
TRAM T. Reddy
Internet-Draft P. Patil
Intended status: Standards Track R. Ravindranath
Expires: December 21, 2014 Cisco
 J. Uberti
 Google
 June 19, 2014

 TURN Extension for Third Party Authorization
 draft-reddy-tram-turn-third-party-authz-03

Abstract

 This document proposes the use of OAuth to obtain and validate
 ephemeral tokens that can be used for TURN authentication. The usage
 of ephemeral tokens ensure that access to a TURN server can be
 controlled even if the tokens are compromised, as is the case in
 WebRTC where TURN credentials must be specified in Javascript.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 21, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Reddy, et al. Expires December 21, 2014 [Page 1]

Internet-Draft TURN for 3rd party Authorization June 2014

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Solution Overview . 3
 4. Obtaining a Token Using OAuth 5
 4.1. Key Establishment . 7
 4.1.1. DSKPP . 8
 4.1.2. HTTP interactions 8
 4.1.3. Manual provisioning 9
 5. Forming a Request . 10
 6. STUN Attributes . 10
 6.1. THIRD-PARTY-AUTHORIZATION 10
 6.2. ACCESS-TOKEN . 10
 7. Receiving a request with ACCESS-TOKEN attribute 12
 8. Changes to TURN Client 13
 9. Security Considerations 13
 10. IANA Considerations . 13
 11. Acknowledgements . 14
 12. References . 14
 12.1. Normative References 14
 12.2. Informative References 14
 Authors’ Addresses . 15

1. Introduction

 Traversal Using Relay NAT (TURN) TURN [RFC5766] is a protocol that is
 often used to improve the connectivity of P2P applications. By
 providing a cloud-based relay service, TURN ensures that a connection
 can be established even when one or both sides is incapable of a
 direct P2P connection. However, as a relay service, it imposes a
 nontrivial cost on the service provider. Therefore, access to a TURN
 service is almost always access-controlled.

 TURN provides a mechanism to control access via "long-term" username/
 password credentials that are provided as part of the TURN protocol.
 It is expected that these credentials will be kept secret; if the
 credentials are discovered, the TURN server could be used by
 unauthorized users or applications. However, in web applications,
 ensuring this secrecy is typically impossible. To address this
 problem and the ones described in [I-D.ietf-tram-auth-problems], this
 document proposes the use of third party authorization using OAuth
 for TURN.

Reddy, et al. Expires December 21, 2014 [Page 2]

Internet-Draft TURN for 3rd party Authorization June 2014

 To achieve third party authorization, a resource owner e.g. WebRTC
 server, authorizes a TURN client to access resources on the TURN
 server.

 Using OAuth, a client obtains an ephemeral token from an
 authorization server e.g. WebRTC server, and the token is presented
 to the TURN server instead of the traditional mechanism of presenting
 username/password credentials. The TURN server validates the
 authenticity of the token and provides required services.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 o WebRTC Server: A web server that supports WebRTC
 [I-D.ietf-rtcweb-overview].

 o Access Token: OAuth 2.0 access token.

 o mac_key: The session key generated by the authorization server.
 Note that the lifetime of the session key is equal to the lifetime
 of the access token.

 o kid: An ephemeral and unique key identifier. The kid also allows
 the resource server to select the appropriate keying material for
 decryption.

3. Solution Overview

 This specification uses the token type ’Assertion’ (aka self-
 contained token) described in [RFC6819] where all the information
 necessary to authenticate the validity of the token is contained
 within the token itself. This approach has the benefit of avoiding a
 protocol between the TURN server and the authorization server for
 token validation, thus reducing latency. The exact mechanism used by
 a client to obtain a token from the OAuth authorization server is
 outside the scope of this document. For example, a client could make
 an HTTP request to an authorization server to obtain a token that can
 be used to avail TURN services. The TURN token is returned in JSON,
 along with other OAuth Parameters like token type, mac_key, kid,
 token lifetime etc. The client is oblivious to the content of the
 token. The token is embedded within a TURN request sent to the TURN
 server. Once the TURN server has determined the token is valid, TURN
 services are offered for a determined period of time.

Reddy, et al. Expires December 21, 2014 [Page 3]

Internet-Draft TURN for 3rd party Authorization June 2014

 +-------------------+ +--------+ +---------+
......... TURN		TURN		WebRTC
.WebRTC . Client				
.Client .		Server		Server
.........				
 +-------------------+ +--------+ +---------+
 | | Allocate request | |
 | |-->| |
 | | | |
 | | Allocate error response | |
 | |<--| |
 | | THIRD-PARTY-AUTHORIZATION | |
 | | | |
 | | | |
 | | HTTP Request for token | |
 |-->|
 | | HTTP Response with token parameters | |
 |<--|
 |OAuth | | |
 Attributes | |
 |------>| | |
 | | Allocate request ACCESS-TOKEN | |
 | |-->| |
 | | | |
 | | Allocate success response | |
 | |<--| |
 | | TURN Messages | |
 | | ////// integrity protected ////// | |
 | | ////// integrity protected ////// | |
 | | ////// integrity protected ////// | |

 Figure 1: TURN Third Party Authorization

 Note : An implementation may choose to contact the WebRTC server to
 obtain a token even before it makes an allocate request, if it knows
 the server details before hand. For example, once a client has
 learnt that a TURN server supports Third Party authorization from a
 WebRTC server, the client can obtain the token before making
 subsequent allocate requests.

 For example, the client learns the TURN server name
 "turn1@example.com" from THIRD-PARTY-AUTHORIZATION attribute value
 and makes the following HTTP request for the access token using
 transport-layer security (with extra line breaks for display purposes
 only):

Reddy, et al. Expires December 21, 2014 [Page 4]

Internet-Draft TURN for 3rd party Authorization June 2014

 POST /o/oauth2/token HTTP/1.1
 Audience: turn1@example.com
 Content-Type: application/x-www-form-urlencoded
 timestamp=1361471629
 grant_type=implicit

 Figure 2: Request

 If the client is authorized then the authorization server issues an
 access token. An example of successful response:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "access_token":
 "U2FsdGVkX18qJK/kkWmRcnfHglrVTJSpS6yU32kmHmOrfGyI3m1gQj1jRPsr0uBb
 HctuycAgsfRX7nJW2BdukGyKMXSiNGNnBzigkAofP6+Z3vkJ1Q5pWbfSRroOkWBn",
 "token_type":"mac",
 "expires_in":1800,
 "kid":"22BIjxU93h/IgwEb",
 "mac_key":"v51N62OM65kyMvfTI08O"
 }

 Figure 3: Response

 Access token and other attributes issued by the authorization server
 are explained in Section 6.2.

4. Obtaining a Token Using OAuth

 A TURN client should know the authentication capability of the TURN
 server before deciding to use third party authorization with it. A
 TURN client initially makes a request without any authorization. If
 the TURN server supports or mandates third party authorization, it
 will return an error message indicating support for third party
 authorization. The TURN server includes an ERROR-CODE attribute with
 a value of 401 (Unauthorized), a nonce value in a NONCE attribute and
 a SOFTWARE attribute that gives information about the TURN server’s
 software. The TURN servers also includes additional STUN attribute
 THIRD-PARTY-AUTHORIZATION signaling the TURN client that the TURN
 server supports third party authorization.

Reddy, et al. Expires December 21, 2014 [Page 5]

Internet-Draft TURN for 3rd party Authorization June 2014

 The following mapping of OAuth concepts to WebRTC is used :

 +----------------------+----------------------------+
 | OAuth | WebRTC |
 +======================+============================+
 | Client | WebRTC client |
 +----------------------+----------------------------+
 | Resource owner | WebRTC server |
 +----------------------+----------------------------+
 | Authorization server | Authorization server |
 +----------------------+----------------------------+
 | Resource server | TURN Server |
 +----------------------+----------------------------+

 Figure 4: OAuth terminology mapped to WebRTC terminology

 Using the OAuth 2.0 authorization framework, a WebRTC client (third-
 party application) obtains limited access to a TURN (resource server)
 on behalf of the WebRTC server (resource owner or authorization
 server). The WebRTC client requests access to resources controlled
 by the resource owner (WebRTC server) and hosted by the resource
 server (TURN server). The WebRTC client obtains access token,
 lifetime, session key (in the mac_key parameter) and key id (kid).
 The TURN client conveys the access token and other OAuth parameters
 learnt from the authorization server to the resource server (TURN
 server). The TURN server obtains the session key from the access
 token. The TURN server validates the token, computes the message
 integrity of the request and takes appropriate action i.e permits the
 TURN client to create allocations. This is shown in an abstract way
 in Figure 5.

Reddy, et al. Expires December 21, 2014 [Page 6]

Internet-Draft TURN for 3rd party Authorization June 2014

 +---------------+
 | +<******+
 +------------->| Authorization | *
 | | Server | *
 | +----------|(WebRTC Server)| * AS-RS,
 | | | | * AUTH keys
 (2) | | +---------------+ * (1)
 Access | | (3) *
 Token | | Access Token *
 Request | | + *
 | | Session Key *
 | | *
 | V V
 +-------+---+ +-+----=-----+
 | | (4) | |
 | | TURN Request + Access | |
 | WebRTC | Token | TURN |
 | Client |---------------------->| Server |
 | (Alice) | Allocate Response | |
 | |<----------------------| |
 +-----------+ +------------+

 User : Alice
 ****: Out-of-Band Long-Term Key Establishment

 Figure 5: Interactions

 OAuth in [RFC6749] defines four grant types. This specification uses
 the OAuth grant type "Implicit" explained in section 1.3.2 of
 [RFC6749] where the WebRTC client is issued an access token directly.
 The scope of the access token explained in section 3.3 of [RFC6749]
 MUST be TURN.

4.1. Key Establishment

 The TURN and authorization servers MUST establish a symmetric key
 (K), using an out of band mechanism. Symmetric key MUST be chosen to
 ensure that the size of encrypted token is not large because usage of
 asymmetric keys will result in large encrypted tokens which may not
 fit into a single STUN message. The AS-RS, AUTH keys will be derived
 from K. AS-RS key is used for encrypting the self-contained token
 and message integrity of the encrypted token is calculated using the
 AUTH key. The TURN and authorization servers MUST establish the
 symmetric key over an authenticated secure channel. The
 establishment of symmetric key is outside the scope of this
 specification. For example, implementations could use one of the
 following mechanisms in to establish a symmetric key.

Reddy, et al. Expires December 21, 2014 [Page 7]

Internet-Draft TURN for 3rd party Authorization June 2014

4.1.1. DSKPP

 The two servers could choose to use Dynamic Symmetric Key
 Provisioning Protocol (DSKPP) [RFC6063] to establish a symmetric key
 (K). The encryption and MAC algorithms will be negotiated using the
 KeyProvClientHello, KeyProvServerHello messages. A unique key
 identifier (referred to as KeyID) for the symmetric key is generated
 by the DSKPP server (i.e. Authorization server) and signalled to the
 DSKPP client (i.e TURN server) which is equivalent to the kid defined
 in this specification. The AS-RS, AUTH keys would be derived from
 the symmetric key using (HMAC)-based key derivation function (HKDF)
 [RFC5869] and the default hash function is SHA-256. For example if
 the input symmetric key (K) is 32 octets length, encryption algorithm
 is AES_128_CBC and HMAC algorithm is HMAC-SHA-256-128 then the
 secondary keys AS-RS, AUTH are generated from the input key K as
 follows

 1. HKDF-Extract(zero, K) -> PRK

 2. HKDF-Expand(PRK, zero, 16) -> AS-RS key

 3. HKDF-Expand(PRK, zero, 32) -> AUTH key

4.1.2. HTTP interactions

 The two servers could choose to use REST API to establish a symmetric
 key. To retrieve a new symmetric key, the TURN server makes an HTTP
 GET request to the authorization server, specifying TURN as the
 service to allocate the symmetric keys for, and specifying the name
 of the TURN server. The response is returned with content-type
 "application/json", and consists of a JSON object containing the
 symmetric key.

Reddy, et al. Expires December 21, 2014 [Page 8]

Internet-Draft TURN for 3rd party Authorization June 2014

 Request

 service - specifies the desired service (turn)
 name - TURN server name be associated with the key

 example: GET /?service=turn&name=turn1@example.com

 Response

 key - Long-term key (K)
 ttl - the duration for which the key is valid, in seconds.

 example:
 {
 "key" :
 "ESIzRFVmd4iZABEiM0RVZgKn6WjLaTC1FXAghRMVTzkBGNaaN496523WIISKerLi",
 "ttl" : 86400,
 "kid" :"22BIjxU93h/IgwEb"
 }

 The AS-RS, AUTH keys are derived from K using HKDF as discussed in
 Section 4.1.1. Authorization server must also signal a unique key
 identifier (kid) to the TURN server which will be used to select the
 appropriate keying material for decryption. The default encryption
 algorithm to encrypt the self-contained token could be Advanced
 Encryption Standard (AES) in Cipher Block Chaining (CBC) mode
 (AES_128_CBC). The default HMAC algorithm to calculate the integrity
 of the token could be HMAC-SHA-256-128. In this case AS-RS key
 length must be 128-bit, AUTH key length must be 256-bit (section 2.6
 of [RFC4868]).

4.1.3. Manual provisioning

 TURN and authorization servers could be manually configured with a
 symmetric key (K) and kid. The default encryption and HMAC
 algorithms could be AES_256_CBC, HMAC-SHA-256-128.

 Note : The mechanisms specified in Section 4.1.2 Section 4.1.3 are
 easy to implement and deploy compared to DSKPP but lack encryption
 and HMAC algorithm agility.

Reddy, et al. Expires December 21, 2014 [Page 9]

Internet-Draft TURN for 3rd party Authorization June 2014

5. Forming a Request

 When a TURN server responds that third party authorization is
 required, a TURN client re-attempts the request, this time including
 access token and kid values in ACCESS-TOKEN and USERNAME STUN
 attributes. The TURN client includes a MESSAGE-INTEGRITY attribute
 as the last attribute in the message over the contents of the TURN
 message. The HMAC for the MESSAGE-INTEGRITY attribute is computed as
 described in section 15.4 of [RFC5389] where the mac_key is used as
 the input key for the HMAC computation. The TURN client and server
 will use the mac_key to compute the message integrity and doesn’t
 have to perform MD5 hash on the credentials.

6. STUN Attributes

 The following new STUN attributes are introduced by this
 specification to accomplish third party authorization.

6.1. THIRD-PARTY-AUTHORIZATION

 This attribute is used by the TURN server to inform the client that
 it supports third party authorization. This attribute value contains
 the TURN server name. The TURN server may have tie-up with multiple
 authorization servers and vice versa, so the client MUST provide the
 TURN server name to the authorization server so that it can select
 the appropriate keying material to generate the self-contained token.
 The THIRD-PARTY-AUTHORIZATION attribute is a comprehension-optional
 attribute (see Section 15 from [RFC5389]).

6.2. ACCESS-TOKEN

 The access token is issued by the authorization server. OAuth does
 not impose any limitation on the length of the access token but if
 path MTU is unknown then STUN messages over IPv4 would need to be
 less than 548 bytes (Section 7.1 of [RFC5389]), access token length
 needs to be restricted to fit within the maximum STUN message size.
 Note that the self-contained token is opaque to the client and it
 MUST NOT examine the ticket. The ACCESS-TOKEN attribute is a
 comprehension-optional attribute (see Section 15 from [RFC5389]).

 The token is structured as follows:

Reddy, et al. Expires December 21, 2014 [Page 10]

Internet-Draft TURN for 3rd party Authorization June 2014

 struct {
 opaque {
 ushort key_length;
 opaque mac_key[key_length];
 opaque timestamp[8];
 long lifetime;
 } encrypted_block;
 opaque mac[mac_length];
 } token;

 Figure 6: Self-contained token format

 The fields are described below:

 key_length: Length of the session key. Key length of 160-bits MUST
 be supported (i.e only 160-bit key is used by HMAC-SHA-1 for
 message integrity of STUN message). The key length facilitates
 the hash agility plan discussed in section 16.3 of [RFC5389].

 mac_key: The session key generated by the authorization server.

 Timestamp: 64-bit unsigned integer field containing a timestamp.
 The value indicates the time since January 1, 1970, 00:00 UTC, by
 using a fixed point format. In this format, the integer number of
 seconds is contained in the first 48 bits of the field, and the
 remaining 16 bits indicate the number of 1/64K fractions of a
 second (Native format - Unix).

 Lifetime: The lifetime of the access token, in seconds. For
 example, the value 3600 indicates one hour. The Lifetime value
 SHOULD be equal to the "expires_in" parameter defined in section
 4.2.2 of [RFC6749].

 mac: The Hashed Message Authentication Code (HMAC) is calculated
 with AUTH key over the encrypted portion of the token and the TURN
 server name (N) conveyed in the THIRD-PARTY-AUTHORIZATION response
 . Encryption is applied before authentication on the sender side
 and conversely on the receiver side. The length of the mac field
 is known to the TURN and authorization server based on the
 negotiated MAC algorithm.

 For example the encryption process can be illustrated as follows.
 Here C, N denote the ciphertext and TURN server name.

 o C = AES_128_CBC(AS-RS, encrypted_block)

 o mac = HMAC-SHA-256-128(AUTH, C | | N)

Reddy, et al. Expires December 21, 2014 [Page 11]

Internet-Draft TURN for 3rd party Authorization June 2014

 The token MUST be encoded as defined in Section 4 of [RFC4648] and
 then encrypted using the symmetric long-term key established between
 the resource server and the authorization server, as shown in
 Figure 5 as AS-RS key. HMAC is computed using the encrypted portion
 of the token and TURN server name to ensure that the client does not
 use the same token to gain illegal access to other TURN servers
 provided by the same administrative domain. This attack is possible
 when multiple TURN servers in a single administrative domain share
 the same symmetric key with the authorization server. Since the
 access token is valid for a specific period of time the resource
 server MUST cache it so that it need not to be provided in every
 request within an existing allocation. The access token can be re-
 used for multiple Allocate requests to the same TURN server.

 The TURN client MUST include the ACCESS-TOKEN attribute only in
 Allocate and Refresh requests.

7. Receiving a request with ACCESS-TOKEN attribute

 The TURN server, on receiving a request with ACCESS-TOKEN attribute,
 performs checks listed in section 10.2.2 of [RFC5389] in addition to
 the following steps to verify that the access token is valid:

 o TURN server selects the keying material based on kid signalled in
 the USERNAME attribute.

 o It performs the verification of the token message integrity by
 calculating HMAC over the encrypted portion in the self-contained
 token and TURN server name using AUTH key and if the resulting
 value does not match the mac field in the self-contained token
 then it rejects the request with an error response 401
 (Unauthorized).

 o TURN server obtains the mac_key by retrieving the content of the
 access token (which requires decryption of the self-contained
 token using the AS-RS key).

 o The TURN server verifies that no replay took place by performing
 the following check:

 * The access token is accepted if the timestamp field (TS) in the
 self-contained token is recent enough to the reception time of
 the TURN request (RDnew) using the following formula: Lifetime
 + Delta > abs(RDnew - TS). The RECOMMENDED value for the
 allowed Delta is 5 seconds. If the timestamp is NOT within the
 boundaries then the TURN server discards the request with error
 response 401 (Unauthorized).

Reddy, et al. Expires December 21, 2014 [Page 12]

Internet-Draft TURN for 3rd party Authorization June 2014

 o The TURN server uses the mac_key to compute the message integrity
 over the request and if the resulting value does not match the
 contents of the MESSAGE-INTEGRITY attribute then it rejects the
 request with an error response 401 (Unauthorized).

 o If all the checks pass, the TURN server continues to process the
 request. Any response generated by the server MUST include the
 MESSAGE-INTEGRITY attribute, computed using the mac_key.

 The lifetime provided by the TURN server in the Allocate and Refresh
 responses MUST be less than or equal to the lifetime of the token.

8. Changes to TURN Client

 o A TURN response is discarded by the client if the value computed
 for message integrity using mac_key does not match the contents of
 the MESSAGE-INTEGRITY attribute.

 o If the access token expires then the client MUST obtain a new
 token from the authorization server and use it for new
 allocations. The client MUST also use the new token to refresh
 existing allocations. This way client has to maintain only one
 token per TURN server.

9. Security Considerations

 When OAuth is used the interaction between the client and the
 authorization server requires Transport Layer Security (TLS) with a
 ciphersuite offering confidentiality protection. The session key
 MUST NOT be transmitted in clear since this would completely destroy
 the security benefits of the proposed scheme. If an attacker tries
 to replay message with ACCESS-TOKEN attribute then the server can
 detect that the transaction ID as used for an old request and thus
 prevent the replay attack.

 Security considerations discussed in [I-D.ietf-oauth-v2-http-mac] and
 [RFC5766] are to be taken into account.

10. IANA Considerations

 IANA is requested to add the following attributes to the STUN
 attribute registry [iana-stun],

 o THIRD-PARTY-AUTHORIZATION

 o ACCESS-TOKEN

Reddy, et al. Expires December 21, 2014 [Page 13]

Internet-Draft TURN for 3rd party Authorization June 2014

11. Acknowledgements

 Authors would like to thank Dan Wing, Pal Martinsen, Oleg Moskalenko
 and Charles Eckel for comments and review. The authors would like to
 give special thanks to Brandon Williams for his help.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC4868] Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-
 384, and HMAC-SHA-512 with IPsec", RFC 4868, May 2007.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
 6749, October 2012.

 [iana-stun]
 IANA, , "IANA: STUN Attributes", April 2011,
 <http://www.iana.org/assignments/stun-parameters/stun-pa
 rameters.xml>.

12.2. Informative References

 [I-D.ietf-oauth-v2-http-mac]
 Richer, J., Mills, W., Tschofenig, H., and P. Hunt, "OAuth
 2.0 Message Authentication Code (MAC) Tokens", draft-ietf-
 oauth-v2-http-mac-05 (work in progress), January 2014.

 [I-D.ietf-rtcweb-overview]
 Alvestrand, H., "Overview: Real Time Protocols for
 Browser-based Applications", draft-ietf-rtcweb-overview-10
 (work in progress), June 2014.

 [I-D.ietf-tram-auth-problems]
 Reddy, T., R, R., Perumal, M., and A. Yegin, "Problems
 with STUN long-term Authentication for TURN", draft-ietf-
 tram-auth-problems-01 (work in progress), May 2014.

Reddy, et al. Expires December 21, 2014 [Page 14]

Internet-Draft TURN for 3rd party Authorization June 2014

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869, May 2010.

 [RFC6063] Doherty, A., Pei, M., Machani, S., and M. Nystrom,
 "Dynamic Symmetric Key Provisioning Protocol (DSKPP)", RFC
 6063, December 2010.

 [RFC6819] Lodderstedt, T., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 January 2013.

Authors’ Addresses

 Tirumaleswar Reddy
 Cisco Systems, Inc.
 Cessna Business Park, Varthur Hobli
 Sarjapur Marathalli Outer Ring Road
 Bangalore, Karnataka 560103
 India

 Email: tireddy@cisco.com

 Prashanth Patil
 Cisco Systems, Inc.
 Bangalore
 India

 Email: praspati@cisco.com

 Ram Mohan Ravindranath
 Cisco Systems, Inc.
 Cessna Business Park,
 Kadabeesanahalli Village, Varthur Hobli,
 Sarjapur-Marathahalli Outer Ring Road
 Bangalore, Karnataka 560103
 India

 Email: rmohanr@cisco.com

Reddy, et al. Expires December 21, 2014 [Page 15]

Internet-Draft TURN for 3rd party Authorization June 2014

 Justin Uberti
 Google
 747 6th Ave S
 Kirkland, WA
 98033
 USA

 Email: justin@uberti.name

Reddy, et al. Expires December 21, 2014 [Page 16]

