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Abstract

   The Constrained Application Protocol (CoAP) is a light-weight web
   transfer protocol designed to be used in constrained environments.
   Transport layer security for CoAP has been addressed with a DTLS
   binding for CoAP. This document describes a generic and dynamic
   access control framework suitable for constrained devices e.g. using
   CoAP and DTLS.  The framework builds on well known paradigms for
   access control, externalizing authorization decision making to
   unconstrained nodes while performing authorization decision
   enforcement and verification of local conditions in constrained
   devices.

Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as
   Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress".

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/1id-abstracts.html

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html
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1.  Introduction

   The Constrained Application Protocol (CoAP) [I-D.ietf-core-coap] is a
   light-weight web transfer protocol, suitable for applications in
   embedded devices used in services such as smart energy, smart home,
   building automation, remote patient monitoring etc.  Due to the
   nature of the these use cases including critical, unattended
   infrastructure and the personal sphere, security and privacy are
   critical components. Authentication and authorization aspects of such
   use cases are discussed in [I-D.seitz-ace-usecases].

   CoAP message exchanges can be protected with different security
   protocols.  The CoAP specification defines a DTLS [RFC6347] binding
   for CoAP, which provides communication security services including
   authentication, encryption, integrity, and replay protection.

   The CoAP specification sketches an approach for authorization and
   access control - i.e. controlling who has access to what - using
   static access control lists, which are assumed to have been
   provisioned to the devices and which contain lists of identifiers
   that may start DTLS sessions with the devices.

   There are some limitations inherent to such an approach:

      1. By restricting the scope of access control to the granularity
         of identifiers of requesting clients, it is not possible to
         give different privileges to different entities that are
         allowed to access the same device.  For example, it may be
         desirable to give some clients the right to GET resources but
         others the right to POST or PUT resources to the same device;
         or to give the same client different access rights for
         different resources on the same device.

      2. There are use cases [I-D.seitz-ace-usecases] where the
         granularity of GET/PUT/POST/DELETE is not sufficient to specify
         the relevant access restrictions.  For example, an access
         policy may depend on local conditions of the device such as
         date and time, proximity, geo-location, detected effort (press
         3 times), or other aspects of the current state of the device.

      3. It is not defined how to change access privileges except by re-
         provisioning. How such changes would be authorized is also
         unclear.

   This document proposes a framework that allows fine-grained and
   flexible access control, applicable to a generic setting including
   use cases with constrained devices [I-D.ietf-lwig-terminology].
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1.1  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in RFC
   2119 [RFC2119].

   Certain security-related terms are to be understood in the sense
   defined in [RFC4949].  These terms include, but are not limited to,
   "authentication", "authorization", "access control",
   "confidentiality", "credential", "encryption", "sign", "signature",
   "data integrity", and "verify".

   Terminology for constrained environments is defined in [I-D.ietf-
   lwig-terminology].  These terms include, but are not limited to,
   "constrained device", "constrained network", and "device class".

   Authorization terminology is taken from OAuth 2.0 [RFC6749].

   Resource Server (RS): The constrained device which hosts resources
   the Client wants to access.

   Client (C): A device which wants to access a resource on the Resource
   Server.  This could also be a constrained device.

   Resource Owner (RO): The subject who owns the resource and controls
   its access rights.

2.  Scope and Requirements

   This section defines the scope and gives an overview of the
   requirements that form the basis for the proposed Access Control
   Framework.

2.1 Resource Authorization and Protocol Authorization

   Access control is protection of system resources against unauthorized
   access. There are different kinds of "system resources" that needs
   protection and different kinds of protection mechanisms.

   For the purpose of this memo, we distinguish between two types of
   authorization: "Resource Authorization" and "Protocol
   Authorization".

      o Resource Authorization (RA) deals with the question whether the
        server should allow a client to request GET/PUT/POST/DELETE to a
        resource (where "resource" is as defined in RFC 2616).
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      o Protocol Authorization (PA) deals with the question whether the
        server should engage in a protocol initiated by the client.

   Where RA is mainly about protecting the resource, PA is also about
   protecting the server that hosts the resources. By only granting
   authorized clients the right to run a protocol, only those clients
   are able to interact with resources on the server. This also avoids
   unnecessary protocol processing, thus saving battery and computing
   resources, and reducing the effect of certain DoS attacks.

   In order to enforce authorization the server must be able to verify
   some property of the requesting client, e.g. its identity or a group
   membership. PA may e.g. be applied to DTLS as suggested in the CoAP
   specification or in [I-D.seitz-core-security-modes].

      o RA typically implies some PA: If a client is authorized to
   access a resource hosted on a server, then the client should be
   allowed to run a protocol (e.g. DTLS) with the server when accessing
   the resource.

      o PA access does not necessarily imply RA: Just because a client
   is authorized to execute a protocol with the server, the client is
   not necessarily authorized to access any resources hosted on the
   server.

   The CoAP Security Modes [I-D.ietf-core-coap] and the Additional
   Security Modes for CoAP [I-D.seitz-core-security-modes] define Access
   Control Lists with information about what clients are allowed to run
   DTLS with an origin server.  This is by definition Protocol
   Authorization. However, PA can be used to define RA: For example, by
   allowing access to all resources for all clients allowed to execute
   (and successfully complete) an authentication protocol.

   The scope of the Access Control Framework defined in this draft is
   targeting RA, but as is noted above, RA implies that complementing PA
   needs to be defined.

2.2  Requirements

   The Access Control Framework (ACF) for constrained environment as
   described in this memo shall support the requirements in [I-D.seitz-
   ace-usecases] and take into account the design considerations in [I-
   D.seitz-ace-design-considerations].  In particular the ACF should

      o support differentiated access rights for different requesting
        entities,
      o provide access control at least at the granularity of RESTful
        resources,
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      o allow access rights depending on local conditions (e.g. state of
        device, time, position),
      o include procedures for authorizing changes and revocation of
        access rights
      o keep transmission and reception at a minimum in order to reduce
        energy consumption in constrained devices.

3.  Static and Dynamic Access Control

   Consider a generic setting where a Client wants to access a resource
   hosted on a Resource Server, which is potentially a constrained
   device, and where the access rights are determined by the Resource
   Owner. (The Client may also be constrained, we return to this in
   section 4.)

3.1 Static Access Control

3.1.1 ACL for Protocol Authorization

   If there are no restrictions on which Client is allowed to access a
   certain resource, there is no need to perform access control, nor to
   authenticate the Client. If it does matter which Client is allowed
   access, then the Resource Server must authenticate some properties
   (e.g. identity, group membership) of the Client, and also be able to
   determine if the Client is authorized based on these properties.

   One possible access control scheme is that each Resource Server keeps
   a list of identifiers of authorized clients.  The CoAP Security Modes
   [I-D.ietf-core-coap] Pre-Shared Key and Raw Public Key mention Access
   Control Lists (ACLs) with information about what clients are allowed
   to run DTLS with a server, and subsequently access any resource on
   the server (cf. PA, Section 2.1).

3.1.2 ACL for Resource Authorization

   In a more elaborate scheme, the right to access a resource on a
   server could depend on more parameters, e.g.

      o what resource is requested,

      o what request method (e.g. GET, PUT, DELETE) is used, or

      o local/temporal conditions at the time of the request.

   This kind of authorization information can be encoded into an ACL
   stored in the Resource Server and used to determine if a request
   should be granted.
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3.1.3 Static ACLs

   Both schemes described in previous sections require ACLs (access
   rights) to be provisioned to the Resource Server at one time, and
   used at a later time to grant resource access.  A common assumption
   is that an ACL is provisioned during deployment and remains valid for
   the lifetime of the device. We refer to this as Static Access
   Control.

   Static Access Control is adequate for a number of use cases, e.g.
   when the access rights remain constant throughout the lifetime of the
   device or when manual provisioning of new access rights after
   deployment of the device is feasible.

   Static Access Control does not address how ACLs can be changed or
   revoked remotely, nor how such an update would be authorized. In
   particular for embedded devices this requires special considerations,
   for example due to

      o the lack of physical access to the device (e.g. due to devices
        built into infrastructure), and/or

      o the infeasibility of manual provisioning procedures (e.g. due to
        the large quantity of devices).

3.3 Dynamic Access Control

   In this section we address use cases for which Static Access Control
   is not sufficient [I-D.seitz-ace-usecases], e.g. to grant access to
   new Clients or change access rights some time after deployment.

3.3.1 Rationale

   The flexibility required by a Resource Owner in assigning access
   rights implies that static ACLs need to be replaced by more general
   access control policies.  However, managing and evaluating arbitrary
   access control policies is typically too heavyweight for constrained
   devices.  As a consequence we assume that the policy management and
   the authorization decision making is externalized to a less
   constrained node, called the Authorization Server (AS), acting on
   behalf of the Resource Owner who defines the access control policies
   governing the decisions of the AS.  The AS may potentially be
   implemented in many different kinds of physical nodes, e.g. as a
   server in the cloud or a relatively unconstrained portable device
   such as a smartphone.

   While authorization decision and policy management is outsourced to
   the AS, access control enforcement should be performed in a trusted
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   environment associated to the resource and as close to the resource
   as possible, in order to provide end-to-end security between resource
   and authorized client.

   Moreover, verifications of any local conditions should be performed
   in conjunction with accessing the resource for the following reasons:

      o Transferring information about local conditions in the Resource
        Server to the Authorization Server for each policy decision adds
        to the communication costs for the Resource Server, and
        unnecessarily so if the decision is "not granted".

      o The local conditions in the Resource Server may have changed at
        the time of access, so the decision would be based on outdated
        information.

   We therefore suggest that access control decision enforcement and
   verification of local conditions should take place in the Resource
   Server, or in a proxy-type device offloading a severely constrained
   device hosting the resource.  Local conditions may be expressed as
   constraints under which an externally granted authorization decision
   is valid, and which are verified at the time and location of access.

   We use the term Dynamic Access Control refer to the setting where
   information about authorization decisions and/or access policies is
   transferred from the Authorization Server to the Resource Server.

   Authorization decisions (potentially including local conditions) are
   conveyed from the Authorization Server to the Resource Server in
   Access Tokens, which are objects containing authorization information
   related to a client. Access tokens are produced by an Authorization
   Server and consumed by a Resource Server, which processes the access
   token and caches or stores information about the access rights.

   NOTE

   The terminology "Authorization Server" and "Access Token" is taken
   from OAuth 2.0 [RFC6749]. The feasibility to implement the access
   control in constrained environments using OAuth is for further study.

3.3.2 Access Tokens

   There may be different types of authorization decision content in an
   access token, we consider two cases:
      o An access token may be a Capability Token, i.e. a list of one or
        more resources and associated request methods
        (GET/PUT/POST/DELETE) which the client is granted.  See Appendix
        A for an example of format of a capability list-based access
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        token (also expressing a local condition). Other examples of
        formatting capability lists can be found in [I-D.bormann-core-
        ace-aif].
      o An access token may be an assertion about a group membership of
        the client (a Group Membership Assertion), for which the access
        rights are specified in form of a Group ACL on the Resource
        Server, see 3.3.3.  For an example of a group membership
        assertion see [I-D.gerdes-core-dcaf-authorize].

   Transfer of access tokens, potentially via intermediary nodes, is
   discussed later in this document.

3.3.3 Group ACLs

   One purpose of the AS is to outsource policy management from the RS.
   However, for frequently recurring requests requiring a common set of
   access rights it is beneficial to store in the RS local access
   policies which can be compactly represented and easily evaluated,
   such as ACLs.

   In order to avoid identity management at the level of the RS, such
   ACLs should refer to groups (or "roles") instead of specific subject
   identifiers. We refer to these ACLs as Group ACLs, since they contain
   group identifiers as subjects rather than client identifiers. When
   there is no risk for confusion we will simply call them ACLs.

   A group ACL is used in conjunction with a group membership assertion
   (see 3.3.2) on the RS. Together they associate a Client to a resource
   access permission associated with the group which the Client is
   member in.

   Furthermore, group ACLs themselves should be represented as resources
   on the RS which can be accessed by the AS. Updates of ACLs should be
   performed by the AS only, and should be implemented by PUT or POST to
   the ACL resources on the RS.

3.3.4 Trust model

   The Authorization Server must be trusted by all involved parties, in
   particular the Resource Owner must trust the AS to enact the access
   policies as specified. The Resource Server must trust the access
   tokens to express rights given by the Resource Owner, and that
   updates on ACLs performed by the AS are done on behalf of the
   Resource Owner.

   In order to secure the access token transport and to be able to
   authenticate requests from the AS, we assume that the Resource Server
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   has established a shared secret key or authentic public key of the
   AS. How this key is established is out of scope for this memo.

   The Authorization Server being a Trusted Third Party can also support
   authentication between Client and Resource Server, by means of e.g.
   key distribution functionality (cf. Kerberos [RFC4120]). The
   feasibility to implement access control in constrained environments
   using authorization extensions to Kerberos is for further study.

4 Access Control Framework

   The Access Control Framework detailed in this section targets Dynamic
   Access Control for Resource Authorization.

4.1 Entities

   The relevant entities are:

      o An Authorization Server (AS) performing the authorization
        decision making, based on the access control policies, and
        sharing one or more trusted keys from the Resource Server.

      o A potentially constrained Resource Server (RS) hosting resources
        and provisioned with one or more trusted keys from the AS.

      o A potentially constrained Client (C) wishing to access a
        resource.  As there may be intermediaries, e.g. forward proxies,
        the actual CoAP client requesting the RS may be different from
        the Client. When we want to emphasize the original source of the
        request we use the term "Origin Client" (OC).

      o An Access Manager (AM) which requests and receives access tokens
        from an AS. The AM may be a standalone node or integrated/co-
        located with the C. Constrained clients may need support to
        acquire access tokens, in which case the Access Manager is
        implemented on a separate node.

4.2 Message flow example

   One example procedure for resource access is shown in Figure 1 and
   described below. The setting is a Client wishing to access a resource
   for which it is authorized, but which the RS is not aware of. Once
   the RS has stored a new access token, the message flow reduces to
   step 8.
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                         Access             Authorization    Resource
      Client             Manager               Server         Server
        +                  +                     +              +
        |---(1) AuthZ ---->|                     |              |
        |     Request      |<-(2) Authenticate ->|              |
        |                  |                     |              |
        |                  |-(3) Request token ->|              |
        |                  |                     | (4)          |
        |                  |                     | Evaluate     |
        |                  |                     | access       |
        |                  |                     | control      |
        |                  |                     | policies     |
        |                  |<---(5) Token, ------|              |
        |                  |   Base Credentials  |              |
        |<---(6) Token, ---|                     |              |
        | Base Credentials |                     |              |
        |                  +                     +              |
        |---------------(7) Store Token Request --------------->|
        |<-------------------- Response ------------------------|
        |                                                       |
        |------------------(8) Resource Request --------------->|
        |<-------------------- Response ------------------------|

            Figure 1: Roles and access control procedure

   The C sends an authorization request to the AM (1).

   The AM authenticates to the AS (2) on behalf of the C.  The AM then
   requests an access token, and optionally Base Credentials for a
   specific security mode (3). The request contains the C’s subject
   identifier which is used to evaluate the access control policies.

   The AS makes the authorization decision on behalf of the Resource
   Owner (4) and, if granted, responds (5) to the AM with an access
   token bound to the C’s subject identifier. Optionally it also sends
   Base Credentials to be used in the message exchange between C and RS.
    A Base Credential may e.g. be the public key of the RS, a public key
   certificate generated for the C, or a derived key bootstrapping the
   trust relation between the AS and RS [I-D.seitz-core-security-
   modes].

   The AM forwards the access token and Base Credentials to the OC (6).

   The OC sends the access token (see 4.3.3) to the RS (7). After the
   token is verified by the RS (see 4.3.4) its content is stored and the
   RS responds appropriately to the OC.
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   The OC submits Resource Request(s) (8), which are verified against
   the stored access token content (and potentially Group ACLs) by the
   RS. If the RS finds a matching grant, and all local conditions are
   met, the request is processed and a response is sent. Steps (7)-(8)
   could potentially be combined in one request-response.

   Communication security is not detailed in this message flow and
   depends on several factors. E.g. if the Base Credentials are secret
   keys, then the communication between C and AM, and between AM and RS
   must be confidential.

   Request and Response messages need to be protected, either using
   communication security, such as DTLS [RFC6347], or object security,
   such as JWE [I-D.ietf-jose-json-web-encryption] and JWS [I-D.ietf-
   jose-json-web-signature]. The Base Credentials that AS optionally
   provides, can be used to establish the cryptographic keys for and
   object security scheme, or Protocol Authorization for, say, DTLS.

   A detailed proposal can be found in [I-D.gerdes-core-dcaf-authorize].

4.3  Access Tokens

   In 3.3.2 we listed two alternative access tokens: capability token
   and group membership assertion. In this section we discuss the
   content, protection, transfer, reception, and storage of these kinds
   of access tokens.

4.3.1 Requirements for Access Tokens

   Access tokens must be integrity protected by the AS such that it can
   be verified by the RS using a trusted key (see 4.3.2), and
   furthermore they should enable the RS to enforce the authorization
   decision. Hence the access token should provide the following
   information:

      o Which OC does the decision apply to (subject identifier), and
        how can this OC be authenticated (if necessary).

      o Which AS has created this access token (issuer).  This
        information may be implicit from the signature of the token.

      o A sequence number which, together with the issuer, is unique for
        a given RS.

   The token can also specify under what other conditions it is valid
   (local conditions evaluated by the resource server at access time,
   e.g. expiration, number of uses).
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   In addition to this, a capability list also needs to specify:
      o Which resources does the decision apply to.

      o Which request methods (GET, PUT, POST, DELETE) does the decision
        apply to.

   A capability token may state specific allowed values, for PUT and
   POST methods (e.g. if the client is only allowed to set values 1 and
   2 not 0 and 3 for certain actuator).

4.3.2 Access Token Protection

   Since access tokens are to be consumed by constrained devices, the
   protection of the access token must be lightweight and compact.  For
   example JSON Web Signatures (JWS) [I-D.ietf-jose-json-web-signature]
   can be used as a means of signing access tokens, specifically with
   the JWS Compact Serialization.

   In an object security setting, where the token may be transferred
   over an insecure channel, it can be encrypted and integrity protected
   using JWE [I-D.ietf-jose-json-web-encryption].

   An alternative, potentially more compact encoding format would be
   CBOR [RFC7049], however it would require corresponding signature and
   encryption schemes.

   Using an asymmetric signature scheme is recommended if intermediary
   nodes, between OC and RS, are expected to verify the access token,
   since it is less security critical to provision public keys to the
   intermediary nodes, rather than symmetric keys. This allows an
   intermediary to discard certain invalid requests (expired/spoofed
   access tokens, etc.) without sharing a secret key with the RS.

4.3.3  Access Token Transfer

   The access token can be transferred from the OC to the RS in
   different ways.

      A. One possibility is to extend the communication security
         establishment protocol (e.g. using TLS Handshake Message for
         Supplemental Data [RFC4680] in DTLS).

      B. Another possibility is to use the application protocol (e.g.
         CoAP) and send the access tokens as regular requests, i.e. PUT
         the access token to a dedicated token storage resource.

   In either case the access token is verified upon reception, and if it
   is valid (see 4.3.4), its content is stored (see 4.3.5) for being
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   used in a subsequent resource request (see 4.3.6).  If the access
   token is not valid the RS aborts the corresponding protocol to avoid
   unnecessary processing.  This saves resources in the case A above,
   since the communication between RS and OC is still in a very early
   stage.  However, early abort of communication establishment can also
   be achieved by protocol authorization, see e.g. [I-D.seitz-core-
   security-modes].  Moreover one drawback with case A is that a new
   session has to be established if the same OC needs to submit a new
   access token to the RS.

   For these reasons implementations should at least support the
   transfer of access tokens in the application layer protocol.  For
   this to work, the C needs to know the token storage resource on the
   RS. This information can be provided by the AS in step 5 of figure 1.
    Writing to this location should not require Resource Authorization.
   Instead, there are verifications of the access token done on
   reception as is discussed in the next section.

4.3.4  Access Token Reception

   Upon receiving an access token which is not already stored the RS
   shall perform the following processing:

      o Verify if the token is revoked

      o Verify if the token is from a trusted issuer (i.e. an AS known
        to the RS)

      o Verify the Message Authentication Code or signature of the token
        using a trusted AS key

   In order to support access token revocation the RS shall maintain a
   list of sequence numbers per issuer, specifying the revoked tokens.
   If the access token passes the verifications, we denote it ’valid’.
   The RS shall only store valid access tokens. Revoked tokens shall be
   removed from storage.

   Optionally the RS can use the sequence number of the token, to
   enforce token expiration. This can be done by rejecting sequence
   numbers that are significantly lower than the highest sequence number
   the RS has received so far.

   Optionally the RS can use the time lapse since received to enforce
   token expiration. This can be done by storing together with the token
   the local time as measured by the RS upon reception.

4.3.5  Access Token Storage
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   If the received access token is valid its content should be stored.
   Independently of case A or B in section 4.3.3, the content of the
   token should be handled in the same way.

   The token should be stored in a dedicated token storage resource, the
   signature should be removed from the token before storage. Expired or
   revoked tokens should be purged from the token storage.

4.3.6  Access Token Enforcement

   Upon receiving a request, the RS shall perform the following
   processing on the relevant stored token:

      o If there is information about expiry, verify if the stored token
        has expired

      o Verify that the stored token is bound to the requesting subject

      o Verify that the stored token authorizes the received request
        (including local conditions), this may include matching group
        memberships specified in the token to group ACLs on the RS.

   If no matching token is found, the request must be rejected using the
   response code 4.03 Forbidden.

   Keys or identifiers established in the communication security
   protocol can be used to support subject binding verification. Table 1
   shows examples of token subject identifiers based on different CoAP
   security modes (see also section 9 of [I-D.ietf-core-coap], [RFC4279]
   and [I-D.seitz-core-security-modes]).

          +-----------------------------------------------+
          | CoAP security mode  | Token subject identifier|
          +-----------------------------------------------+
          | PreSharedKey        |  psk_identity           |
          | RawPublicKey        |  public key fingerprint |
          | Certificate         |  Subject DN             |
          | DerivedKey          |  psk_identity           |
          | AuthorizedPublicKey |  public key fingerprint |
          +-----------------------------------------------+
        Table 1: DTLS parameters as token subject identifiers

5. Intermediary processing and notifications

   This section describes the security implications of intermediary
   processing and notifications for access control.
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5.1 Intermediary nodes

   There may be intermediary nodes between OC and RS, including forward
   proxies, reverse proxies, cross-proxies, gateways, etc.  From an
   access control point of view the RS should be able to verify that a
   received request is originating from the OC referenced in the
   received access token.  This has implications on the access token and
   message protection.

   We distinguish between the end-to-end security setting where no
   intermediary nodes need be trusted and the hop-by-hop security
   setting where at least one intermediary node must be trusted.

   DTLS generally needs to be hop-by-hop in case of proxies, this
   requires some degree of trust in a proxy which may not be acceptable
   for some applications.  A RS sending back the response via the
   forward proxy trusts the forward proxy with the plain text response
   (e.g. a GET response) and that the proxy has established secure
   communication with the OC.

   In the hop-by-hop case, neither DTLS nor CoAP offers any means for RS
   to authenticate the OC.

   If the RS has established DTLS with a forward proxy which proxies
   requests from an OC, then the access token can be signed by the OC in
   addition to the AS integrity protection.  Though the RS can not
   authenticate the OC directly, it can infer from a correctly signed
   valid and fresh access token that the OC is not only authorized but
   also has the intent to perform the request.

5.2 Mirror Server

   The access control framework can also be applied to the scenario
   where a mirror server as defined in [I-D.vial-core-mirror-proxy] is
   present.  In such a scenario, each RS behaves as a client of the
   mirror server.  The access control enforcement in this case, would be
   made at the mirror server instead of in a constrained RS, and the
   trusted AS keys would have to be provisioned to the mirror server.
   However, to a client wishing to access a resource, the mirror server
   behaves as any other RS and is indistinguishable (transparent),
   thereby requiring no change for the communication between client and
   the mirror server.  The communication between the mirror server and
   the constrained RS may or may not be secured, and is oblivious to the
   protocols used between the client and the mirror server.

5.3 Observe

   The access control framework can also be applied, as it is, in the
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   case where the CoAP observe option [I-D.ietf-core-observe] is used.
   With the observe option, clients can register an interest in a
   particular resource by sending a CoAP request containing the observe
   option to a RS.  The RS would in this case maintain the state
   information for this expressed interest and send responses on state
   changes only as long as the access token and local conditions in the
   ACL are valid.  The local conditions may need to be verified at each
   state change.  Once the access token expires, the RS will remove any
   state information for the interest expressed.  Also, the RS will
   notify the OC by sending a notification with 4.01 (Unauthorized)
   response code and the notification will not include an Observe
   Option. The OC would then have to transfer a new access token
   demonstrating that it is allowed access and send a new CoAP request
   with an observe option expressing interest.

6.  Security Considerations

   The present framework aims to protect the resources on RS, the
   servers themselves, and the services offered.  The means proposed to
   protect these assets is to enforce granular access restrictions on
   accessing the devices.  Due to the setup of the framework, there is
   also a need to protect the authorization decisions and the keys used
   to protect the entire resource access procedure.

   The AS is a Trusted Third Party from the point of view of the
   resource owner.  If the AS is compromised, it could e.g. issue access
   tokens to unauthorized parties.

   Since the AM requests tokens on behalf of the OC, the AS must be able
   to verify that it really represents the OC.

   In order to enforce a policy decision, the RS must authenticate the
   OC, and match the identifier of the authenticated entity with the
   subject identifier of the access token.

   While DTLS offers bundled encryption and integrity protection of both
   payload and headers, an object security approach allows for a trade-
   off between protection against performance.  Depending on the trust
   model, access token and payload may need to be encrypted because
   eavesdropping will reveal information about the OC’s request, which
   may be privacy sensitive.  Wrapping of the payloads as secure objects
   allows differentiated protection of the content based on its
   sensitiveness.

   A typical access token may have a size in the order of hundreds of
   bytes. If tokens can be sent to the RS by unauthenticated clients,
   care must be taken to prevent that the processing and storage of the
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   token opens for Denial of Service attacks.

7.  IANA Considerations

   This document has no actions for IANA.

8.  Acknowledgements

   The authors would like to thank Stefanie Gerdes, Mats Naeslund, John
   Mattsson and Sumit Singhal for contributions and helpful comments.

Selander, et al.        Expires August 18, 2014                [Page 19]



INTERNET DRAFT            CoRE Access Control          February 14, 2014

9.  References

9.1  Normative References

   [I-D.ietf-core-coap]
              Shelby, Z., Hartke, K., Bormann, C., and B. Frank,
              "Constrained Application Protocol (CoAP)", draft-ietf-
              core-coap-18 (work in progress), June 2013.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

9.2  Informative References

   [I-D.seitz-ace-usecases]
              Seitz, L., Gerdes, S., and Selander, G., "ACE use cases",
              draft-seitz-ace-usecases-00 (work in progress), February
              2014.

   [I-D.ietf-lwig-terminology]
              Bormann, C., Ersue, M., and Keranen, A., "Terminology for
              Constrained Node Networks", draft-ietf-lwig-terminology-07
              (work in progress), February 2014.

   [I-D.seitz-ace-design-considerations]
              Seitz, L., and Selander, G., "Design Considerations for
              Security Protocols in Constrained Environments", draft-
              seitz-ace-design-considerations-00 (work in progress),
              February 2014.

   [I-D.seitz-core-security-modes]
              Seitz, L., and Selander G., "Additional Security Modes for
              CoAP", draft-seitz-core-security-modes-00 (work in
              progress), October 2013

   [I-D.ietf-jose-json-web-encryption]
              Jones, M., Rescorla, E., and Hildebrand J., "JSON Web
              Encryption (JWE)", draft-ietf-jose-json-web-encryption-20
              (work in progress), January 2014.

   [I-D.ietf-jose-json-web-signature]
              Jones, M., Bradley, J., and Sakimura N., "JSON Web
              Signature (JWS)", draft-ietf-jose-json-web-signature-20
              (work in progress), January 2014.

Selander, et al.        Expires August 18, 2014                [Page 20]



INTERNET DRAFT            CoRE Access Control          February 14, 2014

   [I-D.bormann-core-ace-aif]
              Bormann, C., "An Authorization Information Format (AIF)
              for ACE", draft-bormann-core-ace-aif-00 (work in
              progress), January 2014.

   [I-D.gerdes-core-dcaf-authorize]
              Gerdes, S., Bergmann, O., and Bormann, C., "Delegated CoAP
              Authentication and Authorization Framework (DCAF)", draft-
              gerdes-core-dcaf-authorize-01 (work in progress), October
              2013.

   [I-D.vial-core-mirror-proxy]
              Vial, M., "CoRE Mirror Server", draft-vial-core-mirror-
              proxy-01 (work in progress), July 2012.

   [I-D.ietf-core-observe]
              Hartke, K., "Observing Resources in CoAP", draft-ietf-
              core-observe-11 (work in progress), October 2013.

   [RFC4949]  Shirey, R., "Internet Security Glossary, Version 2", FYI
              36, RFC 4949, August 2007.

   [RFC6347]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security Version 1.2", RFC 6347, January 2012.

   [RFC4120]  Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
              Kerberos Network Authentication Service (V5)", RFC 4120,
              July 2005.

   [RFC6749]  Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
              RFC 6749, October 2012.

   [RFC7049]  Bormann, C. and P. Hoffman, "Concise Binary Object
              Representation (CBOR)", RFC 7049, October 2013.

   [RFC4680]  Santesson, S., "TLS Handshake Message for Supplemental
              Data", RFC 4680, October 2006.

   [RFC4279]  Eronen, P., Ed., and H. Tschofenig, Ed., "Pre-Shared Key
              Ciphersuites for Transport Layer Security (TLS)",
              RFC 4279, December 2005.

Appendix A.  Example Token Syntax

   In this section we give an example of an access token using a compact
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   JSON notation. The intent with this example is mainly to demonstrate
   potential content and structure of a token.

      01 {
      02   "SN": "081d5ff7bb2c2d08",
      03   "IS": "6f",
      04   "SI": "435143a1b5fc8bb70a3aa9b10f6673a8",
      05   "LCO": {
      06      "NB":"09:00:00Z",
      07      "NA":"17:00:00Z"
      08   },
      09   "MET": "POST",
      10   "VAL": "open",
      11   "RES": "node346/doorLock"
      12 }

        +----------------------------------+
        | Token element         | Encoding |
        +----------------------------------+
        | Sequence number       |  SN      |
        | Issuer                |  IS      |
        | Subject identifier    |  SI      |
        | Local conditions      |  LCO     |
        | Request method        |  MET     |
        | Allowed payload value |  VAL     |
        | Resource              |  RES     |
        +----------------------------------+
         Table 2: Token elements encoding

   In this example the issuer is identified by a single byte, this is
   possible because the token is for a specific RS, which is not
   expected to have more than 256 distinct trusted AS.

   The subject identifier is a public key fingerprint binding the token
   to the corresponding public key, which in turn could be used to
   establish a DTLS connection to the RS using the RawPublicKey security
   mode (see section 9 of [I-D.ietf-core-coap]).

   The local condition specifies a time frame during which the token is
   valid (NB = not before, NA = not after).  The syntax and semantics of
   such conditions must be pre-defined on the consuming RS so that it
   can parse and enforce them.

   The RESTful request method (DELETE, GET, POST, PUT) that this token
   authorizes is specified in the MET element, while the resource
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   specifies the URI host and URI path from the CoAP requests. We do not
   consider it useful to specify the scheme (coap, coaps) or the query
   parts of a resource URI, the latter since queries are very resource
   dependent and it is probably difficult to write meaningful access
   policies on specific query values.

   For actions including a payload (typically PUT and POST), the token
   can specify a restriction on the allowed payload value.

   Note that JSON is used here because it gives a human readable token
   format, for production deployments one should consider using a more
   compact representation format such as CBOR [RFC7049] to reduce the
   token size. Other examples of access token formats are provided in
   [I-D.gerdes-core-dcaf-authorize].

Appendix B.  Changelog

   Changes from -01 to -02:

      o Further shortening of the draft by referencing separate drafts.

      o Distinction between Static and Dynamic Access Control

      o Discussion of ACLs and groups

   Changes from -00 to -01:

      o The draft is significantly shortened, content is moved to
        separate drafts and much informational content has been removed.

      o The limited use case descriptions are greatly expanded and moved
        into a separate draft [I-D.seitz-ace-usecases].

      o The key provisioning schemes are generalized to alternate CoAP
        security modes and described in a separate draft [I-D.seitz-
        core-security-modes]

      o The ACL categories are replaced by the distinction between
        protocol authorization and resource authorization.

      o The Access Manager functionality originally defined in [I-
        D.gerdes-core-dcaf-authorize] is introduced.

      o The communication security profile description is removed.  For
        a detailed DTLS based access control setting see [I-D.gerdes-
        core-dcaf-authorize].
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      o The object security profile is planned for a future draft.
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