE: THIS IS AWKWARD. SUGGESTIONS FOR BETTER WAYS TO DEFINE THIS
 ARE WELCOME.]]

 This document defines CLUE version 1.0 (major=1, minor=0). This
 denotes the normative behavior defined in this document and other
 documents upon which it normatively depends, including but is not
 limited to:

 o the schema defined in [I-D.presta-clue-protocol];
 o the schema defined in [clue-data-model];
 o the protocol used to exchange CLUE messages;
 o the protocol defined herein that defines valid sequence of CLUE
 messages;
 o the specific rules defined herein for employing SIP, SDP, and RTP
 to realize the CLUE messages.

 Given two CLUE versions Vx and Vy, then Vx is backward compatible
 with Vy if and only if:

 o All messages valid according to the schema of Vx are also valid
 according to the schemas of Vy
 o All messages valid according to the schema of Vy can be made valid
 according to the schemas of Vx by deleting elements undefined in
 the schemas of Vx.

 [[NOTE: THIS PROBABLY NEEDS WORK!]]

Kyzivat, et al. Expires August 18, 2014 [Page 29]

Internet-Draft CLUE Signaling February 2014

 o All normative behaviors defined for Vx are defined consistently
 for Vy.

 [[NOTE: SOME HAND WAVING HERE.]]

 Revisions, updates, to any of the documents denoted by Version 1.0
 MAY result in the definition of a new CLUE version. If they do, then
 this document MUST be revised to define the new version.

 The CLUE version to be defined in a revision to this document MUST be
 determined as follows:

 o If the revision and the document being revised are mutually
 backward compatible (they are functionally equivalent), then the
 CLUE version MUST remain unchanged.
 o Else if the revision is backward compatible with the document
 being revised, then the CLUE major version MUST remain unchanged,
 and the CLUE minor version MUST be increased by one (1).
 o Else the CLUE major version must be increased by one (1), and the
 CLUE minor version set to zero (0).

 When a CLUE implementation sends a Supported message, it MUST include
 the CLUE versions it is willing and able to conform with.

A.1.8. Version & Option Negotiation Examples

A.1.8.1. Successful Negotiation - Multi-version

Kyzivat, et al. Expires August 18, 2014 [Page 30]

Internet-Draft CLUE Signaling February 2014

 | Supported Supported |
 | Version 2.0 |
 | Version 1.2 Version 1.1 |
 | mediaProv mediaProv |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | OK response OK response |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | Required Required |
 | Version 1.2 Version 1.1 |
 | mediaProv mediaProv |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | OK response OK response |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | Advertise |
 |<------------------------->|
 | |
 | Configure |
 |<------------------------->|

 The endpoint on the left can support versions 1.2 and 2.0, and
 because of backward compatibility can support versions 1.0 and 1.1.
 The endpoint on the right supports only version 2.0. Both endpoints
 with to both provide and consume media. They each send a Supported
 message indicating what they support.

 The element on the left, upon receiving the Supported message,
 determines that it is permitted to use version 1.2 or 1.1, and
 decides to use 1.2. It sends a Required message containing version
 1.2 and also includes the mediaProvider option element, because it
 wants its peer to provide media.

 The element on the right, upon receiving the Supported message,
 selects version 1.1 because it is the highest version in common to
 the two sides. It sends a Required message containing version 1.1
 because that is the highest version in common. It also includes the
 mediaProvider option element, because it wants its peer to provide

Kyzivat, et al. Expires August 18, 2014 [Page 31]

Internet-Draft CLUE Signaling February 2014

 media.

 Upon receiving the Required messages, both endpoints determine that
 they should send ADVERTISEMENTs.

 ADVERTISEMENT and CONFIGURE messages will flow in both directions.

A.1.8.2. Successful Negotiation - Consumer-Only Endpoint

 | Supported Supported |
 | Version 1.0 Version 1.0 |
 | mediaProv (no opts) |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | OK response OK response |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | Required Required |
 | Version 1.0 Version 1.0 |
 | (no opts) mediaProv |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | OK response OK response |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | Advertise |
 |-------------------------->|
 | |
 | Configure |
 |<--------------------------|

 The endpoint on the right consumes media, but doesn’t provide any so
 it doesn’t include the mediaProvider option element in the Supported
 message it sends.

 The element on the left would like to include a mediaProvider option
 element in the Requirements message it sends, but can’t because it
 did not receive one in the Supported message it received.

Kyzivat, et al. Expires August 18, 2014 [Page 32]

Internet-Draft CLUE Signaling February 2014

 ADVERTISEMENT messages will only go from left to right, and CONFIGURE
 messages will only go from right to left.

A.1.8.3. Successful Negotiation - Provider-Only Endpoint

 | Supported Supported |
 | Version 1.0 Version 1.0 |
 | mediaProv mediaProv |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | OK response OK response |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | Required Required |
 | Version 1.0 Version 1.0 |
 | (no opts) mediaProv |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | OK response OK response |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | Advertise |
 |-------------------------->|
 | |
 | Configure |
 |<--------------------------|

 The endpoint on the left provides media but does not consume any so
 it includes the mediaProvider option element in the Supported message
 it sends, but does’t include the mediaProvider option element in the
 Required message it sends.

 ADVERTISEMENT messages will only go from left to right, and CONFIGURE
 messages will only go from right to left.

A.1.8.4. Version Incompatibility

Kyzivat, et al. Expires August 18, 2014 [Page 33]

Internet-Draft CLUE Signaling February 2014

 | Supported Supported |
 | Version 1.2 Version 2.1 |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | Version Version |
 | Incompat. Incompat. |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | close clue channel |
 |<------------------------->|
 | |
 | legacy mode or BYE |
 |<------------------------->|

 Upon receiving the Supported message, each endpoint discovers there
 is no major version in common, so CLUE usage is not possible. Each
 sends an error response indicating this and then ceases CLUE usage.

A.1.8.5. Option Incompatibility

 | Supported Supported |
 | Version 1.0 Version 1.0 |
 | mediaProv mediaProv |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | Required Required |
 | (no opts) (no opts) |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | Option Option |
 | Incompat. Incompat. |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | close clue channel |
 |<------------------------->|
 | |
 | legacy mode or BYE |

Kyzivat, et al. Expires August 18, 2014 [Page 34]

Internet-Draft CLUE Signaling February 2014

 |<------------------------->|

 Neither of the endpoints is willing to provide media. It makes no
 sense to continue CLUE operation in this situation. Each endpoint
 realizes this upon receiving the Supported message, sends an error
 response indicating this and then ceases CLUE usage.

A.1.8.6. Syntax Error

 | Supported !@#$%^ |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | syntax error OK response |
 |------------\ /------------|
 | X |
 |<-----------/ \----------->|
 | |
 | close clue channel |
 |-------------------------->|
 | |
 | legacy mode or BYE |
 |<------------------------->|

A.2. Message Transport

 CLUE messages are transported over a bidirectional CLUE channel. In
 a two-party CLUE session, a CLUE channel connects the two endpoints.
 In a CLUE conference, each endpoint has a CLUE channel connecting it
 to an MCU. (In conferences with cascaded mixers [RFC4353], two MCUs
 will be connected by a CLUE channel.)

A.2.1. CLUE Channel Lifetime

 The transport mechanism used for CLUE messages is DTLS/SCTP as
 specified in [I-D.tuexen-tsvwg-sctp-dtls-encaps] and
 [I-D.ietf-mmusic-sctp-sdp]. A CLUE channel consists of one SCTP
 stream in each direction over a DTLS/SCTP session. The mechanism for
 establishing the DTLS/SCTP session is described in Section 4.

 The CLUE channel will usually be offered during the initial SIP
 INVITE, and remain connected for the duration of the CLUE/SIP
 session. However this need not be the case. The CLUE channel may be
 established mid-session after desire and capability for CLUE have
 been determined, and the CLUE channel may be dropped mid-call if the
 desire and/or capability to support it is lost.

Kyzivat, et al. Expires August 18, 2014 [Page 35]

Internet-Draft CLUE Signaling February 2014

 There may be cases when it becomes necessary to "reset" the CLUE
 channel. This by be as a result of an error on the underlying SCTP
 association, a need to change the endpoint address of the SCTP
 association, loss of CLUE protocol state, or something else TBD.

 The precise mechanisms used to determine when a reset is required,
 and how to accomplish it and return to a well defined state are TBS.

A.2.2. Channel Error Handling

 We will need to specify behavior in the face of transport errors that
 are so severe that they can’t be managed via CLUE messaging within
 the CLUE channel. Some errors of this sort are:
 o Unable to establish the SCTP association after signaling it in
 SDP.
 o CLUE channel setup rejected by peer.
 o Error reported by transport while writing message to CLUE channel.
 o Error reported by transport while reading message from CLUE
 channel.
 o Timeout - overdue acknowledgement of a CLUE message.
 (Requirements for now soon a message must be responded to are
 TBD.)
 o Application fault. CLUE protocol state lost.
 The worst case is to drop the entire CLUE call. Another possibility
 is to fall back to legacy compatibility mode. Or perhaps a "reset"
 can be done on the protocol. E.g. this might be accomplished by
 sending a new O/A and establishing a replacement SCTP association.
 Or a new CLUE channel might be established within the existing SCTP
 association.

A.3. Message Framing

 Message framing is provided by the SCTP transport protocol. Each
 CLUE message is carried in one SCTP message.

Authors’ Addresses

 Paul Kyzivat
 Huawei

 Email: pkyzivat@alum.mit.edu

Kyzivat, et al. Expires August 18, 2014 [Page 36]

Internet-Draft CLUE Signaling February 2014

 Lennard Xiao
 Huawei

 Email: lennard.xiao@huawei.com

 Christian Groves
 Huawei

 Email: Christian.Groves@nteczone.com

 Robert Hansen
 Cisco Systems

 Email: rohanse2@cisco.com

Kyzivat, et al. Expires August 18, 2014 [Page 37]

