
6Lo Working Group K. Lynn, Ed.
Internet-Draft Verizon Labs
Intended status: Standards Track J. Martocci
Expires: September 11, 2017 Johnson Controls
 C. Neilson
 Delta Controls
 S. Donaldson
 Honeywell
 March 10, 2017

 Transmission of IPv6 over MS/TP Networks
 draft-ietf-6lo-6lobac-08

Abstract

 Master-Slave/Token-Passing (MS/TP) is a medium access control method
 for the RS-485 physical layer and is used primarily in building
 automation networks. This specification defines the frame format for
 transmission of IPv6 packets and the method of forming link-local and
 statelessly autoconfigured IPv6 addresses on MS/TP networks.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 11, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Lynn, et al. Expires September 11, 2017 [Page 1]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Profile for IPv6 over MS/TP 5
 3. Addressing Modes . 6
 4. Maximum Transmission Unit (MTU) 7
 5. LoBAC Adaptation Layer 7
 6. Stateless Address Autoconfiguration 8
 7. IPv6 Link Local Address 9
 8. Unicast Address Mapping 9
 9. Multicast Address Mapping 10
 10. Header Compression . 10
 11. IANA Considerations . 10
 12. Security Considerations 11
 13. Acknowledgments . 11
 14. References . 11
 Appendix A. Abstract MAC Interface 14
 Appendix B. Consistent Overhead Byte Stuffing [COBS] 17
 Appendix C. Encoded CRC-32K [CRC32K] 20
 Appendix D. Example 6LoBAC Frame Decode 22
 Authors’ Addresses . 27

1. Introduction

 Master-Slave/Token-Passing (MS/TP) is a medium access control (MAC)
 protocol for the RS-485 [TIA-485-A] physical layer and is used
 primarily in building automation networks. This specification
 defines the frame format for transmission of IPv6 [RFC2460] packets
 and the method of forming link-local and statelessly autoconfigured
 IPv6 addresses on MS/TP networks. The general approach is to adapt
 elements of the 6LoWPAN specifications [RFC4944], [RFC6282], and
 [RFC6775] to constrained wired networks, as noted below.

 An MS/TP device is typically based on a low-cost microcontroller with
 limited processing power and memory. These constraints, together
 with low data rates and a small MAC address space, are similar to
 those faced in 6LoWPAN networks. MS/TP differs significantly from
 6LoWPAN in at least three respects: a) MS/TP devices are typically
 mains powered, b) all MS/TP devices on a segment can communicate
 directly so there are no hidden node or mesh routing issues, and c)
 the latest MS/TP specification provides support for large payloads,
 eliminating the need for fragmentation and reassembly below IPv6.

Lynn, et al. Expires September 11, 2017 [Page 2]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 The following sections provide a brief overview of MS/TP, then
 describe how to form IPv6 addresses and encapsulate IPv6 packets in
 MS/TP frames. This specifcation (subsequently referred to as
 "6LoBAC") includes a REQUIRED header compression mechanism that is
 based on LOWPAN_IPHC [RFC6282] and improves MS/TP link utilization.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Abbreviations Used

 ASHRAE: American Society of Heating, Refrigerating, and Air-
 Conditioning Engineers (http://www.ashrae.org)

 BACnet: An ISO/ANSI/ASHRAE Standard Data Communication Protocol
 for Building Automation and Control Networks

 CRC: Cyclic Redundancy Code

 MAC: Medium Access Control

 MSDU: MAC Service Data Unit (MAC client data)

 MTU: Maximum Transmission Unit; the size of the largest network
 layer protocol data unit that can be communicated in a single
 network transaction

 UART: Universal Asynchronous Transmitter/Receiver

1.3. MS/TP Overview

 This section provides a brief overview of MS/TP, as specified in
 ANSI/ASHRAE Standard 135-2016 [BACnet] Clause 9. The latest version
 of [BACnet] integrates changes to legacy MS/TP (approved as
 [Addendum_an]) that provide support for larger frame sizes and
 improved error handling. [BACnet] Clause 9 also covers physical
 layer deployment options.

 MS/TP is designed to enable multidrop networks over shielded twisted
 pair wiring. It can support network segments up to 1000 meters in
 length at a data rate of 115.2 kbit/s, or segments up to 1200 meters
 in length at lower bit rates. An MS/TP interface requires only a
 UART, an RS-485 [TIA-485-A] transceiver with a driver that can be
 disabled, and a 5 ms resolution timer. The MS/TP MAC is typically
 implemented in software.

Lynn, et al. Expires September 11, 2017 [Page 3]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 The differential signaling used by [TIA-485-A] requires a contention-
 free MAC. MS/TP uses a token to control access to a multidrop bus.
 Only an MS/TP master node can initiate the unsolicited transfer of
 data, and only when it holds the token. After sending at most a
 configured maximum number of data frames, a master node passes the
 token to the next master node (as determined by MAC address). If
 present on the link, legacy MS/TP implementations (including any
 slave nodes) ignore the frame format defined in this specification.

 [BACnet] Clause 9 defines a range of Frame Type values used to
 designate frames that contain data and data CRC fields encoded using
 Consistent Overhead Byte Stuffing [COBS] (see Appendix B). The
 purpose of COBS encoding is to eliminate preamble sequences from the
 Encoded Data and Encoded CRC-32K fields. The Encoded Data is covered
 by a 32-bit CRC [CRC32K] (see Appendix C) that is also COBS encoded.

 MS/TP COBS-encoded frames have the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0x55 | 0xFF | Frame Type | DA |
 +-+
 | SA | Length (MS octet first) | Header CRC |
 +-+
 . .
 . Encoded Data (2 - 1506 octets) .
 . .
 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Encoded CRC-32K (5 octets) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 | | optional 0xFF |
 +-+

 Figure 1: MS/TP COBS-Encoded Frame Format

 MS/TP COBS-encoded frame fields are defined as follows:

 Preamble two octet preamble: 0x55, 0xFF
 Frame Type one octet
 Destination Address one octet address
 Source Address one octet address
 Length two octets, most significant octet first
 Header CRC one octet
 Encoded Data 2 - 1506 octets (see Section 4 and Appendix B)
 Encoded CRC-32K five octets (see Appendix C)
 (pad) (optional) at most one octet of trailer: 0xFF

Lynn, et al. Expires September 11, 2017 [Page 4]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 The Frame Type is used to distinguish between different types of MAC
 frames. The types relevant to this specification (in decimal) are:

 0 Token
 1 Poll For Master
 2 Reply To Poll For Master
 3 Test_Request
 4 Test_Response
 ...
 34 IPv6 over MS/TP (LoBAC) Encapsulation

 Frame Types 8 - 31 and 35 - 127 are reserved for assignment by
 ASHRAE. Frame Types 32 - 127 designate COBS-encoded frames that
 convey Encoded Data and Encoded CRC-32K fields. See Section 2 for
 additional details.

 The Destination and Source Addresses are each one octet in length.
 See Section 3 for additional details.

 For COBS-encoded frames, the Length field indicates the size of the
 [COBS] Encoded Data field in octets, plus three. (This adjustment is
 required in order for legacy MS/TP devices to ignore COBS-encoded
 frames.) See Section 4 and Appendices for additional details.

 The Header CRC field covers the Frame Type, Destination Address,
 Source Address, and Length fields. The Header CRC generation and
 check procedures are specified in [BACnet] Annex G.1.

 Use of the optional 0xFF trailer octet is discussed in [BACnet]
 Clause 9.

1.4. Goals and Constraints

 The main goals of this specification are a) to enable IPv6 directly
 on wired end devices in building automation and control networks by
 leveraging existing standards to the greatest extent possible, and b)
 to co-exist with legacy MS/TP implementations. Co-existence allows
 MS/TP networks to be incrementally upgraded to support IPv6.

 In order to co-exist with legacy devices, no changes are permitted to
 the MS/TP addressing modes, frame header format, control frames, or
 Master Node state machine as specified in [BACnet] Clause 9.

2. Profile for IPv6 over MS/TP

 ASHRAE has assigned an MS/TP Frame Type value of 34 to indicate IPv6
 over MS/TP (LoBAC) Encapsulation. This falls within the range of
 values that designate COBS-encoded data frames.

Lynn, et al. Expires September 11, 2017 [Page 5]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

2.1. Mandatory Features

 [BACnet] Clause 9 specifies mandatory to implement features of MS/TP
 devices. E.g., it is mandatory that all MS/TP nodes respond to a
 Test_Request with a Test_Response frame. All MS/TP master nodes must
 implement the Master Node state machine and handle Token, Poll For
 Master, and Reply to Poll For Master control frames. 6LoBAC nodes
 are MS/TP master nodes that implement a Receive Frame state machine
 capable of handling COBS-encoded frames.

 6LoBAC nodes must support a data rate of 115.2 kbit/s and may support
 lower data rates as specified in [BACnet] Clause 9. The method of
 selecting the data rate is outside the scope of this specification.

2.2. Configuration Constants

 The following constants are used by the Receive Frame state machine.

 Nmin_COBS_length The minimum valid Length value of any LoBAC
 encapsulated frame: 5

 Nmax_COBS_length The maximum valid Length value of any LoBAC
 encapsulated frame: 1509

2.3. Configuration Parameters

 The following parameters are used by the Master Node state machine.

 Nmax_info_frames The default maximum number of information frames
 the node may send before it must pass the token: 1

 Nmax_master The default highest allowable address for master
 nodes: 127

 The mechanisms for setting parameters or monitoring MS/TP performance
 are outside the scope of this specification.

3. Addressing Modes

 MS/TP node (MAC) addresses are one octet in length and assigned
 dynamically. The method of assigning MAC addresses is outside the
 scope of this specification. However, each MS/TP node on the link
 MUST have a unique address in order to ensure correct MAC operation.

 [BACnet] Clause 9 specifies that addresses 0 through 127 are valid
 for master nodes. The method specified in Section 6 for creating a
 MAC-address-derived Interface Identifier (IID) ensures that an IID of
 all zeros can never be generated.

Lynn, et al. Expires September 11, 2017 [Page 6]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 A Destination Address of 255 (all nodes) indicates a MAC-layer
 broadcast. MS/TP does not support multicast, therefore all IPv6
 multicast packets MUST be broadcast at the MAC layer and filtered at
 the IPv6 layer. A Source Address of 255 MUST NOT be used.

 Hosts learn IPv6 prefixes via router advertisements according to
 [RFC4861].

4. Maximum Transmission Unit (MTU)

 Upon transmission, the network layer MTU is formatted according to
 Section 5 and becomes the MAC service data unit (MSDU). The MSDU is
 then COBS encoded by MS/TP. Upon reception, the steps are reversed.
 [BACnet] Clause 9 supports MSDUs up to 2032 octets in length.

 IPv6 [RFC2460] requires that every link in the internet have an MTU
 of 1280 octets or greater. Additionally, a node must be able to
 accept a fragmented packet that, after reassembly, is as large as
 1500 octets. This specification defines an MTU length of at least
 1280 octets and at most 1500 octets. Support for an MTU length of
 1500 octets is RECOMMENDED.

5. LoBAC Adaptation Layer

 This section specifies an adaptation layer to support compressed IPv6
 headers as specified in Section 10. IPv6 header compression MUST be
 implemented on all nodes. Implementations MAY also support Generic
 Header Compression [RFC7400] for transport layer headers.

 The LoBAC encapsulation format defined in this section describes the
 MSDU of an IPv6 over MS/TP frame. The LoBAC payload (i.e., an IPv6
 packet) follows an encapsulation header stack. LoBAC is a subset of
 the LoWPAN encapsulation defined in [RFC4944] as updated by [RFC6282]
 so the use of "LOWPAN" in literals below is intentional. The primary
 difference between LoWPAN and LoBAC encapsulation is omission of the
 Mesh, Broadcast, Fragmentation, and LOWPAN_HC1 headers in the latter.

 All LoBAC encapsulated datagrams transmitted over MS/TP are prefixed
 by an encapsulation header stack consisting of a Dispatch value
 followed by zero or more header fields. The only sequence currently
 defined for LoBAC is the LOWPAN_IPHC header followed by payload, as
 shown below:

 +---------------+---------------+------...-----+
 | IPHC Dispatch | IPHC Header | Payload |
 +---------------+---------------+------...-----+

 Figure 2: A LoBAC Encapsulated LOWPAN_IPHC Compressed IPv6 Datagram

Lynn, et al. Expires September 11, 2017 [Page 7]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 The Dispatch value is treated as an unstructured namespace. Only a
 single pattern is used to represent current LoBAC functionality.

 Pattern Header Type
 +------------+---+
 | 01 1xxxxx | LOWPAN_IPHC - LOWPAN_IPHC compressed IPv6 [RFC6282] |
 +------------+---+

 Figure 3: LoBAC Dispatch Value Bit Pattern

 Other IANA-assigned 6LoWPAN Dispatch values do not apply to 6LoBAC
 unless otherwise specified.

6. Stateless Address Autoconfiguration

 This section defines how to obtain an IPv6 Interface Identifier.
 This specification distinguishes between two types of IID, MAC-
 address-derived and semantically opaque.

 A MAC-address-derived IID is the RECOMMENDED type for use in forming
 a link-local address, as it affords the most efficient header
 compression provided by the LOWPAN_IPHC [RFC6282] format specified in
 Section 10. The general procedure for creating a MAC-address-derived
 IID is described in [RFC4291] Appendix A, "Creating Modified EUI-64
 Format Interface Identifiers", as updated by [RFC7136].

 The Interface Identifier for link-local addresses SHOULD be formed by
 concatenating the node’s 8-bit MS/TP MAC address to the seven octets
 0x00, 0x00, 0x00, 0xFF, 0xFE, 0x00, 0x00. For example, an MS/TP MAC
 address of hexadecimal value 0x4F results in the following IID:

 |0 1|1 3|3 4|4 6|
 |0 5|6 1|2 7|8 3|
 +----------------+----------------+----------------+----------------+
 |0000000000000000|0000000011111111|1111111000000000|0000000001001111|
 +----------------+----------------+----------------+----------------+

 A semantically opaque IID having 64 bits of entropy is RECOMMENDED
 for each globally scoped address and MAY be locally generated
 according to one of the methods cited in Section 12. A node that
 generates a 64-bit semantically opaque IID MUST register the IID with
 its local router(s) by sending a Neighbor Solicitation (NS) message
 with the Address Registration Option (ARO) and process Neighbor
 Advertisements (NA) according to [RFC6775].

 An IPv6 address prefix used for stateless autoconfiguration [RFC4862]
 of an MS/TP interface MUST have a length of 64 bits.

Lynn, et al. Expires September 11, 2017 [Page 8]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

7. IPv6 Link Local Address

 The IPv6 link-local address [RFC4291] for an MS/TP interface is
 formed by appending the Interface Identifier, as defined above, to
 the prefix FE80::/64.

 10 bits 54 bits 64 bits
 +----------+-----------------------+----------------------------+
 |1111111010| (zeros) | Interface Identifier |
 +----------+-----------------------+----------------------------+

8. Unicast Address Mapping

 The address resolution procedure for mapping IPv6 non-multicast
 addresses into MS/TP MAC-layer addresses follows the general
 description in Section 7.2 of [RFC4861], unless otherwise specified.

 The Source/Target Link-layer Address option has the following form
 when the addresses are 8-bit MS/TP MAC-layer (node) addresses.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Type | Length=1 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 0x00 | MS/TP Address |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 + Padding (all zeros) +
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Option fields:

 Type:

 1: for Source Link-layer address.

 2: for Target Link-layer address.

 Length: This is the length of this option (including the type and
 length fields) in units of 8 octets. The value of this field is 1
 for 8-bit MS/TP MAC addresses.

 MS/TP Address: The 8-bit address in canonical bit order [RFC2469].
 This is the unicast address the interface currently responds to.

Lynn, et al. Expires September 11, 2017 [Page 9]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

9. Multicast Address Mapping

 All IPv6 multicast packets MUST be sent to MS/TP Destination Address
 255 (broadcast) and filtered at the IPv6 layer. When represented as
 a 16-bit address in a compressed header (see Section 10), it MUST be
 formed by padding on the left with a zero octet:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 0x00 | 0xFF |
 +-+-+-+-+-+-+-+-+---------------+

10. Header Compression

 6LoBAC REQUIRES LOWPAN_IPHC IPv6 compression, which is specified in
 [RFC6282] and included herein by reference. This section will simply
 identify substitutions that should be made when interpreting the text
 of [RFC6282].

 In general the following substitutions should be made:

 - Replace instances of "6LoWPAN" with "MS/TP network"

 - Replace instances of "IEEE 802.15.4 address" with "MS/TP address"

 When a 16-bit address is called for (i.e., an IEEE 802.15.4 "short
 address") it MUST be formed by padding the MS/TP address to the left
 with a zero octet:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 0x00 | MS/TP address |
 +-+-+-+-+-+-+-+-+---------------+

 If LOWPAN_IPHC compression [RFC6282] is used with context, the
 router(s) directly attached to the MS/TP segment MUST disseminate the
 6LoWPAN Context Option (6CO) according to [RFC6775], Section 7.2.

11. IANA Considerations

 This document uses values previously reserved by [RFC4944] and
 [RFC6282] and makes no further requests of IANA.

 Note to RFC Editor: this section may be removed upon publication.

Lynn, et al. Expires September 11, 2017 [Page 10]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

12. Security Considerations

 See [RFC8065] for a general discussion of privacy threats faced by
 constrained nodes.

 [RFC8065] makes a distinction between "stable" and "temporary"
 addresses. The former are long-lived and typically advertised by
 servers. The latter are typically used by clients and SHOULD be
 changed frequently to mitigate correlation of activities over time.
 Nodes that engage in both activities SHOULD support simultaneous use
 of multiple addresses per device.

 Globally scoped addresses that contain MAC-address-derived IIDs may
 expose a network to address scanning attacks. For this reason, it is
 RECOMMENDED that a 64-bit semantically opaque IID be generated for
 each globally scoped address in use according to, for example,
 [RFC3315], [RFC3972], [RFC4941], [RFC5535], or [RFC7217].

13. Acknowledgments

 We are grateful to the authors of [RFC4944] and members of the IETF
 6LoWPAN working group; this document borrows liberally from their
 work. Ralph Droms and Brian Haberman provided indispensable guidance
 and support from the outset. Peter van der Stok, James Woodyatt,
 Carsten Bormann, and Dale Worley provided detailed reviews. Stuart
 Cheshire invented the very clever COBS encoding. Michael Osborne
 made the critical observation that encoding the data and CRC32K
 fields separately would allow the CRC to be calculated on-the-fly.
 Alexandru Petrescu, Brian Frank, Geoff Mulligan, and Don Sturek
 offered valuable comments.

14. References

14.1. Normative References

 [BACnet] American Society of Heating, Refrigerating, and Air-
 Conditioning Engineers, "BACnet - A Data Communication
 Protocol for Building Automation and Control Networks",
 ANSI/ASHRAE Standard 135-2016, January 2016,
 <http://www.techstreet.com/ashrae/standards/
 ashrae-135-2016?product_id=1918140#jumps>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

Lynn, et al. Expires September 11, 2017 [Page 11]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <http://www.rfc-editor.org/info/rfc2460>.

 [RFC3315] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
 C., and M. Carney, "Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
 2003, <http://www.rfc-editor.org/info/rfc3315>.

 [RFC3972] Aura, T., "Cryptographically Generated Addresses (CGA)",
 RFC 3972, DOI 10.17487/RFC3972, March 2005,
 <http://www.rfc-editor.org/info/rfc3972>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <http://www.rfc-editor.org/info/rfc4291>.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 DOI 10.17487/RFC4861, September 2007,
 <http://www.rfc-editor.org/info/rfc4861>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <http://www.rfc-editor.org/info/rfc4862>.

 [RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy
 Extensions for Stateless Address Autoconfiguration in
 IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,
 <http://www.rfc-editor.org/info/rfc4941>.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <http://www.rfc-editor.org/info/rfc4944>.

 [RFC5535] Bagnulo, M., "Hash-Based Addresses (HBA)", RFC 5535,
 DOI 10.17487/RFC5535, June 2009,
 <http://www.rfc-editor.org/info/rfc5535>.

 [RFC6282] Hui, J., Ed. and P. Thubert, "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
 DOI 10.17487/RFC6282, September 2011,
 <http://www.rfc-editor.org/info/rfc6282>.

Lynn, et al. Expires September 11, 2017 [Page 12]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 [RFC6775] Shelby, Z., Ed., Chakrabarti, S., Nordmark, E., and C.
 Bormann, "Neighbor Discovery Optimization for IPv6 over
 Low-Power Wireless Personal Area Networks (6LoWPANs)",
 RFC 6775, DOI 10.17487/RFC6775, November 2012,
 <http://www.rfc-editor.org/info/rfc6775>.

 [RFC7136] Carpenter, B. and S. Jiang, "Significance of IPv6
 Interface Identifiers", RFC 7136, DOI 10.17487/RFC7136,
 February 2014, <http://www.rfc-editor.org/info/rfc7136>.

 [RFC7217] Gont, F., "A Method for Generating Semantically Opaque
 Interface Identifiers with IPv6 Stateless Address
 Autoconfiguration (SLAAC)", RFC 7217,
 DOI 10.17487/RFC7217, April 2014,
 <http://www.rfc-editor.org/info/rfc7217>.

 [RFC7400] Bormann, C., "6LoWPAN-GHC: Generic Header Compression for
 IPv6 over Low-Power Wireless Personal Area Networks
 (6LoWPANs)", RFC 7400, DOI 10.17487/RFC7400, November
 2014, <http://www.rfc-editor.org/info/rfc7400>.

14.2. Informative References

 [Addendum_an]
 American Society of Heating, Refrigerating, and Air-
 Conditioning Engineers, "ANSI/ASHRAE Addenda an, at, au,
 av, aw, ax, and az to ANSI/ASHRAE Standard 135-2012,
 BACnet - A Data Communication Protocol for Building
 Automation and Control Networks", July 2014,
 <https://www.ashrae.org/File%20Library/docLib/StdsAddenda/
 07-31-2014_135_2012_an_at_au_av_aw_ax_az_Final.pdf>.

 [COBS] Cheshire, S. and M. Baker, "Consistent Overhead Byte
 Stuffing", IEEE/ACM TRANSACTIONS ON NETWORKING, VOL.7,
 NO.2 , April 1999,
 <http://www.stuartcheshire.org/papers/COBSforToN.pdf>.

 [CRC32K] Koopman, P., "32-Bit Cyclic Redundancy Codes for Internet
 Applications", IEEE/IFIP International Conference on
 Dependable Systems and Networks (DSN 2002) , June 2002,
 <https://users.ece.cmu.edu/˜koopman/networks/dsn02/
 dsn02_koopman.pdf>.

 [IEEE.802.3_2012]
 IEEE, "802.3-2012", IEEE 802.3-2012,
 DOI 10.1109/ieeestd.2012.6419735, January 2013,
 <http://ieeexplore.ieee.org/servlet/
 opac?punumber=6419733>.

Lynn, et al. Expires September 11, 2017 [Page 13]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 [RFC2469] Narten, T. and C. Burton, "A Caution On The Canonical
 Ordering Of Link-Layer Addresses", RFC 2469,
 DOI 10.17487/RFC2469, December 1998,
 <http://www.rfc-editor.org/info/rfc2469>.

 [RFC8065] Thaler, D., "Privacy Considerations for IPv6 Adaptation-
 Layer Mechanisms", RFC 8065, DOI 10.17487/RFC8065,
 February 2017, <http://www.rfc-editor.org/info/rfc8065>.

 [TIA-485-A]
 Telecommunications Industry Association, "TIA-485-A,
 Electrical Characteristics of Generators and Receivers for
 Use in Balanced Digital Multipoint Systems (ANSI/TIA/EIA-
 485-A-98) (R2003)", March 2003, <https://global.ihs.com/
 doc_detail.cfm?item_s_key=00032964>.

Appendix A. Abstract MAC Interface

 This Appendix is informative and not part of the standard.

 [BACnet] Clause 9 provides support for MAC-layer clients through its
 SendFrame and ReceivedDataNoReply procedures. However, it does not
 define a network-protocol independent abstract interface for the MAC.
 This is provided below as an aid to implementation.

A.1. MA-DATA.request

A.1.1. Function

 This primitive defines the transfer of data from a MAC client entity
 to a single peer entity or multiple peer entities in the case of a
 broadcast address.

A.1.2. Semantics of the Service Primitive

 The semantics of the primitive are as follows:

 MA-DATA.request (
 destination_address,
 source_address,
 data,
 type
)

 The ’destination_address’ parameter may specify either an individual
 or a broadcast MAC entity address. It must contain sufficient
 information to create the Destination Address field (see Section 1.3)
 that is prepended to the frame by the local MAC sublayer entity. The

Lynn, et al. Expires September 11, 2017 [Page 14]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 ’source_address’ parameter, if present, must specify an individual
 MAC address. If the source_address parameter is omitted, the local
 MAC sublayer entity will insert a value associated with that entity.

 The ’data’ parameter specifies the MAC service data unit (MSDU) to be
 transferred by the MAC sublayer entity. There is sufficient
 information associated with the MSDU for the MAC sublayer entity to
 determine the length of the data unit.

 The ’type’ parameter specifies the value of the MS/TP Frame Type
 field that is prepended to the frame by the local MAC sublayer
 entity.

A.1.3. When Generated

 This primitive is generated by the MAC client entity whenever data
 shall be transferred to a peer entity or entities. This can be in
 response to a request from higher protocol layers or from data
 generated internally to the MAC client, such as a Token frame.

A.1.4. Effect on Receipt

 Receipt of this primitive will cause the MAC entity to insert all MAC
 specific fields, including Destination Address, Source Address, Frame
 Type, and any fields that are unique to the particular media access
 method, and pass the properly formed frame to the lower protocol
 layers for transfer to the peer MAC sublayer entity or entities.

A.2. MA-DATA.indication

A.2.1. Function

 This primitive defines the transfer of data from the MAC sublayer
 entity to the MAC client entity or entities in the case of a
 broadcast address.

A.2.2. Semantics of the Service Primitive

 The semantics of the primitive are as follows:

 MA-DATA.indication (
 destination_address,
 source_address,
 data,
 type
)

 The ’destination_address’ parameter may be either an individual or a

Lynn, et al. Expires September 11, 2017 [Page 15]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 broadcast address as specified by the Destination Address field of
 the incoming frame. The ’source_address’ parameter is an individual
 address as specified by the Source Address field of the incoming
 frame.

 The ’data’ parameter specifies the MAC service data unit (MSDU) as
 received by the local MAC entity. There is sufficient information
 associated with the MSDU for the MAC sublayer client to determine the
 length of the data unit.

 The ’type’ parameter is the value of the MS/TP Frame Type field of
 the incoming frame.

A.2.3. When Generated

 The MA_DATA.indication is passed from the MAC sublayer entity to the
 MAC client entity or entities to indicate the arrival of a frame to
 the local MAC sublayer entity that is destined for the MAC client.
 Such frames are reported only if they are validly formed, received
 without error, and their destination address designates the local MAC
 entity. Frames destined for the MAC Control sublayer are not passed
 to the MAC client.

A.2.4. Effect on Receipt

 The effect of receipt of this primitive by the MAC client is
 unspecified.

Lynn, et al. Expires September 11, 2017 [Page 16]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

Appendix B. Consistent Overhead Byte Stuffing [COBS]

 This Appendix is informative and not part of the standard.

 [BACnet] Clause 9 corrects a long-standing issue with the MS/TP
 specification; namely that preamble sequences were not escaped
 whenever they appeared in the Data or Data CRC fields. In rare
 cases, this resulted in dropped frames due to loss of frame
 synchronization. The solution is to encode the Data and 32-bit Data
 CRC fields before transmission using Consistent Overhead Byte
 Stuffing [COBS] and decode these fields upon reception.

 COBS is a run-length encoding method that nominally removes ’0x00’
 octets from its input. Any selected octet value may be removed by
 XOR’ing that value with each octet of the COBS output. [BACnet]
 Clause 9 specifies the preamble octet ’0x55’ for removal.

 The minimum overhead of COBS is one octet per encoded field. The
 worst-case overhead in long fields is bounded to one octet per 254 as
 described in [COBS].

 Frame encoding proceeds logically in two passes. The Encoded Data
 field is prepared by passing the MSDU through the COBS encoder and
 XOR’ing the preamble octet ’0x55’ with each octet of the output. The
 Encoded CRC-32K field is then prepared by calculating a CRC-32K over
 the Encoded Data field and formatting it for transmission as
 described in Appendix C. The combined length of these fields, minus
 two octets for compatibility with legacy MS/TP devices, is placed in
 the MS/TP header Length field before transmission.

 Example COBS encoder and decoder functions are shown below for
 illustration. Complete examples of use and test vectors are provided
 in [BACnet] Annex T.

 <CODE BEGINS>

 #include <stddef.h>
 #include <stdint.h>

 /*
 * Encodes ’length’ octets of data located at ’from’ and
 * writes one or more COBS code blocks at ’to’, removing any
 * ’mask’ octets that may present be in the encoded data.
 * Returns the length of the encoded data.
 */

 size_t
 cobs_encode (uint8_t *to, const uint8_t *from, size_t length,

Lynn, et al. Expires September 11, 2017 [Page 17]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 uint8_t mask)
 {
 size_t code_index = 0;
 size_t read_index = 0;
 size_t write_index = 1;
 uint8_t code = 1;
 uint8_t data, last_code;

 while (read_index < length) {
 data = from[read_index++];
 /*
 * In the case of encountering a non-zero octet in the data,
 * simply copy input to output and increment the code octet.
 */
 if (data != 0) {
 to[write_index++] = data ^ mask;
 code++;
 if (code != 255)
 continue;
 }
 /*
 * In the case of encountering a zero in the data or having
 * copied the maximum number (254) of non-zero octets, store
 * the code octet and reset the encoder state variables.
 */
 last_code = code;
 to[code_index] = code ^ mask;
 code_index = write_index++;
 code = 1;
 }
 /*
 * If the last chunk contains exactly 254 non-zero octets, then
 * this exception is handled above (and returned length must be
 * adjusted). Otherwise, encode the last chunk normally, as if
 * a "phantom zero" is appended to the data.
 */
 if ((last_code == 255) && (code == 1))
 write_index--;
 else
 to[code_index] = code ^ mask;

 return write_index;
 }

Lynn, et al. Expires September 11, 2017 [Page 18]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 #include <stddef.h>
 #include <stdint.h>

 /*
 * Decodes ’length’ octets of data located at ’from’ and
 * writes the original client data at ’to’, restoring any
 * ’mask’ octets that may present in the encoded data.
 * Returns the length of the encoded data or zero if error.
 */
 size_t
 cobs_decode (uint8_t *to, const uint8_t *from, size_t length,
 uint8_t mask)
 {
 size_t read_index = 0;
 size_t write_index = 0;
 uint8_t code, last_code;

 while (read_index < length) {
 code = from[read_index] ^ mask;
 last_code = code;
 /*
 * Sanity check the encoding to prevent the while() loop below
 * from overrunning the output buffer.
 */
 if (read_index + code > length)
 return 0;

 read_index++;
 while (--code > 0)
 to[write_index++] = from[read_index++] ^ mask;
 /*
 * Restore the implicit zero at the end of each decoded block
 * except when it contains exactly 254 non-zero octets or the
 * end of data has been reached.
 */
 if ((last_code != 255) && (read_index < length))
 to[write_index++] = 0;
 }
 return write_index;
 }

 <CODE ENDS>

Lynn, et al. Expires September 11, 2017 [Page 19]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

Appendix C. Encoded CRC-32K [CRC32K]

 This Appendix is informative and not part of the standard.

 Extending the payload of MS/TP to 1500 octets required upgrading the
 Data CRC from 16 bits to 32 bits. P.Koopman has authored several
 papers on evaluating CRC polynomials for network applications. In
 [CRC32K], he surveyed the entire 32-bit polynomial space and noted
 some that exceed the [IEEE.802.3_2012] polynomial in performance.
 [BACnet] Clause 9 specifies one of these, the CRC-32K (Koopman)
 polynomial.

 The specified use of the calc_crc32K() function is as follows.
 Before a frame is transmitted, ’crc_value’ is initialized to all
 ones. After passing each octet of the [COBS] Encoded Data through
 the function, the ones complement of the resulting ’crc_value’ is
 arranged in LSB-first order and is itself [COBS] encoded. The length
 of the resulting Encoded CRC-32K field is always five octets.

 Upon reception of a frame, ’crc_value’ is initialized to all ones.
 The octets of the Encoded Data field are accumulated by the
 calc_crc32K() function before decoding. The Encoded CRC-32K field is
 then decoded and the resulting four octets are accumulated by the
 calc_crc32K() function. If the result is the expected residue value
 ’CRC32K_RESIDUE’, then the frame was received correctly.

 An example CRC-32K function in shown below for illustration.
 Complete examples of use and test vectors are provided in [BACnet]
 Annex G.3.

Lynn, et al. Expires September 11, 2017 [Page 20]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 <CODE BEGINS>

 #include <stdint.h>

 /* See BACnet Addendum 135-2012an, section G.3.2 */
 #define CRC32K_INITIAL_VALUE (0xFFFFFFFF)
 #define CRC32K_RESIDUE (0x0843323B)

 /* CRC-32K polynomial, 1 + x**1 + ... + x**30 (+ x**32) */
 #define CRC32K_POLY (0xEB31D82E)

 /*
 * Accumulate ’data_value’ into the CRC in ’crc_value’.
 * Return updated CRC.
 *
 * Note: crc_value must be set to CRC32K_INITIAL_VALUE
 * before initial call.
 */
 uint32_t
 calc_crc32K (uint8_t data_value, uint32_t crc_value)
 {
 int b;

 for (b = 0; b < 8; b++) {
 if ((data_value & 1) ^ (crc_value & 1)) {
 crc_value >>= 1;
 crc_value ^= CRC32K_POLY;
 } else {
 crc_value >>= 1;
 }
 data_value >>= 1;
 }
 return crc_value;
 }

 <CODE ENDS>

Lynn, et al. Expires September 11, 2017 [Page 21]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

Appendix D. Example 6LoBAC Frame Decode

 This Appendix is informative and not part of the standard.

 BACnet MS/TP, Src (2), Dst (1), IPv6 Encapsulation
 Preamble 55: 0x55
 Preamble FF: 0xff
 Frame Type: IPv6 Encapsulation (34)
 Destination Address: 1
 Source Address: 2
 Length: 537
 Header CRC: 0x1c [correct]
 Extended Data CRC: 0x9e7259e2 [correct]
 6LoWPAN
 IPHC Header
 011. = Pattern: IP header compression (0x03)
 ...1 1... = Traffic class and flow label:
 Version, traffic class, and flow label
 compressed (0x0003)
 0.. = Next header: Inline
 00 = Hop limit: Inline (0x0000)
 1... = Context identifier extension: True
 1.. = Source address compression: Stateful
 01 = Source address mode:
 64-bits inline (0x0001)
 0... = Multicast address compression: False
 1.. = Destination address compression:
 Stateful
 10 = Destination address mode:
 16-bits inline (0x0002)
 0000 = Source context identifier: 0x00
 0000 = Destination context identifier: 0x00
 [Source context: aaaa:: (aaaa::)]
 [Destination context: aaaa:: (aaaa::)]
 Next header: ICMPv6 (0x3a)
 Hop limit: 63
 Source: aaaa::1 (aaaa::1)
 Destination: aaaa::ff:fe00:1 (aaaa::ff:fe00:1)
 Internet Protocol Version 6, Src: aaaa::1 (aaaa::1),
 Dst: aaaa::ff:fe00:1 (aaaa::ff:fe00:1)
 0110 = Version: 6
 0000 0000 = Traffic class:
 0x00000000
 0000 00.. = Differentiated
 Services Field:
 Default (0x00000000)
 0. = ECN-Capable Transport

Lynn, et al. Expires September 11, 2017 [Page 22]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 (ECT): Not set
 0 = ECN-CE: Not set
 0000 0000 0000 0000 0000 = Flowlabel: 0x00000000
 Payload length: 518
 Next header: ICMPv6 (58)
 Hop limit: 63
 Source: aaaa::1 (aaaa::1)
 Destination: aaaa::ff:fe00:1 (aaaa::ff:fe00:1)
 Internet Control Message Protocol v6
 Type: Echo (ping) request (128)
 Code: 0
 Checksum: 0x783f [correct]
 Identifier: 0x2ee5
 Sequence: 2
 [Response In: 5165]
 Data (510 bytes)
 Data: e4dbe8553ba0040008090a0b0c0d0e0f1011121314151617...
 [Length: 510]

Lynn, et al. Expires September 11, 2017 [Page 23]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 Frame (547 bytes):
 55 ff 22 01 02 02 19 1c 56 2d 83 56 6f 6a 54 54 U.".....V-.VojTT
 54 54 54 54 57 54 56 54 d5 50 2d 6a 7b b0 5c 57 TTTTWTVT.P-j{.\W
 b1 8e bd 00 6e f5 51 ac 5d 5c 5f 5e 59 58 5b 5a n.Q.]_^YX[Z
 45 44 47 46 41 40 43 42 4d 4c 4f 4e 49 48 4b 4a EDGFA@CBMLONIHKJ
 75 74 77 76 71 70 73 72 7d 7c 7f 7e 79 78 7b 7a utwvqpsr}|.˜yx{z
 65 64 67 66 61 60 63 62 6d 6c 6f 6e 69 68 6b 6a edgfa‘cbmlonihkj
 15 14 17 16 11 10 13 12 1d 1c 1f 1e 19 18 1b 1a
 05 04 07 06 01 00 03 02 0d 0c 0f 0e 09 08 0b 0a
 35 34 37 36 31 30 33 32 3d 3c 3f 3e 39 38 3b 3a 54761032=<?>98;:
 25 24 27 26 21 20 23 22 2d 2c 2f 2e 29 28 2b 2a %$’&! #"-,/.)(+*
 d5 d4 d7 d6 d1 d0 d3 d2 dd dc df de d9 d8 db da
 c5 c4 c7 c6 c1 c0 c3 c2 cd cc cf ce c9 c8 cb ca
 f5 f4 f7 f6 f1 f0 f3 f2 fd fc ff fe f9 f8 fb fa
 e5 e4 e7 e6 e1 e0 e3 e2 ed ec ef ee e9 e8 eb ea
 95 94 97 96 91 90 93 92 9d 9c 9f 9e 99 98 9b 9a
 85 84 87 86 81 80 83 82 8d 8c 8f 8e 89 88 8b 8a
 b5 b4 b7 b6 b1 b0 b3 b2 bd bc bf be b9 b8 bb ba
 a5 a4 a7 a6 a1 a0 a3 a2 ad ac af ae a9 a8 ab aa
 ab 54 57 56 51 50 53 52 5d 5c 5f 5e 59 58 5b 5a .TWVQPSR]_^YX[Z
 45 44 47 46 41 40 43 42 4d 4c 4f 4e 49 48 4b 4a EDGFA@CBMLONIHKJ
 75 74 77 76 71 70 73 72 7d 7c 7f 7e 79 78 7b 7a utwvqpsr}|.˜yx{z
 65 64 67 66 61 60 63 62 6d 6c 6f 6e 69 68 6b 6a edgfa‘cbmlonihkj
 15 14 17 16 11 10 13 12 1d 1c 1f 1e 19 18 1b 1a
 05 04 07 06 01 00 03 02 0d 0c 0f 0e 09 08 0b 0a
 35 34 37 36 31 30 33 32 3d 3c 3f 3e 39 38 3b 3a 54761032=<?>98;:
 25 24 27 26 21 20 23 22 2d 2c 2f 2e 29 28 2b 2a %$’&! #"-,/.)(+*
 d5 d4 d7 d6 d1 d0 d3 d2 dd dc df de d9 d8 db da
 c5 c4 c7 c6 c1 c0 c3 c2 cd cc cf ce c9 c8 cb ca
 f5 f4 f7 f6 f1 f0 f3 f2 fd fc ff fe f9 f8 fb fa
 e5 e4 e7 e6 e1 e0 e3 e2 ed ec ef ee e9 e8 eb ea
 95 94 97 96 91 90 93 92 9d 9c 9f 9e 99 98 9b 9a
 85 84 87 86 81 80 83 82 8d 8c 8f 8e 89 88 8b 8a
 b5 b4 b7 b6 b1 b0 b3 b2 bd bc bf be b9 b8 bb ba
 a5 a4 a7 a6 a1 a0 a3 a2 ad ac af ae a9 a8 50 cb P.
 27 0c b7 ’..

Lynn, et al. Expires September 11, 2017 [Page 24]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 Decoded Data and CRC32K (537 bytes):
 78 d6 00 3a 3f 00 00 00 00 00 00 00 01 00 01 80 x..:?...........
 00 78 3f 2e e5 00 02 e4 db e8 55 3b a0 04 00 08 .x?.......U;....
 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18
 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27 28 !"#$%&’(
 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36 37 38)*+,-./012345678
 39 3a 3b 3c 3d 3e 3f 40 41 42 43 44 45 46 47 48 9:;<=>?@ABCDEFGH
 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 56 57 58 IJKLMNOPQRSTUVWX
 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65 66 67 68 YZ[\]^_‘abcdefgh
 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 78 ijklmnopqrstuvwx
 79 7a 7b 7c 7d 7e 7f 80 81 82 83 84 85 86 87 88 yz{|}˜..........
 89 8a 8b 8c 8d 8e 8f 90 91 92 93 94 95 96 97 98
 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5 a6 a7 a8
 a9 aa ab ac ad ae af b0 b1 b2 b3 b4 b5 b6 b7 b8
 b9 ba bb bc bd be bf c0 c1 c2 c3 c4 c5 c6 c7 c8
 c9 ca cb cc cd ce cf d0 d1 d2 d3 d4 d5 d6 d7 d8
 d9 da db dc dd de df e0 e1 e2 e3 e4 e5 e6 e7 e8
 e9 ea eb ec ed ee ef f0 f1 f2 f3 f4 f5 f6 f7 f8
 f9 fa fb fc fd fe ff 00 01 02 03 04 05 06 07 08
 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18
 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27 28 !"#$%&’(
 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36 37 38)*+,-./012345678
 39 3a 3b 3c 3d 3e 3f 40 41 42 43 44 45 46 47 48 9:;<=>?@ABCDEFGH
 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 56 57 58 IJKLMNOPQRSTUVWX
 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65 66 67 68 YZ[\]^_‘abcdefgh
 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 78 ijklmnopqrstuvwx
 79 7a 7b 7c 7d 7e 7f 80 81 82 83 84 85 86 87 88 yz{|}˜..........
 89 8a 8b 8c 8d 8e 8f 90 91 92 93 94 95 96 97 98
 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5 a6 a7 a8
 a9 aa ab ac ad ae af b0 b1 b2 b3 b4 b5 b6 b7 b8
 b9 ba bb bc bd be bf c0 c1 c2 c3 c4 c5 c6 c7 c8
 c9 ca cb cc cd ce cf d0 d1 d2 d3 d4 d5 d6 d7 d8
 d9 da db dc dd de df e0 e1 e2 e3 e4 e5 e6 e7 e8
 e9 ea eb ec ed ee ef f0 f1 f2 f3 f4 f5 f6 f7 f8
 f9 fa fb fc fd 9e 72 59 e2 rY.

Lynn, et al. Expires September 11, 2017 [Page 25]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

 Decompressed 6LoWPAN IPHC (558 bytes):
 60 00 00 00 02 06 3a 3f aa aa 00 00 00 00 00 00 ‘.....:?........
 00 00 00 00 00 00 00 01 aa aa 00 00 00 00 00 00
 00 00 00 ff fe 00 00 01 80 00 78 3f 2e e5 00 02 x?....
 e4 db e8 55 3b a0 04 00 08 09 0a 0b 0c 0d 0e 0f ...U;...........
 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f !"#$%&’()*+,-./
 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f 0123456789:;<=>?
 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f @ABCDEFGHIJKLMNO
 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f PQRSTUVWXYZ[\]^_
 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f ‘abcdefghijklmno
 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f pqrstuvwxyz{|}˜.
 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f
 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f
 a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af
 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf
 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf
 d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df
 e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee ef
 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff
 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f !"#$%&’()*+,-./
 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f 0123456789:;<=>?
 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f @ABCDEFGHIJKLMNO
 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f PQRSTUVWXYZ[\]^_
 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f ‘abcdefghijklmno
 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f pqrstuvwxyz{|}˜.
 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f
 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f
 a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af
 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf
 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf
 d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df
 e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee ef
 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd

Lynn, et al. Expires September 11, 2017 [Page 26]

Internet-Draft IPv6 over MS/TP (6LoBAC) March 2017

Authors’ Addresses

 Kerry Lynn (editor)
 Verizon Labs
 50 Sylvan Rd
 Waltham , MA 02451
 USA

 Phone: +1 781 296 9722
 Email: kerlyn@ieee.org

 Jerry Martocci
 Johnson Controls, Inc.
 507 E. Michigan St
 Milwaukee , WI 53202
 USA

 Email: jpmartocci@sbcglobal.net

 Carl Neilson
 Delta Controls, Inc.
 17850 56th Ave
 Surrey , BC V3S 1C7
 Canada

 Phone: +1 604 575 5913
 Email: cneilson@deltacontrols.com

 Stuart Donaldson
 Honeywell Automation & Control Solutions
 6670 185th Ave NE
 Redmond , WA 98052
 USA

 Email: stuart.donaldson@honeywell.com

Lynn, et al. Expires September 11, 2017 [Page 27]

