
TRANS (Public Notary Transparency) B. Laurie
Internet-Draft A. Langley
Obsoletes: 6962 (if approved) E. Kasper
Intended status: Experimental E. Messeri
Expires: 4 March 2022 Google
 R. Stradling
 Sectigo
 31 August 2021

 Certificate Transparency Version 2.0
 draft-ietf-trans-rfc6962-bis-42

Abstract

 This document describes version 2.0 of the Certificate Transparency
 (CT) protocol for publicly logging the existence of Transport Layer
 Security (TLS) server certificates as they are issued or observed, in
 a manner that allows anyone to audit certification authority (CA)
 activity and notice the issuance of suspect certificates as well as
 to audit the certificate logs themselves. The intent is that
 eventually clients would refuse to honor certificates that do not
 appear in a log, effectively forcing CAs to add all issued
 certificates to the logs.

 This document obsoletes RFC 6962. It also specifies a new TLS
 extension that is used to send various CT log artifacts.

 Logs are network services that implement the protocol operations for
 submissions and queries that are defined in this document.

 [RFC Editor: please update ’RFCXXXX’ to refer to this document, once
 its RFC number is known, through the document. Also, the OID
 assigned below must also appear in the appendix as indicated.]

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Laurie, et al. Expires 4 March 2022 [Page 1]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 4 March 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Requirements Language 5
 1.2. Data Structures . 5
 1.3. Major Differences from CT 1.0 6
 2. Cryptographic Components 7
 2.1. Merkle Hash Trees . 7
 2.1.1. Definition of the Merkle Tree 7
 2.1.2. Verifying a Tree Head Given Entries 8
 2.1.3. Merkle Inclusion Proofs 9
 2.1.4. Merkle Consistency Proofs 11
 2.1.5. Example . 13
 2.2. Signatures . 14
 3. Submitters . 15
 3.1. Certificates . 15
 3.2. Precertificates . 15
 3.2.1. Binding Intent to Issue 17
 4. Log Format and Operation 17
 4.1. Log Parameters . 18
 4.2. Evaluating Submissions 19
 4.2.1. Minimum Acceptance Criteria 19
 4.2.2. Discretionary Acceptance Criteria 20
 4.3. Log Entries . 20
 4.4. Log ID . 21
 4.5. TransItem Structure 21
 4.6. Log Artifact Extensions 22

Laurie, et al. Expires 4 March 2022 [Page 2]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 4.7. Merkle Tree Leaves 23
 4.8. Signed Certificate Timestamp (SCT) 24
 4.9. Merkle Tree Head . 25
 4.10. Signed Tree Head (STH) 26
 4.11. Merkle Consistency Proofs 26
 4.12. Merkle Inclusion Proofs 27
 4.13. Shutting down a log 28
 5. Log Client Messages . 28
 5.1. Submit Entry to Log 30
 5.2. Retrieve Latest STH 32
 5.3. Retrieve Merkle Consistency Proof between Two STHs . . . 32
 5.4. Retrieve Merkle Inclusion Proof from Log by Leaf Hash . . 33
 5.5. Retrieve Merkle Inclusion Proof, STH and Consistency Proof
 by Leaf Hash . 34
 5.6. Retrieve Entries and STH from Log 35
 5.7. Retrieve Accepted Trust Anchors 37
 6. TLS Servers . 38
 6.1. TLS Client Authentication 38
 6.2. Multiple SCTs . 39
 6.3. TransItemList Structure 39
 6.4. Presenting SCTs, inclusions proofs and STHs 40
 6.5. transparency_info TLS Extension 40
 7. Certification Authorities 41
 7.1. Transparency Information X.509v3 Extension 41
 7.1.1. OCSP Response Extension 41
 7.1.2. Certificate Extension 41
 7.2. TLS Feature X.509v3 Extension 41
 8. Clients . 41
 8.1. TLS Client . 42
 8.1.1. Receiving SCTs and inclusion proofs 42
 8.1.2. Reconstructing the TBSCertificate 42
 8.1.3. Validating SCTs 42
 8.1.4. Fetching inclusion proofs 43
 8.1.5. Validating inclusion proofs 43
 8.1.6. Evaluating compliance 44
 8.2. Monitor . 44
 8.3. Auditing . 45
 9. Algorithm Agility . 46
 10. IANA Considerations . 47
 10.1. Additions to existing registries 47
 10.1.1. New Entry to the TLS ExtensionType Registry 47
 10.1.2. URN Sub-namespace for TRANS
 (urn:ietf:params:trans) 47
 10.2. New CT-Related registries 47
 10.2.1. Hash Algorithms 48
 10.2.2. Signature Algorithms 48
 10.2.3. VersionedTransTypes 49
 10.2.4. Log Artifact Extension Registry 50

Laurie, et al. Expires 4 March 2022 [Page 3]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 10.2.5. Log IDs Registry 51
 10.2.6. Error Types Registry 52
 10.3. OID Assignment . 54
 11. Security Considerations 54
 11.1. Misissued Certificates 55
 11.2. Detection of Misissue 55
 11.3. Misbehaving Logs . 55
 11.4. Multiple SCTs . 56
 11.5. Leakage of DNS Information 56
 12. Acknowledgements . 56
 13. References . 56
 13.1. Normative References 56
 13.2. Informative References 59
 Appendix A. Supporting v1 and v2 simultaneously (Informative) . 60
 Appendix B. An ASN.1 Module (Informative) 60
 Authors’ Addresses . 62

1. Introduction

 Certificate Transparency aims to mitigate the problem of misissued
 certificates by providing append-only logs of issued certificates.
 The logs do not themselves prevent misissuance, but they ensure that
 interested parties (particularly those named in certificates) can
 detect such misissuance. Note that this is a general mechanism that
 could be used for transparently logging any form of binary data,
 subject to some kind of inclusion criteria. In this document, we
 only describe its use for public TLS server certificates (i.e., where
 the inclusion criteria is a valid certificate issued by a public
 certification authority (CA)). A typical definition of "public" can
 be found in [CABBR].

 Each log contains certificate chains, which can be submitted by
 anyone. It is expected that public CAs will contribute all their
 newly issued certificates to one or more logs; however, certificate
 holders can also contribute their own certificate chains, as can
 third parties. In order to avoid logs being rendered useless by the
 submission of large numbers of spurious certificates, it is required
 that each chain ends with a trust anchor that is accepted by the log.
 A log may also limit the length of the chain it is willing to accept;
 such chains must also end with an acceptable trust anchor. When a
 chain is accepted by a log, a signed timestamp is returned, which can
 later be used to provide evidence to TLS clients that the chain has
 been submitted. TLS clients can thus require that all certificates
 they accept as valid are accompanied by signed timestamps.

 Those who are concerned about misissuance can monitor the logs,
 asking them regularly for all new entries, and can thus check whether
 domains for which they are responsible have had certificates issued

Laurie, et al. Expires 4 March 2022 [Page 4]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 that they did not expect. What they do with this information,
 particularly when they find that a misissuance has happened, is
 beyond the scope of this document. However, broadly speaking, they
 can invoke existing business mechanisms for dealing with misissued
 certificates, such as working with the CA to get the certificate
 revoked, or with maintainers of trust anchor lists to get the CA
 removed. Of course, anyone who wants can monitor the logs and, if
 they believe a certificate is incorrectly issued, take action as they
 see fit.

 Similarly, those who have seen signed timestamps from a particular
 log can later demand a proof of inclusion from that log. If the log
 is unable to provide this (or, indeed, if the corresponding
 certificate is absent from monitors’ copies of that log), that is
 evidence of the incorrect operation of the log. The checking
 operation is asynchronous to allow clients to proceed without delay,
 despite possible issues such as network connectivity and the vagaries
 of firewalls.

 The append-only property of each log is achieved using Merkle Trees,
 which can be used to efficiently prove that any particular instance
 of the log is a superset of any particular previous instance and to
 efficiently detect various misbehaviors of the log (e.g., issuing a
 signed timestamp for a certificate that is not subsequently logged).

 It is necessary to treat each log as a trusted third party, because
 the log auditing mechanisms described in this document can be
 circumvented by a misbehaving log that shows different, inconsistent
 views of itself to different clients. While mechanisms are being
 developed to address these shortcomings and thereby avoid the need to
 blindly trust logs, such mechanisms are outside the scope of this
 document.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Data Structures

 Data structures are defined and encoded according to the conventions
 laid out in Section 3 of [RFC8446].

Laurie, et al. Expires 4 March 2022 [Page 5]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 This document uses object identifiers (OIDs) to identify Log IDs (see
 Section 4.4), the precertificate CMS "eContentType" (see
 Section 3.2), and X.509v3 extensions in certificates (see
 Section 7.1.2) and OCSP responses (see Section 7.1.1). The OIDs are
 defined in an arc that was selected due to its short encoding.

1.3. Major Differences from CT 1.0

 This document revises and obsoletes the CT 1.0 [RFC6962] protocol,
 drawing on insights gained from CT 1.0 deployments and on feedback
 from the community. The major changes are:

 * Hash and signature algorithm agility: permitted algorithms are now
 specified in IANA registries.

 * Precertificate format: precertificates are now CMS objects rather
 than X.509 certificates, which avoids violating the certificate
 serial number uniqueness requirement in Section 4.1.2.2 of
 [RFC5280].

 * Removed precertificate signing certificates and the precertificate
 poison extension: the change of precertificate format means that
 these are no longer needed.

 * Logs IDs: each log is now identified by an OID rather than by the
 hash of its public key. OID allocations are managed by an IANA
 registry.

 * "TransItem" structure: this new data structure is used to
 encapsulate most types of CT data. A "TransItemList", consisting
 of one or more "TransItem" structures, can be used anywhere that
 "SignedCertificateTimestampList" was used in [RFC6962].

 * Merkle tree leaves: the "MerkleTreeLeaf" structure has been
 replaced by the "TransItem" structure, which eases extensibility
 and simplifies the leaf structure by removing one layer of
 abstraction.

 * Unified leaf format: the structure for both certificate and
 precertificate entries now includes only the TBSCertificate
 (whereas certificate entries in [RFC6962] included the entire
 certificate).

 * Log Artifact Extensions: these are now typed and managed by an
 IANA registry, and they can now appear not only in SCTs but also
 in STHs.

Laurie, et al. Expires 4 March 2022 [Page 6]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 * API outputs: complete "TransItem" structures are returned, rather
 than the constituent parts of each structure.

 * get-all-by-hash: new client API for obtaining an inclusion proof
 and the corresponding consistency proof at the same time.

 * submit-entry: new client API, replacing add-chain and add-pre-
 chain.

 * Presenting SCTs with proofs: TLS servers may present SCTs together
 with the corresponding inclusion proofs using any of the
 mechanisms that [RFC6962] defined for presenting SCTs only.
 (Presenting SCTs only is still supported).

 * CT TLS extension: the "signed_certificate_timestamp" TLS extension
 has been replaced by the "transparency_info" TLS extension.

 * Verification algorithms: added detailed algorithms for verifying
 inclusion proofs, for verifying consistency between two STHs, and
 for verifying a root hash given a complete list of the relevant
 leaf input entries.

 * Extensive clarifications and editorial work.

2. Cryptographic Components

2.1. Merkle Hash Trees

 A full description of Merkle Hash Tree is beyond the scope of this
 document. Briefly, it is a binary tree where each non-leaf node is a
 hash of its children. For CT, the number of children is at most two.
 Additional information can be found in the Introduction and Reference
 section of [RFC8391].

2.1.1. Definition of the Merkle Tree

 The log uses a binary Merkle Hash Tree for efficient auditing. The
 hash algorithm used is one of the log’s parameters (see Section 4.1).
 This document establishes a registry of acceptable hash algorithms
 (see Section 10.2.1). Throughout this document, the hash algorithm
 in use is referred to as HASH and the size of its output in bytes as
 HASH_SIZE. The input to the Merkle Tree Hash is a list of data
 entries; these entries will be hashed to form the leaves of the
 Merkle Hash Tree. The output is a single HASH_SIZE Merkle Tree Hash.
 Given an ordered list of n inputs, D_n = {d[0], d[1], ..., d[n-1]},
 the Merkle Tree Hash (MTH) is thus defined as follows:

 The hash of an empty list is the hash of an empty string:

Laurie, et al. Expires 4 March 2022 [Page 7]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 MTH({}) = HASH().

 The hash of a list with one entry (also known as a leaf hash) is:

 MTH({d[0]}) = HASH(0x00 || d[0]).

 For n > 1, let k be the largest power of two smaller than n (i.e., k
 < n <= 2k). The Merkle Tree Hash of an n-element list D_n is then
 defined recursively as

 MTH(D_n) = HASH(0x01 || MTH(D[0:k]) || MTH(D[k:n])),

 where:

 * || denotes concatenation

 * : denotes concatenation of lists

 * D[k1:k2] = D’_(k2-k1) denotes the list {d’[0] = d[k1], d’[1] =
 d[k1+1], ..., d’[k2-k1-1] = d[k2-1]} of length (k2 - k1).

 Note that the hash calculations for leaves and nodes differ; this
 domain separation is required to give second preimage resistance.

 Note that we do not require the length of the input list to be a
 power of two. The resulting Merkle Tree may thus not be balanced;
 however, its shape is uniquely determined by the number of leaves.
 (Note: This Merkle Tree is essentially the same as the history tree
 [CrosbyWallach] proposal, except our definition handles non-full
 trees differently).

2.1.2. Verifying a Tree Head Given Entries

 When a client has a complete list of "entries" from "0" up to
 "tree_size - 1" and wishes to verify this list against a tree head
 "root_hash" returned by the log for the same "tree_size", the
 following algorithm may be used:

 1. Set "stack" to an empty stack.

 2. For each "i" from "0" up to "tree_size - 1":

 1. Push "HASH(0x00 || entries[i])" to "stack".

Laurie, et al. Expires 4 March 2022 [Page 8]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 2. Set "merge_count" to the lowest value ("0" included) such
 that "LSB(i >> merge_count)" is not set, where "LSB" means
 the least significant bit. In other words, set "merge_count"
 to the number of consecutive "1"s found starting at the least
 significant bit of "i".

 3. Repeat "merge_count" times:

 1. Pop "right" from "stack".

 2. Pop "left" from "stack".

 3. Push "HASH(0x01 || left || right)" to "stack".

 3. If there is more than one element in the "stack", repeat the same
 merge procedure (the sub-items of Step 2.3 above) until only a
 single element remains.

 4. The remaining element in "stack" is the Merkle Tree hash for the
 given "tree_size" and should be compared by equality against the
 supplied "root_hash".

2.1.3. Merkle Inclusion Proofs

 A Merkle inclusion proof for a leaf in a Merkle Hash Tree is the
 shortest list of additional nodes in the Merkle Tree required to
 compute the Merkle Tree Hash for that tree. Each node in the tree is
 either a leaf node or is computed from the two nodes immediately
 below it (i.e., towards the leaves). At each step up the tree
 (towards the root), a node from the inclusion proof is combined with
 the node computed so far. In other words, the inclusion proof
 consists of the list of missing nodes required to compute the nodes
 leading from a leaf to the root of the tree. If the root computed
 from the inclusion proof matches the true root, then the inclusion
 proof proves that the leaf exists in the tree.

2.1.3.1. Generating an Inclusion Proof

 Given an ordered list of n inputs to the tree, D_n = {d[0], d[1],
 ..., d[n-1]}, the Merkle inclusion proof PATH(m, D_n) for the (m+1)th
 input d[m], 0 <= m < n, is defined as follows:

 The proof for the single leaf in a tree with a one-element input list
 D[1] = {d[0]} is empty:

 PATH(0, {d[0]}) = {}

Laurie, et al. Expires 4 March 2022 [Page 9]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 For n > 1, let k be the largest power of two smaller than n. The
 proof for the (m+1)th element d[m] in a list of n > m elements is
 then defined recursively as

 PATH(m, D_n) = PATH(m, D[0:k]) : MTH(D[k:n]) for m < k; and

 PATH(m, D_n) = PATH(m - k, D[k:n]) : MTH(D[0:k]) for m >= k,

 The : operator and D[k1:k2] are defined the same as in Section 2.1.1.

2.1.3.2. Verifying an Inclusion Proof

 When a client has received an inclusion proof (e.g., in a "TransItem"
 of type "inclusion_proof_v2") and wishes to verify inclusion of an
 input "hash" for a given "tree_size" and "root_hash", the following
 algorithm may be used to prove the "hash" was included in the
 "root_hash":

 1. Compare "leaf_index" from the "inclusion_proof_v2" structure
 against "tree_size". If "leaf_index" is greater than or equal to
 "tree_size" then fail the proof verification.

 2. Set "fn" to "leaf_index" and "sn" to "tree_size - 1".

 3. Set "r" to "hash".

 4. For each value "p" in the "inclusion_path" array:

 If "sn" is 0, stop the iteration and fail the proof verification.

 If "LSB(fn)" is set, or if "fn" is equal to "sn", then:

 1. Set "r" to "HASH(0x01 || p || r)"

 2. If "LSB(fn)" is not set, then right-shift both "fn" and "sn"
 equally until either "LSB(fn)" is set or "fn" is "0".

 Otherwise:

 1. Set "r" to "HASH(0x01 || r || p)"

 Finally, right-shift both "fn" and "sn" one time.

 5. Compare "sn" to 0. Compare "r" against the "root_hash". If "sn"
 is equal to 0, and "r" and the "root_hash" are equal, then the
 log has proven the inclusion of "hash". Otherwise, fail the
 proof verification.

Laurie, et al. Expires 4 March 2022 [Page 10]

Internet-Draft Certificate Transparency Version 2.0 August 2021

2.1.4. Merkle Consistency Proofs

 Merkle consistency proofs prove the append-only property of the tree.
 A Merkle consistency proof for a Merkle Tree Hash MTH(D_n) and a
 previously advertised hash MTH(D[0:m]) of the first m leaves, m <= n,
 is the list of nodes in the Merkle Tree required to verify that the
 first m inputs D[0:m] are equal in both trees. Thus, a consistency
 proof must contain a set of intermediate nodes (i.e., commitments to
 inputs) sufficient to verify MTH(D_n), such that (a subset of) the
 same nodes can be used to verify MTH(D[0:m]). We define an algorithm
 that outputs the (unique) minimal consistency proof.

2.1.4.1. Generating a Consistency Proof

 Given an ordered list of n inputs to the tree, D_n = {d[0], d[1],
 ..., d[n-1]}, the Merkle consistency proof PROOF(m, D_n) for a
 previous Merkle Tree Hash MTH(D[0:m]), 0 < m < n, is defined as:

 PROOF(m, D_n) = SUBPROOF(m, D_n, true)

 In SUBPROOF, the boolean value represents whether the subtree created
 from D[0:m] is a complete subtree of the Merkle Tree created from
 D_n, and, consequently, whether the subtree Merkle Tree Hash
 MTH(D[0:m]) is known. The initial call to SUBPROOF sets this to be
 true, and SUBPROOF is then defined as follows:

 The subproof for m = n is empty if m is the value for which PROOF was
 originally requested (meaning that the subtree created from D[0:m] is
 a complete subtree of the Merkle Tree created from the original D_n
 for which PROOF was requested, and the subtree Merkle Tree Hash
 MTH(D[0:m]) is known):

 SUBPROOF(m, D_m, true) = {}

 Otherwise, the subproof for m = n is the Merkle Tree Hash committing
 inputs D[0:m]:

 SUBPROOF(m, D_m, false) = {MTH(D_m)}

 For m < n, let k be the largest power of two smaller than n. The
 subproof is then defined recursively, using the appropriate step
 below:

 If m <= k, the right subtree entries D[k:n] only exist in the current
 tree. We prove that the left subtree entries D[0:k] are consistent
 and add a commitment to D[k:n]:

 SUBPROOF(m, D_n, b) = SUBPROOF(m, D[0:k], b) : MTH(D[k:n])

Laurie, et al. Expires 4 March 2022 [Page 11]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 If m > k, the left subtree entries D[0:k] are identical in both
 trees. We prove that the right subtree entries D[k:n] are consistent
 and add a commitment to D[0:k].

 SUBPROOF(m, D_n, b) = SUBPROOF(m - k, D[k:n], false) : MTH(D[0:k])

 The number of nodes in the resulting proof is bounded above by
 ceil(log2(n)) + 1.

 The : operator and D[k1:k2] are defined the same as in Section 2.1.1.

2.1.4.2. Verifying Consistency between Two Tree Heads

 When a client has a tree head "first_hash" for tree size "first", a
 tree head "second_hash" for tree size "second" where "0 < first <
 second", and has received a consistency proof between the two (e.g.,
 in a "TransItem" of type "consistency_proof_v2"), the following
 algorithm may be used to verify the consistency proof:

 1. If "consistency_path" is an empty array, stop and fail the proof
 verification.

 2. If "first" is an exact power of 2, then prepend "first_hash" to
 the "consistency_path" array.

 3. Set "fn" to "first - 1" and "sn" to "second - 1".

 4. If "LSB(fn)" is set, then right-shift both "fn" and "sn" equally
 until "LSB(fn)" is not set.

 5. Set both "fr" and "sr" to the first value in the
 "consistency_path" array.

 6. For each subsequent value "c" in the "consistency_path" array:

 If "sn" is 0, stop the iteration and fail the proof verification.

 If "LSB(fn)" is set, or if "fn" is equal to "sn", then:

 1. Set "fr" to "HASH(0x01 || c || fr)"

 Set "sr" to "HASH(0x01 || c || sr)"

 2. If "LSB(fn)" is not set, then right-shift both "fn" and "sn"
 equally until either "LSB(fn)" is set or "fn" is "0".

 Otherwise:

Laurie, et al. Expires 4 March 2022 [Page 12]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 1. Set "sr" to "HASH(0x01 || sr || c)"

 Finally, right-shift both "fn" and "sn" one time.

 7. After completing iterating through the "consistency_path" array
 as described above, verify that the "fr" calculated is equal to
 the "first_hash" supplied, that the "sr" calculated is equal to
 the "second_hash" supplied and that "sn" is 0.

2.1.5. Example

 The binary Merkle Tree with 7 leaves:

 hash
 / \
 / \
 / \
 / \
 / \
 k l
 / \ / \
 / \ / \
 / \ / \
 g h i j
 / \ / \ / \ |
 a b c d e f d6
 | | | | | |
 d0 d1 d2 d3 d4 d5

 The inclusion proof for d0 is [b, h, l].

 The inclusion proof for d3 is [c, g, l].

 The inclusion proof for d4 is [f, j, k].

 The inclusion proof for d6 is [i, k].

 The same tree, built incrementally in four steps:

Laurie, et al. Expires 4 March 2022 [Page 13]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 hash0 hash1=k
 / \ / \
 / \ / \
 / \ / \
 g c g h
 / \ | / \ / \
 a b d2 a b c d
 | | | | | |
 d0 d1 d0 d1 d2 d3

 hash2 hash
 / \ / \
 / \ / \
 / \ / \
 / \ / \
 / \ / \
 k i k l
 / \ / \ / \ / \
 / \ e f / \ / \
 / \ | | / \ / \
 g h d4 d5 g h i j
 / \ / \ / \ / \ / \ |
 a b c d a b c d e f d6
 | | | | | | | | | |
 d0 d1 d2 d3 d0 d1 d2 d3 d4 d5

 The consistency proof between hash0 and hash is PROOF(3, D[7]) = [c,
 d, g, l]. c, g are used to verify hash0, and d, l are additionally
 used to show hash is consistent with hash0.

 The consistency proof between hash1 and hash is PROOF(4, D[7]) = [l].
 hash can be verified using hash1=k and l.

 The consistency proof between hash2 and hash is PROOF(6, D[7]) = [i,
 j, k]. k, i are used to verify hash2, and j is additionally used to
 show hash is consistent with hash2.

2.2. Signatures

 When signing data structures, a log MUST use one of the signature
 algorithms from the IANA CT Signature Algorithms registry, described
 in Section 10.2.2.

Laurie, et al. Expires 4 March 2022 [Page 14]

Internet-Draft Certificate Transparency Version 2.0 August 2021

3. Submitters

 Submitters submit certificates or preannouncements of certificates
 prior to issuance (precertificates) to logs for public auditing, as
 described below. In order to enable attribution of each logged
 certificate or precertificate to its issuer, each submission MUST be
 accompanied by all additional certificates required to verify the
 chain up to an accepted trust anchor (Section 5.7). The trust anchor
 (a root or intermediate CA certificate) MAY be omitted from the
 submission.

 If a log accepts a submission, it will return a Signed Certificate
 Timestamp (SCT) (see Section 4.8). The submitter SHOULD validate the
 returned SCT as described in Section 8.1 if they understand its
 format and they intend to use it directly in a TLS handshake or to
 construct a certificate. If the submitter does not need the SCT (for
 example, the certificate is being submitted simply to make it
 available in the log), it MAY validate the SCT.

3.1. Certificates

 Any entity can submit a certificate (Section 5.1) to a log. Since it
 is anticipated that TLS clients will reject certificates that are not
 logged, it is expected that certificate issuers and subjects will be
 strongly motivated to submit them.

3.2. Precertificates

 CAs may preannounce a certificate prior to issuance by submitting a
 precertificate (Section 5.1) that the log can use to create an entry
 that will be valid against the issued certificate. The CA MAY
 incorporate the returned SCT in the issued certificate. One example
 of where the returned SCT is not incorporated in the issued
 certificate is when a CA sends the precertificate to multiple logs,
 but only incorporates the SCTs that are returned first.

 A precertificate is a CMS [RFC5652] "signed-data" object that
 conforms to the following profile:

 * It MUST be DER encoded as described in [X690].

 * "SignedData.version" MUST be v3(3).

 * "SignedData.digestAlgorithms" MUST be the same as the
 "SignerInfo.digestAlgorithm" OID value (see below).

 * "SignedData.encapContentInfo":

Laurie, et al. Expires 4 March 2022 [Page 15]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 - "eContentType" MUST be the OID 1.3.101.78.

 - "eContent" MUST contain a TBSCertificate [RFC5280] that will be
 identical to the TBSCertificate in the issued certificate,
 except that the Transparency Information (Section 7.1)
 extension MUST be omitted.

 * "SignedData.certificates" MUST be omitted.

 * "SignedData.crls" MUST be omitted.

 * "SignedData.signerInfos" MUST contain one "SignerInfo":

 - "version" MUST be v3(3).

 - "sid" MUST use the "subjectKeyIdentifier" option.

 - "digestAlgorithm" MUST be one of the hash algorithm OIDs listed
 in the IANA CT Hash Algorithms Registry, described in
 Section 10.2.1.

 - "signedAttrs" MUST be present and MUST contain two attributes:

 o A content-type attribute whose value is the same as
 "SignedData.encapContentInfo.eContentType".

 o A message-digest attribute whose value is the message digest
 of "SignedData.encapContentInfo.eContent".

 - "signatureAlgorithm" MUST be the same OID as
 "TBSCertificate.signature".

 - "signature" MUST be from the same (root or intermediate) CA
 that intends to issue the corresponding certificate (see
 Section 3.2.1).

 - "unsignedAttrs" MUST be omitted.

 "SignerInfo.signedAttrs" is included in the message digest
 calculation process (see Section 5.4 of [RFC5652]), which ensures
 that the "SignerInfo.signature" value will not be a valid X.509v3
 signature that could be used in conjunction with the TBSCertificate
 (from "SignedData.encapContentInfo.eContent") to construct a valid
 certificate.

Laurie, et al. Expires 4 March 2022 [Page 16]

Internet-Draft Certificate Transparency Version 2.0 August 2021

3.2.1. Binding Intent to Issue

 Under normal circumstances, there will be a short delay between
 precertificate submission and issuance of the corresponding
 certificate. Longer delays are to be expected occasionally (e.g.,
 due to log server downtime), and in some cases the CA might not
 actually issue the corresponding certificate. Nevertheless, a
 precertificate’s "signature" indicates the CA’s binding intent to
 issue the corresponding certificate, which means that:

 * Misissuance of a precertificate is considered equivalent to
 misissuance of the corresponding certificate. The CA should
 expect to be held to account, even if the corresponding
 certificate has not actually been issued.

 * Upon observing a precertificate, a client can reasonably presume
 that the corresponding certificate has been issued. A client may
 wish to obtain status information (e.g., by using the Online
 Certificate Status Protocol [RFC6960] or by checking a Certificate
 Revocation List [RFC5280]) about a certificate that is presumed to
 exist, especially if there is evidence or suspicion that the
 corresponding precertificate was misissued.

 * TLS clients may have policies that require CAs to be able to
 revoke, and to provide certificate status services for, each
 certificate that is presumed to exist based on the existence of a
 corresponding precertificate.

4. Log Format and Operation

 A log is a single, append-only Merkle Tree of submitted certificate
 and precertificate entries.

 When it receives and accepts a valid submission, the log MUST return
 an SCT that corresponds to the submitted certificate or
 precertificate. If the log has previously seen this valid
 submission, it SHOULD return the same SCT as it returned before, as
 discussed in Section 11.3. If different SCTs are produced for the
 same submission, multiple log entries will have to be created, one
 for each SCT (as the timestamp is a part of the leaf structure).
 Note that if a certificate was previously logged as a precertificate,
 then the precertificate’s SCT of type "precert_sct_v2" would not be
 appropriate; instead, a fresh SCT of type "x509_sct_v2" should be
 generated.

Laurie, et al. Expires 4 March 2022 [Page 17]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 An SCT is the log’s promise to append to its Merkle Tree an entry for
 the accepted submission. Upon producing an SCT, the log MUST fulfil
 this promise by performing the following actions within a fixed
 amount of time known as the Maximum Merge Delay (MMD), which is one
 of the log’s parameters (see Section 4.1):

 * Allocate a tree index to the entry representing the accepted
 submission.

 * Calculate the root of the tree.

 * Sign the root of the tree (see Section 4.10).

 The log may append multiple entries before signing the root of the
 tree.

 Log operators SHOULD NOT impose any conditions on retrieving or
 sharing data from the log.

4.1. Log Parameters

 A log is defined by a collection of immutable parameters, which are
 used by clients to communicate with the log and to verify log
 artifacts. Except for the Final Signed Tree Head (STH), each of
 these parameters MUST be established before the log operator begins
 to operate the log.

 Base URL: The prefix used to construct URLs ([RFC3986]) for client
 messages (see Section 5). The base URL MUST be an "https" URL,
 MAY contain a port, MAY contain a path with any number of path
 segments, but MUST NOT contain a query string, fragment, or
 trailing "/". Example: https://ct.example.org/blue

 Hash Algorithm: The hash algorithm used for the Merkle Tree (see
 Section 10.2.1).

 Signature Algorithm: The signature algorithm used (see Section 2.2).

 Public Key: The public key used to verify signatures generated by
 the log. A log MUST NOT use the same keypair as any other log.

 Log ID: The OID that uniquely identifies the log.

 Maximum Merge Delay: The MMD the log has committed to. This
 document deliberately does not specify any limits on the value, to
 allow for experimentation.

 Version: The version of the protocol supported by the log (currently

Laurie, et al. Expires 4 March 2022 [Page 18]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 1 or 2).

 Maximum Chain Length: The longest certificate chain submission the
 log is willing to accept, if the log imposes any limit.

 STH Frequency Count: The maximum number of STHs the log may produce
 in any period equal to the "Maximum Merge Delay" (see
 Section 4.10).

 Final STH: If a log has been closed down (i.e., no longer accepts
 new entries), existing entries may still be valid. In this case,
 the client should know the final valid STH in the log to ensure no
 new entries can be added without detection. This value MUST be
 provided in the form of a TransItem of type "signed_tree_head_v2".
 If a log is still accepting entries, this value should not be
 provided.

 [JSON.Metadata] is an example of a metadata format which includes the
 above elements.

4.2. Evaluating Submissions

 A log determines whether to accept or reject a submission by
 evaluating it against the minimum acceptance criteria (see
 Section 4.2.1) and against the log’s discretionary acceptance
 criteria (see Section 4.2.2).

 If the acceptance criteria are met, the log SHOULD accept the
 submission. (A log may decide, for example, to temporarily reject
 acceptable submissions to protect itself against denial-of-service
 attacks).

 The log SHALL allow retrieval of its list of accepted trust anchors
 (see Section 5.7), each of which is a root or intermediate CA
 certificate. This list might usefully be the union of root
 certificates trusted by major browser vendors.

4.2.1. Minimum Acceptance Criteria

 To ensure that logged certificates and precertificates are
 attributable to an accepted trust anchor, to set clear expectations
 for what monitors would find in the log, and to avoid being
 overloaded by invalid submissions, the log MUST reject a submission
 if any of the following conditions are not met:

Laurie, et al. Expires 4 March 2022 [Page 19]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 * The "submission", "type" and "chain" inputs MUST be set as
 described in Section 5.1. The log MUST NOT accommodate misordered
 CA certificates or use any other source of intermediate CA
 certificates to attempt certification path construction.

 * Each of the zero or more intermediate CA certificates in the chain
 MUST have one or both of the following features:

 - The Basic Constraints extension with the cA boolean asserted.

 - The Key Usage extension with the keyCertSign bit asserted.

 * Each certificate in the chain MUST fall within the limits imposed
 by the zero or more Basic Constraints pathLenConstraint values
 found higher up the chain.

 * Precertificate submissions MUST conform to all of the requirements
 in Section 3.2.

4.2.2. Discretionary Acceptance Criteria

 If the minimum acceptance criteria are met but the submission is not
 fully valid according to [RFC5280] verification rules (e.g., the
 certificate or precertificate has expired, is not yet valid, has been
 revoked, exhibits ASN.1 DER encoding errors but the log can still
 parse it, etc), then the acceptability of the submission is left to
 the log’s discretion. It is useful for logs to accept such
 submissions in order to accommodate quirks of CA certificate-issuing
 software and to facilitate monitoring of CA compliance with
 applicable policies and technical standards. However, it is
 impractical for this document to enumerate, and for logs to consider,
 all of the ways that a submission might fail to comply with
 [RFC5280].

 Logs SHOULD limit the length of chain they will accept. The maximum
 chain length is one of the log’s parameters (see Section 4.1).

4.3. Log Entries

 If a submission is accepted and an SCT issued, the accepting log MUST
 store the entire chain used for verification. This chain MUST
 include the certificate or precertificate itself, the zero or more
 intermediate CA certificates provided by the submitter, and the trust
 anchor used to verify the chain (even if it was omitted from the
 submission). The log MUST provide this chain for auditing upon
 request (see Section 5.6) so that the CA cannot avoid blame by
 logging a partial or empty chain. Each log entry is a "TransItem"
 structure of type "x509_entry_v2" or "precert_entry_v2". However, a

Laurie, et al. Expires 4 March 2022 [Page 20]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 log may store its entries in any format. If a log does not store
 this "TransItem" in full, it must store the "timestamp" and
 "sct_extensions" of the corresponding
 "TimestampedCertificateEntryDataV2" structure. The "TransItem" can
 be reconstructed from these fields and the entire chain that the log
 used to verify the submission.

4.4. Log ID

 Each log is identified by an OID, which is one of the log’s
 parameters (see Section 4.1) and which MUST NOT be used to identify
 any other log. A log’s operator MUST either allocate the OID
 themselves or request an OID from the Log ID registry (see
 Section 10.2.5). One way to get an OID arc, from which OIDs can be
 allocated, is to request a Private Enterprise Number from IANA, by
 completing the registration form (https://pen.iana.org/pen/
 PenApplication.page). The only advantage of the registry is that the
 DER encoding can be small. (Recall that OID allocations do not
 require a central registration, although logs will most likely want
 to make themselves known to potential clients through out of band
 means.) Various data structures include the DER encoding of this
 OID, excluding the ASN.1 tag and length bytes, in an opaque vector:

 opaque LogID<2..127>;

 Note that the ASN.1 length and the opaque vector length are identical
 in size (1 byte) and value, so the full DER encoding (including the
 tag and length) of the OID can be reproduced simply by prepending an
 OBJECT IDENTIFIER tag (0x06) to the opaque vector length and
 contents.

 The OID used to identify a log is limited such that the DER encoding
 of its value, excluding the tag and length, MUST be no longer than
 127 octets.

4.5. TransItem Structure

 Various data structures are encapsulated in the "TransItem" structure
 to ensure that the type and version of each one is identified in a
 common fashion:

Laurie, et al. Expires 4 March 2022 [Page 21]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 enum {
 x509_entry_v2(0x0100), precert_entry_v2(0x0101),
 x509_sct_v2(0x0102), precert_sct_v2(0x0103),
 signed_tree_head_v2(0x0104), consistency_proof_v2(0x0105),
 inclusion_proof_v2(0x0106),

 /* Reserved Code Points */
 reserved_rfc6962(0x0000..0x00FF),
 reserved_experimentaluse(0xE000..0xEFFF),
 reserved_privateuse(0xF000..0xFFFF),
 (0xFFFF)
 } VersionedTransType;

 struct {
 VersionedTransType versioned_type;
 select (versioned_type) {
 case x509_entry_v2: TimestampedCertificateEntryDataV2;
 case precert_entry_v2: TimestampedCertificateEntryDataV2;
 case x509_sct_v2: SignedCertificateTimestampDataV2;
 case precert_sct_v2: SignedCertificateTimestampDataV2;
 case signed_tree_head_v2: SignedTreeHeadDataV2;
 case consistency_proof_v2: ConsistencyProofDataV2;
 case inclusion_proof_v2: InclusionProofDataV2;
 } data;
 } TransItem;

 "versioned_type" is a value from the IANA registry in Section 10.2.3
 that identifies the type of the encapsulated data structure and the
 earliest version of this protocol to which it conforms. This
 document is v2.

 "data" is the encapsulated data structure. The various structures
 named with the "DataV2" suffix are defined in later sections of this
 document.

 Note that "VersionedTransType" combines the v1 [RFC6962] type
 enumerations "Version", "LogEntryType", "SignatureType" and
 "MerkleLeafType". Note also that v1 did not define "TransItem", but
 this document provides guidelines (see Appendix A) on how v2
 implementations can co-exist with v1 implementations.

 Future versions of this protocol may reuse "VersionedTransType"
 values defined in this document as long as the corresponding data
 structures are not modified, and may add new "VersionedTransType"
 values for new or modified data structures.

4.6. Log Artifact Extensions

Laurie, et al. Expires 4 March 2022 [Page 22]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 enum {
 reserved(65535)
 } ExtensionType;

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 The "Extension" structure provides a generic extensibility for log
 artifacts, including SCTs (Section 4.8) and STHs (Section 4.10). The
 interpretation of the "extension_data" field is determined solely by
 the value of the "extension_type" field.

 This document does not define any extensions, but it does establish a
 registry for future "ExtensionType" values (see Section 10.2.4).
 Each document that registers a new "ExtensionType" must specify the
 context in which it may be used (e.g., SCT, STH, or both) and
 describe how to interpret the corresponding "extension_data".

4.7. Merkle Tree Leaves

 The leaves of a log’s Merkle Tree correspond to the log’s entries
 (see Section 4.3). Each leaf is the leaf hash (Section 2.1) of a
 "TransItem" structure of type "x509_entry_v2" or "precert_entry_v2",
 which encapsulates a "TimestampedCertificateEntryDataV2" structure.
 Note that leaf hashes are calculated as HASH(0x00 || TransItem),
 where the hash algorithm is one of the log’s parameters.

 opaque TBSCertificate<1..2^24-1>;

 struct {
 uint64 timestamp;
 opaque issuer_key_hash<32..2^8-1>;
 TBSCertificate tbs_certificate;
 Extension sct_extensions<0..2^16-1>;
 } TimestampedCertificateEntryDataV2;

 "timestamp" is the date and time at which the certificate or
 precertificate was accepted by the log, in the form of a 64-bit
 unsigned number of milliseconds elapsed since the Unix Epoch (1
 January 1970 00:00:00 UTC - see [UNIXTIME]), ignoring leap seconds,
 in network byte order. Note that the leaves of a log’s Merkle Tree
 are not required to be in strict chronological order.

 "issuer_key_hash" is the HASH of the public key of the CA that issued
 the certificate or precertificate, calculated over the DER encoding
 of the key represented as SubjectPublicKeyInfo [RFC5280]. This is

Laurie, et al. Expires 4 March 2022 [Page 23]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 needed to bind the CA to the certificate or precertificate, making it
 impossible for the corresponding SCT to be valid for any other
 certificate or precertificate whose TBSCertificate matches
 "tbs_certificate". The length of the "issuer_key_hash" MUST match
 HASH_SIZE.

 "tbs_certificate" is the DER encoded TBSCertificate from the
 submission. (Note that a precertificate’s TBSCertificate can be
 reconstructed from the corresponding certificate as described in
 Section 8.1.2).

 "sct_extensions" is byte-for-byte identical to the SCT extensions of
 the corresponding SCT.

 The type of the "TransItem" corresponds to the value of the "type"
 parameter supplied in the Section 5.1 call.

4.8. Signed Certificate Timestamp (SCT)

 An SCT is a "TransItem" structure of type "x509_sct_v2" or
 "precert_sct_v2", which encapsulates a
 "SignedCertificateTimestampDataV2" structure:

 struct {
 LogID log_id;
 uint64 timestamp;
 Extension sct_extensions<0..2^16-1>;
 opaque signature<1..2^16-1>;
 } SignedCertificateTimestampDataV2;

 "log_id" is this log’s unique ID, encoded in an opaque vector as
 described in Section 4.4.

 "timestamp" is equal to the timestamp from the corresponding
 "TimestampedCertificateEntryDataV2" structure.

 "sct_extensions" is a vector of 0 or more SCT extensions. This
 vector MUST NOT include more than one extension with the same
 "extension_type". The extensions in the vector MUST be ordered by
 the value of the "extension_type" field, smallest value first. All
 SCT extensions are similar to non-critical X.509v3 extensions (i.e.,
 the "mustUnderstand" field is not set), and a recipient SHOULD ignore
 any extension it does not understand. Furthermore, an implementation
 MAY choose to ignore any extension(s) that it does understand.

Laurie, et al. Expires 4 March 2022 [Page 24]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 "signature" is computed over a "TransItem" structure of type
 "x509_entry_v2" or "precert_entry_v2" (see Section 4.7) using the
 signature algorithm declared in the log’s parameters (see
 Section 4.1).

4.9. Merkle Tree Head

 The log stores information about its Merkle Tree in a
 "TreeHeadDataV2":

 opaque NodeHash<32..2^8-1>;

 struct {
 uint64 timestamp;
 uint64 tree_size;
 NodeHash root_hash;
 Extension sth_extensions<0..2^16-1>;
 } TreeHeadDataV2;

 The length of NodeHash MUST match HASH_SIZE of the log.

 "timestamp" is the current date and time, using the format defined in
 Section 4.7.

 "tree_size" is the number of entries currently in the log’s Merkle
 Tree.

 "root_hash" is the root of the Merkle Hash Tree.

 "sth_extensions" is a vector of 0 or more STH extensions. This
 vector MUST NOT include more than one extension with the same
 "extension_type". The extensions in the vector MUST be ordered by
 the value of the "extension_type" field, smallest value first. If an
 implementation sees an extension that it does not understand, it
 SHOULD ignore that extension. Furthermore, an implementation MAY
 choose to ignore any extension(s) that it does understand.

Laurie, et al. Expires 4 March 2022 [Page 25]

Internet-Draft Certificate Transparency Version 2.0 August 2021

4.10. Signed Tree Head (STH)

 Periodically each log SHOULD sign its current tree head information
 (see Section 4.9) to produce an STH. When a client requests a log’s
 latest STH (see Section 5.2), the log MUST return an STH that is no
 older than the log’s MMD. However, since STHs could be used to mark
 individual clients (by producing a new STH for each query), a log
 MUST NOT produce STHs more frequently than its parameters declare
 (see Section 4.1). In general, there is no need to produce a new STH
 unless there are new entries in the log; however, in the event that a
 log does not accept any submissions during an MMD period, the log
 MUST sign the same Merkle Tree Hash with a fresh timestamp.

 An STH is a "TransItem" structure of type "signed_tree_head_v2",
 which encapsulates a "SignedTreeHeadDataV2" structure:

 struct {
 LogID log_id;
 TreeHeadDataV2 tree_head;
 opaque signature<1..2^16-1>;
 } SignedTreeHeadDataV2;

 "log_id" is this log’s unique ID, encoded in an opaque vector as
 described in Section 4.4.

 The "timestamp" in "tree_head" MUST be at least as recent as the most
 recent SCT timestamp in the tree. Each subsequent timestamp MUST be
 more recent than the timestamp of the previous update.

 "tree_head" contains the latest tree head information (see
 Section 4.9).

 "signature" is computed over the "tree_head" field using the
 signature algorithm declared in the log’s parameters (see
 Section 4.1).

4.11. Merkle Consistency Proofs

 To prepare a Merkle Consistency Proof for distribution to clients,
 the log produces a "TransItem" structure of type
 "consistency_proof_v2", which encapsulates a "ConsistencyProofDataV2"
 structure:

Laurie, et al. Expires 4 March 2022 [Page 26]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 struct {
 LogID log_id;
 uint64 tree_size_1;
 uint64 tree_size_2;
 NodeHash consistency_path<0..2^16-1>;
 } ConsistencyProofDataV2;

 "log_id" is this log’s unique ID, encoded in an opaque vector as
 described in Section 4.4.

 "tree_size_1" is the size of the older tree.

 "tree_size_2" is the size of the newer tree.

 "consistency_path" is a vector of Merkle Tree nodes proving the
 consistency of two STHs as described in Section 2.1.4.

4.12. Merkle Inclusion Proofs

 To prepare a Merkle Inclusion Proof for distribution to clients, the
 log produces a "TransItem" structure of type "inclusion_proof_v2",
 which encapsulates an "InclusionProofDataV2" structure:

 struct {
 LogID log_id;
 uint64 tree_size;
 uint64 leaf_index;
 NodeHash inclusion_path<0..2^16-1>;
 } InclusionProofDataV2;

 "log_id" is this log’s unique ID, encoded in an opaque vector as
 described in Section 4.4.

 "tree_size" is the size of the tree on which this inclusion proof is
 based.

 "leaf_index" is the 0-based index of the log entry corresponding to
 this inclusion proof.

 "inclusion_path" is a vector of Merkle Tree nodes proving the
 inclusion of the chosen certificate or precertificate as described in
 Section 2.1.3.

Laurie, et al. Expires 4 March 2022 [Page 27]

Internet-Draft Certificate Transparency Version 2.0 August 2021

4.13. Shutting down a log

 Log operators may decide to shut down a log for various reasons, such
 as deprecation of the signature algorithm. If there are entries in
 the log for certificates that have not yet expired, simply making TLS
 clients stop recognizing that log will have the effect of
 invalidating SCTs from that log. In order to avoid that, the
 following actions SHOULD be taken:

 * Make it known to clients and monitors that the log will be frozen.
 This is not part of the API, so it will have to be done via a
 relevant out-of-band mechanism.

 * Stop accepting new submissions (the error code "shutdown" should
 be returned for such requests).

 * Once MMD from the last accepted submission has passed and all
 pending submissions are incorporated, issue a final STH and
 publish it as one of the log’s parameters. Having an STH with a
 timestamp that is after the MMD has passed from the last SCT
 issuance allows clients to audit this log regularly without
 special handling for the final STH. At this point the log’s
 private key is no longer needed and can be destroyed.

 * Keep the log running until the certificates in all of its entries
 have expired or exist in other logs (this can be determined by
 scanning other logs or connecting to domains mentioned in the
 certificates and inspecting the SCTs served).

5. Log Client Messages

 Messages are sent as HTTPS GET or POST requests. Parameters for
 POSTs and all responses are encoded as JavaScript Object Notation
 (JSON) objects [RFC8259]. Parameters for GETs are encoded as order-
 independent key/value URL parameters, using the "application/x-www-
 form-urlencoded" format described in the "HTML 4.01 Specification"
 [HTML401]. Binary data is base64 encoded according to section 4 of
 [RFC4648] as specified in the individual messages.

 Clients are configured with a log’s base URL, which is one of the
 log’s parameters. Clients construct URLs for requests by appending
 suffixes to this base URL. This structure places some degree of
 restriction on how log operators can deploy these services, as noted
 in [RFC8820]. However, operational experience with version 1 of this
 protocol has not indicated that these restrictions are a problem in
 practice.

Laurie, et al. Expires 4 March 2022 [Page 28]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 Note that JSON objects and URL parameters may contain fields not
 specified here, to allow for experimentation. Any fields that are
 not understood SHOULD be ignored.

 In practice, log servers may include multiple front-end machines.
 Since it is impractical to keep these machines in perfect sync,
 errors may occur that are caused by skew between the machines. Where
 such errors are possible, the front-end will return additional
 information (as specified below) making it possible for clients to
 make progress, if progress is possible. Front-ends MUST only serve
 data that is free of gaps (that is, for example, no front-end will
 respond with an STH unless it is also able to prove consistency from
 all log entries logged within that STH).

 For example, when a consistency proof between two STHs is requested,
 the front-end reached may not yet be aware of one or both STHs. In
 the case where it is unaware of both, it will return the latest STH
 it is aware of. Where it is aware of the first but not the second,
 it will return the latest STH it is aware of and a consistency proof
 from the first STH to the returned STH. The case where it knows the
 second but not the first should not arise (see the "no gaps"
 requirement above).

 If the log is unable to process a client’s request, it MUST return an
 HTTP response code of 4xx/5xx (see [RFC7231]), and, in place of the
 responses outlined in the subsections below, the body SHOULD be a
 JSON Problem Details Object (see [RFC7807] Section 3), containing:

 type: A URN reference identifying the problem. To facilitate
 automated response to errors, this document defines a set of
 standard tokens for use in the "type" field, within the URN
 namespace of: "urn:ietf:params:trans:error:".

 detail: A human-readable string describing the error that prevented
 the log from processing the request, ideally with sufficient
 detail to enable the error to be rectified.

 e.g., In response to a request of "<Base URL>/ct/v2/get-
 entries?start=100&end=99", the log would return a "400 Bad Request"
 response code with a body similar to the following:

 {
 "type": "urn:ietf:params:trans:error:endBeforeStart",
 "detail": "’start’ cannot be greater than ’end’"
 }

Laurie, et al. Expires 4 March 2022 [Page 29]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 Most error types are specific to the type of request and are defined
 in the respective subsections below. The one exception is the
 "malformed" error type, which indicates that the log server could not
 parse the client’s request because it did not comply with this
 document:

 +===========+==================================+
 | type | detail |
 +===========+==================================+
 | malformed | The request could not be parsed. |
 +-----------+----------------------------------+

 Table 1

 Clients SHOULD treat "500 Internal Server Error" and "503 Service
 Unavailable" responses as transient failures and MAY retry the same
 request without modification at a later date. Note that as per
 [RFC7231], in the case of a 503 response the log MAY include a
 "Retry-After:" header field in order to request a minimum time for
 the client to wait before retrying the request. In the absence of
 this header field, this document does not specify a minimum.

 Clients SHOULD treat any 4xx error as a problem with the request and
 not attempt to resubmit without some modification to the request.
 The full status code MAY provide additional details.

 This document deliberately does not provide more specific guidance on
 the use of HTTP status codes.

5.1. Submit Entry to Log

 POST <Base URL>/ct/v2/submit-entry

 Inputs: submission: The base64 encoded certificate or
 precertificate.

 type: The "VersionedTransType" integer value that indicates
 the type of the "submission": 1 for "x509_entry_v2", or 2 for
 "precert_entry_v2".

 chain: An array of zero or more JSON strings, each of which
 is a base64 encoded CA certificate. The first element is the
 certifier of the "submission"; the second certifies the first;
 etc. The last element of "chain" (or, if "chain" is an empty
 array, the "submission") is certified by an accepted trust
 anchor.

 Outputs: sct: A base64 encoded "TransItem" of type "x509_sct_v2" or

Laurie, et al. Expires 4 March 2022 [Page 30]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 "precert_sct_v2", signed by this log, that corresponds to the
 "submission".

 If the submitted entry is immediately appended to (or already
 exists in) this log’s tree, then the log SHOULD also output:

 sth: A base64 encoded "TransItem" of type "signed_tree_head_v2",
 signed by this log.

 inclusion: A base64 encoded "TransItem" of type
 "inclusion_proof_v2" whose "inclusion_path" array of Merkle
 Tree nodes proves the inclusion of the "submission" in the
 returned "sth".

 Error codes:

 +================+==+
 | type | detail |
 +================+==+
 | badSubmission | "submission" is neither a valid certificate |
 | | nor a valid precertificate. |
 +----------------+--+
 | badType | "type" is neither 1 nor 2. |
 +----------------+--+
 | badChain | The first element of "chain" is not the |
 | | certifier of the "submission", or the second |
 | | element does not certify the first, etc. |
 +----------------+--+
 | badCertificate | One or more certificates in the "chain" are |
 | | not valid (e.g., not properly encoded). |
 +----------------+--+
 | unknownAnchor | The last element of "chain" (or, if "chain" |
 | | is an empty array, the "submission") both is |
 | | not, and is not certified by, an accepted |
 | | trust anchor. |
 +----------------+--+
 | shutdown | The log is no longer accepting submissions. |
 +----------------+--+

 Table 2

 If the version of "sct" is not v2, then a v2 client may be unable to
 verify the signature. It MUST NOT construe this as an error. This
 is to avoid forcing an upgrade of compliant v2 clients that do not
 use the returned SCTs.

Laurie, et al. Expires 4 March 2022 [Page 31]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 If a log detects bad encoding in a chain that otherwise verifies
 correctly then the log MUST either log the certificate or return the
 "bad certificate" error. If the certificate is logged, an SCT MUST
 be issued. Logging the certificate is useful, because monitors
 (Section 8.2) can then detect these encoding errors, which may be
 accepted by some TLS clients.

 If "submission" is an accepted trust anchor whose certifier is
 neither an accepted trust anchor nor the first element of "chain",
 then the log MUST return the "unknown anchor" error. A log is not
 able to generate an SCT for a submission if it does not have access
 to the issuer’s public key.

 If the returned "sct" is intended to be provided to TLS clients, then
 "sth" and "inclusion" (if returned) SHOULD also be provided to TLS
 clients. For example, if "type" was 2 (indicating "precert_sct_v2")
 then all three "TransItem"s could be embedded in the certificate.

5.2. Retrieve Latest STH

 GET <Base URL>/ct/v2/get-sth

 No inputs.

 Outputs: sth: A base64 encoded "TransItem" of type
 "signed_tree_head_v2", signed by this log, that is no older
 than the log’s MMD.

5.3. Retrieve Merkle Consistency Proof between Two STHs

 GET <Base URL>/ct/v2/get-sth-consistency

 Inputs: first: The tree_size of the older tree, in decimal.

 second: The tree_size of the newer tree, in decimal
 (optional).

 Both tree sizes must be from existing v2 STHs. However, because
 of skew, the receiving front-end may not know one or both of the
 existing STHs. If both are known, then only the "consistency"
 output is returned. If the first is known but the second is not
 (or has been omitted), then the latest known STH is returned,
 along with a consistency proof between the first STH and the
 latest. If neither are known, then the latest known STH is
 returned without a consistency proof.

 Outputs: consistency: A base64 encoded "TransItem" of type

Laurie, et al. Expires 4 March 2022 [Page 32]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 "consistency_proof_v2", whose "tree_size_1" MUST match the
 "first" input. If the "sth" output is omitted, then
 "tree_size_2" MUST match the "second" input. If "first" and
 "second" are equal and correspond to a known STH, the returned
 consistency proof MUST be empty (a "consistency_path" array
 with zero elements).

 sth: A base64 encoded "TransItem" of type
 "signed_tree_head_v2", signed by this log.

 Note that no signature is required for the "consistency" output as
 it is used to verify the consistency between two STHs, which are
 signed.

 Error codes:

 +===================+======================================+
 | type | detail |
 +===================+======================================+
 | firstUnknown | "first" is before the latest known |
 | | STH but is not from an existing STH. |
 +-------------------+--------------------------------------+
 | secondUnknown | "second" is before the latest known |
 | | STH but is not from an existing STH. |
 +-------------------+--------------------------------------+
 | secondBeforeFirst | "second" is smaller than "first". |
 +-------------------+--------------------------------------+

 Table 3

 See Section 2.1.4.2 for an outline of how to use the "consistency"
 output.

5.4. Retrieve Merkle Inclusion Proof from Log by Leaf Hash

 GET <Base URL>/ct/v2/get-proof-by-hash

 Inputs: hash: A base64 encoded v2 leaf hash.

 tree_size: The tree_size of the tree on which to base the
 proof, in decimal.

 The "hash" must be calculated as defined in Section 4.7. A v2 STH
 must exist for the "tree_size". Because of skew, the front-end
 may not know the requested tree head. In that case, it will
 return the latest STH it knows, along with an inclusion proof to
 that STH. If the front-end knows the requested tree head then
 only "inclusion" is returned.

Laurie, et al. Expires 4 March 2022 [Page 33]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 Outputs: inclusion: A base64 encoded "TransItem" of type
 "inclusion_proof_v2" whose "inclusion_path" array of Merkle
 Tree nodes proves the inclusion of the certificate (as
 specified by the "hash" parameter) in the selected STH.

 sth: A base64 encoded "TransItem" of type
 "signed_tree_head_v2", signed by this log.

 Note that no signature is required for the "inclusion" output as
 it is used to verify inclusion in the selected STH, which is
 signed.

 Error codes:

 +=================+=====================================+
 | type | detail |
 +=================+=====================================+
 | hashUnknown | "hash" is not the hash of a known |
 | | leaf (may be caused by skew or by a |
 | | known certificate not yet merged). |
 +-----------------+-------------------------------------+
 | treeSizeUnknown | "hash" is before the latest known |
 | | STH but is not from an existing |
 | | STH. |
 +-----------------+-------------------------------------+

 Table 4

 See Section 2.1.3.2 for an outline of how to use the "inclusion"
 output.

5.5. Retrieve Merkle Inclusion Proof, STH and Consistency Proof by Leaf
 Hash

 GET <Base URL>/ct/v2/get-all-by-hash

 Inputs: hash: A base64 encoded v2 leaf hash.

 tree_size: The tree_size of the tree on which to base the
 proofs, in decimal.

 The "hash" must be calculated as defined in Section 4.7. A v2 STH
 must exist for the "tree_size".

 Because of skew, the front-end may not know the requested tree head
 or the requested hash, which leads to a number of cases:

Laurie, et al. Expires 4 March 2022 [Page 34]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 +=====================+=====================================+
 | Case | Response |
 +=====================+=====================================+
 | latest STH < | Return latest STH |
 | requested tree head | |
 +---------------------+-------------------------------------+
 | latest STH > | Return latest STH and a consistency |
 | requested tree head | proof between it and the requested |
 | | tree head (see Section 5.3) |
 +---------------------+-------------------------------------+
 | index of requested | Return "inclusion" |
 | hash < latest STH | |
 +---------------------+-------------------------------------+

 Table 5

 Note that more than one case can be true, in which case the returned
 data is their union. It is also possible for none to be true, in
 which case the front-end MUST return an empty response.

 Outputs: inclusion: A base64 encoded "TransItem" of type
 "inclusion_proof_v2" whose "inclusion_path" array of Merkle
 Tree nodes proves the inclusion of the certificate (as
 specified by the "hash" parameter) in the selected STH.

 sth: A base64 encoded "TransItem" of type
 "signed_tree_head_v2", signed by this log.

 consistency: A base64 encoded "TransItem" of type
 "consistency_proof_v2" that proves the consistency of the
 requested tree head and the returned STH.

 Note that no signature is required for the "inclusion" or
 "consistency" outputs as they are used to verify inclusion in and
 consistency of STHs, which are signed.

 Errors are the same as in Section 5.4.

 See Section 2.1.3.2 for an outline of how to use the "inclusion"
 output, and see Section 2.1.4.2 for an outline of how to use the
 "consistency" output.

5.6. Retrieve Entries and STH from Log

 GET <Base URL>/ct/v2/get-entries

 Inputs: start: 0-based index of first entry to retrieve, in
 decimal.

Laurie, et al. Expires 4 March 2022 [Page 35]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 end: 0-based index of last entry to retrieve, in decimal.

 Outputs: entries: An array of objects, each consisting of

 log_entry: The base64 encoded "TransItem" structure of type
 "x509_entry_v2" or "precert_entry_v2" (see Section 4.3).

 submitted_entry: JSON object equivalent to inputs that were
 submitted to "submit-entry", with the addition of the trust
 anchor to the "chain" field if the submission did not
 include it.

 sct: The base64 encoded "TransItem" of type "x509_sct_v2" or
 "precert_sct_v2" corresponding to this log entry.

 sth: A base64 encoded "TransItem" of type
 "signed_tree_head_v2", signed by this log.

 Note that this message is not signed -- the "entries" data can be
 verified by constructing the Merkle Tree Hash corresponding to a
 retrieved STH. All leaves MUST be v2. However, a compliant v2
 client MUST NOT construe an unrecognized TransItem type as an error.
 This means it may be unable to parse some entries, but note that each
 client can inspect the entries it does recognize as well as verify
 the integrity of the data by treating unrecognized leaves as opaque
 input to the tree.

 The "start" and "end" parameters SHOULD be within the range 0 <= x <
 "tree_size" as returned by "get-sth" in Section 5.2.

 The "start" parameter MUST be less than or equal to the "end"
 parameter.

 Each "submitted_entry" output parameter MUST include the trust anchor
 that the log used to verify the "submission", even if that trust
 anchor was not provided to "submit-entry" (see Section 5.1). If the
 "submission" does not certify itself, then the first element of
 "chain" MUST be present and MUST certify the "submission".

 Log servers MUST honor requests where 0 <= "start" < "tree_size" and
 "end" >= "tree_size" by returning a partial response covering only
 the valid entries in the specified range. "end" >= "tree_size" could
 be caused by skew. Note that the following restriction may also
 apply:

 Logs MAY restrict the number of entries that can be retrieved per
 "get-entries" request. If a client requests more than the permitted
 number of entries, the log SHALL return the maximum number of entries

Laurie, et al. Expires 4 March 2022 [Page 36]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 permissible. These entries SHALL be sequential beginning with the
 entry specified by "start". Note that limit on the number of entries
 is not immutable and therefore the restriction may be changed or
 lifted at any time and is not listed with the other Log Parameters in
 Section 4.1.

 Because of skew, it is possible the log server will not have any
 entries between "start" and "end". In this case it MUST return an
 empty "entries" array.

 In any case, the log server MUST return the latest STH it knows
 about.

 See Section 2.1.2 for an outline of how to use a complete list of
 "log_entry" entries to verify the "root_hash".

 Error codes:

 +================+====================================+
 | type | detail |
 +================+====================================+
 | startUnknown | "start" is greater than the number |
 | | of entries in the Merkle tree. |
 +----------------+------------------------------------+
 | endBeforeStart | "start" cannot be greater than |
 | | "end". |
 +----------------+------------------------------------+

 Table 6

5.7. Retrieve Accepted Trust Anchors

 GET <Base URL>/ct/v2/get-anchors

 No inputs.

 Outputs: certificates: An array of JSON strings, each of which is a
 base64 encoded CA certificate that is acceptable to the log.

 max_chain_length: If the server has chosen to limit the
 length of chains it accepts, this is the maximum number of
 certificates in the chain, in decimal. If there is no limit,
 this is omitted.

 This data is not signed and the protocol depends on the security
 guarantees of TLS to ensure correctness.

Laurie, et al. Expires 4 March 2022 [Page 37]

Internet-Draft Certificate Transparency Version 2.0 August 2021

6. TLS Servers

 CT-using TLS servers MUST use at least one of the mechanisms
 described below to present one or more SCTs from one or more logs to
 each TLS client during full TLS handshakes, when requested by the
 client, where each SCT corresponds to the server certificate. (Of
 course, a server can only send a TLS extension if the client has
 specified it first.) Servers SHOULD also present corresponding
 inclusion proofs and STHs.

 A server can provide SCTs using a TLS 1.3 extension (Section 4.2 of
 [RFC8446]) with type "transparency_info" (see Section 6.5). This
 mechanism allows TLS servers to participate in CT without the
 cooperation of CAs, unlike the other two mechanisms. It also allows
 SCTs and inclusion proofs to be updated on the fly.

 The server may also use an Online Certificate Status Protocol (OCSP)
 [RFC6960] response extension (see Section 7.1.1), providing the OCSP
 response as part of the TLS handshake. Providing a response during a
 TLS handshake is popularly known as "OCSP stapling." For TLS 1.3,
 the information is encoded as an extension in the "status_request"
 extension data; see Section 4.4.2.1 of [RFC8446]. For TLS 1.2
 ([RFC5246]), the information is encoded in the "CertificateStatus"
 message; see Section 8 of [RFC6066]. Using stapling also allows SCTs
 and inclusion proofs to be updated on the fly.

 CT information can also be encoded as an extension in the X.509v3
 certificate (see Section 7.1.2). This mechanism allows the use of
 unmodified TLS servers, but the SCTs and inclusion proofs cannot be
 updated on the fly. Since the logs from which the SCTs and inclusion
 proofs originated won’t necessarily be accepted by TLS clients for
 the full lifetime of the certificate, there is a risk that TLS
 clients may subsequently consider the certificate to be non-compliant
 and in need of re-issuance or the use of one of the other two methods
 for delivering CT information.

6.1. TLS Client Authentication

 This specification includes no description of how a TLS server can
 use CT for TLS client certificates. While this may be useful, it is
 not documented here for the following reasons:

 * The greater security exposure is for clients to end up interacting
 with an illegitimate server.

 * In general, TLS client certificates are not expected to be
 submitted to CT logs, particularly those intended for general
 public use.

Laurie, et al. Expires 4 March 2022 [Page 38]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 A future version could include such information.

6.2. Multiple SCTs

 CT-using TLS servers SHOULD send SCTs from multiple logs, because:

 * One or more logs may not have become acceptable to all CT-using
 TLS clients. Note that client discovery, trust, and distrust of
 logs is expected to be handled out-of-band and is out of scope of
 this document.

 * If a CA and a log collude, it is possible to temporarily hide
 misissuance from clients. When a TLS client requires SCTs from
 multiple logs to be provided, it is more difficult to mount this
 attack.

 * If a log misbehaves or suffers a key compromise, a consequence may
 be that clients cease to trust it. Since the time an SCT may be
 in use can be considerable (several years is common in current
 practice when embedded in a certificate), including SCTs from
 multiple logs reduces the probability of the certificate being
 rejected by TLS clients.

 * TLS clients may have policies related to the above risks requiring
 TLS servers to present multiple SCTs. For example, at the time of
 writing, Chromium [Chromium.Log.Policy] requires multiple SCTs to
 be presented with EV certificates in order for the EV indicator to
 be shown.

 To select the logs from which to obtain SCTs, a TLS server can, for
 example, examine the set of logs popular TLS clients accept and
 recognize.

6.3. TransItemList Structure

 Multiple SCTs, inclusion proofs, and indeed "TransItem" structures of
 any type, are combined into a list as follows:

 opaque SerializedTransItem<1..2^16-1>;

 struct {
 SerializedTransItem trans_item_list<1..2^16-1>;
 } TransItemList;

Laurie, et al. Expires 4 March 2022 [Page 39]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 Here, "SerializedTransItem" is an opaque byte string that contains
 the serialized "TransItem" structure. This encoding ensures that TLS
 clients can decode each "TransItem" individually (so, for example, if
 there is a version upgrade, out-of-date clients can still parse old
 "TransItem" structures while skipping over new "TransItem" structures
 whose versions they don’t understand).

6.4. Presenting SCTs, inclusions proofs and STHs

 In each "TransItemList" that is sent during a TLS handshake, the TLS
 server MUST include a "TransItem" structure of type "x509_sct_v2" or
 "precert_sct_v2".

 Presenting inclusion proofs and STHs in the TLS handshake helps to
 protect the client’s privacy (see Section 8.1.4) and reduces load on
 log servers. Therefore, if the TLS server can obtain them, it SHOULD
 also include "TransItem"s of type "inclusion_proof_v2" and
 "signed_tree_head_v2" in the "TransItemList".

6.5. transparency_info TLS Extension

 Provided that a TLS client includes the "transparency_info" extension
 type in the ClientHello and the TLS server supports the
 "transparency_info" extension:

 * The TLS server MUST verify that the received "extension_data" is
 empty.

 * The TLS server MUST construct a "TransItemList" of relevant
 "TransItem"s (see Section 6.4), which SHOULD omit any "TransItem"s
 that are already embedded in the server certificate or the stapled
 OCSP response (see Section 7.1). If the constructed
 "TransItemList" is not empty, then the TLS server MUST include the
 "transparency_info" extension with the "extension_data" set to
 this "TransItemList". If the list is empty then the server SHOULD
 omit the "extension_data" element, but MAY send it with an empty
 array.

 TLS servers MUST only include this extension in the following
 messages:

 * the ServerHello message (for TLS 1.2 or earlier).

 * the Certificate or CertificateRequest message (for TLS 1.3).

 TLS servers MUST NOT process or include this extension when a TLS
 session is resumed, since session resumption uses the original
 session information.

Laurie, et al. Expires 4 March 2022 [Page 40]

Internet-Draft Certificate Transparency Version 2.0 August 2021

7. Certification Authorities

7.1. Transparency Information X.509v3 Extension

 The Transparency Information X.509v3 extension, which has OID
 1.3.101.75 and SHOULD be non-critical, contains one or more
 "TransItem" structures in a "TransItemList". This extension MAY be
 included in OCSP responses (see Section 7.1.1) and certificates (see
 Section 7.1.2). Since RFC5280 requires the "extnValue" field (an
 OCTET STRING) of each X.509v3 extension to include the DER encoding
 of an ASN.1 value, a "TransItemList" MUST NOT be included directly.
 Instead, it MUST be wrapped inside an additional OCTET STRING, which
 is then put into the "extnValue" field:

 TransparencyInformationSyntax ::= OCTET STRING

 "TransparencyInformationSyntax" contains a "TransItemList".

7.1.1. OCSP Response Extension

 A certification authority MAY include a Transparency Information
 X.509v3 extension in the "singleExtensions" of a "SingleResponse" in
 an OCSP response. All included SCTs and inclusion proofs MUST be for
 the certificate identified by the "certID" of that "SingleResponse",
 or for a precertificate that corresponds to that certificate.

7.1.2. Certificate Extension

 A certification authority MAY include a Transparency Information
 X.509v3 extension in a certificate. All included SCTs and inclusion
 proofs MUST be for a precertificate that corresponds to this
 certificate.

7.2. TLS Feature X.509v3 Extension

 A certification authority SHOULD NOT issue any certificate that
 identifies the "transparency_info" TLS extension in a TLS feature
 extension [RFC7633], because TLS servers are not required to support
 the "transparency_info" TLS extension in order to participate in CT
 (see Section 6).

8. Clients

 There are various different functions clients of logs might perform.
 We describe here some typical clients and how they should function.
 Any inconsistency may be used as evidence that a log has not behaved
 correctly, and the signatures on the data structures prevent the log
 from denying that misbehavior.

Laurie, et al. Expires 4 March 2022 [Page 41]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 All clients need various parameters in order to communicate with logs
 and verify their responses. These parameters are described in
 Section 4.1, but note that this document does not describe how the
 parameters are obtained, which is implementation-dependent (see, for
 example, [Chromium.Policy]).

8.1. TLS Client

8.1.1. Receiving SCTs and inclusion proofs

 TLS clients receive SCTs and inclusion proofs alongside or in
 certificates. CT-using TLS clients MUST implement all of the three
 mechanisms by which TLS servers may present SCTs (see Section 6).

 TLS clients that support the "transparency_info" TLS extension (see
 Section 6.5) SHOULD include it in ClientHello messages, with empty
 "extension_data". If a TLS server includes the "transparency_info"
 TLS extension when resuming a TLS session, the TLS client MUST abort
 the handshake.

8.1.2. Reconstructing the TBSCertificate

 Validation of an SCT for a certificate (where the "type" of the
 "TransItem" is "x509_sct_v2") uses the unmodified TBSCertificate
 component of the certificate.

 Before an SCT for a precertificate (where the "type" of the
 "TransItem" is "precert_sct_v2") can be validated, the TBSCertificate
 component of the precertificate needs to be reconstructed from the
 TBSCertificate component of the certificate as follows:

 * Remove the Transparency Information extension (see Section 7.1).

 * Remove embedded v1 SCTs, identified by OID 1.3.6.1.4.1.11129.2.4.2
 (see section 3.3 of [RFC6962]). This allows embedded v1 and v2
 SCTs to co-exist in a certificate (see Appendix A).

8.1.3. Validating SCTs

 In order to make use of a received SCT, the TLS client MUST first
 validate it as follows:

 * Compute the signature input by constructing a "TransItem" of type
 "x509_entry_v2" or "precert_entry_v2", depending on the SCT’s
 "TransItem" type. The "TimestampedCertificateEntryDataV2"
 structure is constructed in the following manner:

 - "timestamp" is copied from the SCT.

Laurie, et al. Expires 4 March 2022 [Page 42]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 - "tbs_certificate" is the reconstructed TBSCertificate portion
 of the server certificate, as described in Section 8.1.2.

 - "issuer_key_hash" is computed as described in Section 4.7.

 - "sct_extensions" is copied from the SCT.

 * Verify the SCT’s "signature" against the computed signature input
 using the public key of the corresponding log, which is identified
 by the "log_id". The required signature algorithm is one of the
 log’s parameters.

 If the TLS client does not have the corresponding log’s parameters,
 it cannot attempt to validate the SCT. When evaluating compliance
 (see Section 8.1.6), the TLS client will consider only those SCTs
 that it was able to validate.

 Note that SCT validation is not a substitute for the normal
 validation of the server certificate and its chain.

8.1.4. Fetching inclusion proofs

 When a TLS client has validated a received SCT but does not yet
 possess a corresponding inclusion proof, the TLS client MAY request
 the inclusion proof directly from a log using "get-proof-by-hash"
 (Section 5.4) or "get-all-by-hash" (Section 5.5).

 Note that fetching inclusion proofs directly from a log will disclose
 to the log which TLS server the client has been communicating with.
 This may be regarded as a significant privacy concern, and so it is
 preferable for the TLS server to send the inclusion proofs (see
 Section 6.4).

8.1.5. Validating inclusion proofs

 When a TLS client has received, or fetched, an inclusion proof (and
 an STH), it SHOULD proceed to verifying the inclusion proof to the
 provided STH. The TLS client SHOULD also verify consistency between
 the provided STH and an STH it knows about.

 If the TLS client holds an STH that predates the SCT, it MAY, in the
 process of auditing, request a new STH from the log (Section 5.2),
 then verify it by requesting a consistency proof (Section 5.3). Note
 that if the TLS client uses "get-all-by-hash", then it will already
 have the new STH.

Laurie, et al. Expires 4 March 2022 [Page 43]

Internet-Draft Certificate Transparency Version 2.0 August 2021

8.1.6. Evaluating compliance

 It is up to a client’s local policy to specify the quantity and form
 of evidence (SCTs, inclusion proofs or a combination) needed to
 achieve compliance and how to handle non-compliance.

 A TLS client can only evaluate compliance if it has given the TLS
 server the opportunity to send SCTs and inclusion proofs by any of
 the three mechanisms that are mandatory to implement for CT-using TLS
 clients (see Section 8.1.1). Therefore, a TLS client MUST NOT
 evaluate compliance if it did not include both the
 "transparency_info" and "status_request" TLS extensions in the
 ClientHello.

8.2. Monitor

 Monitors watch logs to check that they behave correctly, for
 certificates of interest, or both. For example, a monitor may be
 configured to report on all certificates that apply to a specific
 domain name when fetching new entries for consistency validation.

 A monitor MUST at least inspect every new entry in every log it
 watches, and it MAY also choose to keep copies of entire logs.

 To inspect all of the existing entries, the monitor SHOULD follow
 these steps once for each log:

 1. Fetch the current STH (Section 5.2).

 2. Verify the STH signature.

 3. Fetch all the entries in the tree corresponding to the STH
 (Section 5.6).

 4. If applicable, check each entry to see if it’s a certificate of
 interest.

 5. Confirm that the tree made from the fetched entries produces the
 same hash as that in the STH.

 To inspect new entries, the monitor SHOULD follow these steps
 repeatedly for each log:

 1. Fetch the current STH (Section 5.2). Repeat until the STH
 changes. This document does not specify the polling frequency,
 to allow for experimentation.

 2. Verify the STH signature.

Laurie, et al. Expires 4 March 2022 [Page 44]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 3. Fetch all the new entries in the tree corresponding to the STH
 (Section 5.6). If they remain unavailable for an extended
 period, then this should be viewed as misbehavior on the part of
 the log.

 4. If applicable, check each entry to see if it’s a certificate of
 interest.

 5. Either:

 1. Verify that the updated list of all entries generates a tree
 with the same hash as the new STH.

 Or, if it is not keeping all log entries:

 1. Fetch a consistency proof for the new STH with the previous
 STH (Section 5.3).

 2. Verify the consistency proof.

 3. Verify that the new entries generate the corresponding
 elements in the consistency proof.

 6. Repeat from step 1.

8.3. Auditing

 Auditing ensures that the current published state of a log is
 reachable from previously published states that are known to be good,
 and that the promises made by the log in the form of SCTs have been
 kept. Audits are performed by monitors or TLS clients.

 In particular, there are four log behavior properties that should be
 checked:

 * The Maximum Merge Delay (MMD).

 * The STH Frequency Count.

 * The append-only property.

 * The consistency of the log view presented to all query sources.

Laurie, et al. Expires 4 March 2022 [Page 45]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 A benign, conformant log publishes a series of STHs over time, each
 derived from the previous STH and the submitted entries incorporated
 into the log since publication of the previous STH. This can be
 proven through auditing of STHs. SCTs returned to TLS clients can be
 audited by verifying against the accompanying certificate, and using
 Merkle Inclusion Proofs, against the log’s Merkle tree.

 The action taken by the auditor if an audit fails is not specified,
 but note that in general if audit fails, the auditor is in possession
 of signed proof of the log’s misbehavior.

 A monitor (Section 8.2) can audit by verifying the consistency of
 STHs it receives, ensure that each entry can be fetched and that the
 STH is indeed the result of making a tree from all fetched entries.

 A TLS client (Section 8.1) can audit by verifying an SCT against any
 STH dated after the SCT timestamp + the Maximum Merge Delay by
 requesting a Merkle inclusion proof (Section 5.4). It can also
 verify that the SCT corresponds to the server certificate it arrived
 with (i.e., the log entry is that certificate, or is a precertificate
 corresponding to that certificate).

 Checking of the consistency of the log view presented to all entities
 is more difficult to perform because it requires a way to share log
 responses among a set of CT-using entities, and is discussed in
 Section 11.3.

9. Algorithm Agility

 It is not possible for a log to change any of its algorithms part way
 through its lifetime:

 Signature algorithm: SCT signatures must remain valid so signature
 algorithms can only be added, not removed.

 Hash algorithm: A log would have to support the old and new hash
 algorithms to allow backwards-compatibility with clients that are
 not aware of a hash algorithm change.

 Allowing multiple signature or hash algorithms for a log would
 require that all data structures support it and would significantly
 complicate client implementation, which is why it is not supported by
 this document.

Laurie, et al. Expires 4 March 2022 [Page 46]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 If it should become necessary to deprecate an algorithm used by a
 live log, then the log MUST be frozen as specified in Section 4.13
 and a new log SHOULD be started. Certificates in the frozen log that
 have not yet expired and require new SCTs SHOULD be submitted to the
 new log and the SCTs from that log used instead.

10. IANA Considerations

 The assignment policy criteria mentioned in this section refer to the
 policies outlined in [RFC8126].

10.1. Additions to existing registries

 This sub-section defines additions to existing registries.

10.1.1. New Entry to the TLS ExtensionType Registry

 IANA is asked to add the following entry to the "TLS ExtensionType
 Values" registry defined in [RFC8446], with an assigned Value:

 +=======+===================+============+=============+===========+
 | Value | Extension Name | TLS 1.3 | Recommended | Reference |
 +=======+===================+============+=============+===========+
 | TBD | transparency_info | CH, CR, CT | Y | RFCXXXX |
 +-------+-------------------+------------+-------------+-----------+

 Table 7

10.1.2. URN Sub-namespace for TRANS (urn:ietf:params:trans)

 IANA is requested to add a new entry in the "IETF URN Sub-namespace
 for Registered Protocol Parameter Identifiers" registry, following
 the template in [RFC3553]:

 Registry name: trans

 Specification: RFCXXXX

 Repository: https://www.iana.org/assignments/trans

 Index value: No transformation needed.

10.2. New CT-Related registries

 IANA is requested to add a new protocol registry, "Public Notary
 Transparency", to the list that appears at https://www.iana.org/
 assignments/

Laurie, et al. Expires 4 March 2022 [Page 47]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 The rest of this section defines sub-registries to be created within
 the new Public Notary Transparency registry.

10.2.1. Hash Algorithms

 IANA is asked to establish a registry of hash algorithm values, named
 "Hash Algorithms", that initially consists of:

 +========+============+========================+===================+
 | Value | Hash | OID | Reference / |
 | | Algorithm | | Assignment Policy |
 +========+============+========================+===================+
 | 0x00 | SHA-256 | 2.16.840.1.101.3.4.2.1 | [RFC6234] |
 +--------+------------+------------------------+-------------------+
 | 0x01 - | Unassigned | | Specification |
 | 0xDF | | | Required |
 +--------+------------+------------------------+-------------------+
 | 0xE0 - | Reserved | | Experimental Use |
 | 0xEF | | | |
 +--------+------------+------------------------+-------------------+
 | 0xF0 - | Reserved | | Private Use |
 | 0xFF | | | |
 +--------+------------+------------------------+-------------------+

 Table 8

 The Designated Expert(s) should ensure that the proposed algorithm
 has a public specification and is suitable for use as a cryptographic
 hash algorithm with no known preimage or collision attacks. These
 attacks can damage the integrity of the log.

10.2.2. Signature Algorithms

 IANA is asked to establish a registry of signature algorithm values,
 named "Signature Algorithms".

 The following notes should be added:

 * This is a subset of the TLS SignatureScheme Registry, limited to
 those algorithms that are appropriate for CT. A major advantage
 of this is leveraging the expertise of the TLS working group and
 its Designated Expert(s).

 * The value "0x0403" appears twice. While this may be confusing, it
 is okay because the verification process is the same for both
 algorithms, and the choice of which to use when generating a
 signature is purely internal to the log server.

Laurie, et al. Expires 4 March 2022 [Page 48]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 The registry should initially consist of:

 +================================+==================+===============+
SignatureScheme Value	Signature	Reference /
	Algorithm	Assignment
		Policy
+================================+==================+===============+		
0x0000 - 0x0402	Unassigned	Specification
		Required
+--------------------------------+------------------+---------------+		
ecdsa_secp256r1_sha256(0x0403)	ECDSA (NIST	[FIPS186-4]
	P-256) with	
	SHA-256	
+--------------------------------+------------------+---------------+		
ecdsa_secp256r1_sha256(0x0403)	Deterministic	[RFC6979]
	ECDSA (NIST	
	P-256) with	
	HMAC-SHA256	
+--------------------------------+------------------+---------------+		
0x0404 - 0x0806	Unassigned	Specification
		Required
+--------------------------------+------------------+---------------+		
ed25519(0x0807)	Ed25519	[RFC8032]
	(PureEdDSA	
	with the	
	edwards25519	
	curve)	
+--------------------------------+------------------+---------------+		
0x0808 - 0xFDFF	Unassigned	Expert Review
+--------------------------------+------------------+---------------+		
0xFE00 - 0xFEFF	Reserved	Experimental
		Use
+--------------------------------+------------------+---------------+		
0xFF00 - 0xFFFF	Reserved	Private Use
 +--------------------------------+------------------+---------------+

 Table 9

 The Designated Expert(s) should ensure that the proposed algorithm
 has a public specification, has a value assigned to it in the TLS
 SignatureScheme Registry (that IANA was asked to establish in
 [RFC8446]), and is suitable for use as a cryptographic signature
 algorithm.

10.2.3. VersionedTransTypes

 IANA is asked to establish a registry of "VersionedTransType" values,
 named "VersionedTransTypes".

Laurie, et al. Expires 4 March 2022 [Page 49]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 The following note should be added:

 * The range 0x0000..0x00FF is reserved so that v1 SCTs are
 distinguishable from v2 SCTs and other "TransItem" structures.

 The registry should initially consist of:

 +==========+======================+===============================+
 | Value | Type and Version | Reference / Assignment Policy |
 +==========+======================+===============================+
 | 0x0000 - | Reserved | [RFC6962] |
 | 0x00FF | | |
 +----------+----------------------+-------------------------------+
 | 0x0100 | x509_entry_v2 | RFCXXXX |
 +----------+----------------------+-------------------------------+
 | 0x0101 | precert_entry_v2 | RFCXXXX |
 +----------+----------------------+-------------------------------+
 | 0x0102 | x509_sct_v2 | RFCXXXX |
 +----------+----------------------+-------------------------------+
 | 0x0103 | precert_sct_v2 | RFCXXXX |
 +----------+----------------------+-------------------------------+
 | 0x0104 | signed_tree_head_v2 | RFCXXXX |
 +----------+----------------------+-------------------------------+
 | 0x0105 | consistency_proof_v2 | RFCXXXX |
 +----------+----------------------+-------------------------------+
 | 0x0106 | inclusion_proof_v2 | RFCXXXX |
 +----------+----------------------+-------------------------------+
 | 0x0107 - | Unassigned | Specification Required |
 | 0xDFFF | | |
 +----------+----------------------+-------------------------------+
 | 0xE000 - | Reserved | Experimental Use |
 | 0xEFFF | | |
 +----------+----------------------+-------------------------------+
 | 0xF000 - | Reserved | Private Use |
 | 0xFFFF | | |
 +----------+----------------------+-------------------------------+

 Table 10

 The Designated Expert(s) should review the public specification to
 ensure that it is detailed enough to ensure implementation
 interoperability.

10.2.4. Log Artifact Extension Registry

 IANA is asked to establish a registry of "ExtensionType" values,
 named "Log Artifact Extensions", that initially consists of:

Laurie, et al. Expires 4 March 2022 [Page 50]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 +===============+============+=====+===============================+
 | ExtensionType | Status | Use | Reference / Assignment Policy |
 +===============+============+=====+===============================+
 | 0x0000 - | Unassigned | n/a | Specification Required |
 | 0xDFFF | | | |
 +---------------+------------+-----+-------------------------------+
 | 0xE000 - | Reserved | n/a | Experimental Use |
 | 0xEFFF | | | |
 +---------------+------------+-----+-------------------------------+
 | 0xF000 - | Reserved | n/a | Private Use |
 | 0xFFFF | | | |
 +---------------+------------+-----+-------------------------------+

 Table 11

 The "Use" column should contain one or both of the following values:

 * "SCT", for extensions specified for use in Signed Certificate
 Timestamps.

 * "STH", for extensions specified for use in Signed Tree Heads.

 The Designated Expert(s) should review the public specification to
 ensure that it is detailed enough to ensure implementation
 interoperability. They should also verify that the extension is
 appropriate to the contexts in which it is specified to be used (SCT,
 STH, or both).

10.2.5. Log IDs Registry

 IANA is asked to establish a registry of Log IDs, named "Log IDs",
 that initially consists of:

 +================+==============+==============+===================+
 | Log ID | Log Base URL | Log Operator | Reference / |
 | | | | Assignment Policy |
 +================+==============+==============+===================+
 | 1.3.101.8192 - | Unassigned | Unassigned | First Come First |
 | 1.3.101.16383 | | | Served |
 +----------------+--------------+--------------+-------------------+
 | 1.3.101.80.0 - | Unassigned | Unassigned | First Come First |
 | 1.3.101.80.* | | | Served |
 +----------------+--------------+--------------+-------------------+

 Table 12

Laurie, et al. Expires 4 March 2022 [Page 51]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 All OIDs in the range from 1.3.101.8192 to 1.3.101.16383 have been
 set aside for Log IDs. This is a limited resource of 8,192 OIDs,
 each of which has an encoded length of 4 octets.

 The 1.3.101.80 arc has also been set aside for Log IDs. This is an
 unlimited resource, but only the 128 OIDs from 1.3.101.80.0 to
 1.3.101.80.127 have an encoded length of only 4 octets.

 Each application for the allocation of a Log ID MUST be accompanied
 by:

 * the Log’s Base URL (see Section 4.1).

 * the Log Operator’s contact details.

 IANA is asked to reject any request to update a Log ID or Log Base
 URL in this registry, because these fields are immutable (see
 Section 4.1).

 IANA is asked to accept requests from log operators to update their
 contact details in this registry.

 Since log operators can choose to not use this registry (see
 Section 4.4), it is not expected to be a global directory of all
 logs.

10.2.6. Error Types Registry

 IANA is requested to create a new registry for errors, the "Error
 Types" registry.

 Requirements for this registry are Specification Required.

 This registry should have the following three fields:

 +============+========+===========+
 | Field Name | Type | Reference |
 +============+========+===========+
 | identifier | string | RFCXXXX |
 +------------+--------+-----------+
 | meaning | string | RFCXXXX |
 +------------+--------+-----------+
 | reference | string | RFCXXXX |
 +------------+--------+-----------+

 Table 13

 The initial values are as follows, taken from the text above:

Laurie, et al. Expires 4 March 2022 [Page 52]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 +===================+===============================+===========+
 | Identifier | Meaning | Reference |
 +===================+===============================+===========+
 | malformed | The request could not be | RFCXXXX |
 | | parsed. | |
 +-------------------+-------------------------------+-----------+
 | badSubmission | "submission" is neither a | RFCXXXX |
 | | valid certificate nor a valid | |
 | | precertificate | |
 +-------------------+-------------------------------+-----------+
 | badType | "type" is neither 1 nor 2 | RFCXXXX |
 +-------------------+-------------------------------+-----------+
 | badChain | The first element of "chain" | RFCXXXX |
 | | is not the certifier of the | |
 | | "submission", or the second | |
 | | element does not certify the | |
 | | first, etc. | |
 +-------------------+-------------------------------+-----------+
 | badCertificate | One or more certificates in | RFCXXXX |
 | | the "chain" are not valid | |
 | | (e.g., not properly encoded) | |
 +-------------------+-------------------------------+-----------+
 | unknownAnchor | The last element of "chain" | RFCXXXX |
 | | (or, if "chain" is an empty | |
 | | array, the "submission") both | |
 | | is not, and is not certified | |
 | | by, an accepted trust anchor | |
 +-------------------+-------------------------------+-----------+
 | shutdown | The log is no longer | RFCXXXX |
 | | accepting submissions | |
 +-------------------+-------------------------------+-----------+
 | firstUnknown | "first" is before the latest | RFCXXXX |
 | | known STH but is not from an | |
 | | existing STH. | |
 +-------------------+-------------------------------+-----------+
 | secondUnknown | "second" is before the latest | RFCXXXX |
 | | known STH but is not from an | |
 | | existing STH. | |
 +-------------------+-------------------------------+-----------+
 | secondBeforeFirst | "second" is smaller than | RFCXXXX |
 | | "first". | |
 +-------------------+-------------------------------+-----------+
 | hashUnknown | "hash" is not the hash of a | RFCXXXX |
 | | known leaf (may be caused by | |
 | | skew or by a known | |
 | | certificate not yet merged). | |
 +-------------------+-------------------------------+-----------+
 | treeSizeUnknown | "hash" is before the latest | RFCXXXX |

Laurie, et al. Expires 4 March 2022 [Page 53]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 | | known STH but is not from an | |
 | | existing STH. | |
 +-------------------+-------------------------------+-----------+
 | startUnknown | "start" is greater than the | RFCXXXX |
 | | number of entries in the | |
 | | Merkle tree. | |
 +-------------------+-------------------------------+-----------+
 | endBeforeStart | "start" cannot be greater | RFCXXXX |
 | | than "end". | |
 +-------------------+-------------------------------+-----------+

 Table 14

10.3. OID Assignment

 IANA is asked to assign one object identifier from the "SMI Security
 for PKIX Module Identifier" registry to identify the ASN.1 module in
 Appendix B of this document with an assigned Decimal value.

 +=========+=========================+============+
 | Decimal | Description | References |
 +=========+=========================+============+
 | TBD | id-mod-public-notary-v2 | RFCXXXX |
 +---------+-------------------------+------------+

 Table 15

11. Security Considerations

 With CAs, logs, and servers performing the actions described here,
 TLS clients can use logs and signed timestamps to reduce the
 likelihood that they will accept misissued certificates. If a server
 presents a valid signed timestamp for a certificate, then the client
 knows that a log has committed to publishing the certificate. From
 this, the client knows that monitors acting for the subject of the
 certificate have had some time to notice the misissuance and take
 some action, such as asking a CA to revoke a misissued certificate.
 A signed timestamp does not guarantee this though, since appropriate
 monitors might not have checked the logs or the CA might have refused
 to revoke the certificate.

 In addition, if TLS clients will not accept unlogged certificates,
 then site owners will have a greater incentive to submit certificates
 to logs, possibly with the assistance of their CA, increasing the
 overall transparency of the system.

Laurie, et al. Expires 4 March 2022 [Page 54]

Internet-Draft Certificate Transparency Version 2.0 August 2021

11.1. Misissued Certificates

 Misissued certificates that have not been publicly logged, and thus
 do not have a valid SCT, are not considered compliant. Misissued
 certificates that do have an SCT from a log will appear in that
 public log within the Maximum Merge Delay, assuming the log is
 operating correctly. Since a log is allowed to serve an STH of any
 age up to the MMD, the maximum period of time during which a
 misissued certificate can be used without being available for audit
 is twice the MMD.

11.2. Detection of Misissue

 The logs do not themselves detect misissued certificates; they rely
 instead on interested parties, such as domain owners, to monitor them
 and take corrective action when a misissue is detected.

11.3. Misbehaving Logs

 A log can misbehave in several ways. Examples include: failing to
 incorporate a certificate with an SCT in the Merkle Tree within the
 MMD; presenting different, conflicting views of the Merkle Tree at
 different times and/or to different parties; issuing STHs too
 frequently; mutating the signature of a logged certificate; and
 failing to present a chain containing the certifier of a logged
 certificate.

 Violation of the MMD contract is detected by log clients requesting a
 Merkle inclusion proof (Section 5.4) for each observed SCT. These
 checks can be asynchronous and need only be done once per
 certificate. However, note that there may be privacy concerns (see
 Section 8.1.4).

 Violation of the append-only property or the STH issuance rate limit
 can be detected by multiple clients comparing their instances of the
 STHs. This technique, known as "gossip," is an active area of
 research and not defined here. Proof of misbehavior in such cases
 would be: a series of STHs that were issued too closely together,
 proving violation of the STH issuance rate limit; or an STH with a
 root hash that does not match the one calculated from a copy of the
 log, proving violation of the append-only property.

 Clients that report back SCTs can be tracked or traced if a log
 produces multiple STHs or SCTs with the same timestamp and data but
 different signatures. Logs SHOULD mitigate this risk by either:

 * Using deterministic signature schemes, or

Laurie, et al. Expires 4 March 2022 [Page 55]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 * Producing no more than one SCT for each distinct submission and no
 more than one STH for each distinct tree_size. Each of these SCTs
 and STHs can be stored by the log and served to other clients that
 submit the same certificate or request the same STH.

11.4. Multiple SCTs

 By requiring TLS servers to offer multiple SCTs, each from a
 different log, TLS clients reduce the effectiveness of an attack
 where a CA and a log collude (see Section 6.2).

11.5. Leakage of DNS Information

 Malicious monitors can use logs to learn about the existence of
 domain names that might not otherwise be easy to discover. Some
 subdomain labels may reveal information about the service and
 software for which the subdomain is used, which in turn might
 facilitate targeted attacks.

12. Acknowledgements

 The authors would like to thank Erwann Abelea, Robin Alden, Andrew
 Ayer, Richard Barnes, Al Cutter, David Drysdale, Francis Dupont, Adam
 Eijdenberg, Stephen Farrell, Daniel Kahn Gillmor, Paul Hadfield, Brad
 Hill, Jeff Hodges, Paul Hoffman, Jeffrey Hutzelman, Kat Joyce,
 Stephen Kent, SM, Alexey Melnikov, Linus Nordberg, Chris Palmer,
 Trevor Perrin, Pierre Phaneuf, Eric Rescorla, Rich Salz, Melinda
 Shore, Ryan Sleevi, Martin Smith, Carl Wallace and Paul Wouters for
 their valuable contributions.

 A big thank you to Symantec for kindly donating the OIDs from the
 1.3.101 arc that are used in this document.

13. References

13.1. Normative References

 [FIPS186-4]
 NIST, "FIPS PUB 186-4", 1 July 2013,
 <http://nvlpubs.nist.gov/nistpubs/FIPS/
 NIST.FIPS.186-4.pdf>.

 [HTML401] Raggett, D., Le Hors, A., and I. Jacobs, "HTML 4.01
 Specification", World Wide Web Consortium Recommendation
 REC-html401-19991224, 24 December 1999,
 <http://www.w3.org/TR/1999/REC-html401-19991224>.

Laurie, et al. Expires 4 March 2022 [Page 56]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3553] Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
 IETF URN Sub-namespace for Registered Protocol
 Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553, June
 2003, <https://www.rfc-editor.org/info/rfc3553>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

Laurie, et al. Expires 4 March 2022 [Page 57]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/info/rfc6960>.

 [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
 2013, <https://www.rfc-editor.org/info/rfc6979>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7633] Hallam-Baker, P., "X.509v3 Transport Layer Security (TLS)
 Feature Extension", RFC 7633, DOI 10.17487/RFC7633,
 October 2015, <https://www.rfc-editor.org/info/rfc7633>.

 [RFC7807] Nottingham, M. and E. Wilde, "Problem Details for HTTP
 APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,
 <https://www.rfc-editor.org/info/rfc7807>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8391] Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J., and A.
 Mohaisen, "XMSS: eXtended Merkle Signature Scheme",
 RFC 8391, DOI 10.17487/RFC8391, May 2018,
 <https://www.rfc-editor.org/info/rfc8391>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Laurie, et al. Expires 4 March 2022 [Page 58]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 [UNIXTIME] IEEE, "The Open Group Base Specifications Issue 7 IEEE Std
 1003.1-2008, 2016 Edition", n.d.,
 <http://pubs.opengroup.org/
 onlinepubs/9699919799.2016edition/basedefs/
 V1_chap04.html#tag_04_16>.

 [X690] ITU-T, "Information technology - ASN.1 encoding Rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ISO/IEC 8825-1:2002, November 2015.

13.2. Informative References

 [CABBR] CA/Browser Forum, "Baseline Requirements for the Issuance
 and Management of Publicly-Trusted Certificates", 2020,
 <https://cabforum.org/wp-content/uploads/CA-Browser-Forum-
 BR-1.7.3.pdf>.

 [Chromium.Log.Policy]
 The Chromium Projects, "Chromium Certificate Transparency
 Log Policy", 2014, <http://www.chromium.org/Home/chromium-
 security/certificate-transparency/log-policy>.

 [Chromium.Policy]
 The Chromium Projects, "Chromium Certificate
 Transparency", 2014, <http://www.chromium.org/Home/
 chromium-security/certificate-transparency>.

 [CrosbyWallach]
 Crosby, S. and D. Wallach, "Efficient Data Structures for
 Tamper-Evident Logging", Proceedings of the 18th USENIX
 Security Symposium, Montreal, August 2009,
 <http://static.usenix.org/event/sec09/tech/full_papers/
 crosby.pdf>.

 [JSON.Metadata]
 The Chromium Projects, "Chromium Log Metadata JSON
 Schema", 2014, <https://www.gstatic.com/ct/log_list/
 log_list_schema.json>.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <https://www.rfc-editor.org/info/rfc6962>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

Laurie, et al. Expires 4 March 2022 [Page 59]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 [RFC8820] Nottingham, M., "URI Design and Ownership", BCP 190,
 RFC 8820, DOI 10.17487/RFC8820, June 2020,
 <https://www.rfc-editor.org/info/rfc8820>.

Appendix A. Supporting v1 and v2 simultaneously (Informative)

 Certificate Transparency logs have to be either v1 (conforming to
 [RFC6962]) or v2 (conforming to this document), as the data
 structures are incompatible and so a v2 log could not issue a valid
 v1 SCT.

 CT clients, however, can support v1 and v2 SCTs, for the same
 certificate, simultaneously, as v1 SCTs are delivered in different
 TLS, X.509 and OCSP extensions than v2 SCTs.

 v1 and v2 SCTs for X.509 certificates can be validated independently.
 For precertificates, v2 SCTs should be embedded in the TBSCertificate
 before submission of the TBSCertificate (inside a v1 precertificate,
 as described in Section 3.1. of [RFC6962]) to a v1 log so that TLS
 clients conforming to [RFC6962] but not this document are oblivious
 to the embedded v2 SCTs. An issuer can follow these steps to produce
 an X.509 certificate with embedded v1 and v2 SCTs:

 * Create a CMS precertificate as described in Section 3.2 and submit
 it to v2 logs.

 * Embed the obtained v2 SCTs in the TBSCertificate, as described in
 Section 7.1.2.

 * Use that TBSCertificate to create a v1 precertificate, as
 described in Section 3.1. of [RFC6962] and submit it to v1 logs.

 * Embed the v1 SCTs in the TBSCertificate, as described in
 Section 3.3 of [RFC6962].

 * Sign that TBSCertificate (which now contains v1 and v2 SCTs) to
 issue the final X.509 certificate.

Appendix B. An ASN.1 Module (Informative)

 The following ASN.1 module may be useful to implementors.

 CertificateTransparencyV2Module-2021
 -- { id-mod-public-notary-v2 from above, in
 iso(1) identified-organization(3) ...
 form }
 DEFINITIONS IMPLICIT TAGS ::= BEGIN

Laurie, et al. Expires 4 March 2022 [Page 60]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 -- EXPORTS ALL --

 IMPORTS
 EXTENSION
 FROM PKIX-CommonTypes-2009 -- RFC 5912
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkixCommon-02(57) }

 CONTENT-TYPE
 FROM CryptographicMessageSyntax-2010 -- RFC 6268
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) modules(0) id-mod-cms-2009(58) }

 TBSCertificate
 FROM PKIX1Explicit-2009 -- RFC 5912
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-explicit-02(51) }
 ;

 --
 -- Section 3.2. Precertificates
 --

 ct-tbsCertificate CONTENT-TYPE ::= {
 TYPE TBSCertificate
 IDENTIFIED BY id-ct-tbsCertificate }

 id-ct-tbsCertificate OBJECT IDENTIFIER ::= { 1 3 101 78 }

 --
 -- Section 7.1. Transparency Information X.509v3 Extension
 --

 ext-transparencyInfo EXTENSION ::= {
 SYNTAX TransparencyInformationSyntax
 IDENTIFIED BY id-ce-transparencyInfo
 CRITICALITY { FALSE } }

 id-ce-transparencyInfo OBJECT IDENTIFIER ::= { 1 3 101 75 }

 TransparencyInformationSyntax ::= OCTET STRING

 --
 -- Section 7.1.1. OCSP Response Extension
 --

Laurie, et al. Expires 4 March 2022 [Page 61]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 ext-ocsp-transparencyInfo EXTENSION ::= {
 SYNTAX TransparencyInformationSyntax
 IDENTIFIED BY id-pkix-ocsp-transparencyInfo
 CRITICALITY { FALSE } }

 id-pkix-ocsp-transparencyInfo OBJECT IDENTIFIER ::=
 id-ce-transparencyInfo

 --
 -- Section 8.1.2. Reconstructing the TBSCertificate
 --

 ext-embeddedSCT-CTv1 EXTENSION ::= {
 SYNTAX SignedCertificateTimestampList
 IDENTIFIED BY id-ce-embeddedSCT-CTv1
 CRITICALITY { FALSE } }

 id-ce-embeddedSCT-CTv1 OBJECT IDENTIFIER ::= {
 1 3 6 1 4 1 11129 2 4 2 }

 SignedCertificateTimestampList ::= OCTET STRING

 END

Authors’ Addresses

 Ben Laurie
 Google UK Ltd.

 Email: benl@google.com

 Adam Langley
 Google Inc.

 Email: agl@google.com

 Emilia Kasper
 Google Switzerland GmbH

 Email: ekasper@google.com

 Eran Messeri
 Google UK Ltd.

 Email: eranm@google.com

Laurie, et al. Expires 4 March 2022 [Page 62]

Internet-Draft Certificate Transparency Version 2.0 August 2021

 Rob Stradling
 Sectigo Ltd.

 Email: rob@sectigo.com

Laurie, et al. Expires 4 March 2022 [Page 63]

