
CoRE Working Group C. Bormann
Internet-Draft Universitaet Bremen TZI
Intended status: Standards Track Z. Shelby, Ed.
Expires: January 5, 2015 ARM
 July 04, 2014

 Blockwise transfers in CoAP
 draft-ietf-core-block-15

Abstract

 CoAP is a RESTful transfer protocol for constrained nodes and
 networks. Basic CoAP messages work well for the small payloads we
 expect from temperature sensors, light switches, and similar
 building-automation devices. Occasionally, however, applications
 will need to transfer larger payloads -- for instance, for firmware
 updates. With HTTP, TCP does the grunt work of slicing large
 payloads up into multiple packets and ensuring that they all arrive
 and are handled in the right order.

 CoAP is based on datagram transports such as UDP or DTLS, which
 limits the maximum size of resource representations that can be
 transferred without too much fragmentation. Although UDP supports
 larger payloads through IP fragmentation, it is limited to 64 KiB
 and, more importantly, doesn’t really work well for constrained
 applications and networks.

 Instead of relying on IP fragmentation, this specification extends
 basic CoAP with a pair of "Block" options, for transferring multiple
 blocks of information from a resource representation in multiple
 request-response pairs. In many important cases, the Block options
 enable a server to be truly stateless: the server can handle each
 block transfer separately, with no need for a connection setup or
 other server-side memory of previous block transfers.

 In summary, the Block options provide a minimal way to transfer
 larger representations in a block-wise fashion.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

Bormann & Shelby Expires January 5, 2015 [Page 1]

Internet-Draft Blockwise transfers in CoAP July 2014

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 5, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Block-wise transfers . 5
 2.1. The Block2 and Block1 Options 5
 2.2. Structure of a Block Option 6
 2.3. Block Options in Requests and Responses 8
 2.4. Using the Block2 Option 10
 2.5. Using the Block1 Option 11
 2.6. Combining Blockwise Transfers with the Observe Option . . 12
 2.7. Combining Block1 and Block2 13
 2.8. Combining Block2 with Multicast 13
 2.9. Response Codes . 14
 2.9.1. 2.31 Continue . 14
 2.9.2. 4.08 Request Entity Incomplete 14
 2.9.3. 4.13 Request Entity Too Large 14
 3. Examples . 15
 3.1. Block2 Examples . 15
 3.2. Block1 Examples . 19
 3.3. Combining Block1 and Block2 20
 3.4. Combining Observe and Block2 22
 4. The Size2 and Size1 Options 25
 5. HTTP Mapping Considerations 26
 6. IANA Considerations . 27
 7. Security Considerations 28
 7.1. Mitigating Resource Exhaustion Attacks 29

Bormann & Shelby Expires January 5, 2015 [Page 2]

Internet-Draft Blockwise transfers in CoAP July 2014

 7.2. Mitigating Amplification Attacks 29
 8. Acknowledgements . 30
 9. References . 30
 9.1. Normative References 30
 9.2. Informative References 30
 Authors’ Addresses . 31

1. Introduction

 The work on Constrained RESTful Environments (CoRE) aims at realizing
 the REST architecture in a suitable form for the most constrained
 nodes (such as microcontrollers with limited RAM and ROM [RFC7228])
 and networks (such as 6LoWPAN, [RFC4944]) [RFC7252]. The CoAP
 protocol is intended to provide RESTful [REST] services not unlike
 HTTP [RFC7230], while reducing the complexity of implementation as
 well as the size of packets exchanged in order to make these services
 useful in a highly constrained network of themselves highly
 constrained nodes.

 This objective requires restraint in a number of sometimes
 conflicting ways:

 o reducing implementation complexity in order to minimize code size,

 o reducing message sizes in order to minimize the number of
 fragments needed for each message (in turn to maximize the
 probability of delivery of the message), the amount of
 transmission power needed and the loading of the limited-bandwidth
 channel,

 o reducing requirements on the environment such as stable storage,
 good sources of randomness or user interaction capabilities.

 CoAP is based on datagram transports such as UDP, which limit the
 maximum size of resource representations that can be transferred
 without creating unreasonable levels of IP fragmentation. In
 addition, not all resource representations will fit into a single
 link layer packet of a constrained network, which may cause
 adaptation layer fragmentation even if IP layer fragmentation is not
 required. Using fragmentation (either at the adaptation layer or at
 the IP layer) for the transport of larger representations would be
 possible up to the maximum size of the underlying datagram protocol
 (such as UDP), but the fragmentation/reassembly process burdens the
 lower layers with conversation state that is better managed in the
 application layer.

 The present specification defines a pair of CoAP options to enable
 block-wise access to resource representations. The Block options

Bormann & Shelby Expires January 5, 2015 [Page 3]

Internet-Draft Blockwise transfers in CoAP July 2014

 provide a minimal way to transfer larger resource representations in
 a block-wise fashion. The overriding objective is to avoid the need
 for creating conversation state at the server for block-wise GET
 requests. (It is impossible to fully avoid creating conversation
 state for POST/PUT, if the creation/replacement of resources is to be
 atomic; where that property is not needed, there is no need to create
 server conversation state in this case, either.)

 In summary, this specification adds a pair of Block options to CoAP
 that can be used for block-wise transfers. Benefits of using these
 options include:

 o Transfers larger than what can be accommodated in constrained-
 network link-layer packets can be performed in smaller blocks.

 o No hard-to-manage conversation state is created at the adaptation
 layer or IP layer for fragmentation.

 o The transfer of each block is acknowledged, enabling individual
 retransmission if required.

 o Both sides have a say in the block size that actually will be
 used.

 o The resulting exchanges are easy to understand using packet
 analyzer tools and thus quite accessible to debugging.

 o If needed, the Block options can also be used (without changes) to
 provide random access to power-of-two sized blocks within a
 resource representation.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119, BCP 14 [RFC2119] and indicate requirement levels for compliant
 CoAP implementations.

 In this document, the term "byte" is used in its now customary sense
 as a synonym for "octet".

 Where bit arithmetic is explained, this document uses the notation
 familiar from the programming language C, except that the operator
 "**" stands for exponentiation.

Bormann & Shelby Expires January 5, 2015 [Page 4]

Internet-Draft Blockwise transfers in CoAP July 2014

2. Block-wise transfers

 As discussed in the introduction, there are good reasons to limit the
 size of datagrams in constrained networks:

 o by the maximum datagram size (˜ 64 KiB for UDP)

 o by the desire to avoid IP fragmentation (MTU of 1280 for IPv6)

 o by the desire to avoid adaptation layer fragmentation (60-80 bytes
 for 6LoWPAN [RFC4919])

 When a resource representation is larger than can be comfortably
 transferred in the payload of a single CoAP datagram, a Block option
 can be used to indicate a block-wise transfer. As payloads can be
 sent both with requests and with responses, this specification
 provides two separate options for each direction of payload transfer.
 In identifying these options, we use the number 1 to refer to the
 transfer of the resource representation that pertains to the request,
 and the number 2 to refer to the transfer of the resource
 representation for the response.

 In the following, the term "payload" will be used for the actual
 content of a single CoAP message, i.e. a single block being
 transferred, while the term "body" will be used for the entire
 resource representation that is being transferred in a block-wise
 fashion. The Content-Format option applies to the body, not to the
 payload, in particular the boundaries between the blocks may be in
 places that are not separating whole units in terms of the structure,
 encoding, or content-coding used by the Content-Format.

 In most cases, all blocks being transferred for a body (except for
 the last one) will be of the same size. The block size is not fixed
 by the protocol. To keep the implementation as simple as possible,
 the Block options support only a small range of power-of-two block
 sizes, from 2**4 (16) to 2**10 (1024) bytes. As bodies often will
 not evenly divide into the power-of-two block size chosen, the size
 need not be reached in the final block (but even for the final block,
 the chosen power-of-two size will still be indicated in the block
 size field of the Block option).

2.1. The Block2 and Block1 Options

Bormann & Shelby Expires January 5, 2015 [Page 5]

Internet-Draft Blockwise transfers in CoAP July 2014

 +-----+---+---+---+---+--------+--------+--------+---------+
 | No. | C | U | N | R | Name | Format | Length | Default |
 +-----+---+---+---+---+--------+--------+--------+---------+
 | 23 | C | U | - | - | Block2 | uint | 0-3 | (none) |
 | | | | | | | | | |
 | 27 | C | U | - | - | Block1 | uint | 0-3 | (none) |
 +-----+---+---+---+---+--------+--------+--------+---------+

 Table 1: Block Option Numbers

 Both Block1 and Block2 options can be present both in request and
 response messages. In either case, the Block1 Option pertains to the
 request payload, and the Block2 Option pertains to the response
 payload.

 Hence, for the methods defined in [RFC7252], Block1 is useful with
 the payload-bearing POST and PUT requests and their responses.
 Block2 is useful with GET, POST, and PUT requests and their payload-
 bearing responses (2.01, 2.02, 2.04, 2.05 -- see section "Payload" of
 [RFC7252]).

 Where Block1 is present in a request or Block2 in a response (i.e.,
 in that message to the payload of which it pertains) it indicates a
 block-wise transfer and describes how this specific block-wise
 payload forms part of the entire body being transferred ("descriptive
 usage"). Where it is present in the opposite direction, it provides
 additional control on how that payload will be formed or was
 processed ("control usage").

 Implementation of either Block option is intended to be optional.
 However, when it is present in a CoAP message, it MUST be processed
 (or the message rejected); therefore it is identified as a critical
 option. It MUST NOT occur more than once.

2.2. Structure of a Block Option

 Three items of information may need to be transferred in a Block
 (Block1 or Block2) option:

 o The size of the block (SZX);

 o whether more blocks are following (M);

 o the relative number of the block (NUM) within a sequence of blocks
 with the given size.

 The value of the Block Option is a variable-size (0 to 3 byte)
 unsigned integer (uint, see Section 3.2 of [RFC7252]). This integer

Bormann & Shelby Expires January 5, 2015 [Page 6]

Internet-Draft Blockwise transfers in CoAP July 2014

 value encodes these three fields, see Figure 1. (Due to the CoAP
 uint encoding rules, when all of NUM, M, and SZX happen to be zero, a
 zero-byte integer will be sent.)

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | NUM |M| SZX |
 +-+-+-+-+-+-+-+-+

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | NUM |M| SZX |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | NUM |M| SZX |
 +-+

 Figure 1: Block option value

 The block size is encoded using a three-bit unsigned integer (0 for
 2**4 to 6 for 2**10 bytes), which we call the "SZX" ("size
 exponent"); the actual block size is then "2**(SZX + 4)". SZX is
 transferred in the three least significant bits of the option value
 (i.e., "val & 7" where "val" is the value of the option).

 The fourth least significant bit, the M or "more" bit ("val & 8"),
 indicates whether more blocks are following or the current block-wise
 transfer is the last block being transferred.

 The option value divided by sixteen (the NUM field) is the sequence
 number of the block currently being transferred, starting from zero.
 The current transfer is therefore about the "size" bytes starting at
 byte "NUM << (SZX + 4)".

 Implementation note: As an implementation convenience, "(val & ˜0xF)
 << (val & 7)", i.e., the option value with the last 4 bits masked
 out, shifted to the left by the value of SZX, gives the byte
 position of the first byte of the block being transferred.

 More specifically, within the option value of a Block1 or Block2
 Option, the meaning of the option fields is defined as follows:

Bormann & Shelby Expires January 5, 2015 [Page 7]

Internet-Draft Blockwise transfers in CoAP July 2014

 NUM: Block Number, indicating the block number being requested or
 provided. Block number 0 indicates the first block of a body
 (i.e., starting with the first byte of the body).

 M: More Flag ("not last block"). For descriptive usage, this flag,
 if unset, indicates that the payload in this message is the last
 block in the body; when set it indicates that there are one or
 more additional blocks available. When a Block2 Option is used in
 a request to retrieve a specific block number ("control usage"),
 the M bit MUST be sent as zero and ignored on reception. (In a
 Block1 Option in a response, the M flag is used to indicate
 atomicity, see below.)

 SZX: Block Size. The block size is represented as three-bit
 unsigned integer indicating the size of a block to the power of
 two. Thus block size = 2**(SZX + 4). The allowed values of SZX
 are 0 to 6, i.e., the minimum block size is 2**(0+4) = 16 and the
 maximum is 2**(6+4) = 1024. The value 7 for SZX (which would
 indicate a block size of 2048) is reserved, i.e. MUST NOT be sent
 and MUST lead to a 4.00 Bad Request response code upon reception
 in a request.

 There is no default value for the Block1 and Block2 Options. Absence
 of one of these options is equivalent to an option value of 0 with
 respect to the value of NUM and M that could be given in the option,
 i.e. it indicates that the current block is the first and only block
 of the transfer (block number 0, M bit not set). However, in
 contrast to the explicit value 0, which would indicate an SZX of 0
 and thus a size value of 16 bytes, there is no specific explicit size
 implied by the absence of the option -- the size is left unspecified.
 (As for any uint, the explicit value 0 is efficiently indicated by a
 zero-length option; this, therefore, is different in semantics from
 the absence of the option.)

2.3. Block Options in Requests and Responses

 The Block options are used in one of three roles:

 o In descriptive usage, i.e., a Block2 Option in a response (such as
 a 2.05 response for GET), or a Block1 Option in a request (a PUT
 or POST):

 * The NUM field in the option value describes what block number
 is contained in the payload of this message.

 * The M bit indicates whether further blocks need to be
 transferred to complete the transfer of that body.

Bormann & Shelby Expires January 5, 2015 [Page 8]

Internet-Draft Blockwise transfers in CoAP July 2014

 * The block size implied by SZX MUST match the size of the
 payload in bytes, if the M bit is set. (SZX does not govern
 the payload size if M is unset). For Block2, if the request
 suggested a larger value of SZX, the next request MUST move SZX
 down to the size given in the response. (The effect is that,
 if the server uses the smaller of (1) its preferred block size
 and (2) the block size requested, all blocks for a body use the
 same block size.)

 o A Block2 Option in control usage in a request (e.g., GET):

 * The NUM field in the Block2 Option gives the block number of
 the payload that is being requested to be returned in the
 response.

 * In this case, the M bit has no function and MUST be set to
 zero.

 * The block size given (SZX) suggests a block size (in the case
 of block number 0) or repeats the block size of previous blocks
 received (in the case of a non-zero block number).

 o A Block1 Option in control usage in a response (e.g., a 2.xx
 response for a PUT or POST request):

 * The NUM field of the Block1 Option indicates what block number
 is being acknowledged.

 * If the M bit was set in the request, the server can choose
 whether to act on each block separately, with no memory, or
 whether to handle the request for the entire body atomically,
 or any mix of the two.

 + If the M bit is also set in the response, it indicates that
 this response does not carry the final response code to the
 request, i.e. the server collects further blocks from the
 same endpoint and plans to implement the request atomically
 (e.g., acts only upon reception of the last block of
 payload). In this case, the response MUST NOT carry a
 Block2 option.

 + Conversely, if the M bit is unset even though it was set in
 the request, it indicates the block-wise request was enacted
 now specifically for this block, and the response carries
 the final response to this request (and to any previous ones
 with the M bit set in the response’s Block1 Option in this
 sequence of block-wise transfers); the client is still

Bormann & Shelby Expires January 5, 2015 [Page 9]

Internet-Draft Blockwise transfers in CoAP July 2014

 expected to continue sending further blocks, the request
 method for which may or may not also be enacted per-block.

 * Finally, the SZX block size given in a control Block1 Option
 indicates the largest block size preferred by the server for
 transfers toward the resource that is the same or smaller than
 the one used in the initial exchange; the client SHOULD use
 this block size or a smaller one in all further requests in the
 transfer sequence, even if that means changing the block size
 (and possibly scaling the block number accordingly) from now
 on.

 Using one or both Block options, a single REST operation can be split
 into multiple CoAP message exchanges. As specified in [RFC7252],
 each of these message exchanges uses their own CoAP Message ID.

2.4. Using the Block2 Option

 When a request is answered with a response carrying a Block2 Option
 with the M bit set, the requester may retrieve additional blocks of
 the resource representation by sending further requests with the same
 options as the initial request and a Block2 Option giving the block
 number and block size desired. In a request, the client MUST set the
 M bit of a Block2 Option to zero and the server MUST ignore it on
 reception.

 To influence the block size used in a response, the requester MAY
 also use the Block2 Option on the initial request, giving the desired
 size, a block number of zero and an M bit of zero. A server MUST use
 the block size indicated or a smaller size. Any further block-wise
 requests for blocks beyond the first one MUST indicate the same block
 size that was used by the server in the response for the first
 request that gave a desired size using a Block2 Option.

 Once the Block2 Option is used by the requester and a first response
 has been received with a possibly adjusted block size, all further
 requests in a single block-wise transfer SHOULD ultimately use the
 same size, except that there may not be enough content to fill the
 last block (the one returned with the M bit not set). (Note that the
 client may start using the Block2 Option in a second request after a
 first request without a Block2 Option resulted in a Block2 option in
 the response.) The server SHOULD use the block size indicated in the
 request option or a smaller size, but the requester MUST take note of
 the actual block size used in the response it receives to its initial
 request and proceed to use it in subsequent requests. The server
 behavior MUST ensure that this client behavior results in the same
 block size for all responses in a sequence (except for the last one

Bormann & Shelby Expires January 5, 2015 [Page 10]

Internet-Draft Blockwise transfers in CoAP July 2014

 with the M bit not set, and possibly the first one if the initial
 request did not contain a Block2 Option).

 Block-wise transfers can be used to GET resources the representations
 of which are entirely static (not changing over time at all, such as
 in a schema describing a device), or for dynamically changing
 resources. In the latter case, the Block2 Option SHOULD be used in
 conjunction with the ETag Option, to ensure that the blocks being
 reassembled are from the same version of the representation: The
 server SHOULD include an ETag option in each response. If an ETag
 option is available, the client’s reassembler, when reassembling the
 representation from the blocks being exchanged, MUST compare ETag
 Options. If the ETag Options do not match in a GET transfer, the
 requester has the option of attempting to retrieve fresh values for
 the blocks it retrieved first. To minimize the resulting
 inefficiency, the server MAY cache the current value of a
 representation for an ongoing sequence of requests. (The server may
 identify the sequence by the combination of the requesting end-point
 and the URI being the same in each block-wise request.) Note well
 that this specification makes no requirement for the server to
 establish any state; however, servers that offer quickly changing
 resources may thereby make it impossible for a client to ever
 retrieve a consistent set of blocks.

2.5. Using the Block1 Option

 In a request with a request payload (e.g., PUT or POST), the Block1
 Option refers to the payload in the request (descriptive usage).

 In response to a request with a payload (e.g., a PUT or POST
 transfer), the block size given in the Block1 Option indicates the
 block size preference of the server for this resource (control
 usage). Obviously, at this point the first block has already been
 transferred by the client without benefit of this knowledge. Still,
 the client SHOULD heed the preference indicated and, for all further
 blocks, use the block size preferred by the server or a smaller one.
 Note that any reduction in the block size may mean that the second
 request starts with a block number larger than one, as the first
 request already transferred multiple blocks as counted in the smaller
 size.

 To counter the effects of adaptation layer fragmentation on packet
 delivery probability, a client may want to give up retransmitting a
 request with a relatively large payload even before MAX_RETRANSMIT
 has been reached, and try restating the request as a block-wise
 transfer with a smaller payload. Note that this new attempt is then
 a new message-layer transaction and requires a new Message ID.
 (Because of the uncertainty whether the request or the

Bormann & Shelby Expires January 5, 2015 [Page 11]

Internet-Draft Blockwise transfers in CoAP July 2014

 acknowledgement was lost, this strategy is useful mostly for
 idempotent requests.)

 In a blockwise transfer of a request payload (e.g., a PUT or POST)
 that is intended to be implemented in an atomic fashion at the
 server, the actual creation/replacement takes place at the time the
 final block, i.e. a block with the M bit unset in the Block1 Option,
 is received. In this case, all success responses to non-final blocks
 carry the response code 2.31 (Continue, Section 2.9.1). If not all
 previous blocks are available at the server at the time of processing
 the final block, the transfer fails and error code 4.08 (Request
 Entity Incomplete, Section 2.9.2) MUST be returned. A server MAY
 also return a 4.08 error code for any (final or non-final) Block1
 transfer that is not in sequence; clients that do not have specific
 mechanisms to handle this case therefore SHOULD always start with
 block zero and send the following blocks in order.

 The error code 4.13 (Request Entity Too Large) can be returned at any
 time by a server that does not currently have the resources to store
 blocks for a block-wise request payload transfer that it would intend
 to implement in an atomic fashion. (Note that a 4.13 response to a
 request that does not employ Block1 is a hint for the client to try
 sending Block1, and a 4.13 response with a smaller SZX in its Block1
 option than requested is a hint to try a smaller SZX.)

 The Block1 option provides no way for a single endpoint to perform
 multiple concurrently proceeding block-wise request payload transfer
 (e.g., PUT or POST) operations to the same resource. Starting a new
 block-wise sequence of requests to the same resource (before an old
 sequence from the same endpoint was finished) simply overwrites the
 context the server may still be keeping. (This is probably exactly
 what one wants in this case - the client may simply have restarted
 and lost its knowledge of the previous sequence.)

2.6. Combining Blockwise Transfers with the Observe Option

 The Observe Option provides a way for a client to be notified about
 changes over time of a resource [I-D.ietf-core-observe]. Resources
 observed by clients may be larger than can be comfortably processed
 or transferred in one CoAP message. The following rules apply to the
 combination of blockwise transfers with notifications.

 Observation relationships always apply to an entire resource; the
 Block2 option does not provide a way to observe a single block of a
 resource.

 As with basic GET transfers, the client can indicate its desired
 block size in a Block2 Option in the GET request establishing or

Bormann & Shelby Expires January 5, 2015 [Page 12]

Internet-Draft Blockwise transfers in CoAP July 2014

 renewing the observation relationship. If the server supports
 blockwise transfers, it SHOULD take note of the block size and apply
 it as a maximum size to all notifications/responses resulting from
 the GET request (until the client is removed from the list of
 observers or the entry in that list is updated by the server
 receiving a new GET request for the resource from the client).

 When sending a 2.05 (Content) notification, the server only sends the
 first block of the representation. The client retrieves the rest of
 the representation as if it had caused this first response by a GET
 request, i.e., by using additional GET requests with Block2 options
 containing NUM values greater than zero. (This results in the
 transfer of the entire representation, even if only some of the
 blocks have changed with respect to a previous notification.)

 As with other dynamically changing resources, to ensure that the
 blocks being reassembled are from the same version of the
 representation, the server SHOULD include an ETag option in each
 response, and the reassembling client MUST compare the ETag options
 (Section 2.4).

 See Section 3.4 for examples.

2.7. Combining Block1 and Block2

 In PUT and particularly in POST exchanges, both the request body and
 the response body may be large enough to require the use of block-
 wise transfers. First, the Block1 transfer of the request body
 proceeds as usual. In the exchange of the last slice of this block-
 wise transfer, the response carries the first slice of the Block2
 transfer (NUM is zero). To continue this Block2 transfer, the client
 continues to send requests similar to the requests in the Block1
 phase, but leaves out the Block1 options and includes a Block2
 request option with non-zero NUM.

 Block2 transfers that retrieve the response body for a request that
 used Block1 MUST be performed in sequential order.

2.8. Combining Block2 with Multicast

 A client can use the Block2 option in a multicast GET request with
 NUM = 0 to aid in limiting the size of the response.

 Similarly, a response to a multicast GET request can use a Block2
 option with NUM = 0 if the representation is large, or to further
 limit the size of the response.

Bormann & Shelby Expires January 5, 2015 [Page 13]

Internet-Draft Blockwise transfers in CoAP July 2014

 In both cases, the client retrieves any further blocks using unicast
 exchanges; in the unicast requests, the client SHOULD heed any block
 size preferences indicated by the server in the response to the
 multicast request.

 Other uses of the Block options in conjunction with multicast
 messages are for further study.

2.9. Response Codes

 Two response codes are defined by this specification beyond those
 already defined in [RFC7252], and another response code is extended
 in its meaning.

2.9.1. 2.31 Continue

 This new success status code indicates that the transfer of this
 block of the request body was successful and that the server
 encourages sending further blocks, but that a final outcome of the
 whole block-wise request cannot yet be determined. No payload is
 returned with this response code.

2.9.2. 4.08 Request Entity Incomplete

 This new client error status code indicates that the server has not
 received the blocks of the request body that it needs to proceed.
 The client has not sent all blocks, not sent them in the order
 required by the server, or has sent them long enough ago that the
 server has already discarded them.

2.9.3. 4.13 Request Entity Too Large

 In [RFC7252], section 5.9.2.9, the response code 4.13 (Request Entity
 Too Large) is defined to be like HTTP 413 "Request Entity Too Large".
 [RFC7252] also recommends that this response SHOULD include a Size1
 Option (Section 4) to indicate the maximum size of request entity the
 server is able and willing to handle, unless the server is not in a
 position to make this information available.

 The present specification allows the server to return this response
 code at any time during a Block1 transfer to indicate that it does
 not currently have the resources to store blocks for a transfer that
 it would intend to implement in an atomic fashion. It also allows
 the server to return a 4.13 response to a request that does not
 employ Block1 as a hint for the client to try sending Block1.
 Finally, a 4.13 response to a request with a Block1 option (control
 usage, see Section 2.3) where the response carries a smaller SZX in
 its Block1 option is a hint to try that smaller SZX.

Bormann & Shelby Expires January 5, 2015 [Page 14]

Internet-Draft Blockwise transfers in CoAP July 2014

3. Examples

 This section gives a number of short examples with message flows for
 a block-wise GET, and for a PUT or POST. These examples demonstrate
 the basic operation, the operation in the presence of
 retransmissions, and examples for the operation of the block size
 negotiation.

 In all these examples, a Block option is shown in a decomposed way
 indicating the kind of Block option (1 or 2) followed by a colon, and
 then the block number (NUM), more bit (M), and block size exponent
 (2**(SZX+4)) separated by slashes. E.g., a Block2 Option value of 33
 would be shown as 2:2/0/32), or a Block1 Option value of 59 would be
 shown as 1:3/1/128.

3.1. Block2 Examples

 The first example (Figure 2) shows a GET request that is split into
 three blocks. The server proposes a block size of 128, and the
 client agrees. The first two ACKs contain 128 bytes of payload each,
 and third ACK contains between 1 and 128 bytes.

 CLIENT SERVER
 | |
 | CON [MID=1234], GET, /status ------> |
 | |
 | <------ ACK [MID=1234], 2.05 Content, 2:0/1/128 |
 | |
 | CON [MID=1235], GET, /status, 2:1/0/128 ------> |
 | |
 | <------ ACK [MID=1235], 2.05 Content, 2:1/1/128 |
 | |
 | CON [MID=1236], GET, /status, 2:2/0/128 ------> |
 | |
 | <------ ACK [MID=1236], 2.05 Content, 2:2/0/128 |

 Figure 2: Simple blockwise GET

 In the second example (Figure 3), the client anticipates the
 blockwise transfer (e.g., because of a size indication in the link-
 format description [RFC6690]) and sends a block size proposal. All
 ACK messages except for the last carry 64 bytes of payload; the last
 one carries between 1 and 64 bytes.

Bormann & Shelby Expires January 5, 2015 [Page 15]

Internet-Draft Blockwise transfers in CoAP July 2014

 CLIENT SERVER
 | |
 | CON [MID=1234], GET, /status, 2:0/0/64 ------> |
 | |
 | <------ ACK [MID=1234], 2.05 Content, 2:0/1/64 |
 | |
 | CON [MID=1235], GET, /status, 2:1/0/64 ------> |
 | |
 | <------ ACK [MID=1235], 2.05 Content, 2:1/1/64 |
 : :
 : ... :
 : :
 | CON [MID=1238], GET, /status, 2:4/0/64 ------> |
 | |
 | <------ ACK [MID=1238], 2.05 Content, 2:4/1/64 |
 | |
 | CON [MID=1239], GET, /status, 2:5/0/64 ------> |
 | |
 | <------ ACK [MID=1239], 2.05 Content, 2:5/0/64 |

 Figure 3: Blockwise GET with early negotiation

 In the third example (Figure 4), the client is surprised by the need
 for a blockwise transfer, and unhappy with the size chosen
 unilaterally by the server. As it did not send a size proposal
 initially, the negotiation only influences the size from the second
 message exchange onward. Since the client already obtained both the
 first and second 64-byte block in the first 128-byte exchange, it
 goes on requesting the third 64-byte block ("2/0/64"). None of this
 is (or needs to be) understood by the server, which simply responds
 to the requests as it best can.

Bormann & Shelby Expires January 5, 2015 [Page 16]

Internet-Draft Blockwise transfers in CoAP July 2014

 CLIENT SERVER
 | |
 | CON [MID=1234], GET, /status ------> |
 | |
 | <------ ACK [MID=1234], 2.05 Content, 2:0/1/128 |
 | |
 | CON [MID=1235], GET, /status, 2:2/0/64 ------> |
 | |
 | <------ ACK [MID=1235], 2.05 Content, 2:2/1/64 |
 | |
 | CON [MID=1236], GET, /status, 2:3/0/64 ------> |
 | |
 | <------ ACK [MID=1236], 2.05 Content, 2:3/1/64 |
 | |
 | CON [MID=1237], GET, /status, 2:4/0/64 ------> |
 | |
 | <------ ACK [MID=1237], 2.05 Content, 2:4/1/64 |
 | |
 | CON [MID=1238], GET, /status, 2:5/0/64 ------> |
 | |
 | <------ ACK [MID=1238], 2.05 Content, 2:5/0/64 |

 Figure 4: Blockwise GET with late negotiation

 In all these (and the following) cases, retransmissions are handled
 by the CoAP message exchange layer, so they don’t influence the block
 operations (Figure 5, Figure 6).

Bormann & Shelby Expires January 5, 2015 [Page 17]

Internet-Draft Blockwise transfers in CoAP July 2014

 CLIENT SERVER
 | |
 | CON [MID=1234], GET, /status ------> |
 | |
 | <------ ACK [MID=1234], 2.05 Content, 2:0/1/128 |
 | |
 | CON [MID=1235], GE///////////////////////// |
 | |
 | (timeout) |
 | |
 | CON [MID=1235], GET, /status, 2:2/0/64 ------> |
 | |
 | <------ ACK [MID=1235], 2.05 Content, 2:2/1/64 |
 : :
 : ... :
 : :
 | CON [MID=1238], GET, /status, 2:5/0/64 ------> |
 | |
 | <------ ACK [MID=1238], 2.05 Content, 2:5/0/64 |

 Figure 5: Blockwise GET with late negotiation and lost CON

 CLIENT SERVER
 | |
 | CON [MID=1234], GET, /status ------> |
 | |
 | <------ ACK [MID=1234], 2.05 Content, 2:0/1/128 |
 | |
 | CON [MID=1235], GET, /status, 2:2/0/64 ------> |
 | |
 | //////////////////////////////////tent, 2:2/1/64 |
 | |
 | (timeout) |
 | |
 | CON [MID=1235], GET, /status, 2:2/0/64 ------> |
 | |
 | <------ ACK [MID=1235], 2.05 Content, 2:2/1/64 |
 : :
 : ... :
 : :
 | CON [MID=1238], GET, /status, 2:5/0/64 ------> |
 | |
 | <------ ACK [MID=1238], 2.05 Content, 2:5/0/64 |

 Figure 6: Blockwise GET with late negotiation and lost ACK

Bormann & Shelby Expires January 5, 2015 [Page 18]

Internet-Draft Blockwise transfers in CoAP July 2014

3.2. Block1 Examples

 The following examples demonstrate a PUT exchange; a POST exchange
 looks the same, with different requirements on atomicity/idempotence.
 Note that, similar to GET, the responses to the requests that have a
 more bit in the request Block1 Option are provisional and carry the
 response code 2.31 (Continue); only the final response tells the
 client that the PUT did succeed.

 CLIENT SERVER
 | |
 | CON [MID=1234], PUT, /options, 1:0/1/128 ------> |
 | |
 | <------ ACK [MID=1234], 2.31 Continue, 1:0/1/128 |
 | |
 | CON [MID=1235], PUT, /options, 1:1/1/128 ------> |
 | |
 | <------ ACK [MID=1235], 2.31 Continue, 1:1/1/128 |
 | |
 | CON [MID=1236], PUT, /options, 1:2/0/128 ------> |
 | |
 | <------ ACK [MID=1236], 2.04 Changed, 1:2/0/128 |

 Figure 7: Simple atomic blockwise PUT

 A stateless server that simply builds/updates the resource in place
 (statelessly) may indicate this by not setting the more bit in the
 response (Figure 8); in this case, the response codes are valid
 separately for each block being updated. This is of course only an
 acceptable behavior of the server if the potential inconsistency
 present during the run of the message exchange sequence does not lead
 to problems, e.g. because the resource being created or changed is
 not yet or not currently in use.

Bormann & Shelby Expires January 5, 2015 [Page 19]

Internet-Draft Blockwise transfers in CoAP July 2014

 CLIENT SERVER
 | |
 | CON [MID=1234], PUT, /options, 1:0/1/128 ------> |
 | |
 | <------ ACK [MID=1234], 2.04 Changed, 1:0/0/128 |
 | |
 | CON [MID=1235], PUT, /options, 1:1/1/128 ------> |
 | |
 | <------ ACK [MID=1235], 2.04 Changed, 1:1/0/128 |
 | |
 | CON [MID=1236], PUT, /options, 1:2/0/128 ------> |
 | |
 | <------ ACK [MID=1236], 2.04 Changed, 1:2/0/128 |

 Figure 8: Simple stateless blockwise PUT

 Finally, a server receiving a blockwise PUT or POST may want to
 indicate a smaller block size preference (Figure 9). In this case,
 the client SHOULD continue with a smaller block size; if it does, it
 MUST adjust the block number to properly count in that smaller size.

 CLIENT SERVER
 | |
 | CON [MID=1234], PUT, /options, 1:0/1/128 ------> |
 | |
 | <------ ACK [MID=1234], 2.04 Changed, 1:0/1/32 |
 | |
 | CON [MID=1235], PUT, /options, 1:4/1/32 ------> |
 | |
 | <------ ACK [MID=1235], 2.04 Changed, 1:4/1/32 |
 | |
 | CON [MID=1236], PUT, /options, 1:5/1/32 ------> |
 | |
 | <------ ACK [MID=1235], 2.04 Changed, 1:5/1/32 |
 | |
 | CON [MID=1237], PUT, /options, 1:6/0/32 ------> |
 | |
 | <------ ACK [MID=1236], 2.04 Changed, 1:6/0/32 |

 Figure 9: Simple atomic blockwise PUT with negotiation

3.3. Combining Block1 and Block2

 Block options may be used in both directions of a single exchange.
 The following example demonstrates a blockwise POST request,
 resulting in a separate blockwise response.

Bormann & Shelby Expires January 5, 2015 [Page 20]

Internet-Draft Blockwise transfers in CoAP July 2014

 CLIENT SERVER
 | |
 | CON [MID=1234], POST, /soap, 1:0/1/128 ------> |
 | |
 | <------ ACK [MID=1234], 2.31 Continue, 1:0/1/128 |
 | |
 | CON [MID=1235], POST, /soap, 1:1/1/128 ------> |
 | |
 | <------ ACK [MID=1235], 2.31 Continue, 1:1/1/128 |
 | |
 | CON [MID=1236], POST, /soap, 1:2/0/128 ------> |
 | |
 | <------ ACK [MID=1236], 2.04 Changed, 2:0/1/128, 1:2/0/128 |
 | |
 | CON [MID=1237], POST, /soap, 2:1/0/128 ------> |
 | (no payload for requests with Block2 with NUM != 0) |
 | (could also do late negotiation by requesting e.g. 2:2/0/64) |
 | |
 | <------ ACK [MID=1237], 2.04 Changed, 2:1/1/128 |
 | |
 | CON [MID=1238], POST, /soap, 2:2/0/128 ------> |
 | |
 | <------ ACK [MID=1238], 2.04 Changed, 2:2/1/128 |
 | |
 | CON [MID=1239], POST, /soap, 2:3/0/128 ------> |
 | |
 | <------ ACK [MID=1239], 2.04 Changed, 2:3/0/128 |

 Figure 10: Atomic blockwise POST with blockwise response

 This model does provide for early negotiation input to the Block2
 blockwise transfer, as shown below.

Bormann & Shelby Expires January 5, 2015 [Page 21]

Internet-Draft Blockwise transfers in CoAP July 2014

 CLIENT SERVER
 | |
 | CON [MID=1234], POST, /soap, 1:0/1/128 ------> |
 | |
 | <------ ACK [MID=1234], 2.31 Continue, 1:0/1/128 |
 | |
 | CON [MID=1235], POST, /soap, 1:1/1/128 ------> |
 | |
 | <------ ACK [MID=1235], 2.31 Continue, 1:1/1/128 |
 | |
 | CON [MID=1236], POST, /soap, 1:2/0/128, 2:0/0/64 ------> |
 | |
 | <------ ACK [MID=1236], 2.04 Changed, 1:2/0/128, 2:0/1/64 |
 | |
 | CON [MID=1237], POST, /soap, 2:1/0/64 ------> |
 | (no payload for requests with Block2 with NUM != 0) |
 | |
 | <------ ACK [MID=1237], 2.04 Changed, 2:1/1/64 |
 | |
 | CON [MID=1238], POST, /soap, 2:2/0/64 ------> |
 | |
 | <------ ACK [MID=1238], 2.04 Changed, 2:2/1/64 |
 | |
 | CON [MID=1239], POST, /soap, 2:3/0/64 ------> |
 | |
 | <------ ACK [MID=1239], 2.04 Changed, 2:3/0/64 |

 Figure 11: Atomic blockwise POST with blockwise response, early
 negotiation

3.4. Combining Observe and Block2

 In the following example, the server first sends a direct response
 (Observe sequence number 62350) to the initial GET request (the
 resulting blockwise transfer is as in Figure 4 and has therefore been
 left out). The second transfer is started by a 2.05 notification
 that contains just the first block (Observe sequence number 62354);
 the client then goes on to obtain the rest of the blocks.

 CLIENT SERVER
 | |
 +----->| Header: GET 0x41011636
 | GET | Token: 0xfb
 | | Uri-Path: status-icon
 | | Observe: (empty)
 | |
 |<-----+ Header: 2.05 0x61451636
 | 2.05 | Token: 0xfb

Bormann & Shelby Expires January 5, 2015 [Page 22]

Internet-Draft Blockwise transfers in CoAP July 2014

 | | Block2: 0/1/128
 | | Observe: 62350
 | | ETag: 6f00f38e
 | | Payload: [128 bytes]
 | |
 | | (Usual GET transfer left out)
 ...
 | | (Notification of first block:)
 | |
 |<-----+ Header: 2.05 0x4145af9c
 | 2.05 | Token: 0xfb
 | | Block2: 0/1/128
 | | Observe: 62354
 | | ETag: 6f00f392
 | | Payload: [128 bytes]
 | |
 +- - ->| Header: 0x6000af9c
 | |
 | | (Retrieval of remaining blocks)
 | |
 +----->| Header: GET 0x41011637
 | GET | Token: 0xfc
 | | Uri-Path: status-icon
 | | Block2: 1/0/128
 | |
 |<-----+ Header: 2.05 0x61451637
 | 2.05 | Token: 0xfc
 | | Block2: 1/1/128
 | | ETag: 6f00f392
 | | Payload: [128 bytes]
 | |
 +----->| Header: GET 0x41011638
 | GET | Token: 0xfc
 | | Uri-Path: status-icon
 | | Block2: 2/0/128
 | |
 |<-----+ Header: 2.05 0x61451638
 | 2.05 | Token: 0xfc
 | | Block2: 2/0/128
 | | ETag: 6f00f392
 | | Payload: [53 bytes]

 Figure 12: Observe sequence with blockwise response

 In the following example, the client also uses early negotiation to
 limit the block size to 64 bytes.

Bormann & Shelby Expires January 5, 2015 [Page 23]

Internet-Draft Blockwise transfers in CoAP July 2014

 CLIENT SERVER
 | |
 +----->| Header: GET 0x41011636
 | GET | Token: 0xfb
 | | Uri-Path: status-icon
 | | Observe: (empty)
 | | Block2: 0/0/64
 | |
 |<-----+ Header: 2.05 0x61451636
 | 2.05 | Token: 0xfb
 | | Block2: 0/1/64
 | | Observe: 62350
 | | ETag: 6f00f38e
 | | Max-Age: 60
 | | Payload: [64 bytes]
 | |
 | | (Usual GET transfer left out)
 ...
 | | (Notification of first block:)
 | |
 |<-----+ Header: 2.05 0x4145af9c
 | 2.05 | Token: 0xfb
 | | Block2: 0/1/64
 | | Observe: 62354
 | | ETag: 6f00f392
 | | Payload: [64 bytes]
 | |
 +- - ->| Header: 0x6000af9c
 | |
 | | (Retrieval of remaining blocks)
 | |
 +----->| Header: GET 0x41011637
 | GET | Token: 0xfc
 | | Uri-Path: status-icon
 | | Block2: 1/0/64
 | |
 |<-----+ Header: 2.05 0x61451637
 | 2.05 | Token: 0xfc
 | | Block2: 1/1/64
 | | ETag: 6f00f392
 | | Payload: [64 bytes]

 | |
 +----->| Header: GET 0x41011638
 | GET | Token: 0xfc
 | | Uri-Path: status-icon
 | | Block2: 4/0/64
 | |

Bormann & Shelby Expires January 5, 2015 [Page 24]

Internet-Draft Blockwise transfers in CoAP July 2014

 |<-----+ Header: 2.05 0x61451638
 | 2.05 | Token: 0xfc
 | | Block2: 4/0/64
 | | ETag: 6f00f392
 | | Payload: [53 bytes]

 Figure 13: Observe sequence with early negotiation

4. The Size2 and Size1 Options

 In many cases when transferring a large resource representation block
 by block, it is advantageous to know the total size early in the
 process. Some indication may be available from the maximum size
 estimate attribute "sz" provided in a resource description [RFC6690].
 However, the size may vary dynamically, so a more up-to-date
 indication may be useful.

 This specification defines two CoAP Options, Size1 for indicating the
 size of the representation transferred in requests, and Size2 for
 indicating the size of the representation transferred in responses.
 (Size1 is already defined in [RFC7252] for the narrow case of
 indicating in 4.13 responses the maximum size of request payload that
 the server is able and willing to handle.)

 The Size2 Option may be used for two purposes:

 o in a request, to ask the server to provide a size estimate along
 with the usual response ("size request"). For this usage, the
 value MUST be set to 0.

 o in a response carrying a Block2 Option, to indicate the current
 estimate the server has of the total size of the resource
 representation, measured in bytes ("size indication").

 Similarly, the Size1 Option may be used for two purposes:

 o in a request carrying a Block1 Option, to indicate the current
 estimate the client has of the total size of the resource
 representation, measured in bytes ("size indication").

 o in a 4.13 response, to indicate the maximum size that would have
 been acceptable [RFC7252], measured in bytes.

 Apart from conveying/asking for size information, the Size options
 have no other effect on the processing of the request or response.
 If the client wants to minimize the size of the payload in the
 resulting response, it should add a Block2 option to the request with
 a small block size (e.g., setting SZX=0).

Bormann & Shelby Expires January 5, 2015 [Page 25]

Internet-Draft Blockwise transfers in CoAP July 2014

 The Size Options are "elective", i.e., a client MUST be prepared for
 the server to ignore the size estimate request. The Size Options
 MUST NOT occur more than once.

 +-----+---+---+---+---+-------+--------+--------+---------+
 | No. | C | U | N | R | Name | Format | Length | Default |
 +-----+---+---+---+---+-------+--------+--------+---------+
 | 60 | | | x | | Size1 | uint | 0-4 | (none) |
 | | | | | | | | | |
 | 28 | | | x | | Size2 | uint | 0-4 | (none) |
 +-----+---+---+---+---+-------+--------+--------+---------+

 Table 2: Size Option Numbers

 Implementation Notes:

 o As a quality of implementation consideration, blockwise transfers
 for which the total size considerably exceeds the size of one
 block are expected to include size indications, whenever those can
 be provided without undue effort (preferably with the first block
 exchanged). If the size estimate does not change, the indication
 does not need to be repeated for every block.

 o The end of a blockwise transfer is governed by the M bits in the
 Block Options, _not_ by exhausting the size estimates exchanged.

 o As usual for an option of type uint, the value 0 is best expressed
 as an empty option (0 bytes). There is no default value for
 either Size Option.

 o The Size Options are neither critical nor unsafe, and are marked
 as No-Cache-Key.

5. HTTP Mapping Considerations

 In this subsection, we give some brief examples for the influence the
 Block options might have on intermediaries that map between CoAP and
 HTTP.

 For mapping CoAP requests to HTTP, the intermediary may want to map
 the sequence of block-wise transfers into a single HTTP transfer.
 E.g., for a GET request, the intermediary could perform the HTTP
 request once the first block has been requested and could then
 fulfill all further block requests out of its cache. A constrained
 implementation may not be able to cache the entire object and may use
 a combination of TCP flow control and (in particular if timeouts
 occur) HTTP range requests to obtain the information necessary for
 the next block transfer at the right time.

Bormann & Shelby Expires January 5, 2015 [Page 26]

Internet-Draft Blockwise transfers in CoAP July 2014

 For PUT or POST requests, historically there was more variation in
 how HTTP servers might implement ranges; recently, [RFC7233] has
 defined that Range header fields received with a request method other
 than GET are not to be interpreted. So, in general, the CoAP-to-HTTP
 intermediary will have to try sending the payload of all the blocks
 of a block-wise transfer for these other methods within one HTTP
 request. If enough buffering is available, this request can be
 started when the last CoAP block is received. A constrained
 implementation may want to relieve its buffering by already starting
 to send the HTTP request at the time the first CoAP block is
 received; any HTTP 408 status code that indicates that the HTTP
 server became impatient with the resulting transfer can then be
 mapped into a CoAP 4.08 response code (similarly, 413 maps to 4.13).

 For mapping HTTP to CoAP, the intermediary may want to map a single
 HTTP transfer into a sequence of block-wise transfers. If the HTTP
 client is too slow delivering a request body on a PUT or POST, the
 CoAP server might time out and return a 4.08 response code, which in
 turn maps well to an HTTP 408 status code (again, 4.13 maps to 413).
 HTTP range requests received on the HTTP side may be served out of a
 cache and/or mapped to GET requests that request a sequence of blocks
 overlapping the range.

 (Note that, while the semantics of CoAP 4.08 and HTTP 408 differ,
 this difference is largely due to the different way the two protocols
 are mapped to transport. HTTP has an underlying TCP connection,
 which supplies connection state, so a HTTP 408 status code can
 immediately be used to indicate that a timeout occurred during
 transmitting a request through that active TCP connection. The CoAP
 4.08 response code indicates one or more missing blocks, which may be
 due to timeouts or resource constraints; as there is no connection
 state, there is no way to deliver such a response immediately;
 instead, it is delivered on the next block transfer. Still, HTTP 408
 is probably the best mapping back to HTTP, as the timeout is the most
 likely cause for a CoAP 4.08. Note that there is no way to
 distinguish a timeout from a missing block for a server without
 creating additional state, the need for which we want to avoid.)

6. IANA Considerations

 This draft adds the following option numbers to the CoAP Option
 Numbers registry of [RFC7252]:

Bormann & Shelby Expires January 5, 2015 [Page 27]

Internet-Draft Blockwise transfers in CoAP July 2014

 +--------+--------+-----------+
 | Number | Name | Reference |
 +--------+--------+-----------+
 | 23 | Block2 | [RFCXXXX] |
 | | | |
 | 27 | Block1 | [RFCXXXX] |
 | | | |
 | 28 | Size2 | [RFCXXXX] |
 +--------+--------+-----------+

 Table 3: CoAP Option Numbers

 This draft adds the following response code to the CoAP Response
 Codes registry of [RFC7252]:

 +------+---------------------------+-----------+
 | Code | Description | Reference |
 +------+---------------------------+-----------+
 | 2.31 | Continue | [RFCXXXX] |
 | | | |
 | 4.08 | Request Entity Incomplete | [RFCXXXX] |
 +------+---------------------------+-----------+

 Table 4: CoAP Response Codes

7. Security Considerations

 Providing access to blocks within a resource may lead to surprising
 vulnerabilities. Where requests are not implemented atomically, an
 attacker may be able to exploit a race condition or confuse a server
 by inducing it to use a partially updated resource representation.
 Partial transfers may also make certain problematic data invisible to
 intrusion detection systems; it is RECOMMENDED that an intrusion
 detection system (IDS) that analyzes resource representations
 transferred by CoAP implement the Block options to gain access to
 entire resource representations. Still, approaches such as
 transferring even-numbered blocks on one path and odd-numbered blocks
 on another path, or even transferring blocks multiple times with
 different content and obtaining a different interpretation of
 temporal order at the IDS than at the server, may prevent an IDS from
 seeing the whole picture. These kinds of attacks are well understood
 from IP fragmentation and TCP segmentation; CoAP does not add
 fundamentally new considerations.

 Where access to a resource is only granted to clients making use of
 specific security associations, all blocks of that resource MUST be
 subject to the same security checks; it MUST NOT be possible for
 unprotected exchanges to influence blocks of an otherwise protected

Bormann & Shelby Expires January 5, 2015 [Page 28]

Internet-Draft Blockwise transfers in CoAP July 2014

 resource. As a related consideration, where object security is
 employed, PUT/POST should be implemented in the atomic fashion,
 unless the object security operation is performed on each access and
 the creation of unusable resources can be tolerated.

 A stateless server might be susceptible to an attack where the
 adversary sends a Block1 (e.g., PUT) block with a high block number:
 A naive implementation might exhaust its resources by creating a huge
 resource representation.

 Misleading size indications may be used by an attacker to induce
 buffer overflows in poor implementations, for which the usual
 considerations apply.

7.1. Mitigating Resource Exhaustion Attacks

 Certain blockwise requests may induce the server to create state,
 e.g. to create a snapshot for the blockwise GET of a fast-changing
 resource to enable consistent access to the same version of a
 resource for all blocks, or to create temporary resource
 representations that are collected until pressed into service by a
 final PUT or POST with the more bit unset. All mechanisms that
 induce a server to create state that cannot simply be cleaned up
 create opportunities for denial-of-service attacks. Servers SHOULD
 avoid being subject to resource exhaustion based on state created by
 untrusted sources. But even if this is done, the mitigation may
 cause a denial-of-service to a legitimate request when it is drowned
 out by other state-creating requests. Wherever possible, servers
 should therefore minimize the opportunities to create state for
 untrusted sources, e.g. by using stateless approaches.

 Performing segmentation at the application layer is almost always
 better in this respect than at the transport layer or lower (IP
 fragmentation, adaptation layer fragmentation), for instance because
 there is application layer semantics that can be used for mitigation
 or because lower layers provide security associations that can
 prevent attacks. However, it is less common to apply timeouts and
 keepalive mechanisms at the application layer than at lower layers.
 Servers MAY want to clean up accumulated state by timing it out (cf.
 response code 4.08), and clients SHOULD be prepared to run blockwise
 transfers in an expedient way to minimize the likelihood of running
 into such a timeout.

7.2. Mitigating Amplification Attacks

 [RFC7252] discusses the susceptibility of CoAP end-points for use in
 amplification attacks.

Bormann & Shelby Expires January 5, 2015 [Page 29]

Internet-Draft Blockwise transfers in CoAP July 2014

 A CoAP server can reduce the amount of amplification it provides to
 an attacker by offering large resource representations only in
 relatively small blocks. With this, e.g., for a 1000 byte resource,
 a 10-byte request might result in an 80-byte response (with a 64-byte
 block) instead of a 1016-byte response, considerably reducing the
 amplification provided.

8. Acknowledgements

 Much of the content of this draft is the result of discussions with
 the [RFC7252] authors, and via many CoRE WG discussions.

 Charles Palmer provided extensive editorial comments to a previous
 version of this draft, some of which the authors hope to have covered
 in this version. Esko Dijk reviewed a more recent version, leading
 to a number of further editorial improvements, a solution to the 4.13
 ambiguity problem, and the section about combining Block and
 multicast. Markus Becker proposed getting rid of an ill-conceived
 default value for the Block2 and Block1 options. Peter Bigot
 insisted on a more systematic coverage of the options and response
 code.

 Kepeng Li, Linyi Tian, and Barry Leiba wrote up an early version of
 the Size Option, which has informed this draft. Klaus Hartke wrote
 some of the text describing the interaction of Block2 with Observe.
 Matthias Kovatsch provided a number of significant simplifications of
 the protocol.

9. References

9.1. Normative References

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP", draft-ietf-
 core-observe-14 (work in progress), June 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, June 2014.

9.2. Informative References

Bormann & Shelby Expires January 5, 2015 [Page 30]

Internet-Draft Blockwise transfers in CoAP July 2014

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", Ph.D. Dissertation,
 University of California, Irvine, 2000,
 <http://www.ics.uci.edu/˜fielding/pubs/dissertation/
 fielding_dissertation.pdf>.

 [RFC4919] Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6
 over Low-Power Wireless Personal Area Networks (6LoWPANs):
 Overview, Assumptions, Problem Statement, and Goals", RFC
 4919, August 2007.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, September 2007.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, August 2012.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228, May 2014.

 [RFC7230] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing", RFC 7230, June
 2014.

 [RFC7233] Fielding, R., Lafon, Y., and J. Reschke, "Hypertext
 Transfer Protocol (HTTP/1.1): Range Requests", RFC 7233,
 June 2014.

Authors’ Addresses

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

Bormann & Shelby Expires January 5, 2015 [Page 31]

Internet-Draft Blockwise transfers in CoAP July 2014

 Zach Shelby (editor)
 ARM
 150 Rose Orchard
 San Jose, CA 95134
 USA

 Phone: +1-408-203-9434
 Email: zach.shelby@arm.com

Bormann & Shelby Expires January 5, 2015 [Page 32]

