
CoRE Working Group A. Castellani
Internet-Draft University of Padova
Intended status: Informational S. Loreto
Expires: January 5, 2015 Ericsson
 A. Rahman
 InterDigital Communications, LLC
 T. Fossati
 Alcatel-Lucent
 E. Dijk
 Philips Research
 July 4, 2014

 Guidelines for HTTP-CoAP Mapping Implementations
 draft-ietf-core-http-mapping-04

Abstract

 This draft provides reference information for HTTP-CoAP protocol
 translation proxy implementation, focusing on the reverse proxy case.
 It details deployment options, defines a template for URI mapping,
 and provides a set of guidelines and considerations related to
 protocol translation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 5, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Castellani, et al. Expires January 5, 2015 [Page 1]

Internet-Draft HTTP-CoAP Mapping July 2014

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Cross-Protocol Usage of URIs 4
 4. Use Cases . 5
 5. URI Mapping . 5
 5.1. URI Terminology . 6
 5.2. Default Mapping . 6
 5.2.1. Optional scheme 7
 5.2.2. Encoding Caveats 7
 5.3. URI Mapping Template 7
 5.3.1. Simple Form . 8
 5.3.2. Enhanced Form . 9
 5.4. Discovery . 10
 5.4.1. Examples . 11
 6. HTTP-CoAP Reverse Proxy 12
 6.1. Proxy Placement . 13
 6.2. Response Code Translations 14
 6.3. Media Type mapping 16
 6.3.1. Loose Media Type Mapping 18
 6.3.2. Internet Media Type to Content Format Mapping
 Algorithm . 18
 6.3.3. Content Transcoding 19
 6.4. Caching and Congestion Control 20
 6.5. Cache Refresh via Observe 21
 6.6. Use of CoAP Blockwise Transfer 21
 6.7. Security Translation 22
 6.8. Other guidelines . 22
 7. IANA Considerations . 23
 8. Security Considerations 23
 8.1. Traffic overflow . 24
 8.2. Handling Secured Exchanges 24
 8.3. URI Mapping . 25
 9. Acknowledgements . 25
 10. References . 25
 10.1. Normative References 25
 10.2. Informative References 26
 Appendix A. Change Log . 27
 Authors’ Addresses . 28

Castellani, et al. Expires January 5, 2015 [Page 2]

Internet-Draft HTTP-CoAP Mapping July 2014

1. Introduction

 CoAP [RFC7252] has been designed with the twofold aim to be an
 application protocol specialized for constrained environments and to
 be easily used in REST architectures such as the Web. The latter
 goal has led to define CoAP to easily interoperate with HTTP
 [RFC7230] through an intermediary proxy which performs cross-protocol
 conversion.

 Section 10 of [RFC7252] describes the fundamentals of the CoAP-to-
 HTTP and the HTTP-to-CoAP cross-protocol mapping process. However,
 implementing such a cross-protocol proxy can be complex, and many
 details regarding its internal procedures and design choices require
 further elaboration. Therefore a first goal of this document is to
 provide more detailed information to proxy designers and
 implementers, to help implement proxies that correctly inter-work
 with other CoAP and HTTP client/server implementations that adhere to
 the HTTP and CoAP specifications.

 The second goal of this informational document is to define a
 consistent set of guidelines that a HTTP-to-CoAP proxy implementation
 MAY adhere to. The main reason of adhering to such guidelines is to
 reduce variation between proxy implementations, thereby increasing
 interoperability. (As an example use case, a proxy conforming to
 these guidelines made by vendor A can be easily replaced by a proxy
 from vendor B that also conforms to the guidelines.)

 This draft is organized as follows:

 o Section 2 describes terminology to identify proxy types, mapping
 approaches and proxy deployments;

 o Section 3 discusses how URIs refer to resources independent of
 access protocols;

 o Section 4 briefly lists use cases in which HTTP clients need to
 contact CoAP servers;

 o Section 5 introduces a default HTTP-to-CoAP URI mapping syntax;

 o Section 6 describes the properties of the HTTP-to-CoAP reverse
 proxy;

 o Section 8 discusses possible security impact related to HTTP-CoAP
 protocol mapping.

Castellani, et al. Expires January 5, 2015 [Page 3]

Internet-Draft HTTP-CoAP Mapping July 2014

2. Terminology

 This document assumes readers are familiar with the terms Reverse
 Proxy as defined in [RFC7230] and Interception Proxy as defined in
 [RFC3040]. In addition, the following terms are defined:

 HC Proxy: is a proxy performing a cross-protocol mapping, in the
 context of this document a HTTP-CoAP (HC) mapping. A Cross-Protocol
 Proxy can behave as a Forward Proxy, Reverse Proxy or Interception
 Proxy. Note: In this document we focus on the Reverse Proxy mode of
 the Cross-Protocol Proxy.

 Forward Proxy: a message forwarding agent that is selected by the
 client, usually via local configuration rules, to receive requests
 for some type(s) of absolute URI and to attempt to satisfy those
 requests via translation to the protocol indicated by the absolute
 URI. The user decides (is willing to) use the proxy as the
 forwarding/dereferencing agent for a predefined subset of the URI
 space.

 Reverse Proxy: a receiving agent that acts as a layer above some
 other server(s) and translates the received requests to the
 underlying server’s protocol. It behaves as an origin (HTTP) server
 on its connection towards the (HTTP) client and as a (CoAP) client on
 its connection towards the (CoAP) origin server. The (HTTP) client
 uses the "origin-form" [RFC7230] as a request-target URI.

 Reverse and Forward proxies are technically very similar, with main
 differences being that the former appears to a client as an origin
 server while the latter does not, and that clients may be unaware
 they are communicating with a proxy.

 Placement terms: a server-side (SS) proxy is placed in the same
 network domain as the server; conversely a client-side (CS) proxy is
 in the same network domain as the client. In any other case than SS
 or CS, the proxy is said to be External (E).

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

3. Cross-Protocol Usage of URIs

 A Uniform Resource Identifier (URI) provides a simple and extensible
 method for identifying a resource. It enables uniform identification
 of resources via a separately defined extensible set of naming
 schemes [RFC3986].

Castellani, et al. Expires January 5, 2015 [Page 4]

Internet-Draft HTTP-CoAP Mapping July 2014

 URIs are formed of at least three components: scheme, authority and
 path. The scheme often corresponds to the protocol used to access
 the resource. However, as noted in Section 1.2.2 of [RFC3986] the
 scheme does not imply that a particular protocol is used to access
 the resource. So, we can define the same resource to be accessible
 by different protocols i.e. the resource can have cross-protocol URIs
 referring to it.

 HTTP clients only support ’http’ and ’https’ schemes and cannot
 directly access CoAP servers (which support ’coap’ and/or ’coaps’).
 In this situation, communication is enabled by a HC Proxy, as shown
 in Figure 1, supporting URI mapping features. Such features are
 discussed in Section 5.

4. Use Cases

 To illustrate in which situations HTTP to CoAP request mapping may be
 used, three use cases are briefly described.

 1. Smartphone and home sensor: Any smartphone can access directly a
 home sensor using an authenticated ’https’ request, if its home
 router contains a HTTP-CoAP proxy. For this use-case an HTML5
 application can be built providing a friendlier UI to the user.

 2. Legacy building control application without CoAP: A building
 control application that uses HTTP but not CoAP, can check the status
 of sensors and/or actuators via a HTTP-CoAP proxy.

 3. Making sensor data available to 3rd parties: For demonstration or
 public interest purposes, a HTTP-CoAP proxy may be configured to
 expose the contents of a sensor to the world via the web (HTTP and/or
 HTTPS). The sensor can only handle secure ’coaps’ requests,
 therefore the proxy is configured to translate any request to a
 ’coaps’ secured request. The proxy is furthermore configured to only
 pass through GET requests. In this way even unattended HTTP clients,
 such as web crawlers, may index sensor data as regular web pages.

5. URI Mapping

 Though, in principle, a CoAP URI could be directly used by a HTTP
 user agent to de-reference a CoAP resource through a HC Proxy, the
 reality is that all major web browsers and command line tools do not
 allow making HTTP requests using URIs with a scheme different from
 "http" or "https".

 Thus, there is a need for web applications to "pack" a CoAP URI into
 a HTTP URI so that it can be (non-destructively) transported from the
 user agent to the HC Proxy. The HC Proxy can then "unpack" the CoAP

Castellani, et al. Expires January 5, 2015 [Page 5]

Internet-Draft HTTP-CoAP Mapping July 2014

 URI and finally de-reference it via a CoAP request to the target
 Server.

 URI Mapping is the process through which the URI of a CoAP resource
 is transformed in to an HTTP URI so that:

 o the requesting HTTP user agent can handle it;

 o the receiving HC Proxy can extract the intended CoAP URI
 unambiguously.

 To this end, the remainder of this section will identify:

 o the default mechanism to map a CoAP URI into a HTTP URI;

 o the URI template format to express a class of CoAP-HTTP URI
 mapping functions;

 o the discovery mechanism based on [RFC6690] through which clients
 of a HC Proxy can dynamically discover information about the
 supported URI Mapping Template(s), as well as the base URI where
 the HC Proxy function is anchored.

5.1. URI Terminology

 In the remainder of this section, the following terms will be used
 with a distinctive meaning:

 Target CoAP URI:
 URI which refers to the (final) CoAP resource that has to be
 de-referenced. It conforms to syntax defined in section 6 of
 [RFC7252]. Specifically, it has a scheme of "coap" or
 "coaps".

 Hosting HTTP URI:
 URI that conforms to syntax in section 2.7 of [RFC7230]. Its
 authority component refers to an HC Proxy, whereas path (and
 query) component(s) embed the information used by an HC Proxy
 to extract the Target CoAP URI.

5.2. Default Mapping

 The default is for the Target CoAP URI to be appended as-is to a base
 URI provided by the HC Proxy to form the Hosting HTTP URI.

 For example: given a base URI http://p.example.com/hc and a Target
 CoAP URI coap://s.example.com/light, the resulting Hosting HTTP URI
 would be http://p.example.com/hc/coap://s.example.com/light.

Castellani, et al. Expires January 5, 2015 [Page 6]

Internet-Draft HTTP-CoAP Mapping July 2014

 Provided a correct Target CoAP URI, the Hosting HTTP URI resulting
 from the default mapping is always syntactically correct.
 Furthermore, the Target CoAP URI can always be extracted in an
 unambiguous way from the Hosting HTTP URI. Also worth noting that,
 using the default mapping, a query component in the target CoAP
 resource URI is naturally encoded into the query component of the
 Hosting URI, e.g.: coap://s.example.com/light?dim=5 becomes
 http://p.example.com/hc/coap://s.example.com/light?dim=5.

 There is no default for the base URI. Therefore it is either known
 in advance, e.g. as a configuration preset, or dynamically discovered
 using the mechanism described in Section 5.4.

 The default URI mapping function is RECOMMENDED to be implemented and
 activated by default in a HC Proxy, unless there are valid reasons,
 e.g. application specific, to use a different mapping function.

5.2.1. Optional scheme

 When found in a Hosting HTTP URI, the scheme (i.e. "coap" or
 "coaps"), the scheme component delimiter (":"), and the double slash
 ("//") preceding the authority MAY be omitted. In such case, a local
 default - not defined by this document - applies.

 So, http://p.example.com/hc/s.coap.example.com/foo could either
 represent the target coap://s.coap.example.com/foo or
 coaps://s.coap.example.com/foo depending on application specific
 presets.

5.2.2. Encoding Caveats

 When the authority of the Target CoAP URI is given as an IPv6address,
 then the surrounding square brackets MUST be percent-encoded in the
 Hosting HTTP URI, in order to comply with the syntax defined in
 Section 3.3. of [RFC3986] for a URI path segment. E.g.:
 coap://[2001:db8::1]/light?on becomes
 http://p.example.com/hc/coap://%5B2001:db8::1%5D/light?on.

 Everything else can be safely copied verbatim from the Target CoAP
 URI to the Hosting HTTP URI.

5.3. URI Mapping Template

 This section defines a format for the URI template used by a HC Proxy
 to inform its clients about the expected syntax for the Hosting HTTP
 URI.

Castellani, et al. Expires January 5, 2015 [Page 7]

Internet-Draft HTTP-CoAP Mapping July 2014

 When instantiated, an URI Mapping Template is always concatenated to
 a base URI provided by the HC Proxy via discovery (see Section 5.4),
 or by other means.

 A simple form (Section 5.3.1) and an enhanced form (Section 5.3.2)
 are provided to fit different users’ requirements.

 Both forms are expressed as level 2 URI template’s to take care of
 the expansion of values that are allowed to include reserved URI
 characters.

5.3.1. Simple Form

 The simple form MUST be used for mappings where the Target CoAP URI
 is going to be copied verbatim at some fixed position into the
 Hosting HTTP URI.

 The following template variables MUST be used in mutual exclusion in
 a template definition:

 cu = coap-URI ; from [RFC7252], Section 6.1
 su = coaps-URI ; from [RFC7252], Section 6.2
 tu = cu / su

 The same considerations done in Section 5.2.1 apply.

5.3.1.1. Examples

 All the following examples (given as a specific URI mapping template,
 a Target CoAP URI, and the produced Hosting HTTP URI) use
 http://p.example.com/hc as the base URI.

 1. "coap" URI is a query argument of the Hosting HTTP URI:

 ?coap_target_uri={+cu}

 coap://s.example.com/light

 http://p.example.com/hc?coap_target_uri=coap://s.example.com/light

 2. "coaps" URI is a query argument of the Hosting HTTP URI:

 ?coaps_target_uri={+su}

 coaps://s.example.com/light

 http://p.example.com/hc?coaps_target_uri=coaps://s.example.com/light

Castellani, et al. Expires January 5, 2015 [Page 8]

Internet-Draft HTTP-CoAP Mapping July 2014

 3. Target CoAP URI as a query argument of the Hosting HTTP URI:

 ?target_uri={+tu}

 coap://s.example.com/light

 http://p.example.com/hc?target_uri=coap://s.example.com/light

 or

 coaps://s.example.com/light

 http://p.example.com/hc?target_uri=coaps://s.example.com/light

 4. Target CoAP URI in the path component of the Hosting HTTP URI
 (i.e. the default URI Mapping template):

 /{+tu}

 coap://s.example.com/light

 http://p.example.com/hc/coap://s.example.com/light

 or

 coaps://s.example.com/light

 http://p.example.com/hc/coaps://s.example.com/light

5.3.2. Enhanced Form

 The enhanced form can be used to express more sophisticated mappings,
 i.e. those that do not fit into the simple form.

 There MUST be at most one instance of each of the following template
 variables in a template definition:

 s = "coap" / "coaps" ; from [RFC7252], Sections 6.1 and 6.2
 hp = host [":" port] ; from [RFC3986] Sections 3.2.2 and 3.2.3
 p = path-abempty ; from [RFC3986] Section 3.3.
 q = ["?" query] ; from [RFC3986] Section 3.4

5.3.2.1. Examples

 All the following examples (given as a specific URI mapping template,
 a Target CoAP URI, and the produced Hosting HTTP URI) use
 http://p.example.com/hc as the base URI.

Castellani, et al. Expires January 5, 2015 [Page 9]

Internet-Draft HTTP-CoAP Mapping July 2014

 1. Target CoAP URI components in path segments, and optional query
 in query component:

 {+s}{+hp}{+p}{+q}

 coap://s.example.com/light

 http://p.example.com/hc/coap/s.example.com/light

 or

 coap://s.example.com/light?on

 http://p.example.com/hc/coap/s.example.com/light?on

 2. Target CoAP URI components split in individual query arguments:

 ?s={+s}&hp={+hp}&p={+p}&q={+q}

 coap://s.example.com/light

 http://p.example.com/hc?s=coap&hp=s.example.com&p=/light&q

 or

 coaps://s.example.com/light?on

 http://p.example.com/hc?s=coaps&hp=s.example.com&p=/light&q=on

5.4. Discovery

 In order to accommodate site specific needs while allowing third
 parties to discover the proxy function, the HC Proxy SHOULD publish
 information related to the location and syntax of the HC Proxy
 function using the CoRE Link Format [RFC6690] interface.

 To this aim a new Resource Type, "core.hc", is associated with a base
 URI, and can be used as the value for the "rt" attribute in a query
 to the /.well-known/core in order to locate the base URI where the HC
 Proxy function is anchored.

 Along with it, the new target attribute "hct" MAY be returned in a
 "core.hc" link to provide the associated URI Mapping Template. The
 default template given in Section 5.2, i.e. {+tu}, MUST be assumed if
 no "hct" attribute is found in the returned link. If an "htc"
 attribute is present in the returned link, then a compliant client
 MUST use it to create the Hosting HTTP URI.

Castellani, et al. Expires January 5, 2015 [Page 10]

Internet-Draft HTTP-CoAP Mapping July 2014

 Discovery SHOULD be available on both the HTTP and the CoAP side of
 the HC proxy, with one important difference: on the CoAP side the
 link associated to the "core.hc" resource needs an explicit anchor
 referring to the HTTP origin, while on the HTTP interface the link
 context is already the HTTP origin carried in the request’s Host
 header, and doesn’t have to be made explicit.

5.4.1. Examples

 o The first example exercises the CoAP interface, and assumes that
 the default template, {+tu}, is used:

 Req: GET coap://[ff02::1]/.well-known/core?rt=core.hc

 Res: 2.05 Content
 </hc>;anchor="http://p.example.com";rt="core.hc"

 o The second example - also on the CoAP side of the HC Proxy - uses
 a custom template, i.e. one where the CoAP URI is carried inside
 the query component, thus the returned link carries the URI
 template to be used in an explicit "hct" attribute:

 Req: GET coap://[ff02::1]/.well-known/core?rt=core.hc

 Res: 2.05 Content
 </hc>;anchor="http://p.example.com";rt="core.hc";hct="?uri={+tu}"

 On the HTTP side link information can be serialised in more than one
 way:

 o using the ’application/link-format’ content type:

 Req: GET /.well-known/core?rt=core.hc HTTP/1.1
 Host: p.example.com

 Res: HTTP/1.1 200 OK
 Content-Type: application/link-format
 Content-Length: 18

 </hc>;rt="core.hc"

 o using the ’application/link-format+json’ content type:

Castellani, et al. Expires January 5, 2015 [Page 11]

Internet-Draft HTTP-CoAP Mapping July 2014

 Req: GET /.well-known/core?rt=core.hc HTTP/1.1
 Host: p.example.com

 Res: HTTP/1.1 200 OK
 Content-Type: application/link-format+json
 Content-Length: 31

 [{"href":"/hc","rt":"core.hc"}]

 o using the Link header:

 Req: GET /.well-known/core?rt=core.hc HTTP/1.1
 Host: p.example.com

 Res: HTTP/1.1 200 OK
 Link: </hc>;rt="core.hc"

 o An HC Proxy may expose two different base URIs to differentiate
 between Target CoAP resources in the "coap" and "coaps" scheme:

 Req: GET /.well-known/core?rt=core.hc
 Host: p.example.com

 Res: HTTP/1.1 200 OK
 Content-Type: application/link-format+json
 Content-Length: 111

 [
 {"href":"/hc/plaintext","rt":"core.hc","htc":"{+cu}"},
 {"href":"/hc/secure","rt":"core.hc","htc":"{+su}"}
]

6. HTTP-CoAP Reverse Proxy

 A HTTP-CoAP Reverse Cross-Protocol Proxy is accessed by web clients
 only supporting HTTP, and handles their requests by mapping these to
 CoAP requests, which are forwarded to CoAP servers; and mapping back
 the received CoAP responses to HTTP. This mechanism is transparent
 to the client, which may assume that it is communicating with the
 intended target HTTP server. In other words, the client accesses the
 proxy as an origin server using the "origin-form" [RFC7230] as a
 Request Target.

 Normative requirements on the translation of HTTP requests to CoAP
 and of the CoAP responses back to HTTP responses are defined in
 Section 10.2 of [RFC7252]. However, that section only considers the
 case of a HTTP-CoAP Forward Cross-Protocol Proxy in which a client
 explicitly indicates it targets a request to a CoAP server, and does

Castellani, et al. Expires January 5, 2015 [Page 12]

Internet-Draft HTTP-CoAP Mapping July 2014

 not cover all aspects of proxy implementation in detail. The present
 section provides guidelines and more details for the implementation
 of a Reverse Cross-Protocol Proxy, which MAY be followed in addition
 to the normative requirements.

 Translation of unicast HTTP requests into multicast CoAP requests is
 currently out of scope since in a reverse proxy scenario a HTTP
 client typically expects to receive a single response, not multiple.
 However a HC Proxy MAY include custom application-specific functions
 to generate a multicast CoAP request based on a unicast HTTP request
 and aggregate multiple CoAP responses into a single HTTP response.

 Note that the guidelines in this section also apply to an HTTP-CoAP
 Intercepting Cross-Protocol Proxy.

6.1. Proxy Placement

 Typically, a Cross-Protocol Proxy is located at the edge of the
 constrained network. See Figure 1. The arguments supporting server-
 side (SS) placement are the following:

 Caching: Efficient caching requires that all request traffic to a
 CoAP server is handled by the same proxy which receives HTTP
 requests from multiple source locations. This maximally reduces
 the load on (constrained) CoAP servers.

 Multicast: To support CoAPs use of local-multicast functionality
 available in a constrained network, the Cross-Protocol Proxy
 requires a network interface directly attached to the constrained
 network.

 TCP/UDP: Translation between HTTP and CoAP requires also TCP/UDP
 translation; TCP may be the preferred way for communicating with
 the constrained network due to its reliability or due to
 intermediate gateways configured to block UDP traffic.

 Arguments against SS placement, in favor of client-side (CS), are:

 Scalability: A solution where a single SS proxy has to manage
 numerous open TCP/IP connections to a large number of HTTP clients
 is not scalable. (Unless multiple SS proxies are employed with a
 load-balancing mechanism, which adds complexity.)

Castellani, et al. Expires January 5, 2015 [Page 13]

Internet-Draft HTTP-CoAP Mapping July 2014

 +------+
 | |
 | DNS |
 | |
 +------+ Constrained Network

 / \
 / /-----\ /-----\ \
 / CoAP CoAP \
 / server server \
 || \-----/ \-----/ ||
 +------+ HTTP Request +----------+ ||
 |HTTP |------------------------>| HTTP-CoAP| Req /-----\ || |
 |Client| | Cross- |------->| CoAP ||
 | |<------------------------| Proxy |<-------|server ||
 +------+ HTTP Response +----------+ Resp \-----/ ||
 || ||
 || /-----\ ||
 || CoAP ||
 \ server /
 \ \-----/ /
 \ /-----\ /
 \ CoAP /
 \ server /
 \ \-----/ /

 Figure 1: Reverse Cross-Protocol Proxy Deployment Scenario

6.2. Response Code Translations

 Table 1 defines all possible CoAP responses along with the HTTP
 response to which each CoAP response SHOULD be translated. This
 table complies with the Section 10.2 requirements of [RFC7252] and is
 intended to cover all possible cases. Multiple appearances of a HTTP
 status code in the second column indicates multiple equivalent HTTP
 responses are possible, depending on the conditions cited in the
 Notes (third column).

Castellani, et al. Expires January 5, 2015 [Page 14]

Internet-Draft HTTP-CoAP Mapping July 2014

 +-----------------------------+-----------------------------+-------+
 | CoAP Response Code | HTTP Status Code | Notes |
 +-----------------------------+-----------------------------+-------+
2.01 Created	201 Created	1
2.02 Deleted	200 OK	2
	204 No Content	2
2.03 Valid	304 Not Modified	3
	200 OK	4
2.04 Changed	200 OK	2
	204 No Content	2
2.05 Content	200 OK	
4.00 Bad Request	400 Bad Request	
4.01 Unauthorized	400 Bad Request	5
4.02 Bad Option	400 Bad Request	6
4.03 Forbidden	403 Forbidden	
4.04 Not Found	404 Not Found	
4.05 Method Not Allowed	400 Bad Request	7
4.06 Not Acceptable	406 Not Acceptable	
4.12 Precondition Failed	412 Precondition Failed	
4.13 Request Entity Too	413 Request Repr. Too Large	
Large		
4.15 Unsupported Media Type	415 Unsupported Media Type	
5.00 Internal Server Error	500 Internal Server Error	
5.01 Not Implemented	501 Not Implemented	
5.02 Bad Gateway	502 Bad Gateway	
5.03 Service Unavailable	503 Service Unavailable	8
5.04 Gateway Timeout	504 Gateway Timeout	
5.05 Proxying Not Supported	502 Bad Gateway	9
 +-----------------------------+-----------------------------+-------+

 Table 1: HTTP-CoAP Response Mapping

 Notes:

 1. A CoAP server may return an arbitrary format payload along with
 this response. This payload SHOULD be returned as entity in the
 HTTP 201 response. Section 7.3.2 of [RFC7231] does not put any
 requirement on the format of the payload. (In the past,
 [RFC2616] did.)

 2. The HTTP code is 200 or 204 respectively for the case that a CoAP
 server returns a payload or not. [RFC7231] Section 5.3 requires
 code 200 in case a representation of the action result is
 returned for DELETE, POST and PUT and code 204 if not. Hence, a
 proxy SHOULD transfer any CoAP payload contained in a 2.02
 response to the HTTP client in a 200 OK response.

Castellani, et al. Expires January 5, 2015 [Page 15]

Internet-Draft HTTP-CoAP Mapping July 2014

 3. A CoAP 2.03 (Valid) response only (1) confirms that the request
 ETag is valid and (2) provides a new Max-Age value. HTTP 304
 (Not Modified) also updates some header fields of a stored
 response. A non-caching proxy may not have enough information to
 fill in the required values in the HTTP 304 (Not Modified)
 response, so it may not be advisable for a non-caching proxy to
 provoke the 2.03 (Valid) response by forwarding an ETag. A
 caching proxy will fill the information out of the cache.

 4. A 200 response to a CoAP 2.03 occurs only when the proxy is
 caching and translated a HTTP request (without validation
 request) to a CoAP request that includes validation, for
 efficiency. The proxy receiving 2.03 updates the freshness of
 the cached representation and returns the entire representation
 to the HTTP client.

 5. The HTTP code 401 Unauthorized MUST NOT be used, as long as in
 CoAP there is no equivalent defined of the required WWW-
 Authenticate header (Section 3.1 of [RFC7235]).

 6. In some cases a proxy receiving 4.02 may retry the request with
 less CoAP Options in the hope that the server will understand the
 newly formulated request. For example, if the proxy tried using
 a Block Option which was not recognised by the CoAP server it may
 retry without that Block Option.

 7. The HTTP code "405 Method Not Allowed" MUST NOT be used since
 CoAP does not provide enough information to determine a value for
 the required "Allow" response-header field.

 8. The value of the HTTP "Retry-After" response-header field is
 taken from the value of the CoAP Max-Age Option, if present.

 9. This CoAP response can only happen if the proxy itself is
 configured to use a CoAP Forward Proxy to execute some, or all,
 of its CoAP requests.

6.3. Media Type mapping

 A HC Proxy translates HTTP media types (Section 3.1.1.1 of [RFC7231])
 and content encodings (Section 3.1.2.1 of [RFC7231]) into CoAP
 content formats (Section 12.3 of [RFC7252]).

 Media type translation can happen in GET, PUT or POST requests going
 from HTTP to CoAP, and in 2.xx (i.e. successful) responses going from
 CoAP to HTTP. Specifically, PUT and POST need to map the Content-
 Type and Content-Encoding HTTP headers into a CoAP Content-Format
 option, whereas GET needs to map Accept and Accept-Encoding HTTP

Castellani, et al. Expires January 5, 2015 [Page 16]

Internet-Draft HTTP-CoAP Mapping July 2014

 headers into a CoAP Accept option. On the way back, the CoAP
 Content-Format option is renormalised into a suitable HTTP Content-
 Type and Content-Encoding combination.

 An HTTP request carrying a Content-Type and Content-Encoding
 combination which the HC Proxy is unable to map to an equivalent CoAP
 Content-Format, SHALL elicit a 415 (Unsupported Media Type) response
 by the HC Proxy.

 If the HC Proxy receives a CoAP response with a Content-Format that
 it does not recognise (for example because the value has been
 registered after the proxy has been deployed), then it is allowed to
 either return a HTTP entity without a Content-Type header, or examine
 the data to determine its type on the fly.

 On the content negotiation side, failing to map Accept and Accept-
 Encoding headers SHOULD be silently ignored: the HC Proxy SHOULD
 therefore forward the request with no Accept option.

 While the CoAP to HTTP direction has always a well defined mapping,
 the HTTP to CoAP direction is more problematic because the source
 set, i.e., potentially 1000+ IANA registered media types, is much
 bigger than the destination set, i.e. the mere 6 values initially
 defined in Section 12.3 of [RFC7252].

 Depending on the tight/loose coupling with the application(s) for
 which it proxies, the HC Proxy could implement different media-type
 mappings.

 When tightly coupled, the HC Proxy knows exactly which content
 formats are supported by the applications, and can be strict when
 enforcing its forwarding policies in general, and the media-type
 mapping in particular.

 On the other side, when the HC Proxy is a general purpose application
 layer gateway, being too strict could significantly reduce the amount
 of traffic that it’d be able to successfully forward. In this cases,
 the "loose" media-type mapping detailed in Section 6.3.1 MAY be
 implemented.

 The latter grants unconstrained evolution of the surrounding
 ecosystem, at the cost of allowing more attack surface. In fact, as
 a result of such strategy, payloads would be forwarded more liberally
 across the unconstrained/constrained boundary of the communication
 path. Therefore, when applied, other forms of access control must be
 set in place to avoid unauthorised users to deplete or abuse systems
 and network resources.

Castellani, et al. Expires January 5, 2015 [Page 17]

Internet-Draft HTTP-CoAP Mapping July 2014

6.3.1. Loose Media Type Mapping

 By structuring the type information in a super-class (e.g. "text")
 followed by a finer grained sub-class (e.g. "html"), and optional
 parameters (e.g. "charset=utf-8"), Internet media types provide a
 rich and scalable framework for encoding the type of any given
 entity.

 This approach is not applicable to CoAP, where Content Formats
 conflate an Internet media type (potentially with specific
 parameters) and a content encoding into one small integer value.

 To remedy this loss of flexibility, we introduce the concept of a
 "loose" media type mapping, where media-types that are
 specialisations of a more generic media-type can be aliased to their
 super-class and then mapped (if possible) to one of CoAP content
 formats. For example, "application/soap+xml" can be aliased to
 "application/xml", which has a known conversion to CoAP. In the
 context of this "loose" media type mapping, "application/octet-
 stream" can be used as a fall back when no better alias is found for
 a specific media-type.

 Table 2 defines the default lookup table for the "loose" media-type
 mapping. Given an input media-type, the table returns its best
 generalised media-type using longest prefix match.

 +---------------------+--------------------------+
 | Internet media-type | Generalised media-type |
 +---------------------+--------------------------+
 | application/*+xml | application/xml |
 | application/*+json | application/json |
 | text/xml | application/xml |
 | text/* | text/plain |
 | */* | application/octet-stream |
 +---------------------+--------------------------+

 Table 2: Media type generalisation

 The "loose" media-type mapping is an OPTIONAL feature.
 Implementations supporting this kind of mapping SHOULD provide a
 flexible way to define the set of media-type generalisations allowed.

6.3.2. Internet Media Type to Content Format Mapping Algorithm

 This section defines the algorithm used to map an Internet media type
 to its correspondent CoAP content format.

Castellani, et al. Expires January 5, 2015 [Page 18]

Internet-Draft HTTP-CoAP Mapping July 2014

 The algorithm uses the mapping table defined in Section 12.3 of
 [RFC7252] plus, possibly, any locally defined extension of it.
 Optionally, the table and lookup mechanism described in Section 6.3.1
 can be used if the implementation chooses so.

 Note that the algorithm may have side effects on the associated
 representation (see also Section 6.3.3).

 In the following:

 o C-T, C-E, and C-F stand for the values of the Content-Type (or
 Accept), Content-Encoding (or Accept-Encoding) HTTP headers, and
 Content-Format CoAP option respectively.

 o If C-E is not given it is assumed to be "identity".

 o MAP is the mandatory lookup table, GMAP is the optional
 generalised table.

 INPUT: C-T and C-E
 OUTPUT: C-F or Fail

 1. if no C-T: return Fail
 2. C-F = MAP[C-T, C-E]
 3. if C-F is not None: return C-F
 4. if C-E is not "identity":
 5. if C-E is supported (e.g. gzip):
 6. decode the representation accordingly
 7. set C-E to "identity"
 8. else:
 9. return Fail
 10. repeat steps 2. and 3.
 11. if C-T allows a non-lossy transformation into \
 12. one of the supported C-F:
 13. transcode the representation accordingly
 14. return C-F
 15. if GMAP is defined:
 16. C-F = GMAP[C-T]
 17. if C-F is not None: return C-F
 18. return Fail

 Figure 2

6.3.3. Content Transcoding

 As noted in Section 6.3.2, the process of mapping the type of the
 resource can have side effects on the forwarded entity body.

Castellani, et al. Expires January 5, 2015 [Page 19]

Internet-Draft HTTP-CoAP Mapping July 2014

 This may be caused by the removal or addition of a specific content
 encoding, or because the HC Proxy decides to transcode the
 representation to a different (compatible) format. The latter proves
 useful when an optimised version of a specific format exists. For
 example an XML-encoded resource could be transcoded to EXI, or a
 JSON-encoded resource into CBOR [RFC7049], effectively achieving
 compression without losing any information.

 Payload transcoding (see steps 11-14 of Figure 2) is an OPTIONAL
 feature. Implementations supporting this feature SHOULD provide a
 flexible way to define the set of transcodings allowed.

6.4. Caching and Congestion Control

 A HC Proxy SHOULD limit the number of requests to CoAP servers by
 responding, where applicable, with a cached representation of the
 resource.

 Duplicate idempotent pending requests by a HC Proxy to the same CoAP
 resource SHOULD in general be avoided, by duplexing the response to
 the requesting HTTP clients without duplicating the CoAP request.

 If the HTTP client times out and drops the HTTP session to the HC
 Proxy (closing the TCP connection) after the HTTP request was made, a
 HC Proxy SHOULD wait for the associated CoAP response and cache it if
 possible. Further requests to the HC Proxy for the same resource can
 use the result present in cache, or, if a response has still to come,
 the HTTP requests will wait on the open CoAP session.

 According to [RFC7252], a proxy MUST limit the number of outstanding
 interactions to a given CoAP server to NSTART. To limit the amount
 of aggregate traffic to a constrained network, the HC Proxy SHOULD
 also pose a limit to the number of concurrent CoAP requests pending
 on the same constrained network; further incoming requests MAY either
 be queued or dropped (returning 503 Service Unavailable). This limit
 and the proxy queueing/dropping behavior SHOULD be configurable. In
 order to efficiently apply this congestion control, the HC Proxy
 SHOULD be SS placed.

 Resources experiencing a high access rate coupled with high
 volatility MAY be observed [I-D.ietf-core-observe] by the HC Proxy to
 keep their cached representation fresh while minimizing the number
 CoAP messages. See Section 6.5.

Castellani, et al. Expires January 5, 2015 [Page 20]

Internet-Draft HTTP-CoAP Mapping July 2014

6.5. Cache Refresh via Observe

 There are cases where using the CoAP observe protocol
 [I-D.ietf-core-observe] to handle proxy cache refresh is preferable
 to the validation mechanism based on ETag as defined in [RFC7252].
 Such scenarios include, but are not limited to, sleepy nodes -- with
 possibly high variance in requests’ distribution -- which would
 greatly benefit from a server driven cache update mechanism. Ideal
 candidates would also be crowded or very low throughput networks,
 where reduction of the total number of exchanged messages is an
 important requirement.

 This subsection aims at providing a practical evaluation method to
 decide whether the refresh of a cached resource R is more efficiently
 handled via ETag validation or by establishing an observation on R.

 Let T_R be the mean time between two client requests to resource R,
 let F_R be the freshness lifetime of R representation, and let M_R be
 the total number of messages exchanged towards resource R. If we
 assume that the initial cost for establishing the observation is
 negligible, an observation on R reduces M_R iff T_R < 2*F_R with
 respect to using ETag validation, that is iff the mean arrival time
 of requests for resource R is greater than half the refresh rate of
 R.

 When using observations M_R is always upper bounded by 2*F_R: in the
 constrained network no more than 2*F_R messages will be generated
 towards resource R.

6.6. Use of CoAP Blockwise Transfer

 A HC Proxy SHOULD support CoAP blockwise transfers
 [I-D.ietf-core-block] to allow transport of large CoAP payloads while
 avoiding excessive link-layer fragmentation in LLNs, and to cope with
 small datagram buffers in CoAP end-points as described in [RFC7252]
 Section 4.6.

 A HC Proxy SHOULD attempt to retry a payload-carrying CoAP PUT or
 POST request with blockwise transfer if the destination CoAP server
 responded with 4.13 (Request Entity Too Large) to the original
 request. A HC Proxy SHOULD attempt to use blockwise transfer when
 sending a CoAP PUT or POST request message that is larger than a
 value BLOCKWISE_THRESHOLD. The value of BLOCKWISE_THRESHOLD MAY be
 implementation-specific, for example calculated based on a known or
 typical UDP datagram buffer size for CoAP end-points, or set to N
 times the size of a link-layer frame where e.g. N=5, or preset to a
 known IP MTU value, or set to a known Path MTU value. The value

Castellani, et al. Expires January 5, 2015 [Page 21]

Internet-Draft HTTP-CoAP Mapping July 2014

 BLOCKWISE_THRESHOLD or parameters from which it is calculated SHOULD
 be configurable in a proxy implementation.

 The HC Proxy SHOULD detect CoAP end-points not supporting blockwise
 transfers by checking for a 4.02 (Bad Option) response returned by an
 end-point in response to a CoAP request with a Block* Option. This
 allows the HC Proxy to be more efficient, not attempting repeated
 blockwise transfers to CoAP servers that do not support it. However
 if a request payload is too large to be sent as a single CoAP request
 and blockwise transfer would be unavoidable, the proxy still SHOULD
 attempt blockwise transfer on such an end-point before returning 413
 (Request Entity Too Large) to the HTTP client.

 For improved latency a HC Proxy MAY initiate a blockwise CoAP request
 triggered by an incoming HTTP request even when the HTTP request
 message has not yet been fully received, but enough data has been
 received to send one or more data blocks to a CoAP server already.
 This is particularly useful on slow client-to-proxy connections.

6.7. Security Translation

 A HC proxy SHOULD implement explicit rules for security context
 translations. A translation may involve e.g. applying a rule that
 any "https" request is translated to a "coaps" request, or e.g.
 applying a rule that a "https" request is translated to an unsecured
 "coap" request. Another rule could specify the security policy and
 parameters used for DTLS connections. Such rules will largely depend
 on the application and network context in which a proxy is applied.
 To enable widest possible use of a proxy implementation, these rules
 SHOULD be configurable in a HC proxy.

 If a policy for access to ’coaps’ URIs is configurable in a HC proxy,
 it is RECOMMENDED that the policy is by default configured to
 disallow access to any ’coaps’ URI by a HTTP client using an
 unsecured (non-TLS) connection. Naturally, a user MAY reconfigure
 the policy to allow such access in specific cases.

6.8. Other guidelines

 For long delays of a CoAP server, the HTTP client or any other proxy
 in between MAY timeout. Further discussion of timeouts in HTTP is
 available in Section 6.2.4 of [RFC7230].

 A HC Proxy MUST define an internal timeout for each pending CoAP
 request, because the CoAP server may silently die before completing
 the request. The timeout value SHOULD be approximately less than or
 equal to MAX_RTT defined in [RFC7252].

Castellani, et al. Expires January 5, 2015 [Page 22]

Internet-Draft HTTP-CoAP Mapping July 2014

 When the DNS protocol is not used between CoAP nodes in a constrained
 network, defining valid FQDN (i.e., DNS entries) for constrained CoAP
 servers, where possible, MAY help HTTP clients to access the
 resources offered by these servers via a HC proxy.

 HTTP connection pipelining (section 6.2.2.1 of [RFC7230]) MAY be
 supported by the proxy and is transparent to the CoAP network: the HC
 Proxy will sequentially serve the pipelined requests by issuing
 different CoAP requests.

 It is expected that the HC function will often be implemented in
 software on the proxy. Many different software approaches are
 possible, including using CGI [RFC3875] as an interface between the
 HTTP layer and the protocol translation engine.

7. IANA Considerations

 This memo includes no request to IANA.

8. Security Considerations

 The security concerns raised in Section 15.7 of [RFC2616] also apply
 to the HC Proxy scenario. In fact, the HC Proxy is a trusted (not
 rarely a transparently trusted) component in the network path.

 The trustworthiness assumption on the HC Proxy cannot be dropped.
 Even if we had a blind, bi-directional, end-to-end, tunneling
 facility like the one provided by the CONNECT method in HTTP, and
 also assuming the existence of a DTLS-TLS transparent mapping, the
 two tunneled ends should be speaking the same application protocol,
 which is not the case. Basically, the protocol translation function
 is a core duty of the HC Proxy that can’t be removed, and makes it a
 necessarily trusted, impossible to bypass, component in the
 communication path.

 A reverse proxy deployed at the boundary of a constrained network is
 an easy single point of failure for reducing availability. As such,
 a special care should be taken in designing, developing and operating
 it, keeping in mind that, in most cases, it could have fewer
 limitations than the constrained devices it is serving.

 The following sub paragraphs categorize and argue about a set of
 specific security issues related to the translation, caching and
 forwarding functionality exposed by a HC Proxy module.

Castellani, et al. Expires January 5, 2015 [Page 23]

Internet-Draft HTTP-CoAP Mapping July 2014

8.1. Traffic overflow

 Due to the typically constrained nature of CoAP nodes, particular
 attention SHOULD be posed in the implementation of traffic reduction
 mechanisms (see Section 6.4), because inefficient implementations can
 be targeted by unconstrained Internet attackers. Bandwidth or
 complexity involved in such attacks is very low.

 An amplification attack to the constrained network may be triggered
 by a multicast request generated by a single HTTP request mapped to a
 CoAP multicast resource, as considered in Section TBD of [RFC7252].

 The impact of this amplification technique is higher than an
 amplification attack carried out by a malicious constrained device
 (e.g. ICMPv6 flooding, like Packet Too Big, or Parameter Problem on
 a multicast destination [RFC4732]), since it does not require direct
 access to the constrained network.

 The feasibility of this attack, disruptive in terms of CoAP server
 availability, can be limited by access controlling the exposed HTTP
 multicast resource, so that only known/authorized users access such
 URIs.

8.2. Handling Secured Exchanges

 It is possible that the request from the client to the HC Proxy is
 sent over a secured connection. However, there may or may not exist
 a secure connection mapping to the other protocol. For example, a
 secure distribution method for multicast traffic is complex and MAY
 not be implemented (see [I-D.ietf-core-groupcomm]).

 By default, a HC Proxy SHOULD reject any secured client request if
 there is no configured security policy mapping. This recommendation
 MAY be relaxed in case the destination network is believed to be
 secured by other, complementary, means. E.g.: assumed that CoAP
 nodes are isolated behind a firewall (e.g. as the SS HC proxy
 deployment shown in Figure 1), the HC Proxy may be configured to
 translate the incoming HTTPS request using plain CoAP (i.e. NoSec
 mode.)

 The HC URI mapping MUST NOT map to HTTP (see Section 5) a CoAP
 resource intended to be accessed only using HTTPS.

 A secured connection that is terminated at the HC Proxy, i.e. the
 proxy decrypts secured data locally, raises an ambiguity about the
 cacheability of the requested resource. The HC Proxy SHOULD NOT
 cache any secured content to avoid any leak of secured information.
 However in some specific scenario, a security/efficiency trade-off

Castellani, et al. Expires January 5, 2015 [Page 24]

Internet-Draft HTTP-CoAP Mapping July 2014

 could motivate caching secured information; in that case the caching
 behavior MAY be tuned to some extent on a per-resource basis.

8.3. URI Mapping

 The following risks related to the URI mapping described in Section 5
 have been identified:

 DoS attack on the internal network.
 Default deny any Target CoAP URI whose authority is (or maps to) a
 multicast address. Then explicitly whitelist multicast resources
 that are allowed to be de-referenced.

 Leaking information on the internal network resources and topology.
 Default deny any Target CoAP URI (especially /.well-known/core is
 the resource to be protected), and then explicit whitelist
 resources that are allowed to be seen from outside.

 Reduced privacy due to the mechanics of the URI mapping.
 The internal CoAP Target resource is totally transparent from
 outside: an HC Proxy implementing a HTTPS-only interface makes the
 Target CoAP URI totally opaque to a passive attacker.

9. Acknowledgements

 An initial version of the table found in Section 6.2 has been
 provided in revision -05 of [RFC7252]. Special thanks to Peter van
 der Stok for countless comments and discussions on this document,
 that contributed to its current structure and text.

 Thanks to Carsten Bormann, Zach Shelby, Michele Rossi, Nicola Bui,
 Michele Zorzi, Klaus Hartke, Cullen Jennings, Kepeng Li, Brian Frank,
 Peter Saint-Andre, Kerry Lynn, Linyi Tian, Dorothy Gellert, Francesco
 Corazza for helpful comments and discussions that have shaped the
 document.

 The research leading to these results has received funding from the
 European Community’s Seventh Framework Programme [FP7/2007-2013]
 under grant agreement n. [251557].

10. References

10.1. Normative References

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Blockwise transfers in CoAP",
 draft-ietf-core-block-12 (work in progress), June 2013.

Castellani, et al. Expires January 5, 2015 [Page 25]

Internet-Draft HTTP-CoAP Mapping July 2014

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP", draft-ietf-
 core-observe-14 (work in progress), June 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570, March 2012.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, August 2012.

 [RFC7230] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing", RFC 7230, June
 2014.

 [RFC7231] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content", RFC 7231, June 2014.

 [RFC7235] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Authentication", RFC 7235, June 2014.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, June 2014.

10.2. Informative References

 [I-D.ietf-core-groupcomm]
 Rahman, A. and E. Dijk, "Group Communication for CoAP",
 draft-ietf-core-groupcomm-19 (work in progress), June
 2014.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3040] Cooper, I., Melve, I., and G. Tomlinson, "Internet Web
 Replication and Caching Taxonomy", RFC 3040, January 2001.

 [RFC3875] Robinson, D. and K. Coar, "The Common Gateway Interface
 (CGI) Version 1.1", RFC 3875, October 2004.

Castellani, et al. Expires January 5, 2015 [Page 26]

Internet-Draft HTTP-CoAP Mapping July 2014

 [RFC4732] Handley, M., Rescorla, E., and IAB, "Internet Denial-of-
 Service Considerations", RFC 4732, December 2006.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, October 2013.

Appendix A. Change Log

 [Note to RFC Editor: Please remove this section before publication.]

 Changes from ietf-03 to ietf-04:

 o Expanded use case descriptions in Section 4;

 o Fixed/enhanced discovery examples in Section 5.4.1;

 o Addressed Ticket #365 (Add text on media-type conversion by HTTP-
 CoAP proxy) in new section 6.3.1 (Generalized media-type mapping)
 and new section 6.3.2 (Content translation);

 o Updated HTTPBis WG draft references to recently published RFC
 numbers.

 o Various editorial improvements.

 Changes from ietf-02 to ietf-03:

 o Closed Ticket #351 "Add security implications of proposed default
 HC URI mapping";

 o Closed Ticket #363 "Remove CoAP scheme in default HTTP-CoAP URI
 mapping";

 o Closed Ticket #364 "Add discovery of HTTP-CoAP mapping
 resource(s)".

 Changes from ietf-01 to ietf-02:

 o Selection of single default URI mapping proposal as proposed to WG
 mailing list 2013-10-09.

 Changes from ietf-00 to ietf-01:

 o Added URI mapping proposals to Section 4 as per the Email
 proposals to WG mailing list from Esko.

Castellani, et al. Expires January 5, 2015 [Page 27]

Internet-Draft HTTP-CoAP Mapping July 2014

Authors’ Addresses

 Angelo P. Castellani
 University of Padova
 Via Gradenigo 6/B
 Padova 35131
 Italy

 Email: angelo@castellani.net

 Salvatore Loreto
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: salvatore.loreto@ericsson.com

 Akbar Rahman
 InterDigital Communications, LLC
 1000 Sherbrooke Street West
 Montreal H3A 3G4
 Canada

 Phone: +1 514 585 0761
 Email: Akbar.Rahman@InterDigital.com

 Thomas Fossati
 Alcatel-Lucent
 3 Ely Road
 Milton, Cambridge CB24 6DD
 UK

 Email: thomas.fossati@alcatel-lucent.com

 Esko Dijk
 Philips Research
 High Tech Campus 34
 Eindhoven 5656 AE
 The Netherlands

 Email: esko.dijk@philips.com

Castellani, et al. Expires January 5, 2015 [Page 28]

