
6Lo Working Group C. Bormann
Internet-Draft Universitaet Bremen TZI
Intended status: Standards Track September 19, 2014
Expires: March 23, 2015

 6LoWPAN Generic Compression of Headers and Header-like Payloads (GHC)
 draft-ietf-6lo-ghc-05

Abstract

 This short specification provides a simple addition to 6LoWPAN Header
 Compression that enables the compression of generic headers and
 header-like payloads, without a need to define a new header
 compression scheme for each new such header or header-like payload.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 23, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bormann Expires March 23, 2015 [Page 1]

Internet-Draft 6lowpan-ghc September 2014

Table of Contents

 1. Introduction . 2
 1.1. The Header Compression Coupling Problem 2
 1.2. Compression Approach 3
 1.3. Terminology . 3
 1.4. Notation . 4
 2. 6LoWPAN-GHC . 5
 3. Integrating 6LoWPAN-GHC into 6LoWPAN-HC 6
 3.1. Compressing payloads (UDP and ICMPv6) 6
 3.2. Compressing extension headers 6
 3.3. Indicating GHC capability 7
 3.4. Using the 6CIO Option 8
 4. IANA considerations . 9
 5. Security considerations 10
 6. Acknowledgements . 11
 7. References . 13
 7.1. Normative References 13
 7.2. Informative References 13
 Appendix A. Examples . 14
 Author’s Address . 24

1. Introduction

1.1. The Header Compression Coupling Problem

 6LoWPAN-HC [RFC6282] defines a scheme for header compression in
 6LoWPAN [RFC4944] packets. As with most header compression schemes,
 a new specification is needed for every new kind of header that needs
 to be compressed. In addition, [RFC6282] does not define an
 extensibility scheme like the ROHC profiles defined in ROHC [RFC3095]
 [RFC5795]. This leads to the difficult situation that 6LoWPAN-HC
 tended to be reopened and reexamined each time a new header receives
 consideration (or an old header is changed and reconsidered) in the
 6LoWPAN/roll/CoRE cluster of IETF working groups. While [RFC6282]
 finally got completed, the underlying problem remains unsolved.

 The purpose of the present contribution is to plug into [RFC6282] as
 is, using its NHC (next header compression) concept. We add a
 slightly less efficient, but vastly more general form of compression
 for headers of any kind and even for header-like payloads such as
 those exhibited by routing protocols, DHCP, etc.: Generic Header
 Compression (GHC). The objective is an extremely simple
 specification that can be defined on a single page and implemented in
 a small number of lines of code, as opposed to a general data
 compression scheme such as that defined in [RFC1951].

Bormann Expires March 23, 2015 [Page 2]

Internet-Draft 6lowpan-ghc September 2014

1.2. Compression Approach

 The basic approach of GHC’s compression function is to define a
 bytecode for LZ77-style compression [LZ77]. The bytecode is a series
 of simple instructions for the decompressor to reconstitute the
 uncompressed payload. These instructions include:

 o appending bytes to the reconstituted payload that are literally
 given with the instruction in the compressed data

 o appending a given number of zero bytes to the reconstituted
 payload

 o appending bytes to the reconstituted payload by copying a
 contiguous sequence from the payload being reconstituted
 ("backreferencing")

 o an ancillary instruction for setting up parameters for the
 backreferencing instruction in "decompression variables"

 o a stop code (optional, see Section 3.2)

 The buffer for the reconstituted payload ("destination buffer") is
 prefixed by a predefined dictionary that can be used in the
 backreferencing as if it were a prefix of the payload. This
 predefined dictionary is built from the IPv6 addresses of the packet
 being reconstituted, followed by a static component, the "static
 dictionary".

 As usual, this specification defines the decompressor operation in
 detail, but leaves the detailed operation of the compressor open to
 implementation. The compressor can be implemented as with a
 classical LZ77 compressor, or it can be a simple protocol encoder
 that just makes use of known compression opportunities.

1.3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 The term "byte" is used in its now customary sense as a synonym for
 "octet".

 Terms from [RFC7228] are used in Section 5.

Bormann Expires March 23, 2015 [Page 3]

Internet-Draft 6lowpan-ghc September 2014

1.4. Notation

 This specification uses a trivial notation for code bytes and the
 bitfields in them, the meaning of which should be mostly obvious.
 More formally, the meaning of the notation is:

 Potential values for the code bytes themselves are expressed by
 templates that represent 8-bit most-significant-bit-first binary
 numbers (without any special prefix), where 0 stands for 0, 1 for 1,
 and variable segments in these code byte templates are indicated by
 sequences of the same letter such as kkkkkkk or ssss, the length of
 which indicates the length of the variable segment in bits.

 In the notation of values derived from the code bytes, 0b is used as
 a prefix for expressing binary numbers in most-significant-bit first
 notation (akin to the use of 0x for most-significant-digit-first
 hexadecimal numbers in the C programming language). Where the above-
 mentioned sequences of letters are then referenced in such a binary
 number in the text, the intention is that the value from these
 bitfields in the actual code byte be inserted.

 Example: The code byte template

 101nssss

 stands for a byte that starts (most-significant-bit-first) with the
 bits 1, 0, and 1, and continues with five variable bits, the first of
 which is referenced as "n" and the next four are referenced as
 "ssss". Based on this code byte template, a reference to

 0b0ssss000

 means a binary number composed from a zero bit, the four bits that
 are in the "ssss" field (for 101nssss, the four least significant
 bits) in the actual byte encountered, kept in the same order, and
 three more zero bits.

Bormann Expires March 23, 2015 [Page 4]

Internet-Draft 6lowpan-ghc September 2014

2. 6LoWPAN-GHC

 The format of a GHC-compressed header or payload is a simple
 bytecode. A compressed header consists of a sequence of pieces, each
 of which begins with a code byte, which may be followed by zero or
 more bytes as its argument. Some code bytes cause bytes to be laid
 out in the destination buffer, some simply modify some decompression
 variables.

 At the start of decompressing a header or payload within a L2 packet
 (= fragment), the decompression variables "sa" and "na" are
 initialized as zero.

 The code bytes are defined as follows (Table 1):

 +----------+---+----------+
 | code | Action | Argument |
 | byte | | |
 +----------+---+----------+
0kkkkkkk	Append k = 0b0kkkkkkk bytes of data in the	k bytes
	bytecode argument (k < 96)	of data
1000nnnn	Append 0b0000nnnn+2 bytes of zeroes	
10010000	STOP code (end of compressed data, see	
	Section 3.2)	
101nssss	Set up extended arguments for a	
	backreference: sa += 0b0ssss000, na +=	
	0b0000n000	
11nnnkkk	Backreference: n = na+0b00000nnn+2; s =	
	0b00000kkk+sa+n; append n bytes from	
	previously output bytes, starting s bytes	
	to the left of the current output pointer;	
	set sa = 0, na = 0	
 +----------+---+----------+

 Table 1: Bytecodes for generic header compression

 Note that the following bit combinations are reserved at this time:
 011xxxxx, and 1001nnnn (where 0b0000nnnn > 0).

 For the purposes of the backreferences, the expansion buffer is
 initialized with a predefined dictionary, at the end of which the
 reconstituted payload begins. This dictionary is composed of the
 source and destination IPv6 addresses of the packet being
 reconstituted, followed by a 16-byte static dictionary (Figure 1).

Bormann Expires March 23, 2015 [Page 5]

Internet-Draft 6lowpan-ghc September 2014

 These 48 dictionary bytes are therefore available for
 backreferencing, but not copied into the final reconstituted payload.

 16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00

 Figure 1: The 16 bytes of static dictionary (in hex)

3. Integrating 6LoWPAN-GHC into 6LoWPAN-HC

 6LoWPAN-GHC plugs in as an NHC format for 6LoWPAN-HC [RFC6282].

3.1. Compressing payloads (UDP and ICMPv6)

 GHC is by definition generic and can be applied to different kinds of
 packets. Many of the examples given in Appendix A are for ICMPv6
 packets; a single NHC value suffices to define an NHC format for
 ICMPv6 based on GHC (see below).

 In addition it is useful to include an NHC format for UDP, as many
 headerlike payloads (e.g., DHCPv6, DTLS) are carried in UDP.
 [RFC6282] already defines an NHC format for UDP (11110CPP). GHC uses
 an analogous NHC byte formatted as shown in Figure 2. The difference
 to the existing UDP NHC specification is that for 0b11010cpp NHC
 bytes, the UDP payload is not supplied literally but compressed by
 6LoWPAN-GHC.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | 1 | 0 | 1 | 0 | C | P |
 +---+---+---+---+---+---+---+---+

 Figure 2: NHC byte for UDP GHC (to be allocated by IANA)

 To stay in the same general numbering space, we use 0b11011111 as the
 NHC byte for ICMPv6 GHC (Figure 3).

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
 +---+---+---+---+---+---+---+---+

 Figure 3: NHC byte for ICMPv6 GHC (to be allocated by IANA)

3.2. Compressing extension headers

 Compression of specific extension headers is added in a similar way
 (Figure 4) (however, probably only EID 0 to 3 need to be assigned).
 As there is no easy way to extract the length field from the GHC-

Bormann Expires March 23, 2015 [Page 6]

Internet-Draft 6lowpan-ghc September 2014

 encoded header before decoding, this would make detecting the end of
 the extension header somewhat complex. The easiest (and most
 efficient) approach is to completely elide the length field (in the
 same way NHC already elides the next header field in certain cases)
 and reconstruct it only on decompression. To serve as a terminator
 for the extension header, the reserved bytecode 0b10010000 has been
 assigned as a stop marker. Note that the stop marker is only needed
 for extension headers, not for the final payloads discussed in the
 previous subsection, the decompression of which is automatically
 stopped by the end of the packet.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | 0 | 1 | 1 | EID |NH |
 +---+---+---+---+---+---+---+---+

 Figure 4: NHC byte for extension header GHC

3.3. Indicating GHC capability

 The 6LoWPAN baseline includes just [RFC4944], [RFC6282], [RFC6775]
 (see [I-D.bormann-6lo-6lowpan-roadmap]). To enable the use of GHC
 towards a neighbor, a 6LoWPAN node needs to know that the neighbor
 implements it. While this can also simply be administratively
 required, a transition strategy as well as a way to support mixed
 networks is required.

 One way to know a neighbor does implement GHC is receiving a packet
 from that neighbor with GHC in it ("implicit capability detection").
 However, there needs to be a way to bootstrap this, as nobody ever
 would start sending packets with GHC otherwise.

 To minimize the impact on [RFC6775], we define an ND option 6LoWPAN
 Capability Indication (6CIO), as illustrated in Figure 5. (For the
 fields marked by an underscore in Figure 5, see Section 3.4.)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length = 1 |_____________________________|G|
 +-+
 |___|
 +-+

 Figure 5: 6LoWPAN Capability Indication Option (6CIO)

 The G bit indicates whether the node sending the option is GHC
 capable.

Bormann Expires March 23, 2015 [Page 7]

Internet-Draft 6lowpan-ghc September 2014

 Once a node receives either an explicit or an implicit indication of
 GHC capability from another node, it may send GHC-compressed packets
 to that node. Where that capability has not been recently confirmed,
 similar to the way PLPMTUD [RFC4821] finds out about changes in the
 network, a node SHOULD make use of NUD (neighbor unreachability
 detection) failures to switch back to basic 6LoWPAN header
 compression [RFC6282].

3.4. Using the 6CIO Option

 The 6CIO option will typically only be ever sent in 6LoWPAN-ND RS
 packets (which cannot itself be GHC compressed unless the host
 desires to limit itself to talking to GHC capable routers). The
 resulting 6LoWPAN-ND RA can then already make use of GHC and thus
 indicate GHC capability implicitly, which in turn allows both nodes
 to use GHC in the 6LoWPAN-ND NS/NA exchange.

 6CIO can also be used for future options that need to be negotiated
 between 6LoWPAN peers; an IANA registry is used to assign the flags.
 Bits marked by underscores in Figure 5 are unassigned and available
 for future assignment. They MUST be sent as zero and MUST be ignored
 on reception until assigned by IANA. Length values larger than 1
 MUST be accepted by implementations in order to enable future
 extensions; the additional bits in the option are then deemed
 unassigned in the same way. For the purposes of the IANA registry,
 the bits are numbered in most-significant-bit-first order from the
 16th bit of the option onward: the 16th bit is flag number 0, the
 31st bit (the G bit) is flag number 15, up to the 63rd bit for flag
 number 47. (Additional bits may also be used by a follow-on version
 of this document if some bit combinations that have been left
 unassigned here are then used in an upward compatible manner.)

 Flag numbers 0 to 7 are reserved for experiments. They MUST NOT be
 used for actual deployments.

 Where the use of this option by other specifications or by
 experiments is envisioned, the following items have to be kept in
 mind:

 o The option can be used in any ND packet.

 o Specific bits are set in the option to indicate that a capability
 is present in the sender. (There may be other ways to infer this
 information, as is the case in this specification.) Bit
 combinations may be used as desired. The absence of the
 capability _indication_ is signaled by setting these bits to zero;
 this does not necessarily mean that the capability is absent.

Bormann Expires March 23, 2015 [Page 8]

Internet-Draft 6lowpan-ghc September 2014

 o The intention is not to modify the semantics of the specific ND
 packet carrying the option, but to provide the general capability
 indication described above.

 o Specifications have to be designed such that receivers that do not
 receive or do not process such a capability indication can still
 interoperate (presumably without exploiting the indicated
 capability).

 o The option is meant to be used sparsely, i.e. once a sender has
 reason to believe the capability indication has been received,
 there no longer is a need to continue sending it.

4. IANA considerations

 [This section to be removed/replaced by the RFC Editor.]

 In the IANA registry for the "LOWPAN_NHC Header Type" (in the "IPv6
 Low Power Personal Area Network Parameters"), IANA is requested to
 add the assignments in Figure 6.

 10110IIN: Extension header GHC [RFCthis]
 11010CPP: UDP GHC [RFCthis]
 11011111: ICMPv6 GHC [RFCthis]

 Figure 6: IANA assignments for the NHC byte

 IANA is requested to allocate an ND option number for the "6LoWPAN
 Capability Indication Option (6CIO)" ND option format in the Registry
 "IPv6 Neighbor Discovery Option Formats" [RFC4861].

 IANA is requested to create a subregistry for "6LoWPAN capability
 bits" within the "Internet Control Message Protocol version 6
 (ICMPv6) Parameters". The bits are assigned by giving their numbers
 as small non-negative integers as defined in section Section 3.4,
 preferably in the range 0..47. The policy is "IETF Review" or "IESG
 Approval" [RFC5226]. The initial content of the registry is as in
 Figure 7:

 0..7: reserved for experiments [RFCthis]
 8..14: unassigned
 15: GHC capable bit (G bit) [RFCthis]
 16..47: unassigned

 Figure 7: IANA assignments for the 6LoWPAN capability bits

Bormann Expires March 23, 2015 [Page 9]

Internet-Draft 6lowpan-ghc September 2014

5. Security considerations

 The security considerations of [RFC4944] and [RFC6282] apply. As
 usual in protocols with packet parsing/construction, care must be
 taken in implementations to avoid buffer overflows and in particular
 (with respect to the back-referencing) out-of-area references during
 decompression.

 One additional consideration is that an attacker may send a forged
 packet that makes a second node believe a third victim node is GHC-
 capable. If it is not, this may prevent packets sent by the second
 node from reaching the third node (at least until robustness features
 such as those discussed in Section 3.3 kick in).

 No mitigation is proposed (or known) for this attack, except that a
 victim node that does implement GHC is not vulnerable. However, with
 unsecured ND, a number of attacks with similar outcomes are already
 possible, so there is little incentive to make use of this additional
 attack. With secured ND, 6CIO is also secured; nodes relying on
 secured ND therefore should use 6CIO bidirectionally (and limit the
 implicit capability detection to secured ND packets carrying GHC)
 instead of basing their neighbor capability assumptions on receiving
 any kind of unprotected packet.

 As with any LZ77 scheme, decompression bombs (compressed packets
 crafted to expand so much that the decompressor is overloaded) are a
 problem. An attacker cannot send a GHC decompressor into a tight
 loop for too long, because the MTU will be reached quickly. Some
 amplification of an attack from inside the compressed link is
 possible, though. Using a constrained node in a constrained network
 as a DoS attack source is usually not very useful, though, except
 maybe against other nodes in that constrained network. The worst
 case for an attack to the outside is a not-so-constrained device
 using a (typically not-so-constrained) edge router to attack by
 forwarding out of its Ethernet interface. The worst-case
 amplification of GHC is 17, so an MTU-size packet can be generated
 from a 6LoWPAN packet of 76 bytes. The 6LoWPAN network is still
 constrained, so the amplification at the edge router turns an entire
 250 kbit/s 802.15.4 network (assuming a theoretical upper bound of
 225 kbit/s throughput to a single-hop adjacent node) into a 3.8 Mbit/
 s attacker.

 The amplification may be more important inside the 6LoWPAN, if there
 is a way to obtain reflection (otherwise the packet is likely to
 simply stay compressed on the way and do little damage), e.g., by
 pinging a node using a decompression bomb, somehow keeping that node
 from re-compressing the ping response (which would probably require
 something more complex than simple runs of zeroes, so the worst-case

Bormann Expires March 23, 2015 [Page 10]

Internet-Draft 6lowpan-ghc September 2014

 amplification is likely closer to 9). Or, if there are nodes that do
 not support GHC, those can be attacked via a router that is then
 forced to decompress.

 All these attacks are mitigated by some form of network access
 control.

 In a 6LoWPAN stack, sensitive information will normally be protected
 by transport or application (or even IP) layer security, which are
 all above the adaptation layer, leaving no sensitive information to
 compress at the GHC level. However, a 6LoWPAN deployment that
 entirely depends on MAC layer security may be vulnerable to attacks
 that exploit redundancy information disclosed by compression to
 recover information about secret values. The attacker would need to
 be in radio range to observe the compressed packets. Since
 compression is stateless, the attacker would need to entice the party
 sending the secret value to also send some value controlled (or at
 least usefully varying and knowable) by the attacker in (what becomes
 the first adaptation layer fragment of) the same packet. This attack
 is fully mitigated by not exposing secret values to the adaptation
 layer, or by not using GHC in deployments where this is done.

6. Acknowledgements

 Colin O’Flynn has repeatedly insisted that some form of compression
 for ICMPv6 and ND packets might be beneficial. He actually wrote his
 own draft, [I-D.oflynn-6lowpan-icmphc], which compresses better, but
 addresses basic ICMPv6/ND only and needs a much longer spec (around
 17 pages of detailed spec, as compared to the single page of core
 spec here). This motivated the author to try something simple, yet
 general. Special thanks go to Colin for indicating that he indeed
 considers his draft superseded by the present one.

 The examples given are based on pcap files that Colin O’Flynn, Owen
 Kirby, Olaf Bergmann and others provided.

 Using these pcap files as a corpus, the static dictionary was
 developed, and the bit allocations validated, based on research by
 Sebastian Dominik.

 Erik Nordmark provided input that helped shaping the 6CIO option.
 Thomas Bjorklund proposed simplifying the predefined dictionary.

 Yoshihiro Ohba insisted on clarifying the notation used for the
 definition of the bytecodes and their bitfields. Ulrich Herberg
 provided some additional review and suggested expanding the
 introductory material, and with Hannes Tschofenig and Brian Haberman

Bormann Expires March 23, 2015 [Page 11]

Internet-Draft 6lowpan-ghc September 2014

 he helped come up with the IANA policy for the "6LoWPAN capability
 bits" assignments in the 6CIO option.

 The IESG reviewers Richard Barnes and Stephen Farrell have
 contributed issues to the security considerations section; they and
 Barry Leiba, as well as GEN-ART reviewer Vijay K. Gurbani also have
 provided editorial improvements.

Bormann Expires March 23, 2015 [Page 12]

Internet-Draft 6lowpan-ghc September 2014

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, September 2007.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC6282] Hui, J. and P. Thubert, "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
 September 2011.

 [RFC6775] Shelby, Z., Chakrabarti, S., Nordmark, E., and C. Bormann,
 "Neighbor Discovery Optimization for IPv6 over Low-Power
 Wireless Personal Area Networks (6LoWPANs)", RFC 6775,
 November 2012.

7.2. Informative References

 [I-D.bormann-6lo-6lowpan-roadmap]
 Bormann, C., "6LoWPAN Roadmap and Implementation Guide",
 draft-bormann-6lo-6lowpan-roadmap-00 (work in progress),
 October 2013.

 [I-D.oflynn-6lowpan-icmphc]
 O’Flynn, C., "ICMPv6/ND Compression for 6LoWPAN Networks",
 draft-oflynn-6lowpan-icmphc-00 (work in progress), July
 2010.

 [LZ77] Ziv, J. and A. Lempel, "A Universal Algorithm for
 Sequential Data Compression", IEEE Transactions on
 Information Theory, Vol. 23, No. 3, pp. 337-343, May 1977.

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, May 1996.

Bormann Expires March 23, 2015 [Page 13]

Internet-Draft 6lowpan-ghc September 2014

 [RFC3095] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
 Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le,
 K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K.,
 Wiebke, T., Yoshimura, T., and H. Zheng, "RObust Header
 Compression (ROHC): Framework and four profiles: RTP, UDP,
 ESP, and uncompressed", RFC 3095, July 2001.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

 [RFC5795] Sandlund, K., Pelletier, G., and L-E. Jonsson, "The RObust
 Header Compression (ROHC) Framework", RFC 5795, March
 2010.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228, May 2014.

Appendix A. Examples

 This section demonstrates some relatively realistic examples derived
 from actual PCAP dumps taken at previous interops.

 Figure 8 shows an RPL DODAG Information Solicitation, a quite short
 RPL message that obviously cannot be improved much.

 IP header:
 60 00 00 00 00 08 3a ff fe 80 00 00 00 00 00 00
 02 1c da ff fe 00 20 24 ff 02 00 00 00 00 00 00
 00 00 00 00 00 00 00 1a
 Payload:
 9b 00 6b de 00 00 00 00
 Dictionary:
 fe 80 00 00 00 00 00 00 02 1c da ff fe 00 20 24
 ff 02 00 00 00 00 00 00 00 00 00 00 00 00 00 1a
 16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
 copy: 04 9b 00 6b de
 4 nulls: 82
 Compressed:
 04 9b 00 6b de 82
 Was 8 bytes; compressed to 6 bytes, compression factor 1.33

 Figure 8: A simple RPL example

 Figure 9 shows an RPL DODAG Information Object, a longer RPL control
 message that is improved a bit more. Note that the compressed output
 exposes an inefficiency in the simple-minded compressor used to
 generate it; this does not devalue the example since constrained
 nodes are quite likely to make use of simple-minded compressors.

Bormann Expires March 23, 2015 [Page 14]

Internet-Draft 6lowpan-ghc September 2014

 IP header:
 60 00 00 00 00 5c 3a ff fe 80 00 00 00 00 00 00
 02 1c da ff fe 00 30 23 ff 02 00 00 00 00 00 00
 00 00 00 00 00 00 00 1a
 Payload:
 9b 01 7a 5f 00 f0 01 00 88 00 00 00 20 02 0d b8
 00 00 00 00 00 00 00 ff fe 00 fa ce 04 0e 00 14
 09 ff 00 00 01 00 00 00 00 00 00 00 08 1e 80 20
 ff ff ff ff ff ff ff ff 00 00 00 00 20 02 0d b8
 00 00 00 00 00 00 00 ff fe 00 fa ce 03 0e 40 00
 ff ff ff ff 20 02 0d b8 00 00 00 00
 Dictionary:
 fe 80 00 00 00 00 00 00 02 1c da ff fe 00 30 23
 ff 02 00 00 00 00 00 00 00 00 00 00 00 00 00 1a
 16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
 copy: 06 9b 01 7a 5f 00 f0
 ref(9): 01 00 -> ref 11nnnkkk 0 7: c7
 copy: 01 88
 3 nulls: 81
 copy: 04 20 02 0d b8
 7 nulls: 85
 ref(60): ff fe 00 -> ref 101nssss 0 7/11nnnkkk 1 1: a7 c9
 copy: 08 fa ce 04 0e 00 14 09 ff
 ref(39): 00 00 01 00 00 -> ref 101nssss 0 4/11nnnkkk 3 2: a4 da
 5 nulls: 83
 copy: 06 08 1e 80 20 ff ff
 ref(2): ff ff -> ref 11nnnkkk 0 0: c0
 ref(4): ff ff ff ff -> ref 11nnnkkk 2 0: d0
 4 nulls: 82
 ref(48): 20 02 0d b8 00 00 00 00 00 00 00 ff fe 00 fa ce
 -> ref 101nssss 1 4/11nnnkkk 6 0: b4 f0
 copy: 03 03 0e 40
 ref(9): 00 ff -> ref 11nnnkkk 0 7: c7
 ref(28): ff ff ff -> ref 101nssss 0 3/11nnnkkk 1 1: a3 c9
 ref(24): 20 02 0d b8 00 00 00 00
 -> ref 101nssss 0 2/11nnnkkk 6 0: a2 f0
 Compressed:
 06 9b 01 7a 5f 00 f0 c7 01 88 81 04 20 02 0d b8
 85 a7 c9 08 fa ce 04 0e 00 14 09 ff a4 da 83 06
 08 1e 80 20 ff ff c0 d0 82 b4 f0 03 03 0e 40 c7
 a3 c9 a2 f0
 Was 92 bytes; compressed to 52 bytes, compression factor 1.77

 Figure 9: A longer RPL example

Bormann Expires March 23, 2015 [Page 15]

Internet-Draft 6lowpan-ghc September 2014

 Similarly, Figure 10 shows an RPL DAO message. One of the embedded
 addresses is copied right out of the pseudo-header, the other one is
 effectively converted from global to local by providing the prefix
 FE80 literally, inserting a number of nulls, and copying (some of)
 the IID part again out of the pseudo-header. Note that a simple
 implementation would probably emit fewer nulls and copy the entire
 IID; there are multiple ways to encode this 50-byte payload into 27
 bytes.

 IP header:
 60 00 00 00 00 32 3a ff 20 02 0d b8 00 00 00 00
 00 00 00 ff fe 00 33 44 20 02 0d b8 00 00 00 00
 00 00 00 ff fe 00 11 22
 Payload:
 9b 02 58 7d 01 80 00 f1 05 12 00 80 20 02 0d b8
 00 00 00 00 00 00 00 ff fe 00 33 44 06 14 00 80
 f1 00 fe 80 00 00 00 00 00 00 00 00 00 ff fe 00
 11 22
 Dictionary:
 20 02 0d b8 00 00 00 00 00 00 00 ff fe 00 33 44
 20 02 0d b8 00 00 00 00 00 00 00 ff fe 00 11 22
 16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
 copy: 0c 9b 02 58 7d 01 80 00 f1 05 12 00 80
 ref(60): 20 02 0d b8 00 00 00 00 00 00 00 ff fe 00 33 44
 -> ref 101nssss 1 5/11nnnkkk 6 4: b5 f4
 copy: 08 06 14 00 80 f1 00 fe 80
 9 nulls: 87
 ref(66): ff fe 00 11 22 -> ref 101nssss 0 7/11nnnkkk 3 5: a7 dd
 Compressed:
 0c 9b 02 58 7d 01 80 00 f1 05 12 00 80 b5 f4 08
 06 14 00 80 f1 00 fe 80 87 a7 dd
 Was 50 bytes; compressed to 27 bytes, compression factor 1.85

 Figure 10: An RPL DAO message

Bormann Expires March 23, 2015 [Page 16]

Internet-Draft 6lowpan-ghc September 2014

 Figure 11 shows the effect of compressing a simple ND neighbor
 solicitation.

 IP header:
 60 00 00 00 00 30 3a ff 20 02 0d b8 00 00 00 00
 00 00 00 ff fe 00 3b d3 fe 80 00 00 00 00 00 00
 02 1c da ff fe 00 30 23
 Payload:
 87 00 a7 68 00 00 00 00 fe 80 00 00 00 00 00 00
 02 1c da ff fe 00 30 23 01 01 3b d3 00 00 00 00
 1f 02 00 00 00 00 00 06 00 1c da ff fe 00 20 24
 Dictionary:
 20 02 0d b8 00 00 00 00 00 00 00 ff fe 00 3b d3
 fe 80 00 00 00 00 00 00 02 1c da ff fe 00 30 23
 16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
 copy: 04 87 00 a7 68
 4 nulls: 82
 ref(40): fe 80 00 00 00 00 00 00 02 1c da ff fe 00 30 23
 -> ref 101nssss 1 3/11nnnkkk 6 0: b3 f0
 copy: 04 01 01 3b d3
 4 nulls: 82
 copy: 02 1f 02
 5 nulls: 83
 copy: 02 06 00
 ref(24): 1c da ff fe 00 -> ref 101nssss 0 2/11nnnkkk 3 3: a2 db
 copy: 02 20 24
 Compressed:
 04 87 00 a7 68 82 b3 f0 04 01 01 3b d3 82 02 1f
 02 83 02 06 00 a2 db 02 20 24
 Was 48 bytes; compressed to 26 bytes, compression factor 1.85

 Figure 11: An ND neighbor solicitation

Bormann Expires March 23, 2015 [Page 17]

Internet-Draft 6lowpan-ghc September 2014

 Figure 12 shows the compression of an ND neighbor advertisement.

 IP header:
 60 00 00 00 00 30 3a fe fe 80 00 00 00 00 00 00
 02 1c da ff fe 00 30 23 20 02 0d b8 00 00 00 00
 00 00 00 ff fe 00 3b d3
 Payload:
 88 00 26 6c c0 00 00 00 fe 80 00 00 00 00 00 00
 02 1c da ff fe 00 30 23 02 01 fa ce 00 00 00 00
 1f 02 00 00 00 00 00 06 00 1c da ff fe 00 20 24
 Dictionary:
 fe 80 00 00 00 00 00 00 02 1c da ff fe 00 30 23
 20 02 0d b8 00 00 00 00 00 00 00 ff fe 00 3b d3
 16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
 copy: 05 88 00 26 6c c0
 3 nulls: 81
 ref(56): fe 80 00 00 00 00 00 00 02 1c da ff fe 00 30 23
 -> ref 101nssss 1 5/11nnnkkk 6 0: b5 f0
 copy: 04 02 01 fa ce
 4 nulls: 82
 copy: 02 1f 02
 5 nulls: 83
 copy: 02 06 00
 ref(24): 1c da ff fe 00 -> ref 101nssss 0 2/11nnnkkk 3 3: a2 db
 copy: 02 20 24
 Compressed:
 05 88 00 26 6c c0 81 b5 f0 04 02 01 fa ce 82 02
 1f 02 83 02 06 00 a2 db 02 20 24
 Was 48 bytes; compressed to 27 bytes, compression factor 1.78

 Figure 12: An ND neighbor advertisement

Bormann Expires March 23, 2015 [Page 18]

Internet-Draft 6lowpan-ghc September 2014

 Figure 13 shows the compression of an ND router solicitation. Note
 that the relatively good compression is not caused by the many zero
 bytes in the link-layer address of this particular capture (which are
 unlikely to occur in practice): 7 of these 8 bytes are copied from
 the pseudo-header (the 8th byte cannot be copied as the universal/
 local bit needs to be inverted).

 IP header:
 60 00 00 00 00 18 3a ff fe 80 00 00 00 00 00 00
 ae de 48 00 00 00 00 01 ff 02 00 00 00 00 00 00
 00 00 00 00 00 00 00 02
 Payload:
 85 00 90 65 00 00 00 00 01 02 ac de 48 00 00 00
 00 01 00 00 00 00 00 00
 Dictionary:
 fe 80 00 00 00 00 00 00 ae de 48 00 00 00 00 01
 ff 02 00 00 00 00 00 00 00 00 00 00 00 00 00 02
 16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
 copy: 04 85 00 90 65
 ref(11): 00 00 00 00 01 -> ref 11nnnkkk 3 6: de
 copy: 02 02 ac
 ref(50): de 48 00 00 00 00 01
 -> ref 101nssss 0 5/11nnnkkk 5 3: a5 eb
 6 nulls: 84
 Compressed:
 04 85 00 90 65 de 02 02 ac a5 eb 84
 Was 24 bytes; compressed to 12 bytes, compression factor 2.00

 Figure 13: An ND router solicitation

 Figure 14 shows the compression of an ND router advertisement. The
 indefinite lifetime is compressed to four bytes by backreferencing;
 this could be improved (at the cost of minor additional decompressor
 complexity) by including some simple runlength mechanism.

Bormann Expires March 23, 2015 [Page 19]

Internet-Draft 6lowpan-ghc September 2014

 IP header:
 60 00 00 00 00 60 3a ff fe 80 00 00 00 00 00 00
 10 34 00 ff fe 00 11 22 fe 80 00 00 00 00 00 00
 ae de 48 00 00 00 00 01
 Payload:
 86 00 55 c9 40 00 0f a0 1c 5a 38 17 00 00 07 d0
 01 01 11 22 00 00 00 00 03 04 40 40 ff ff ff ff
 ff ff ff ff 00 00 00 00 20 02 0d b8 00 00 00 00
 00 00 00 00 00 00 00 00 20 02 40 10 00 00 03 e8
 20 02 0d b8 00 00 00 00 21 03 00 01 00 00 00 00
 20 02 0d b8 00 00 00 00 00 00 00 ff fe 00 11 22
 Dictionary:
 fe 80 00 00 00 00 00 00 10 34 00 ff fe 00 11 22
 fe 80 00 00 00 00 00 00 ae de 48 00 00 00 00 01
 16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
 copy: 0c 86 00 55 c9 40 00 0f a0 1c 5a 38 17
 2 nulls: 80
 copy: 06 07 d0 01 01 11 22
 4 nulls: 82
 copy: 06 03 04 40 40 ff ff
 ref(2): ff ff -> ref 11nnnkkk 0 0: c0
 ref(4): ff ff ff ff -> ref 11nnnkkk 2 0: d0
 4 nulls: 82
 copy: 04 20 02 0d b8
 12 nulls: 8a
 copy: 04 20 02 40 10
 ref(38): 00 00 03 -> ref 101nssss 0 4/11nnnkkk 1 3: a4 cb
 copy: 01 e8
 ref(24): 20 02 0d b8 00 00 00 00
 -> ref 101nssss 0 2/11nnnkkk 6 0: a2 f0
 copy: 02 21 03
 ref(84): 00 01 00 00 00 00
 -> ref 101nssss 0 9/11nnnkkk 4 6: a9 e6
 ref(40): 20 02 0d b8 00 00 00 00 00 00 00
 -> ref 101nssss 1 3/11nnnkkk 1 5: b3 cd
 ref(128): ff fe 00 11 22
 -> ref 101nssss 0 15/11nnnkkk 3 3: af db
 Compressed:
 0c 86 00 55 c9 40 00 0f a0 1c 5a 38 17 80 06 07
 d0 01 01 11 22 82 06 03 04 40 40 ff ff c0 d0 82
 04 20 02 0d b8 8a 04 20 02 40 10 a4 cb 01 e8 a2
 f0 02 21 03 a9 e6 b3 cd af db
 Was 96 bytes; compressed to 58 bytes, compression factor 1.66

 Figure 14: An ND router advertisement

 Figure 15 shows the compression of a DTLS application data packet
 with a net payload of 13 bytes of cleartext, and 8 bytes of

Bormann Expires March 23, 2015 [Page 20]

Internet-Draft 6lowpan-ghc September 2014

 authenticator (note that the IP header is not relevant for this
 example and has been set to 0). This makes good use of the static
 dictionary, and is quite effective crunching out the redundancy in
 the TLS_PSK_WITH_AES_128_CCM_8 header, leading to a net reduction by
 15 bytes.

 IP header:
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 Payload:
 17 fe fd 00 01 00 00 00 00 00 01 00 1d 00 01 00
 00 00 00 00 01 09 b2 0e 82 c1 6e b6 96 c5 1f 36
 8d 17 61 e2 b5 d4 22 d4 ed 2b
 Dictionary:
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
 ref(13): 17 fe fd 00 01 00 00 00 00 00 01 00
 -> ref 101nssss 1 0/11nnnkkk 2 1: b0 d1
 copy: 01 1d
 ref(10): 00 01 00 00 00 00 00 01 -> ref 11nnnkkk 6 2: f2
 copy: 15 09 b2 0e 82 c1 6e b6 96 c5 1f 36 8d 17 61 e2
 copy: b5 d4 22 d4 ed 2b
 Compressed:
 b0 d1 01 1d f2 15 09 b2 0e 82 c1 6e b6 96 c5 1f
 36 8d 17 61 e2 b5 d4 22 d4 ed 2b
 Was 42 bytes; compressed to 27 bytes, compression factor 1.56

 Figure 15: A DTLS application data packet

Bormann Expires March 23, 2015 [Page 21]

Internet-Draft 6lowpan-ghc September 2014

 Figure 16 shows that the compression is slightly worse in a
 subsequent packet (containing 6 bytes of cleartext and 8 bytes of
 authenticator, yielding a net compression of 13 bytes). The total
 overhead does stay at a quite acceptable 8 bytes.

 IP header:
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 Payload:
 17 fe fd 00 01 00 00 00 00 00 05 00 16 00 01 00
 00 00 00 00 05 ae a0 15 56 67 92 4d ff 8a 24 e4
 cb 35 b9
 Dictionary:
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
 ref(13): 17 fe fd 00 01 00 00 00 00 00
 -> ref 101nssss 1 0/11nnnkkk 0 3: b0 c3
 copy: 03 05 00 16
 ref(10): 00 01 00 00 00 00 00 05 -> ref 11nnnkkk 6 2: f2
 copy: 0e ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9
 Compressed:
 b0 c3 03 05 00 16 f2 0e ae a0 15 56 67 92 4d ff
 8a 24 e4 cb 35 b9
 Was 35 bytes; compressed to 22 bytes, compression factor 1.59

 Figure 16: Another DTLS application data packet

Bormann Expires March 23, 2015 [Page 22]

Internet-Draft 6lowpan-ghc September 2014

 Figure 17 shows the compression of a DTLS handshake message, here a
 client hello. There is little that can be compressed about the 32
 bytes of randomness. Still, the net reduction is by 14 bytes.

 IP header:
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 Payload:
 16 fe fd 00 00 00 00 00 00 00 00 00 36 01 00 00
 2a 00 00 00 00 00 00 00 2a fe fd 51 52 ed 79 a4
 20 c9 62 56 11 47 c9 39 ee 6c c0 a4 fe c6 89 2f
 32 26 9a 16 4e 31 7e 9f 20 92 92 00 00 00 02 c0
 a8 01 00
 Dictionary:
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
 ref(16): 16 fe fd -> ref 101nssss 0 1/11nnnkkk 1 5: a1 cd
 9 nulls: 87
 copy: 01 36
 ref(16): 01 00 00 -> ref 101nssss 0 1/11nnnkkk 1 5: a1 cd
 copy: 01 2a
 7 nulls: 85
 copy: 23 2a fe fd 51 52 ed 79 a4 20 c9 62 56 11 47 c9
 copy: 39 ee 6c c0 a4 fe c6 89 2f 32 26 9a 16 4e 31 7e
 copy: 9f 20 92 92
 3 nulls: 81
 copy: 05 02 c0 a8 01 00
 Compressed:
 a1 cd 87 01 36 a1 cd 01 2a 85 23 2a fe fd 51 52
 ed 79 a4 20 c9 62 56 11 47 c9 39 ee 6c c0 a4 fe
 c6 89 2f 32 26 9a 16 4e 31 7e 9f 20 92 92 81 05
 02 c0 a8 01 00
 Was 67 bytes; compressed to 53 bytes, compression factor 1.26

 Figure 17: A DTLS handshake packet (client hello)

Bormann Expires March 23, 2015 [Page 23]

Internet-Draft 6lowpan-ghc September 2014

Author’s Address

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

Bormann Expires March 23, 2015 [Page 24]

