
CoRE Working Group G. Selander
Internet-Draft M. Sethi
Intended Status: Informational Ericsson
Expires: August 18, 2014 L. Seitz
 SICS Swedish ICT
 February 14, 2014

 Access Control Framework for Constrained Environments
 draft-selander-core-access-control-02

Abstract

 The Constrained Application Protocol (CoAP) is a light-weight web
 transfer protocol designed to be used in constrained environments.
 Transport layer security for CoAP has been addressed with a DTLS
 binding for CoAP. This document describes a generic and dynamic
 access control framework suitable for constrained devices e.g. using
 CoAP and DTLS. The framework builds on well known paradigms for
 access control, externalizing authorization decision making to
 unconstrained nodes while performing authorization decision
 enforcement and verification of local conditions in constrained
 devices.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

Selander, et al. Expires August 18, 2014 [Page 1]

INTERNET DRAFT CoRE Access Control February 14, 2014

Copyright and License Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1 Terminology . 5
 2. Scope and Requirements . 5
 2.1 Resource Authorization and Protocol Authorization 5
 2.2 Requirements . 6
 3. Static and Dynamic Access Control 7
 3.1 Static Access Control 7
 3.1.1 ACL for Protocol Authorization 7
 3.1.2 ACL for Resource Authorization 7
 3.1.3 Static ACLs . 8
 3.3 Dynamic Access Control 8
 3.3.1 Rationale . 8
 3.3.2 Access Tokens . 9
 3.3.3 Group ACLs . 10
 3.3.4 Trust model . 10
 4 Access Control Framework . 11
 4.1 Entities . 11
 4.2 Message flow example . 11
 4.3 Access Tokens . 13
 4.3.1 Requirements for Access Tokens 13
 4.3.2 Access Token Protection 14
 4.3.3 Access Token Transfer 14
 4.3.4 Access Token Reception 15
 4.3.5 Access Token Storage 15
 4.3.6 Access Token Enforcement 16
 5. Intermediary processing and notifications 16
 5.1 Intermediary nodes . 17
 5.2 Mirror Server . 17
 5.3 Observe . 17

Selander, et al. Expires August 18, 2014 [Page 2]

INTERNET DRAFT CoRE Access Control February 14, 2014

 6. Security Considerations 18
 7. IANA Considerations . 19
 8. Acknowledgements . 19
 9. References . 20
 9.1 Normative References 20
 9.2 Informative References 20
 Appendix A. Example Token Syntax 21
 Appendix B. Changelog . 23
 Authors’ Addresses . 24

Selander, et al. Expires August 18, 2014 [Page 3]

INTERNET DRAFT CoRE Access Control February 14, 2014

1. Introduction

 The Constrained Application Protocol (CoAP) [I-D.ietf-core-coap] is a
 light-weight web transfer protocol, suitable for applications in
 embedded devices used in services such as smart energy, smart home,
 building automation, remote patient monitoring etc. Due to the
 nature of the these use cases including critical, unattended
 infrastructure and the personal sphere, security and privacy are
 critical components. Authentication and authorization aspects of such
 use cases are discussed in [I-D.seitz-ace-usecases].

 CoAP message exchanges can be protected with different security
 protocols. The CoAP specification defines a DTLS [RFC6347] binding
 for CoAP, which provides communication security services including
 authentication, encryption, integrity, and replay protection.

 The CoAP specification sketches an approach for authorization and
 access control - i.e. controlling who has access to what - using
 static access control lists, which are assumed to have been
 provisioned to the devices and which contain lists of identifiers
 that may start DTLS sessions with the devices.

 There are some limitations inherent to such an approach:

 1. By restricting the scope of access control to the granularity
 of identifiers of requesting clients, it is not possible to
 give different privileges to different entities that are
 allowed to access the same device. For example, it may be
 desirable to give some clients the right to GET resources but
 others the right to POST or PUT resources to the same device;
 or to give the same client different access rights for
 different resources on the same device.

 2. There are use cases [I-D.seitz-ace-usecases] where the
 granularity of GET/PUT/POST/DELETE is not sufficient to specify
 the relevant access restrictions. For example, an access
 policy may depend on local conditions of the device such as
 date and time, proximity, geo-location, detected effort (press
 3 times), or other aspects of the current state of the device.

 3. It is not defined how to change access privileges except by re-
 provisioning. How such changes would be authorized is also
 unclear.

 This document proposes a framework that allows fine-grained and
 flexible access control, applicable to a generic setting including
 use cases with constrained devices [I-D.ietf-lwig-terminology].

Selander, et al. Expires August 18, 2014 [Page 4]

INTERNET DRAFT CoRE Access Control February 14, 2014

1.1 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 Certain security-related terms are to be understood in the sense
 defined in [RFC4949]. These terms include, but are not limited to,
 "authentication", "authorization", "access control",
 "confidentiality", "credential", "encryption", "sign", "signature",
 "data integrity", and "verify".

 Terminology for constrained environments is defined in [I-D.ietf-
 lwig-terminology]. These terms include, but are not limited to,
 "constrained device", "constrained network", and "device class".

 Authorization terminology is taken from OAuth 2.0 [RFC6749].

 Resource Server (RS): The constrained device which hosts resources
 the Client wants to access.

 Client (C): A device which wants to access a resource on the Resource
 Server. This could also be a constrained device.

 Resource Owner (RO): The subject who owns the resource and controls
 its access rights.

2. Scope and Requirements

 This section defines the scope and gives an overview of the
 requirements that form the basis for the proposed Access Control
 Framework.

2.1 Resource Authorization and Protocol Authorization

 Access control is protection of system resources against unauthorized
 access. There are different kinds of "system resources" that needs
 protection and different kinds of protection mechanisms.

 For the purpose of this memo, we distinguish between two types of
 authorization: "Resource Authorization" and "Protocol
 Authorization".

 o Resource Authorization (RA) deals with the question whether the
 server should allow a client to request GET/PUT/POST/DELETE to a
 resource (where "resource" is as defined in RFC 2616).

Selander, et al. Expires August 18, 2014 [Page 5]

INTERNET DRAFT CoRE Access Control February 14, 2014

 o Protocol Authorization (PA) deals with the question whether the
 server should engage in a protocol initiated by the client.

 Where RA is mainly about protecting the resource, PA is also about
 protecting the server that hosts the resources. By only granting
 authorized clients the right to run a protocol, only those clients
 are able to interact with resources on the server. This also avoids
 unnecessary protocol processing, thus saving battery and computing
 resources, and reducing the effect of certain DoS attacks.

 In order to enforce authorization the server must be able to verify
 some property of the requesting client, e.g. its identity or a group
 membership. PA may e.g. be applied to DTLS as suggested in the CoAP
 specification or in [I-D.seitz-core-security-modes].

 o RA typically implies some PA: If a client is authorized to
 access a resource hosted on a server, then the client should be
 allowed to run a protocol (e.g. DTLS) with the server when accessing
 the resource.

 o PA access does not necessarily imply RA: Just because a client
 is authorized to execute a protocol with the server, the client is
 not necessarily authorized to access any resources hosted on the
 server.

 The CoAP Security Modes [I-D.ietf-core-coap] and the Additional
 Security Modes for CoAP [I-D.seitz-core-security-modes] define Access
 Control Lists with information about what clients are allowed to run
 DTLS with an origin server. This is by definition Protocol
 Authorization. However, PA can be used to define RA: For example, by
 allowing access to all resources for all clients allowed to execute
 (and successfully complete) an authentication protocol.

 The scope of the Access Control Framework defined in this draft is
 targeting RA, but as is noted above, RA implies that complementing PA
 needs to be defined.

2.2 Requirements

 The Access Control Framework (ACF) for constrained environment as
 described in this memo shall support the requirements in [I-D.seitz-
 ace-usecases] and take into account the design considerations in [I-
 D.seitz-ace-design-considerations]. In particular the ACF should

 o support differentiated access rights for different requesting
 entities,
 o provide access control at least at the granularity of RESTful
 resources,

Selander, et al. Expires August 18, 2014 [Page 6]

INTERNET DRAFT CoRE Access Control February 14, 2014

 o allow access rights depending on local conditions (e.g. state of
 device, time, position),
 o include procedures for authorizing changes and revocation of
 access rights
 o keep transmission and reception at a minimum in order to reduce
 energy consumption in constrained devices.

3. Static and Dynamic Access Control

 Consider a generic setting where a Client wants to access a resource
 hosted on a Resource Server, which is potentially a constrained
 device, and where the access rights are determined by the Resource
 Owner. (The Client may also be constrained, we return to this in
 section 4.)

3.1 Static Access Control

3.1.1 ACL for Protocol Authorization

 If there are no restrictions on which Client is allowed to access a
 certain resource, there is no need to perform access control, nor to
 authenticate the Client. If it does matter which Client is allowed
 access, then the Resource Server must authenticate some properties
 (e.g. identity, group membership) of the Client, and also be able to
 determine if the Client is authorized based on these properties.

 One possible access control scheme is that each Resource Server keeps
 a list of identifiers of authorized clients. The CoAP Security Modes
 [I-D.ietf-core-coap] Pre-Shared Key and Raw Public Key mention Access
 Control Lists (ACLs) with information about what clients are allowed
 to run DTLS with a server, and subsequently access any resource on
 the server (cf. PA, Section 2.1).

3.1.2 ACL for Resource Authorization

 In a more elaborate scheme, the right to access a resource on a
 server could depend on more parameters, e.g.

 o what resource is requested,

 o what request method (e.g. GET, PUT, DELETE) is used, or

 o local/temporal conditions at the time of the request.

 This kind of authorization information can be encoded into an ACL
 stored in the Resource Server and used to determine if a request
 should be granted.

Selander, et al. Expires August 18, 2014 [Page 7]

INTERNET DRAFT CoRE Access Control February 14, 2014

3.1.3 Static ACLs

 Both schemes described in previous sections require ACLs (access
 rights) to be provisioned to the Resource Server at one time, and
 used at a later time to grant resource access. A common assumption
 is that an ACL is provisioned during deployment and remains valid for
 the lifetime of the device. We refer to this as Static Access
 Control.

 Static Access Control is adequate for a number of use cases, e.g.
 when the access rights remain constant throughout the lifetime of the
 device or when manual provisioning of new access rights after
 deployment of the device is feasible.

 Static Access Control does not address how ACLs can be changed or
 revoked remotely, nor how such an update would be authorized. In
 particular for embedded devices this requires special considerations,
 for example due to

 o the lack of physical access to the device (e.g. due to devices
 built into infrastructure), and/or

 o the infeasibility of manual provisioning procedures (e.g. due to
 the large quantity of devices).

3.3 Dynamic Access Control

 In this section we address use cases for which Static Access Control
 is not sufficient [I-D.seitz-ace-usecases], e.g. to grant access to
 new Clients or change access rights some time after deployment.

3.3.1 Rationale

 The flexibility required by a Resource Owner in assigning access
 rights implies that static ACLs need to be replaced by more general
 access control policies. However, managing and evaluating arbitrary
 access control policies is typically too heavyweight for constrained
 devices. As a consequence we assume that the policy management and
 the authorization decision making is externalized to a less
 constrained node, called the Authorization Server (AS), acting on
 behalf of the Resource Owner who defines the access control policies
 governing the decisions of the AS. The AS may potentially be
 implemented in many different kinds of physical nodes, e.g. as a
 server in the cloud or a relatively unconstrained portable device
 such as a smartphone.

 While authorization decision and policy management is outsourced to
 the AS, access control enforcement should be performed in a trusted

Selander, et al. Expires August 18, 2014 [Page 8]

INTERNET DRAFT CoRE Access Control February 14, 2014

 environment associated to the resource and as close to the resource
 as possible, in order to provide end-to-end security between resource
 and authorized client.

 Moreover, verifications of any local conditions should be performed
 in conjunction with accessing the resource for the following reasons:

 o Transferring information about local conditions in the Resource
 Server to the Authorization Server for each policy decision adds
 to the communication costs for the Resource Server, and
 unnecessarily so if the decision is "not granted".

 o The local conditions in the Resource Server may have changed at
 the time of access, so the decision would be based on outdated
 information.

 We therefore suggest that access control decision enforcement and
 verification of local conditions should take place in the Resource
 Server, or in a proxy-type device offloading a severely constrained
 device hosting the resource. Local conditions may be expressed as
 constraints under which an externally granted authorization decision
 is valid, and which are verified at the time and location of access.

 We use the term Dynamic Access Control refer to the setting where
 information about authorization decisions and/or access policies is
 transferred from the Authorization Server to the Resource Server.

 Authorization decisions (potentially including local conditions) are
 conveyed from the Authorization Server to the Resource Server in
 Access Tokens, which are objects containing authorization information
 related to a client. Access tokens are produced by an Authorization
 Server and consumed by a Resource Server, which processes the access
 token and caches or stores information about the access rights.

 NOTE

 The terminology "Authorization Server" and "Access Token" is taken
 from OAuth 2.0 [RFC6749]. The feasibility to implement the access
 control in constrained environments using OAuth is for further study.

3.3.2 Access Tokens

 There may be different types of authorization decision content in an
 access token, we consider two cases:
 o An access token may be a Capability Token, i.e. a list of one or
 more resources and associated request methods
 (GET/PUT/POST/DELETE) which the client is granted. See Appendix
 A for an example of format of a capability list-based access

Selander, et al. Expires August 18, 2014 [Page 9]

INTERNET DRAFT CoRE Access Control February 14, 2014

 token (also expressing a local condition). Other examples of
 formatting capability lists can be found in [I-D.bormann-core-
 ace-aif].
 o An access token may be an assertion about a group membership of
 the client (a Group Membership Assertion), for which the access
 rights are specified in form of a Group ACL on the Resource
 Server, see 3.3.3. For an example of a group membership
 assertion see [I-D.gerdes-core-dcaf-authorize].

 Transfer of access tokens, potentially via intermediary nodes, is
 discussed later in this document.

3.3.3 Group ACLs

 One purpose of the AS is to outsource policy management from the RS.
 However, for frequently recurring requests requiring a common set of
 access rights it is beneficial to store in the RS local access
 policies which can be compactly represented and easily evaluated,
 such as ACLs.

 In order to avoid identity management at the level of the RS, such
 ACLs should refer to groups (or "roles") instead of specific subject
 identifiers. We refer to these ACLs as Group ACLs, since they contain
 group identifiers as subjects rather than client identifiers. When
 there is no risk for confusion we will simply call them ACLs.

 A group ACL is used in conjunction with a group membership assertion
 (see 3.3.2) on the RS. Together they associate a Client to a resource
 access permission associated with the group which the Client is
 member in.

 Furthermore, group ACLs themselves should be represented as resources
 on the RS which can be accessed by the AS. Updates of ACLs should be
 performed by the AS only, and should be implemented by PUT or POST to
 the ACL resources on the RS.

3.3.4 Trust model

 The Authorization Server must be trusted by all involved parties, in
 particular the Resource Owner must trust the AS to enact the access
 policies as specified. The Resource Server must trust the access
 tokens to express rights given by the Resource Owner, and that
 updates on ACLs performed by the AS are done on behalf of the
 Resource Owner.

 In order to secure the access token transport and to be able to
 authenticate requests from the AS, we assume that the Resource Server

Selander, et al. Expires August 18, 2014 [Page 10]

INTERNET DRAFT CoRE Access Control February 14, 2014

 has established a shared secret key or authentic public key of the
 AS. How this key is established is out of scope for this memo.

 The Authorization Server being a Trusted Third Party can also support
 authentication between Client and Resource Server, by means of e.g.
 key distribution functionality (cf. Kerberos [RFC4120]). The
 feasibility to implement access control in constrained environments
 using authorization extensions to Kerberos is for further study.

4 Access Control Framework

 The Access Control Framework detailed in this section targets Dynamic
 Access Control for Resource Authorization.

4.1 Entities

 The relevant entities are:

 o An Authorization Server (AS) performing the authorization
 decision making, based on the access control policies, and
 sharing one or more trusted keys from the Resource Server.

 o A potentially constrained Resource Server (RS) hosting resources
 and provisioned with one or more trusted keys from the AS.

 o A potentially constrained Client (C) wishing to access a
 resource. As there may be intermediaries, e.g. forward proxies,
 the actual CoAP client requesting the RS may be different from
 the Client. When we want to emphasize the original source of the
 request we use the term "Origin Client" (OC).

 o An Access Manager (AM) which requests and receives access tokens
 from an AS. The AM may be a standalone node or integrated/co-
 located with the C. Constrained clients may need support to
 acquire access tokens, in which case the Access Manager is
 implemented on a separate node.

4.2 Message flow example

 One example procedure for resource access is shown in Figure 1 and
 described below. The setting is a Client wishing to access a resource
 for which it is authorized, but which the RS is not aware of. Once
 the RS has stored a new access token, the message flow reduces to
 step 8.

Selander, et al. Expires August 18, 2014 [Page 11]

INTERNET DRAFT CoRE Access Control February 14, 2014

 Access Authorization Resource
 Client Manager Server Server
 + + + +
 |---(1) AuthZ ---->| | |
 | Request |<-(2) Authenticate ->| |
 | | | |
 | |-(3) Request token ->| |
 | | | (4) |
 | | | Evaluate |
 | | | access |
 | | | control |
 | | | policies |
 | |<---(5) Token, ------| |
 | | Base Credentials | |
 |<---(6) Token, ---| | |
 | Base Credentials | | |
 | + + |
 |---------------(7) Store Token Request --------------->|
 |<-------------------- Response ------------------------|
 | |
 |------------------(8) Resource Request --------------->|
 |<-------------------- Response ------------------------|

 Figure 1: Roles and access control procedure

 The C sends an authorization request to the AM (1).

 The AM authenticates to the AS (2) on behalf of the C. The AM then
 requests an access token, and optionally Base Credentials for a
 specific security mode (3). The request contains the C’s subject
 identifier which is used to evaluate the access control policies.

 The AS makes the authorization decision on behalf of the Resource
 Owner (4) and, if granted, responds (5) to the AM with an access
 token bound to the C’s subject identifier. Optionally it also sends
 Base Credentials to be used in the message exchange between C and RS.
 A Base Credential may e.g. be the public key of the RS, a public key
 certificate generated for the C, or a derived key bootstrapping the
 trust relation between the AS and RS [I-D.seitz-core-security-
 modes].

 The AM forwards the access token and Base Credentials to the OC (6).

 The OC sends the access token (see 4.3.3) to the RS (7). After the
 token is verified by the RS (see 4.3.4) its content is stored and the
 RS responds appropriately to the OC.

Selander, et al. Expires August 18, 2014 [Page 12]

INTERNET DRAFT CoRE Access Control February 14, 2014

 The OC submits Resource Request(s) (8), which are verified against
 the stored access token content (and potentially Group ACLs) by the
 RS. If the RS finds a matching grant, and all local conditions are
 met, the request is processed and a response is sent. Steps (7)-(8)
 could potentially be combined in one request-response.

 Communication security is not detailed in this message flow and
 depends on several factors. E.g. if the Base Credentials are secret
 keys, then the communication between C and AM, and between AM and RS
 must be confidential.

 Request and Response messages need to be protected, either using
 communication security, such as DTLS [RFC6347], or object security,
 such as JWE [I-D.ietf-jose-json-web-encryption] and JWS [I-D.ietf-
 jose-json-web-signature]. The Base Credentials that AS optionally
 provides, can be used to establish the cryptographic keys for and
 object security scheme, or Protocol Authorization for, say, DTLS.

 A detailed proposal can be found in [I-D.gerdes-core-dcaf-authorize].

4.3 Access Tokens

 In 3.3.2 we listed two alternative access tokens: capability token
 and group membership assertion. In this section we discuss the
 content, protection, transfer, reception, and storage of these kinds
 of access tokens.

4.3.1 Requirements for Access Tokens

 Access tokens must be integrity protected by the AS such that it can
 be verified by the RS using a trusted key (see 4.3.2), and
 furthermore they should enable the RS to enforce the authorization
 decision. Hence the access token should provide the following
 information:

 o Which OC does the decision apply to (subject identifier), and
 how can this OC be authenticated (if necessary).

 o Which AS has created this access token (issuer). This
 information may be implicit from the signature of the token.

 o A sequence number which, together with the issuer, is unique for
 a given RS.

 The token can also specify under what other conditions it is valid
 (local conditions evaluated by the resource server at access time,
 e.g. expiration, number of uses).

Selander, et al. Expires August 18, 2014 [Page 13]

INTERNET DRAFT CoRE Access Control February 14, 2014

 In addition to this, a capability list also needs to specify:
 o Which resources does the decision apply to.

 o Which request methods (GET, PUT, POST, DELETE) does the decision
 apply to.

 A capability token may state specific allowed values, for PUT and
 POST methods (e.g. if the client is only allowed to set values 1 and
 2 not 0 and 3 for certain actuator).

4.3.2 Access Token Protection

 Since access tokens are to be consumed by constrained devices, the
 protection of the access token must be lightweight and compact. For
 example JSON Web Signatures (JWS) [I-D.ietf-jose-json-web-signature]
 can be used as a means of signing access tokens, specifically with
 the JWS Compact Serialization.

 In an object security setting, where the token may be transferred
 over an insecure channel, it can be encrypted and integrity protected
 using JWE [I-D.ietf-jose-json-web-encryption].

 An alternative, potentially more compact encoding format would be
 CBOR [RFC7049], however it would require corresponding signature and
 encryption schemes.

 Using an asymmetric signature scheme is recommended if intermediary
 nodes, between OC and RS, are expected to verify the access token,
 since it is less security critical to provision public keys to the
 intermediary nodes, rather than symmetric keys. This allows an
 intermediary to discard certain invalid requests (expired/spoofed
 access tokens, etc.) without sharing a secret key with the RS.

4.3.3 Access Token Transfer

 The access token can be transferred from the OC to the RS in
 different ways.

 A. One possibility is to extend the communication security
 establishment protocol (e.g. using TLS Handshake Message for
 Supplemental Data [RFC4680] in DTLS).

 B. Another possibility is to use the application protocol (e.g.
 CoAP) and send the access tokens as regular requests, i.e. PUT
 the access token to a dedicated token storage resource.

 In either case the access token is verified upon reception, and if it
 is valid (see 4.3.4), its content is stored (see 4.3.5) for being

Selander, et al. Expires August 18, 2014 [Page 14]

INTERNET DRAFT CoRE Access Control February 14, 2014

 used in a subsequent resource request (see 4.3.6). If the access
 token is not valid the RS aborts the corresponding protocol to avoid
 unnecessary processing. This saves resources in the case A above,
 since the communication between RS and OC is still in a very early
 stage. However, early abort of communication establishment can also
 be achieved by protocol authorization, see e.g. [I-D.seitz-core-
 security-modes]. Moreover one drawback with case A is that a new
 session has to be established if the same OC needs to submit a new
 access token to the RS.

 For these reasons implementations should at least support the
 transfer of access tokens in the application layer protocol. For
 this to work, the C needs to know the token storage resource on the
 RS. This information can be provided by the AS in step 5 of figure 1.
 Writing to this location should not require Resource Authorization.
 Instead, there are verifications of the access token done on
 reception as is discussed in the next section.

4.3.4 Access Token Reception

 Upon receiving an access token which is not already stored the RS
 shall perform the following processing:

 o Verify if the token is revoked

 o Verify if the token is from a trusted issuer (i.e. an AS known
 to the RS)

 o Verify the Message Authentication Code or signature of the token
 using a trusted AS key

 In order to support access token revocation the RS shall maintain a
 list of sequence numbers per issuer, specifying the revoked tokens.
 If the access token passes the verifications, we denote it ’valid’.
 The RS shall only store valid access tokens. Revoked tokens shall be
 removed from storage.

 Optionally the RS can use the sequence number of the token, to
 enforce token expiration. This can be done by rejecting sequence
 numbers that are significantly lower than the highest sequence number
 the RS has received so far.

 Optionally the RS can use the time lapse since received to enforce
 token expiration. This can be done by storing together with the token
 the local time as measured by the RS upon reception.

4.3.5 Access Token Storage

Selander, et al. Expires August 18, 2014 [Page 15]

INTERNET DRAFT CoRE Access Control February 14, 2014

 If the received access token is valid its content should be stored.
 Independently of case A or B in section 4.3.3, the content of the
 token should be handled in the same way.

 The token should be stored in a dedicated token storage resource, the
 signature should be removed from the token before storage. Expired or
 revoked tokens should be purged from the token storage.

4.3.6 Access Token Enforcement

 Upon receiving a request, the RS shall perform the following
 processing on the relevant stored token:

 o If there is information about expiry, verify if the stored token
 has expired

 o Verify that the stored token is bound to the requesting subject

 o Verify that the stored token authorizes the received request
 (including local conditions), this may include matching group
 memberships specified in the token to group ACLs on the RS.

 If no matching token is found, the request must be rejected using the
 response code 4.03 Forbidden.

 Keys or identifiers established in the communication security
 protocol can be used to support subject binding verification. Table 1
 shows examples of token subject identifiers based on different CoAP
 security modes (see also section 9 of [I-D.ietf-core-coap], [RFC4279]
 and [I-D.seitz-core-security-modes]).

 +---+
 | CoAP security mode | Token subject identifier|
 +---+
 | PreSharedKey | psk_identity |
 | RawPublicKey | public key fingerprint |
 | Certificate | Subject DN |
 | DerivedKey | psk_identity |
 | AuthorizedPublicKey | public key fingerprint |
 +---+
 Table 1: DTLS parameters as token subject identifiers

5. Intermediary processing and notifications

 This section describes the security implications of intermediary
 processing and notifications for access control.

Selander, et al. Expires August 18, 2014 [Page 16]

INTERNET DRAFT CoRE Access Control February 14, 2014

5.1 Intermediary nodes

 There may be intermediary nodes between OC and RS, including forward
 proxies, reverse proxies, cross-proxies, gateways, etc. From an
 access control point of view the RS should be able to verify that a
 received request is originating from the OC referenced in the
 received access token. This has implications on the access token and
 message protection.

 We distinguish between the end-to-end security setting where no
 intermediary nodes need be trusted and the hop-by-hop security
 setting where at least one intermediary node must be trusted.

 DTLS generally needs to be hop-by-hop in case of proxies, this
 requires some degree of trust in a proxy which may not be acceptable
 for some applications. A RS sending back the response via the
 forward proxy trusts the forward proxy with the plain text response
 (e.g. a GET response) and that the proxy has established secure
 communication with the OC.

 In the hop-by-hop case, neither DTLS nor CoAP offers any means for RS
 to authenticate the OC.

 If the RS has established DTLS with a forward proxy which proxies
 requests from an OC, then the access token can be signed by the OC in
 addition to the AS integrity protection. Though the RS can not
 authenticate the OC directly, it can infer from a correctly signed
 valid and fresh access token that the OC is not only authorized but
 also has the intent to perform the request.

5.2 Mirror Server

 The access control framework can also be applied to the scenario
 where a mirror server as defined in [I-D.vial-core-mirror-proxy] is
 present. In such a scenario, each RS behaves as a client of the
 mirror server. The access control enforcement in this case, would be
 made at the mirror server instead of in a constrained RS, and the
 trusted AS keys would have to be provisioned to the mirror server.
 However, to a client wishing to access a resource, the mirror server
 behaves as any other RS and is indistinguishable (transparent),
 thereby requiring no change for the communication between client and
 the mirror server. The communication between the mirror server and
 the constrained RS may or may not be secured, and is oblivious to the
 protocols used between the client and the mirror server.

5.3 Observe

 The access control framework can also be applied, as it is, in the

Selander, et al. Expires August 18, 2014 [Page 17]

INTERNET DRAFT CoRE Access Control February 14, 2014

 case where the CoAP observe option [I-D.ietf-core-observe] is used.
 With the observe option, clients can register an interest in a
 particular resource by sending a CoAP request containing the observe
 option to a RS. The RS would in this case maintain the state
 information for this expressed interest and send responses on state
 changes only as long as the access token and local conditions in the
 ACL are valid. The local conditions may need to be verified at each
 state change. Once the access token expires, the RS will remove any
 state information for the interest expressed. Also, the RS will
 notify the OC by sending a notification with 4.01 (Unauthorized)
 response code and the notification will not include an Observe
 Option. The OC would then have to transfer a new access token
 demonstrating that it is allowed access and send a new CoAP request
 with an observe option expressing interest.

6. Security Considerations

 The present framework aims to protect the resources on RS, the
 servers themselves, and the services offered. The means proposed to
 protect these assets is to enforce granular access restrictions on
 accessing the devices. Due to the setup of the framework, there is
 also a need to protect the authorization decisions and the keys used
 to protect the entire resource access procedure.

 The AS is a Trusted Third Party from the point of view of the
 resource owner. If the AS is compromised, it could e.g. issue access
 tokens to unauthorized parties.

 Since the AM requests tokens on behalf of the OC, the AS must be able
 to verify that it really represents the OC.

 In order to enforce a policy decision, the RS must authenticate the
 OC, and match the identifier of the authenticated entity with the
 subject identifier of the access token.

 While DTLS offers bundled encryption and integrity protection of both
 payload and headers, an object security approach allows for a trade-
 off between protection against performance. Depending on the trust
 model, access token and payload may need to be encrypted because
 eavesdropping will reveal information about the OC’s request, which
 may be privacy sensitive. Wrapping of the payloads as secure objects
 allows differentiated protection of the content based on its
 sensitiveness.

 A typical access token may have a size in the order of hundreds of
 bytes. If tokens can be sent to the RS by unauthenticated clients,
 care must be taken to prevent that the processing and storage of the

Selander, et al. Expires August 18, 2014 [Page 18]

INTERNET DRAFT CoRE Access Control February 14, 2014

 token opens for Denial of Service attacks.

7. IANA Considerations

 This document has no actions for IANA.

8. Acknowledgements

 The authors would like to thank Stefanie Gerdes, Mats Naeslund, John
 Mattsson and Sumit Singhal for contributions and helpful comments.

Selander, et al. Expires August 18, 2014 [Page 19]

INTERNET DRAFT CoRE Access Control February 14, 2014

9. References

9.1 Normative References

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., Bormann, C., and B. Frank,
 "Constrained Application Protocol (CoAP)", draft-ietf-
 core-coap-18 (work in progress), June 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

9.2 Informative References

 [I-D.seitz-ace-usecases]
 Seitz, L., Gerdes, S., and Selander, G., "ACE use cases",
 draft-seitz-ace-usecases-00 (work in progress), February
 2014.

 [I-D.ietf-lwig-terminology]
 Bormann, C., Ersue, M., and Keranen, A., "Terminology for
 Constrained Node Networks", draft-ietf-lwig-terminology-07
 (work in progress), February 2014.

 [I-D.seitz-ace-design-considerations]
 Seitz, L., and Selander, G., "Design Considerations for
 Security Protocols in Constrained Environments", draft-
 seitz-ace-design-considerations-00 (work in progress),
 February 2014.

 [I-D.seitz-core-security-modes]
 Seitz, L., and Selander G., "Additional Security Modes for
 CoAP", draft-seitz-core-security-modes-00 (work in
 progress), October 2013

 [I-D.ietf-jose-json-web-encryption]
 Jones, M., Rescorla, E., and Hildebrand J., "JSON Web
 Encryption (JWE)", draft-ietf-jose-json-web-encryption-20
 (work in progress), January 2014.

 [I-D.ietf-jose-json-web-signature]
 Jones, M., Bradley, J., and Sakimura N., "JSON Web
 Signature (JWS)", draft-ietf-jose-json-web-signature-20
 (work in progress), January 2014.

Selander, et al. Expires August 18, 2014 [Page 20]

INTERNET DRAFT CoRE Access Control February 14, 2014

 [I-D.bormann-core-ace-aif]
 Bormann, C., "An Authorization Information Format (AIF)
 for ACE", draft-bormann-core-ace-aif-00 (work in
 progress), January 2014.

 [I-D.gerdes-core-dcaf-authorize]
 Gerdes, S., Bergmann, O., and Bormann, C., "Delegated CoAP
 Authentication and Authorization Framework (DCAF)", draft-
 gerdes-core-dcaf-authorize-01 (work in progress), October
 2013.

 [I-D.vial-core-mirror-proxy]
 Vial, M., "CoRE Mirror Server", draft-vial-core-mirror-
 proxy-01 (work in progress), July 2012.

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP", draft-ietf-
 core-observe-11 (work in progress), October 2013.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2", FYI
 36, RFC 4949, August 2007.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 July 2005.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, October 2012.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, October 2013.

 [RFC4680] Santesson, S., "TLS Handshake Message for Supplemental
 Data", RFC 4680, October 2006.

 [RFC4279] Eronen, P., Ed., and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)",
 RFC 4279, December 2005.

Appendix A. Example Token Syntax

 In this section we give an example of an access token using a compact

Selander, et al. Expires August 18, 2014 [Page 21]

INTERNET DRAFT CoRE Access Control February 14, 2014

 JSON notation. The intent with this example is mainly to demonstrate
 potential content and structure of a token.

 01 {
 02 "SN": "081d5ff7bb2c2d08",
 03 "IS": "6f",
 04 "SI": "435143a1b5fc8bb70a3aa9b10f6673a8",
 05 "LCO": {
 06 "NB":"09:00:00Z",
 07 "NA":"17:00:00Z"
 08 },
 09 "MET": "POST",
 10 "VAL": "open",
 11 "RES": "node346/doorLock"
 12 }

 +----------------------------------+
 | Token element | Encoding |
 +----------------------------------+
 | Sequence number | SN |
 | Issuer | IS |
 | Subject identifier | SI |
 | Local conditions | LCO |
 | Request method | MET |
 | Allowed payload value | VAL |
 | Resource | RES |
 +----------------------------------+
 Table 2: Token elements encoding

 In this example the issuer is identified by a single byte, this is
 possible because the token is for a specific RS, which is not
 expected to have more than 256 distinct trusted AS.

 The subject identifier is a public key fingerprint binding the token
 to the corresponding public key, which in turn could be used to
 establish a DTLS connection to the RS using the RawPublicKey security
 mode (see section 9 of [I-D.ietf-core-coap]).

 The local condition specifies a time frame during which the token is
 valid (NB = not before, NA = not after). The syntax and semantics of
 such conditions must be pre-defined on the consuming RS so that it
 can parse and enforce them.

 The RESTful request method (DELETE, GET, POST, PUT) that this token
 authorizes is specified in the MET element, while the resource

Selander, et al. Expires August 18, 2014 [Page 22]

INTERNET DRAFT CoRE Access Control February 14, 2014

 specifies the URI host and URI path from the CoAP requests. We do not
 consider it useful to specify the scheme (coap, coaps) or the query
 parts of a resource URI, the latter since queries are very resource
 dependent and it is probably difficult to write meaningful access
 policies on specific query values.

 For actions including a payload (typically PUT and POST), the token
 can specify a restriction on the allowed payload value.

 Note that JSON is used here because it gives a human readable token
 format, for production deployments one should consider using a more
 compact representation format such as CBOR [RFC7049] to reduce the
 token size. Other examples of access token formats are provided in
 [I-D.gerdes-core-dcaf-authorize].

Appendix B. Changelog

 Changes from -01 to -02:

 o Further shortening of the draft by referencing separate drafts.

 o Distinction between Static and Dynamic Access Control

 o Discussion of ACLs and groups

 Changes from -00 to -01:

 o The draft is significantly shortened, content is moved to
 separate drafts and much informational content has been removed.

 o The limited use case descriptions are greatly expanded and moved
 into a separate draft [I-D.seitz-ace-usecases].

 o The key provisioning schemes are generalized to alternate CoAP
 security modes and described in a separate draft [I-D.seitz-
 core-security-modes]

 o The ACL categories are replaced by the distinction between
 protocol authorization and resource authorization.

 o The Access Manager functionality originally defined in [I-
 D.gerdes-core-dcaf-authorize] is introduced.

 o The communication security profile description is removed. For
 a detailed DTLS based access control setting see [I-D.gerdes-
 core-dcaf-authorize].

Selander, et al. Expires August 18, 2014 [Page 23]

INTERNET DRAFT CoRE Access Control February 14, 2014

 o The object security profile is planned for a future draft.

Authors’ Addresses

 Goeran Selander
 Ericsson
 Farogatan 6
 16480 Kista
 SWEDEN

 EMail: goran.selander@ericsson.com

 Mohit Sethi
 Ericsson
 Hirsalantie 11
 02420 Jorvas
 FINLAND

 EMail: mohit.m.sethi@ericsson.com

 Ludwig Seitz
 SICS Swedish ICT AB
 Scheelevagen 17
 22370 Lund
 SWEDEN

 EMail: ludwig@sics.se

Selander, et al. Expires August 18, 2014 [Page 24]

