
CoRE Working Group Z. Shelby
Internet-Draft Sensinode
Intended status: Standards Track K. Hartke
Expires: December 30, 2013 C. Bormann
 Universitaet Bremen TZI
 June 28, 2013

 Constrained Application Protocol (CoAP)
 draft-ietf-core-coap-18

Abstract

 The Constrained Application Protocol (CoAP) is a specialized web
 transfer protocol for use with constrained nodes and constrained
 (e.g., low-power, lossy) networks. The nodes often have 8-bit
 microcontrollers with small amounts of ROM and RAM, while constrained
 networks such as 6LoWPAN often have high packet error rates and a
 typical throughput of 10s of kbit/s. The protocol is designed for
 machine-to-machine (M2M) applications such as smart energy and
 building automation.

 CoAP provides a request/response interaction model between
 application endpoints, supports built-in discovery of services and
 resources, and includes key concepts of the Web such as URIs and
 Internet media types. CoAP is designed to easily interface with HTTP
 for integration with the Web while meeting specialized requirements
 such as multicast support, very low overhead and simplicity for
 constrained environments.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 30, 2013.

Shelby, et al. Expires December 30, 2013 [Page 1]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 5
 1.1. Features . 5
 1.2. Terminology . 6
 2. Constrained Application Protocol 9
 2.1. Messaging Model . 10
 2.2. Request/Response Model 12
 2.3. Intermediaries and Caching 14
 2.4. Resource Discovery 15
 3. Message Format . 15
 3.1. Option Format . 17
 3.2. Option Value Formats 19
 4. Message Transmission . 20
 4.1. Messages and Endpoints 20
 4.2. Messages Transmitted Reliably 20
 4.3. Messages Transmitted Without Reliability 22
 4.4. Message Correlation 23
 4.5. Message Deduplication 24
 4.6. Message Size . 24
 4.7. Congestion Control 25
 4.8. Transmission Parameters 26
 4.8.1. Changing The Parameters 27
 4.8.2. Time Values derived from Transmission Parameters . . 28
 5. Request/Response Semantics 30
 5.1. Requests . 30
 5.2. Responses . 30
 5.2.1. Piggy-backed . 32
 5.2.2. Separate . 32
 5.2.3. Non-confirmable 33
 5.3. Request/Response Matching 33
 5.3.1. Token . 34
 5.3.2. Request/Response Matching Rules 35

Shelby, et al. Expires December 30, 2013 [Page 2]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 5.4. Options . 35
 5.4.1. Critical/Elective 36
 5.4.2. Proxy Unsafe/Safe-to-Forward and NoCacheKey 37
 5.4.3. Length . 38
 5.4.4. Default Values 38
 5.4.5. Repeatable Options 38
 5.4.6. Option Numbers 38
 5.5. Payloads and Representations 39
 5.5.1. Representation 39
 5.5.2. Diagnostic Payload 40
 5.5.3. Selected Representation 40
 5.5.4. Content Negotiation 40
 5.6. Caching . 41
 5.6.1. Freshness Model 42
 5.6.2. Validation Model 42
 5.7. Proxying . 43
 5.7.1. Proxy Operation 43
 5.7.2. Forward-Proxies 45
 5.7.3. Reverse-Proxies 45
 5.8. Method Definitions 46
 5.8.1. GET . 46
 5.8.2. POST . 46
 5.8.3. PUT . 46
 5.8.4. DELETE . 47
 5.9. Response Code Definitions 47
 5.9.1. Success 2.xx . 47
 5.9.2. Client Error 4.xx 49
 5.9.3. Server Error 5.xx 50
 5.10. Option Definitions 51
 5.10.1. Uri-Host, Uri-Port, Uri-Path and Uri-Query 52
 5.10.2. Proxy-Uri and Proxy-Scheme 53
 5.10.3. Content-Format 53
 5.10.4. Accept . 54
 5.10.5. Max-Age . 54
 5.10.6. ETag . 54
 5.10.7. Location-Path and Location-Query 55
 5.10.8. Conditional Request Options 56
 5.10.9. Size1 Option . 57
 6. CoAP URIs . 57
 6.1. coap URI Scheme . 58
 6.2. coaps URI Scheme . 59
 6.3. Normalization and Comparison Rules 59
 6.4. Decomposing URIs into Options 60
 6.5. Composing URIs from Options 61
 7. Discovery . 62
 7.1. Service Discovery . 62
 7.2. Resource Discovery 63
 7.2.1. ’ct’ Attribute 63

Shelby, et al. Expires December 30, 2013 [Page 3]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 8. Multicast CoAP . 64
 8.1. Messaging Layer . 64
 8.2. Request/Response Layer 65
 8.2.1. Caching . 66
 8.2.2. Proxying . 66
 9. Securing CoAP . 66
 9.1. DTLS-secured CoAP . 68
 9.1.1. Messaging Layer 69
 9.1.2. Request/Response Layer 69
 9.1.3. Endpoint Identity 70
 10. Cross-Protocol Proxying between CoAP and HTTP 73
 10.1. CoAP-HTTP Proxying 74
 10.1.1. GET . 74
 10.1.2. PUT . 75
 10.1.3. DELETE . 75
 10.1.4. POST . 75
 10.2. HTTP-CoAP Proxying 76
 10.2.1. OPTIONS and TRACE 76
 10.2.2. GET . 76
 10.2.3. HEAD . 77
 10.2.4. POST . 77
 10.2.5. PUT . 78
 10.2.6. DELETE . 78
 10.2.7. CONNECT . 78
 11. Security Considerations 78
 11.1. Protocol Parsing, Processing URIs 78
 11.2. Proxying and Caching 79
 11.3. Risk of amplification 80
 11.4. IP Address Spoofing Attacks 81
 11.5. Cross-Protocol Attacks 82
 11.6. Constrained node considerations 84
 12. IANA Considerations . 84
 12.1. CoAP Code Registries 84
 12.1.1. Method Codes . 85
 12.1.2. Response Codes 85
 12.2. Option Number Registry 87
 12.3. Content-Format Registry 89
 12.4. URI Scheme Registration 90
 12.5. Secure URI Scheme Registration 91
 12.6. Service Name and Port Number Registration 92
 12.7. Secure Service Name and Port Number Registration 93
 12.8. Multicast Address Registration 94
 13. Acknowledgements . 94
 14. References . 95
 14.1. Normative References 95
 14.2. Informative References 97
 Appendix A. Examples . 100
 Appendix B. URI Examples . 105

Shelby, et al. Expires December 30, 2013 [Page 4]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Appendix C. Changelog . 107
 Authors’ Addresses . 117

1. Introduction

 The use of web services (web APIs) on the Internet has become
 ubiquitous in most applications, and depends on the fundamental
 Representational State Transfer [REST] architecture of the web.

 The Constrained RESTful Environments (CoRE) work aims at realizing
 the REST architecture in a suitable form for the most constrained
 nodes (e.g. 8-bit microcontrollers with limited RAM and ROM) and
 networks (e.g. 6LoWPAN, [RFC4944]). Constrained networks such as
 6LoWPAN support the fragmentation of IPv6 packets into small link-
 layer frames, however incurring significant reduction in packet
 delivery probability. One design goal of CoAP has been to keep
 message overhead small, thus limiting the need for fragmentation.

 One of the main goals of CoAP is to design a generic web protocol for
 the special requirements of this constrained environment, especially
 considering energy, building automation and other machine-to-machine
 (M2M) applications. The goal of CoAP is not to blindly compress HTTP
 [RFC2616], but rather to realize a subset of REST common with HTTP
 but optimized for M2M applications. Although CoAP could be used for
 refashioning simple HTTP interfaces into a more compact protocol, it
 more importantly also offers features for M2M such as built-in
 discovery, multicast support and asynchronous message exchanges.

 This document specifies the Constrained Application Protocol (CoAP),
 which easily translates to HTTP for integration with the existing web
 while meeting specialized requirements such as multicast support,
 very low overhead and simplicity for constrained environments and M2M
 applications.

1.1. Features

 CoAP has the following main features:

 o Constrained web protocol fulfilling M2M requirements.

 o UDP [RFC0768] binding with optional reliability supporting unicast
 and multicast requests.

 o Asynchronous message exchanges.

 o Low header overhead and parsing complexity.

 o URI and Content-type support.

Shelby, et al. Expires December 30, 2013 [Page 5]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 o Simple proxy and caching capabilities.

 o A stateless HTTP mapping, allowing proxies to be built providing
 access to CoAP resources via HTTP in a uniform way or for HTTP
 simple interfaces to be realized alternatively over CoAP.

 o Security binding to Datagram Transport Layer Security (DTLS)
 [RFC6347].

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119] when they appear in ALL CAPS. These words may also appear
 in this document in lower case as plain English words, absent their
 normative meanings.

 This specification requires readers to be familiar with all the terms
 and concepts that are discussed in [RFC2616], including "resource",
 "representation", "cache", and "fresh". In addition, this
 specification defines the following terminology:

 Endpoint
 An entity participating in the CoAP protocol. Colloquially, an
 endpoint lives on a "Node", although "Host" would be more
 consistent with Internet standards usage, and is further
 identified by transport layer multiplexing information that can
 include a UDP port number and a security association
 (Section 4.1).

 Sender
 The originating endpoint of a message. When the aspect of
 identification of the specific sender is in focus, also "source
 endpoint".

 Recipient
 The destination endpoint of a message. When the aspect of
 identification of the specific recipient is in focus, also
 "destination endpoint".

 Client
 The originating endpoint of a request; the destination endpoint of
 a response.

 Server
 The destination endpoint of a request; the originating endpoint of
 a response.

Shelby, et al. Expires December 30, 2013 [Page 6]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Origin Server
 The server on which a given resource resides or is to be created.

 Intermediary
 A CoAP endpoint that acts both as a server and as a client towards
 (possibly via further intermediaries) an origin server. A common
 form of an intermediary is a proxy; several classes of such
 proxies are discussed in this specification.

 Proxy
 An intermediary that mainly is concerned with forwarding requests
 and relaying back responses, possibly performing caching,
 namespace translation, or protocol translation in the process. As
 opposed to intermediaries in the general sense, proxies generally
 do not implement specific application semantics. Based on the
 position in the overall structure of the request forwarding, there
 are two common forms of proxy: forward-proxy and reverse-proxy.
 In some cases, a single endpoint might act as an origin server,
 forward-proxy, or reverse-proxy, switching behavior based on the
 nature of each request.

 Forward-Proxy
 A "forward-proxy" is an endpoint selected by a client, usually via
 local configuration rules, to perform requests on behalf of the
 client, doing any necessary translations. Some translations are
 minimal, such as for proxy requests for "coap" URIs, whereas other
 requests might require translation to and from entirely different
 application-layer protocols.

 Reverse-Proxy
 A "reverse-proxy" is an endpoint that stands in for one or more
 other server(s) and satisfies requests on behalf of these, doing
 any necessary translations. Unlike a forward-proxy, the client
 may not be aware that it is communicating with a reverse-proxy; a
 reverse-proxy receives requests as if it was the origin server for
 the target resource.

 CoAP-to-CoAP Proxy
 A proxy that maps from a CoAP request to a CoAP request, i.e.
 uses the CoAP protocol both on the server and the client side.
 Contrast to cross-proxy.

 Cross-Proxy
 A cross-protocol proxy, or "cross-proxy" for short, is a proxy
 that translates between different protocols, such as a CoAP-to-
 HTTP proxy or an HTTP-to-CoAP proxy. While this specification
 makes very specific demands of CoAP-to-CoAP proxies, there is more
 variation possible in cross-proxies.

Shelby, et al. Expires December 30, 2013 [Page 7]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Confirmable Message
 Some messages require an acknowledgement. These messages are
 called "Confirmable". When no packets are lost, each Confirmable
 message elicits exactly one return message of type Acknowledgement
 or type Reset.

 Non-confirmable Message
 Some other messages do not require an acknowledgement. This is
 particularly true for messages that are repeated regularly for
 application requirements, such as repeated readings from a sensor.

 Acknowledgement Message
 An Acknowledgement message acknowledges that a specific
 Confirmable message arrived. By itself, an Acknowledgement
 message does not indicate success or failure of any request
 encapsulated in the Confirmable message, but the Acknowledgement
 message may also carry a Piggy-Backed Response (q.v.).

 Reset Message
 A Reset message indicates that a specific message (Confirmable or
 Non-confirmable) was received, but some context is missing to
 properly process it. This condition is usually caused when the
 receiving node has rebooted and has forgotten some state that
 would be required to interpret the message. Provoking a Reset
 message (e.g., by sending an Empty Confirmable message) is also
 useful as an inexpensive check of the liveness of an endpoint
 ("CoAP ping").

 Piggy-backed Response
 A Piggy-backed Response is included right in a CoAP
 Acknowledgement (ACK) message that is sent to acknowledge receipt
 of the Request for this Response (Section 5.2.1).

 Separate Response
 When a Confirmable message carrying a Request is acknowledged with
 an Empty message (e.g., because the server doesn’t have the answer
 right away), a Separate Response is sent in a separate message
 exchange (Section 5.2.2).

 Empty Message
 A message with a Code of 0.00; neither a request nor a response.
 An Empty message only contains the four-byte header.

 Critical Option
 An option that would need to be understood by the endpoint
 ultimately receiving the message in order to properly process the
 message (Section 5.4.1). Note that the implementation of critical
 options is, as the name "Option" implies, generally optional:

Shelby, et al. Expires December 30, 2013 [Page 8]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 unsupported critical options lead to an error response or summary
 rejection of the message.

 Elective Option
 An option that is intended to be ignored by an endpoint that does
 not understand it. Processing the message even without
 understanding the option is acceptable (Section 5.4.1).

 Unsafe Option
 An option that would need to be understood by a proxy receiving
 the message in order to safely forward the message
 (Section 5.4.2). Not every critical option is an unsafe option.

 Safe-to-Forward Option
 An option that is intended to be safe for forwarding by a proxy
 that does not understand it. Forwarding the message even without
 understanding the option is acceptable (Section 5.4.2).

 Resource Discovery
 The process where a CoAP client queries a server for its list of
 hosted resources (i.e., links, Section 7).

 Content-Format
 The combination of an Internet media type, potentially with
 specific parameters given, and a content-coding (which is often
 the identity content-coding), identified by a numeric identifier
 defined by the CoAP Content-Format Registry. When the focus is
 less on the numeric identifier than on the combination of these
 characteristics of a resource representation, this is also called
 "representation format".

 Additional terminology for constrained nodes and constrained node
 networks can be found in [I-D.ietf-lwig-terminology].

 In this specification, the term "byte" is used in its now customary
 sense as a synonym for "octet".

 All multi-byte integers in this protocol are interpreted in network
 byte order.

 Where arithmetic is used, this specification uses the notation
 familiar from the programming language C, except that the operator
 "**" stands for exponentiation.

2. Constrained Application Protocol

 The interaction model of CoAP is similar to the client/server model
 of HTTP. However, machine-to-machine interactions typically result

Shelby, et al. Expires December 30, 2013 [Page 9]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 in a CoAP implementation acting in both client and server roles. A
 CoAP request is equivalent to that of HTTP, and is sent by a client
 to request an action (using a method code) on a resource (identified
 by a URI) on a server. The server then sends a response with a
 response code; this response may include a resource representation.

 Unlike HTTP, CoAP deals with these interchanges asynchronously over a
 datagram-oriented transport such as UDP. This is done logically
 using a layer of messages that supports optional reliability (with
 exponential back-off). CoAP defines four types of messages:
 Confirmable, Non-confirmable, Acknowledgement, Reset; method codes
 and response codes included in some of these messages make them carry
 requests or responses. The basic exchanges of the four types of
 messages are somewhat orthogonal to the request/response
 interactions; requests can be carried in Confirmable and Non-
 confirmable messages, and responses can be carried in these as well
 as piggy-backed in Acknowledgement messages.

 One could think of CoAP logically as using a two-layer approach, a
 CoAP messaging layer used to deal with UDP and the asynchronous
 nature of the interactions, and the request/response interactions
 using Method and Response codes (see Figure 1). CoAP is however a
 single protocol, with messaging and request/response just features of
 the CoAP header.

 +----------------------+
 | Application |
 +----------------------+
 +----------------------+ \
 | Requests/Responses | |
 |----------------------| | CoAP
 | Messages | |
 +----------------------+ /
 +----------------------+
 | UDP |
 +----------------------+

 Figure 1: Abstract layering of CoAP

2.1. Messaging Model

 The CoAP messaging model is based on the exchange of messages over
 UDP between endpoints.

 CoAP uses a short fixed-length binary header (4 bytes) that may be
 followed by compact binary options and a payload. This message
 format is shared by requests and responses. The CoAP message format
 is specified in Section 3. Each message contains a Message ID used

Shelby, et al. Expires December 30, 2013 [Page 10]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 to detect duplicates and for optional reliability. (The Message ID
 is compact; its 16-bit size enables up to about 250 messages per
 second from one endpoint to another with default protocol
 parameters.)

 Reliability is provided by marking a message as Confirmable (CON). A
 Confirmable message is retransmitted using a default timeout and
 exponential back-off between retransmissions, until the recipient
 sends an Acknowledgement message (ACK) with the same Message ID (in
 this example, 0x7d34) from the corresponding endpoint; see Figure 2.
 When a recipient is not at all able to process a Confirmable message
 (i.e., not even able to provide a suitable error response), it
 replies with a Reset message (RST) instead of an Acknowledgement
 (ACK).

 Client Server
 | |
 | CON [0x7d34] |
 +----------------->|
 | |
 | ACK [0x7d34] |
 |<-----------------+
 | |

 Figure 2: Reliable message transmission

 A message that does not require reliable transmission, for example
 each single measurement out of a stream of sensor data, can be sent
 as a Non-confirmable message (NON). These are not acknowledged, but
 still have a Message ID for duplicate detection (in this example,
 0x01a0); see Figure 3. When a recipient is not able to process a
 Non-confirmable message, it may reply with a Reset message (RST).

 Client Server
 | |
 | NON [0x01a0] |
 +----------------->|
 | |

 Figure 3: Unreliable message transmission

 See Section 4 for details of CoAP messages.

 As CoAP runs over UDP, it also supports the use of multicast IP
 destination addresses, enabling multicast CoAP requests. Section 8
 discusses the proper use of CoAP messages with multicast addresses
 and precautions for avoiding response congestion.

Shelby, et al. Expires December 30, 2013 [Page 11]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Several security modes are defined for CoAP in Section 9 ranging from
 no security to certificate-based security. This document specifies a
 binding to DTLS for securing the protocol; the use of IPsec with CoAP
 is discussed in [I-D.bormann-core-ipsec-for-coap].

2.2. Request/Response Model

 CoAP request and response semantics are carried in CoAP messages,
 which include either a Method code or Response code, respectively.
 Optional (or default) request and response information, such as the
 URI and payload media type are carried as CoAP options. A Token is
 used to match responses to requests independently from the underlying
 messages (Section 5.3). (Note that the Token is a concept separate
 from the Message ID.)

 A request is carried in a Confirmable (CON) or Non-confirmable (NON)
 message, and if immediately available, the response to a request
 carried in a Confirmable message is carried in the resulting
 Acknowledgement (ACK) message. This is called a piggy-backed
 response, detailed in Section 5.2.1. (There is no need for
 separately acknowledging a piggy-backed response, as the client will
 retransmit the request if the Acknowledgement message carrying the
 piggy-backed response is lost.) Two examples for a basic GET request
 with piggy-backed response are shown in Figure 4, one successful, one
 resulting in a 4.04 (Not Found) response.

 Client Server Client Server
 | | | |
 | CON [0xbc90] | | CON [0xbc91] |
 | GET /temperature | | GET /temperature |
 | (Token 0x71) | | (Token 0x72) |
 +----------------->| +----------------->|
 | | | |
 | ACK [0xbc90] | | ACK [0xbc91] |
 | 2.05 Content | | 4.04 Not Found |
 | (Token 0x71) | | (Token 0x72) |
 | "22.5 C" | | "Not found" |
 |<-----------------+ |<-----------------+
 | | | |

 Figure 4: Two GET requests with piggy-backed responses

Shelby, et al. Expires December 30, 2013 [Page 12]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 If the server is not able to respond immediately to a request carried
 in a Confirmable message, it simply responds with an Empty
 Acknowledgement message so that the client can stop retransmitting
 the request. When the response is ready, the server sends it in a
 new Confirmable message (which then in turn needs to be acknowledged
 by the client). This is called a separate response, as illustrated
 in Figure 5 and described in more detail in Section 5.2.2.

 Client Server
 | |
 | CON [0x7a10] |
 | GET /temperature |
 | (Token 0x73) |
 +----------------->|
 | |
 | ACK [0x7a10] |
 |<-----------------+
 | |
 ... Time Passes ...
 | |
 | CON [0x23bb] |
 | 2.05 Content |
 | (Token 0x73) |
 | "22.5 C" |
 |<-----------------+
 | |
 | ACK [0x23bb] |
 +----------------->|
 | |

 Figure 5: A GET request with a separate response

 If a request is sent in a Non-confirmable message, then the response
 is sent using a new Non-confirmable message, although the server may
 instead send a Confirmable message. This type of exchange is
 illustrated in Figure 6.

 Client Server
 | |
 | NON [0x7a11] |
 | GET /temperature |
 | (Token 0x74) |
 +----------------->|
 | |
 | NON [0x23bc] |
 | 2.05 Content |
 | (Token 0x74) |
 | "22.5 C" |

Shelby, et al. Expires December 30, 2013 [Page 13]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 |<-----------------+
 | |

 Figure 6: A NON request and response

 CoAP makes use of GET, PUT, POST and DELETE methods in a similar
 manner to HTTP, with the semantics specified in Section 5.8. (Note
 that the detailed semantics of CoAP methods are "almost, but not
 entirely unlike" [HHGTTG] those of HTTP methods: Intuition taken from
 HTTP experience generally does apply well, but there are enough
 differences that make it worthwhile to actually read the present
 specification.)

 Methods beyond the basic four can be added to CoAP in separate
 specifications. New methods do not necessarily have to use requests
 and responses in pairs. Even for existing methods, a single request
 may yield multiple responses, e.g. for a multicast request
 (Section 8) or with the Observe option [I-D.ietf-core-observe].

 URI support in a server is simplified as the client already parses
 the URI and splits it into host, port, path and query components,
 making use of default values for efficiency. Response codes relate
 to a small subset of HTTP response codes with a few CoAP specific
 codes added, as defined in Section 5.9.

2.3. Intermediaries and Caching

 The protocol supports the caching of responses in order to
 efficiently fulfill requests. Simple caching is enabled using
 freshness and validity information carried with CoAP responses. A
 cache could be located in an endpoint or an intermediary. Caching
 functionality is specified in Section 5.6.

 Proxying is useful in constrained networks for several reasons,
 including network traffic limiting, to improve performance, to access
 resources of sleeping devices or for security reasons. The proxying
 of requests on behalf of another CoAP endpoint is supported in the
 protocol. When using a proxy, the URI of the resource to request is
 included in the request, while the destination IP address is set to
 the address of the proxy. See Section 5.7 for more information on
 proxy functionality.

 As CoAP was designed according to the REST architecture [REST] and
 thus exhibits functionality similar to that of the HTTP protocol, it
 is quite straightforward to map from CoAP to HTTP and from HTTP to
 CoAP. Such a mapping may be used to realize an HTTP REST interface
 using CoAP, or for converting between HTTP and CoAP. This conversion
 can be carried out by a cross-protocol proxy ("cross-proxy"), which

Shelby, et al. Expires December 30, 2013 [Page 14]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 converts the method or response code, media type, and options to the
 corresponding HTTP feature. Section 10 provides more detail about
 HTTP mapping.

2.4. Resource Discovery

 Resource discovery is important for machine-to-machine interactions,
 and is supported using the CoRE Link Format [RFC6690] as discussed in
 Section 7.

3. Message Format

 CoAP is based on the exchange of compact messages which, by default,
 are transported over UDP (i.e. each CoAP message occupies the data
 section of one UDP datagram). CoAP may also be used over Datagram
 Transport Layer Security (DTLS) (see Section 9.1). It could also be
 used over other transports such as SMS, TCP or SCTP, the
 specification of which is out of this document’s scope. (UDP-lite
 [RFC3828] and UDP zero checksum [RFC6936] are not supported by CoAP.)

 CoAP messages are encoded in a simple binary format. The message
 format starts with a fixed-size 4-byte header. This is followed by a
 variable-length Token value which can be between 0 and 8 bytes long.
 Following the Token value comes a sequence of zero or more CoAP
 Options in Type-Length-Value (TLV) format, optionally followed by a
 payload which takes up the rest of the datagram.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver| T | TKL | Code | Message ID |
 +-+
 | Token (if any, TKL bytes) ...
 +-+
 | Options (if any) ...
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+

Shelby, et al. Expires December 30, 2013 [Page 15]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Figure 7: Message Format

 The fields in the header are defined as follows:

 Version (Ver): 2-bit unsigned integer. Indicates the CoAP version
 number. Implementations of this specification MUST set this field
 to 1 (01 binary). Other values are reserved for future versions.
 Messages with unknown version numbers MUST be silently ignored.

 Type (T): 2-bit unsigned integer. Indicates if this message is of
 type Confirmable (0), Non-confirmable (1), Acknowledgement (2) or
 Reset (3). The semantics of these message types are defined in
 Section 4.

 Token Length (TKL): 4-bit unsigned integer. Indicates the length of
 the variable-length Token field (0-8 bytes). Lengths 9-15 are
 reserved, MUST NOT be sent, and MUST be processed as a message
 format error.

 Code: 8-bit unsigned integer, split into a 3-bit class (most
 significant bits) and a 5-bit detail (least significant bits),
 documented as c.dd where c is a digit from 0 to 7 for the 3-bit
 subfield and dd are two digits from 00 to 31 for the 5-bit
 subfield. The class can indicate a request (0), a success
 response (2), a client error response (4), or a server error
 response (5). (All other class values are reserved.) As a
 special case, Code 0.00 indicates an Empty message. In case of a
 request, the Code field indicates the Request Method; in case of a
 response a Response Code. Possible values are maintained in the
 CoAP Code Registries (Section 12.1). The semantics of requests
 and responses are defined in Section 5.

 Message ID: 16-bit unsigned integer in network byte order. Used for
 the detection of message duplication, and to match messages of
 type Acknowledgement/Reset to messages of type Confirmable/Non-
 confirmable. The rules for generating a Message ID and matching
 messages are defined in Section 4.

 The header is followed by the Token value, which may be 0 to 8 bytes,
 as given by the Token Length field. The Token value is used to
 correlate requests and responses. The rules for generating a Token
 and correlating requests and responses are defined in Section 5.3.1.

 Header and Token are followed by zero or more Options (Section 3.1).
 An Option can be followed by the end of the message, by another
 Option, or by the Payload Marker and the payload.

Shelby, et al. Expires December 30, 2013 [Page 16]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Following the header, token, and options, if any, comes the optional
 payload. If present and of non-zero length, it is prefixed by a
 fixed, one-byte Payload Marker (0xFF) which indicates the end of
 options and the start of the payload. The payload data extends from
 after the marker to the end of the UDP datagram, i.e., the Payload
 Length is calculated from the datagram size. The absence of the
 Payload Marker denotes a zero-length payload. The presence of a
 marker followed by a zero-length payload MUST be processed as a
 message format error.

 Implementation Note: The byte value 0xFF may also occur within an
 option length or value, so simple byte-wise scanning for 0xFF is
 not a viable technique for finding the payload marker. The byte
 0xFF has the meaning of a payload marker only where the beginning
 of another option could occur.

3.1. Option Format

 CoAP defines a number of options which can be included in a message.
 Each option instance in a message specifies the Option Number of the
 defined CoAP option, the length of the Option Value and the Option
 Value itself.

 Instead of specifying the Option Number directly, the instances MUST
 appear in order of their Option Numbers and a delta encoding is used
 between them: The Option Number for each instance is calculated as
 the sum of its delta and the Option Number of the preceding instance
 in the message. For the first instance in a message, a preceding
 option instance with Option Number zero is assumed. Multiple
 instances of the same option can be included by using a delta of
 zero.

 Option Numbers are maintained in the CoAP Option Number Registry
 (Section 12.2). See Section 5.4 for the semantics of the options
 defined in this document.

 0 1 2 3 4 5 6 7
 +---------------+---------------+
 | | |
 | Option Delta | Option Length | 1 byte
 | | |
 +---------------+---------------+
 \ \
 / Option Delta / 0-2 bytes
 \ (extended) \
 +-------------------------------+
 \ \
 / Option Length / 0-2 bytes

Shelby, et al. Expires December 30, 2013 [Page 17]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 \ (extended) \
 +-------------------------------+
 \ \
 / /
 \ \
 / Option Value / 0 or more bytes
 \ \
 / /
 \ \
 +-------------------------------+

 Figure 8: Option Format

 The fields in an option are defined as follows:

 Option Delta: 4-bit unsigned integer. A value between 0 and 12
 indicates the Option Delta. Three values are reserved for special
 constructs:

 13: An 8-bit unsigned integer follows the initial byte and
 indicates the Option Delta minus 13.

 14: A 16-bit unsigned integer in network byte order follows the
 initial byte and indicates the Option Delta minus 269.

 15: Reserved for the Payload Marker. If the field is set to
 this value but the entire byte is not the payload marker,
 this MUST be processed as a message format error.

 The resulting Option Delta is used as the difference between the
 Option Number of this option and that of the previous option (or
 zero for the first option). In other words, the Option Number is
 calculated by simply summing the Option Delta values of this and
 all previous options before it.

 Option Length: 4-bit unsigned integer. A value between 0 and 12
 indicates the length of the Option Value, in bytes. Three values
 are reserved for special constructs:

 13: An 8-bit unsigned integer precedes the Option Value and
 indicates the Option Length minus 13.

 14: A 16-bit unsigned integer in network byte order precedes the
 Option Value and indicates the Option Length minus 269.

 15: Reserved for future use. If the field is set to this value,
 it MUST be processed as a message format error.

Shelby, et al. Expires December 30, 2013 [Page 18]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Value: A sequence of exactly Option Length bytes. The length and
 format of the Option Value depend on the respective option, which
 MAY define variable length values. See Section 3.2 for the
 formats used in this document; options defined in other documents
 MAY make use of other option value formats.

3.2. Option Value Formats

 The options defined in this document make use of the following option
 value formats.

 empty: A zero-length sequence of bytes.

 opaque: An opaque sequence of bytes.

 uint: A non-negative integer which is represented in network byte
 order using the number of bytes given by the Option Length
 field.

 An option definition may specify a range of permissible
 numbers of bytes; if it has a choice, a sender SHOULD
 represent the integer with as few bytes as possible, i.e.,
 without leading zero bytes. For example, the number 0 is
 represented with an empty option value (a zero-length
 sequence of bytes), and the number 1 by a single byte with
 the numerical value of 1 (bit combination 00000001 in most
 significant bit first notation). A recipient MUST be
 prepared to process values with leading zero bytes.

 Implementation Note: The exceptional behavior permitted
 for the sender is intended for highly constrained,
 templated implementations (e.g., hardware
 implementations) that use fixed size options in the
 templates.

 string: A Unicode string which is encoded using UTF-8 [RFC3629] in
 Net-Unicode form [RFC5198].

 Note that here and in all other places where UTF-8 encoding
 is used in the CoAP protocol, the intention is that the
 encoded strings can be directly used and compared as opaque
 byte strings by CoAP protocol implementations. There is no
 expectation and no need to perform normalization within a
 CoAP implementation (except where Unicode strings that are
 not known to be normalized are imported from sources
 outside the CoAP protocol). Note also that ASCII strings
 (that do not make use of special control characters) are
 always valid UTF-8 Net-Unicode strings.

Shelby, et al. Expires December 30, 2013 [Page 19]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

4. Message Transmission

 CoAP messages are exchanged asynchronously between CoAP endpoints.
 They are used to transport CoAP requests and responses, the semantics
 of which are defined in Section 5.

 As CoAP is bound to non-reliable transports such as UDP, CoAP
 messages may arrive out of order, appear duplicated, or go missing
 without notice. For this reason, CoAP implements a lightweight
 reliability mechanism, without trying to re-create the full feature
 set of a transport like TCP. It has the following features:

 o Simple stop-and-wait retransmission reliability with exponential
 back-off for Confirmable messages.

 o Duplicate detection for both Confirmable and Non-confirmable
 messages.

4.1. Messages and Endpoints

 A CoAP endpoint is the source or destination of a CoAP message. The
 specific definition of an endpoint depends on the transport being
 used for CoAP. For the transports defined in this specification, the
 endpoint is identified depending on the security mode used (see
 Section 9): With no security, the endpoint is solely identified by an
 IP address and a UDP port number. With other security modes, the
 endpoint is identified as defined by the security mode.

 There are different types of messages. The type of a message is
 specified by the Type field of the CoAP Header.

 Separate from the message type, a message may carry a request, a
 response, or be Empty. This is signaled by the Request/Response Code
 field in the CoAP Header and is relevant to the request/response
 model. Possible values for the field are maintained in the CoAP Code
 Registries (Section 12.1).

 An Empty message has the Code field set to 0.00. The Token Length
 field MUST be set to 0 and bytes of data MUST NOT be present after
 the Message ID field. If there are any bytes, they MUST be processed
 as a message format error.

4.2. Messages Transmitted Reliably

 The reliable transmission of a message is initiated by marking the
 message as Confirmable in the CoAP header. A Confirmable message
 always carries either a request or response, unless it is used only
 to elicit a Reset message in which case it is Empty. A recipient

Shelby, et al. Expires December 30, 2013 [Page 20]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 MUST acknowledge a Confirmable message with an Acknowledgement
 message or, if it lacks context to process the message properly
 (including the case where the message is Empty, uses a code with a
 reserved class (1, 6 or 7), or has a message format error), MUST
 reject it; rejecting a Confirmable message is effected by sending a
 matching Reset message and otherwise ignoring it. The
 Acknowledgement message MUST echo the Message ID of the Confirmable
 message, and MUST carry a response or be Empty (see Section 5.2.1 and
 Section 5.2.2). The Reset message MUST echo the Message ID of the
 Confirmable message, and MUST be Empty. Rejecting an Acknowledgement
 or Reset message (including the case where the Acknowledgement
 carries a request or a code with a reserved class, or the Reset
 message is not Empty) is effected by silently ignoring it. More
 generally, recipients of Acknowledgement and Reset messages MUST NOT
 respond with either Acknowledgement or Reset messages.

 The sender retransmits the Confirmable message at exponentially
 increasing intervals, until it receives an acknowledgement (or Reset
 message), or runs out of attempts.

 Retransmission is controlled by two things that a CoAP endpoint MUST
 keep track of for each Confirmable message it sends while waiting for
 an acknowledgement (or reset): a timeout and a retransmission
 counter. For a new Confirmable message, the initial timeout is set
 to a random duration (often not an integral number of seconds)
 between ACK_TIMEOUT and (ACK_TIMEOUT * ACK_RANDOM_FACTOR) (see
 Section 4.8), and the retransmission counter is set to 0. When the
 timeout is triggered and the retransmission counter is less than
 MAX_RETRANSMIT, the message is retransmitted, the retransmission
 counter is incremented, and the timeout is doubled. If the
 retransmission counter reaches MAX_RETRANSMIT on a timeout, or if the
 endpoint receives a Reset message, then the attempt to transmit the
 message is canceled and the application process informed of failure.
 On the other hand, if the endpoint receives an acknowledgement in
 time, transmission is considered successful.

 This specification makes no strong requirements on the accuracy of
 the clocks used to implement the above binary exponential backoff
 algorithm. In particular, an endpoint may be late for a specific
 retransmission due to its sleep schedule, and maybe catch up on the
 next one. However, the minimum spacing before another retransmission
 is ACK_TIMEOUT, and the entire sequence of (re-)transmissions MUST
 stay in the envelope of MAX_TRANSMIT_SPAN (see Section 4.8.2), even
 if that means a sender may miss an opportunity to transmit.

 A CoAP endpoint that sent a Confirmable message MAY give up in
 attempting to obtain an ACK even before the MAX_RETRANSMIT counter
 value is reached: E.g., the application has canceled the request as

Shelby, et al. Expires December 30, 2013 [Page 21]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 it no longer needs a response, or there is some other indication that
 the CON message did arrive. In particular, a CoAP request message
 may have elicited a separate response, in which case it is clear to
 the requester that only the ACK was lost and a retransmission of the
 request would serve no purpose. However, a responder MUST NOT in
 turn rely on this cross-layer behavior from a requester, i.e. it
 MUST retain the state to create the ACK for the request, if needed,
 even if a Confirmable response was already acknowledged by the
 requester.

 Another reason for giving up retransmission MAY be the receipt of
 ICMP errors. If it is desired to take account of ICMP errors, to
 mitigate potential spoofing attacks, implementations SHOULD take care
 to check the information about the original datagram in the ICMP
 message, including port numbers and CoAP header information such as
 message type and code, Message ID, and Token; if this is not possible
 due to limitations of the UDP service API, ICMP errors SHOULD be
 ignored. Packet Too Big errors [RFC4443] ("fragmentation needed and
 DF set" for IPv4 [RFC0792]) cannot properly occur and SHOULD be
 ignored if the implementation note in Section 4.6 is followed;
 otherwise, they SHOULD feed into a path MTU discovery algorithm
 [RFC4821]. Source Quench and Time Exceeded ICMP messages SHOULD be
 ignored. Host, network, port or protocol unreachable errors, or
 parameter problem errors MAY, after appropriate vetting, be used to
 inform the application of a failure in sending.

4.3. Messages Transmitted Without Reliability

 Some messages do not require an acknowledgement. This is
 particularly true for messages that are repeated regularly for
 application requirements, such as repeated readings from a sensor
 where eventual success is sufficient.

 As a more lightweight alternative, a message can be transmitted less
 reliably by marking the message as Non-confirmable. A Non-
 confirmable message always carries either a request or response and
 MUST NOT be Empty. A Non-confirmable message MUST NOT be
 acknowledged by the recipient. If a recipient lacks context to
 process the message properly (including the case where the message is
 Empty, uses a code with a reserved class (1, 6 or 7), or has a
 message format error), it MUST reject the message; rejecting a Non-
 confirmable message MAY involve sending a matching Reset message, and
 apart from the Reset message the rejected message MUST be silently
 ignored.

 At the CoAP level, there is no way for the sender to detect if a Non-
 confirmable message was received or not. A sender MAY choose to
 transmit multiple copies of a Non-confirmable message within

Shelby, et al. Expires December 30, 2013 [Page 22]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 MAX_TRANSMIT_SPAN (limited by the provisions of Section 4.7, in
 particular by PROBING_RATE if no response is received), or the
 network may duplicate the message in transit. To enable the receiver
 to act only once on the message, Non-confirmable messages specify a
 Message ID as well. (This Message ID is drawn from the same number
 space as the Message IDs for Confirmable messages.)

 Summarizing Section 4.2 and Section 4.3, the four message types can
 be used as in Table 1. "*" means that the combination is not used in
 normal operation, but only to elicit a Reset message ("CoAP ping").

 +----------+-----+-----+-----+-----+
 | | CON | NON | ACK | RST |
 +----------+-----+-----+-----+-----+
 | Request | X | X | - | - |
 | Response | X | X | X | - |
 | Empty | * | - | X | X |
 +----------+-----+-----+-----+-----+

 Table 1: Usage of message types

4.4. Message Correlation

 An Acknowledgement or Reset message is related to a Confirmable
 message or Non-confirmable message by means of a Message ID along
 with additional address information of the corresponding endpoint.
 The Message ID is a 16-bit unsigned integer that is generated by the
 sender of a Confirmable or Non-confirmable message and included in
 the CoAP header. The Message ID MUST be echoed in the
 Acknowledgement or Reset message by the recipient.

 The same Message ID MUST NOT be re-used (in communicating with the
 same endpoint) within the EXCHANGE_LIFETIME (Section 4.8.2).

 Implementation Note: Several implementation strategies can be
 employed for generating Message IDs. In the simplest case a CoAP
 endpoint generates Message IDs by keeping a single Message ID
 variable, which is changed each time a new Confirmable or Non-
 confirmable message is sent regardless of the destination address
 or port. Endpoints dealing with large numbers of transactions
 could keep multiple Message ID variables, for example per prefix
 or destination address (note that some receiving endpoints may not
 be able to distinguish unicast and multicast packets addressed to
 it, so endpoints generating Message IDs need to make sure these do
 not overlap). It is strongly recommended that the initial value
 of the variable (e.g., on startup) be randomized, in order to make
 successful off-path attacks on the protocol less likely.

Shelby, et al. Expires December 30, 2013 [Page 23]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 For an Acknowledgement or Reset message to match a Confirmable or
 Non-confirmable message, the Message ID and source endpoint of the
 Acknowledgement or Reset message MUST match the Message ID and
 destination endpoint of the Confirmable or Non-confirmable message.

4.5. Message Deduplication

 A recipient might receive the same Confirmable message (as indicated
 by the Message ID and source endpoint) multiple times within the
 EXCHANGE_LIFETIME (Section 4.8.2), for example, when its
 Acknowledgement went missing or didn’t reach the original sender
 before the first timeout. The recipient SHOULD acknowledge each
 duplicate copy of a Confirmable message using the same
 Acknowledgement or Reset message, but SHOULD process any request or
 response in the message only once. This rule MAY be relaxed in case
 the Confirmable message transports a request that is idempotent (see
 Section 5.1) or can be handled in an idempotent fashion. Examples
 for relaxed message deduplication:

 o A server might relax the requirement to answer all retransmissions
 of an idempotent request with the same response (Section 4.2), so
 that it does not have to maintain state for Message IDs. For
 example, an implementation might want to process duplicate
 transmissions of a GET, PUT or DELETE request as separate requests
 if the effort incurred by duplicate processing is less expensive
 than keeping track of previous responses would be.

 o A constrained server might even want to relax this requirement for
 certain non-idempotent requests if the application semantics make
 this trade-off favorable. For example, if the result of a POST
 request is just the creation of some short-lived state at the
 server, it may be less expensive to incur this effort multiple
 times for a request than keeping track of whether a previous
 transmission of the same request already was processed.

 A recipient might receive the same Non-confirmable message (as
 indicated by the Message ID and source endpoint) multiple times
 within NON_LIFETIME (Section 4.8.2). As a general rule that MAY be
 relaxed based on the specific semantics of a message, the recipient
 SHOULD silently ignore any duplicated Non-confirmable message, and
 SHOULD process any request or response in the message only once.

4.6. Message Size

 While specific link layers make it beneficial to keep CoAP messages
 small enough to fit into their link layer packets (see Section 1),
 this is a matter of implementation quality. The CoAP specification
 itself provides only an upper bound to the message size. Messages

Shelby, et al. Expires December 30, 2013 [Page 24]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 larger than an IP packet result in undesirable packet fragmentation.
 A CoAP message, appropriately encapsulated, SHOULD fit within a
 single IP packet (i.e., avoid IP fragmentation) and (by fitting into
 one UDP payload) obviously needs to fit within a single IP datagram.
 If the Path MTU is not known for a destination, an IP MTU of 1280
 bytes SHOULD be assumed; if nothing is known about the size of the
 headers, good upper bounds are 1152 bytes for the message size and
 1024 bytes for the payload size.

 Implementation Note: CoAP’s choice of message size parameters works
 well with IPv6 and with most of today’s IPv4 paths. (However,
 with IPv4, it is harder to absolutely ensure that there is no IP
 fragmentation. If IPv4 support on unusual networks is a
 consideration, implementations may want to limit themselves to
 more conservative IPv4 datagram sizes such as 576 bytes; worse,
 the absolute minimum value of the IP MTU for IPv4 is as low as 68
 bytes, which would leave only 40 bytes minus security overhead for
 a UDP payload. Implementations extremely focused on this problem
 set might also set the IPv4 DF bit and perform some form of path
 MTU discovery [RFC4821]; this should generally be unnecessary in
 most realistic use cases for CoAP, however.) A more important
 kind of fragmentation in many constrained networks is that on the
 adaptation layer (e.g., 6LoWPAN L2 packets are limited to 127
 bytes including various overheads); this may motivate
 implementations to be frugal in their packet sizes and to move to
 block-wise transfers [I-D.ietf-core-block] when approaching three-
 digit message sizes.

 Message sizes are also of considerable importance to
 implementations on constrained nodes. Many implementations will
 need to allocate a buffer for incoming messages. If an
 implementation is too constrained to allow for allocating the
 above-mentioned upper bound, it could apply the following
 implementation strategy for messages not using DTLS security:
 Implementations receiving a datagram into a buffer that is too
 small are usually able to determine if the trailing portion of a
 datagram was discarded and to retrieve the initial portion. So,
 if not all of the payload, at least the CoAP header and options
 are likely to fit within the buffer. A server can thus fully
 interpret a request and return a 4.13 (Request Entity Too Large,
 see Section 5.9.2.9) response code if the payload was truncated.
 A client sending an idempotent request and receiving a response
 larger than would fit in the buffer can repeat the request with a
 suitable value for the Block Option [I-D.ietf-core-block].

4.7. Congestion Control

Shelby, et al. Expires December 30, 2013 [Page 25]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Basic congestion control for CoAP is provided by the exponential
 back-off mechanism in Section 4.2.

 In order not to cause congestion, Clients (including proxies) MUST
 strictly limit the number of simultaneous outstanding interactions
 that they maintain to a given server (including proxies) to NSTART.
 An outstanding interaction is either a CON for which an ACK has not
 yet been received but is still expected (message layer) or a request
 for which neither a response nor an Acknowledgment message has yet
 been received but is still expected (which may both occur at the same
 time, counting as one outstanding interaction). The default value of
 NSTART for this specification is 1.

 Further congestion control optimizations and considerations are
 expected in the future, which may for example provide automatic
 initialization of the CoAP transmission parameters defined in
 Section 4.8, and thus may allow a value for NSTART greater than one.

 A client stops expecting a response to a Confirmable request for
 which no acknowledgment message was received, after
 EXCHANGE_LIFETIME. The specific algorithm by which a client stops to
 "expect" a response to a Confirmable request that was acknowledged,
 or to a Non-confirmable request, is not defined. Unless this is
 modified by additional congestion control optimizations, it MUST be
 chosen in such a way that an endpoint does not exceed an average data
 rate of PROBING_RATE in sending to another endpoint that does not
 respond.

 Note: CoAP places the onus of congestion control mostly on the
 clients. However, clients may malfunction or actually be
 attackers, e.g. to perform amplification attacks (Section 11.3).
 To limit the damage (to the network and to its own energy
 resources), a server SHOULD implement some rate limiting for its
 response transmission based on reasonable assumptions about
 application requirements. This is most helpful if the rate limit
 can be made effective for the misbehaving endpoints, only.

4.8. Transmission Parameters

 Message transmission is controlled by the following parameters:

 +-------------------+---------------+
 | name | default value |
 +-------------------+---------------+
 | ACK_TIMEOUT | 2 seconds |
 | ACK_RANDOM_FACTOR | 1.5 |
 | MAX_RETRANSMIT | 4 |
 | NSTART | 1 |

Shelby, et al. Expires December 30, 2013 [Page 26]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 | DEFAULT_LEISURE | 5 seconds |
 | PROBING_RATE | 1 Byte/second |
 +-------------------+---------------+

 Table 2: CoAP Protocol Parameters

4.8.1. Changing The Parameters

 The values for ACK_TIMEOUT, ACK_RANDOM_FACTOR, MAX_RETRANSMIT,
 NSTART, DEFAULT_LEISURE (Section 8.2), and PROBING_RATE may be
 configured to values specific to the application environment
 (including dynamically adjusted values), however the configuration
 method is out of scope of this document. It is RECOMMENDED that an
 application environment use consistent values for these parameters;
 the specific effects of operating with inconsistent values in an
 application environment are outside the scope of the present
 specification.

 The transmission parameters have been chosen to achieve a behavior in
 the presence of congestion that is safe in the Internet. If a
 configuration desires to use different values, the onus is on the
 configuration to ensure these congestion control properties are not
 violated. In particular, a decrease of ACK_TIMEOUT below 1 second
 would violate the guidelines of [RFC5405].
 ([I-D.allman-tcpm-rto-consider] provides some additional background.)
 CoAP was designed to enable implementations that do not maintain
 round-trip-time (RTT) measurements. However, where it is desired to
 decrease the ACK_TIMEOUT significantly or increase NSTART, this can
 only be done safely when maintaining such measurements.
 Configurations MUST NOT decrease ACK_TIMEOUT or increase NSTART
 without using mechanisms that ensure congestion control safety,
 either defined in the configuration or in future standards documents.

 ACK_RANDOM_FACTOR MUST NOT be decreased below 1.0, and it SHOULD have
 a value that is sufficiently different from 1.0 to provide some
 protection from synchronization effects.

 MAX_RETRANSMIT can be freely adjusted, but a too small value will
 reduce the probability that a Confirmable message is actually
 received, while a larger value than given here will require further
 adjustments in the time values (see Section 4.8.2).

 If the choice of transmission parameters leads to an increase of
 derived time values (see Section 4.8.2), the configuration mechanism
 MUST ensure the adjusted value is also available to all the endpoints
 that these adjusted values are to be used to communicate with.

Shelby, et al. Expires December 30, 2013 [Page 27]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

4.8.2. Time Values derived from Transmission Parameters

 The combination of ACK_TIMEOUT, ACK_RANDOM_FACTOR and MAX_RETRANSMIT
 influences the timing of retransmissions, which in turn influences
 how long certain information items need to be kept by an
 implementation. To be able to unambiguously reference these derived
 time values, we give them names as follows:

 o MAX_TRANSMIT_SPAN is the maximum time from the first transmission
 of a Confirmable message to its last retransmission. For the
 default transmission parameters, the value is (2+4+8+16)*1.5 = 45
 seconds, or more generally:

 ACK_TIMEOUT * ((2 ** MAX_RETRANSMIT) - 1) * ACK_RANDOM_FACTOR

 o MAX_TRANSMIT_WAIT is the maximum time from the first transmission
 of a Confirmable message to the time when the sender gives up on
 receiving an acknowledgement or reset. For the default
 transmission parameters, the value is (2+4+8+16+32)*1.5 = 93
 seconds, or more generally:

 ACK_TIMEOUT * ((2 ** (MAX_RETRANSMIT + 1)) - 1) *
 ACK_RANDOM_FACTOR

 In addition, some assumptions need to be made on the characteristics
 of the network and the nodes.

 o MAX_LATENCY is the maximum time a datagram is expected to take
 from the start of its transmission to the completion of its
 reception. This constant is related to the MSL (Maximum Segment
 Lifetime) of [RFC0793], which is "arbitrarily defined to be 2
 minutes" ([RFC0793] glossary, page 81). Note that this is not
 necessarily smaller than MAX_TRANSMIT_WAIT, as MAX_LATENCY is not
 intended to describe a situation when the protocol works well, but
 the worst case situation against which the protocol has to guard.
 We, also arbitrarily, define MAX_LATENCY to be 100 seconds. Apart
 from being reasonably realistic for the bulk of configurations as
 well as close to the historic choice for TCP, this value also
 allows Message ID lifetime timers to be represented in 8 bits
 (when measured in seconds). In these calculations, there is no
 assumption that the direction of the transmission is irrelevant
 (i.e. that the network is symmetric), just that the same value
 can reasonably be used as a maximum value for both directions. If
 that is not the case, the following calculations become only
 slightly more complex.

 o PROCESSING_DELAY is the time a node takes to turn around a
 Confirmable message into an acknowledgement. We assume the node

Shelby, et al. Expires December 30, 2013 [Page 28]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 will attempt to send an ACK before having the sender time out, so
 as a conservative assumption we set it equal to ACK_TIMEOUT.

 o MAX_RTT is the maximum round-trip time, or:

 (2 * MAX_LATENCY) + PROCESSING_DELAY

 From these values, we can derive the following values relevant to the
 protocol operation:

 o EXCHANGE_LIFETIME is the time from starting to send a Confirmable
 message to the time when an acknowledgement is no longer expected,
 i.e. message layer information about the message exchange can be
 purged. EXCHANGE_LIFETIME includes a MAX_TRANSMIT_SPAN, a
 MAX_LATENCY forward, PROCESSING_DELAY, and a MAX_LATENCY for the
 way back. Note that there is no need to consider
 MAX_TRANSMIT_WAIT if the configuration is chosen such that the
 last waiting period (ACK_TIMEOUT * (2 ** MAX_RETRANSMIT) or the
 difference between MAX_TRANSMIT_SPAN and MAX_TRANSMIT_WAIT) is
 less than MAX_LATENCY -- which is a likely choice, as MAX_LATENCY
 is a worst case value unlikely to be met in the real world. In
 this case, EXCHANGE_LIFETIME simplifies to:

 MAX_TRANSMIT_SPAN + (2 * MAX_LATENCY) + PROCESSING_DELAY

 or 247 seconds with the default transmission parameters.

 o NON_LIFETIME is the time from sending a Non-confirmable message to
 the time its Message ID can be safely reused. If multiple
 transmission of a NON message is not used, its value is
 MAX_LATENCY, or 100 seconds. However, a CoAP sender might send a
 NON message multiple times, in particular for multicast
 applications. While the period of re-use is not bounded by the
 specification, an expectation of reliable detection of duplication
 at the receiver is in the timescales of MAX_TRANSMIT_SPAN.
 Therefore, for this purpose, it is safer to use the value:

 MAX_TRANSMIT_SPAN + MAX_LATENCY

 or 145 seconds with the default transmission parameters; however,
 an implementation that just wants to use a single timeout value
 for retiring Message IDs can safely use the larger value for
 EXCHANGE_LIFETIME.

 Table 3 summarizes the derived parameters introduced in this
 subsection with their default values.

Shelby, et al. Expires December 30, 2013 [Page 29]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 +-------------------+---------------+
 | name | default value |
 +-------------------+---------------+
 | MAX_TRANSMIT_SPAN | 45 s |
 | MAX_TRANSMIT_WAIT | 93 s |
 | MAX_LATENCY | 100 s |
 | PROCESSING_DELAY | 2 s |
 | MAX_RTT | 202 s |
 | EXCHANGE_LIFETIME | 247 s |
 | NON_LIFETIME | 145 s |
 +-------------------+---------------+

 Table 3: Derived Protocol Parameters

5. Request/Response Semantics

 CoAP operates under a similar request/response model as HTTP: a CoAP
 endpoint in the role of a "client" sends one or more CoAP requests to
 a "server", which services the requests by sending CoAP responses.
 Unlike HTTP, requests and responses are not sent over a previously
 established connection, but exchanged asynchronously over CoAP
 messages.

5.1. Requests

 A CoAP request consists of the method to be applied to the resource,
 the identifier of the resource, a payload and Internet media type (if
 any), and optional meta-data about the request.

 CoAP supports the basic methods of GET, POST, PUT, DELETE, which are
 easily mapped to HTTP. They have the same properties of safe (only
 retrieval) and idempotent (you can invoke it multiple times with the
 same effects) as HTTP (see Section 9.1 of [RFC2616]). The GET method
 is safe, therefore it MUST NOT take any other action on a resource
 other than retrieval. The GET, PUT and DELETE methods MUST be
 performed in such a way that they are idempotent. POST is not
 idempotent, because its effect is determined by the origin server and
 dependent on the target resource; it usually results in a new
 resource being created or the target resource being updated.

 A request is initiated by setting the Code field in the CoAP header
 of a Confirmable or a Non-confirmable message to a Method Code and
 including request information.

 The methods used in requests are described in detail in Section 5.8.

5.2. Responses

Shelby, et al. Expires December 30, 2013 [Page 30]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 After receiving and interpreting a request, a server responds with a
 CoAP response, which is matched to the request by means of a client-
 generated token (Section 5.3, note that this is different from the
 Message ID that matches a Confirmable message to its
 Acknowledgement).

 A response is identified by the Code field in the CoAP header being
 set to a Response Code. Similar to the HTTP Status Code, the CoAP
 Response Code indicates the result of the attempt to understand and
 satisfy the request. These codes are fully defined in Section 5.9.
 The Response Code numbers to be set in the Code field of the CoAP
 header are maintained in the CoAP Response Code Registry
 (Section 12.1.2).

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |class| detail |
 +-+-+-+-+-+-+-+-+

 Figure 9: Structure of a Response Code

 The upper three bits of the 8-bit Response Code number define the
 class of response. The lower five bits do not have any
 categorization role; they give additional detail to the overall class
 (Figure 9).

 As a human readable notation for specifications and protocol
 diagnostics, CoAP code numbers including the response code are
 documented in the format "c.dd", where "c" is the class in decimal,
 and "dd" is the detail as a two-digit decimal. For example,
 "Forbidden" is written as 4.03 -- indicating an 8-bit code value of
 hexadecimal 0x83 (4*0x20+3) or decimal 131 (4*32+3).

 There are 3 classes of response codes:

 2 - Success: The request was successfully received, understood, and
 accepted.

 4 - Client Error: The request contains bad syntax or cannot be
 fulfilled.

 5 - Server Error: The server failed to fulfill an apparently valid
 request.

 The response codes are designed to be extensible: Response Codes in
 the Client Error and Server Error class that are unrecognized by an
 endpoint are treated as being equivalent to the generic Response Code

Shelby, et al. Expires December 30, 2013 [Page 31]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 of that class (4.00 and 5.00, respectively). However, there is no
 generic Response Code indicating success, so a Response Code in the
 Success class that is unrecognized by an endpoint can only be used to
 determine that the request was successful without any further
 details.

 The possible response codes are described in detail in Section 5.9.

 Responses can be sent in multiple ways, which are defined in the
 following subsections.

5.2.1. Piggy-backed

 In the most basic case, the response is carried directly in the
 Acknowledgement message that acknowledges the request (which requires
 that the request was carried in a Confirmable message). This is
 called a "Piggy-backed" Response.

 The response is returned in the Acknowledgement message independent
 of whether the response indicates success or failure. In effect, the
 response is piggy-backed on the Acknowledgement message, and no
 separate message is required to return the response.

 Implementation Note: The protocol leaves the decision whether to
 piggy-back a response or not (i.e., send a separate response) to
 the server. The client MUST be prepared to receive either. On
 the quality of implementation level, there is a strong expectation
 that servers will implement code to piggy-back whenever possible
 -- saving resources in the network and both at the client and at
 the server.

5.2.2. Separate

 It may not be possible to return a piggy-backed response in all
 cases. For example, a server might need longer to obtain the
 representation of the resource requested than it can wait sending
 back the Acknowledgement message, without risking the client to
 repeatedly retransmit the request message (see also the discussion of
 PROCESSING_DELAY in Section 4.8.2). The Response to a request
 carried in a Non-confirmable message is always sent separately (as
 there is no Acknowledgement message).

 One way to implement this in a server is to initiate the attempt to
 obtain the resource representation and, while that is in progress,
 time out an acknowledgement timer. A server may also immediately
 send an acknowledgement knowing in advance that there will be no
 piggy-backed response. In both cases, the acknowledgement
 effectively is a promise that the request will be acted upon later.

Shelby, et al. Expires December 30, 2013 [Page 32]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 When the server finally has obtained the resource representation, it
 sends the response. When it is desired that this message is not
 lost, it is sent as a Confirmable message from the server to the
 client and answered by the client with an Acknowledgement, echoing
 the new Message ID chosen by the server. (It may also be sent as a
 Non-confirmable message; see Section 5.2.3.)

 When the server chooses to use a separate response, it sends the
 Acknowledgement to the Confirmable request as an Empty message. Once
 the server sends back an Empty Acknowledgement, it MUST NOT send back
 the response in another Acknowledgement, even if the client
 retransmits another identical request. If a retransmitted request is
 received (perhaps because the original Acknowledgement was delayed),
 another Empty Acknowledgement is sent and any response MUST be sent
 as a separate response.

 If the server then sends a Confirmable response, the client’s
 Acknowledgement to that response MUST also be an Empty message (one
 that carries neither a request nor a response). The server MUST stop
 retransmitting its response on any matching Acknowledgement (silently
 ignoring any response code or payload) or Reset message.

 Implementation Notes: Note that, as the underlying datagram
 transport may not be sequence-preserving, the Confirmable message
 carrying the response may actually arrive before or after the
 Acknowledgement message for the request; for the purposes of
 terminating the retransmission sequence, this also serves as an
 acknowledgement. Note also that, while the CoAP protocol itself
 does not make any specific demands here, there is an expectation
 that the response will come within a time frame that is reasonable
 from an application point of view; as there is no underlying
 transport protocol that could be instructed to run a keep-alive
 mechanism, the requester may want to set up a timeout that is
 unrelated to CoAP’s retransmission timers in case the server is
 destroyed or otherwise unable to send the response.)

5.2.3. Non-confirmable

 If the request message is Non-confirmable, then the response SHOULD
 be returned in a Non-confirmable message as well. However, an
 endpoint MUST be prepared to receive a Non-confirmable response
 (preceded or followed by an Empty Acknowledgement message) in reply
 to a Confirmable request, or a Confirmable response in reply to a
 Non-confirmable request.

5.3. Request/Response Matching

Shelby, et al. Expires December 30, 2013 [Page 33]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Regardless of how a response is sent, it is matched to the request by
 means of a token that is included by the client in the request, along
 with additional address information of the corresponding endpoint.

5.3.1. Token

 The Token is used to match a response with a request. The token
 value is a sequence of 0 to 8 bytes. (Note that every message
 carries a token, even if it is of zero length.) Every request
 carries a client-generated token, which the server MUST echo in any
 resulting response without modification.

 A token is intended for use as a client-local identifier for
 differentiating between concurrent requests (see Section 5.3); it
 could have been called a "request ID".

 The client SHOULD generate tokens in such a way that tokens currently
 in use for a given source/destination endpoint pair are unique.
 (Note that a client implementation can use the same token for any
 request if it uses a different endpoint each time, e.g. a different
 source port number.) An empty token value is appropriate e.g. when
 no other tokens are in use to a destination, or when requests are
 made serially per destination and receive piggy-backed responses.
 There are however multiple possible implementation strategies to
 fulfill this.

 A client sending a request without using transport layer security
 (Section 9) SHOULD use a non-trivial, randomized token to guard
 against spoofing of responses (Section 11.4). This protective use of
 tokens is the reason they are allowed to be up to 8 bytes in size.
 The actual size of the random component to be used for the Token
 depends on the security requirements of the client and the level of
 threat posed by spoofing of responses. A client that is connected to
 the general Internet SHOULD use at least 32 bits of randomness;
 keeping in mind that not being directly connected to the Internet is
 not necessarily sufficient protection against spoofing. (Note that
 the Message ID adds little in protection as it is usually
 sequentially assigned, i.e. guessable, and can be circumvented by
 spoofing a separate response.) Clients that want to optimize the
 Token length may further want to detect the level of ongoing attacks
 (e.g., by tallying recent Token mismatches in incoming messages) and
 adjust the Token length upwards appropriately. [RFC4086] discusses
 randomness requirements for security.

 An endpoint receiving a token it did not generate MUST treat it as
 opaque and make no assumptions about its content or structure.

Shelby, et al. Expires December 30, 2013 [Page 34]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

5.3.2. Request/Response Matching Rules

 The exact rules for matching a response to a request are as follows:

 1. The source endpoint of the response MUST be the same as the
 destination endpoint of the original request.

 2. In a piggy-backed response, both the Message ID of the
 Confirmable request and the Acknowledgement, and the token of the
 response and original request MUST match. In a separate
 response, just the token of the response and original request
 MUST match.

 In case a message carrying a response is unexpected (the client is
 not waiting for a response from the identified endpoint, at the
 endpoint addressed, and/or with the given token), the response is
 rejected (Section 4.2, Section 4.3).

 Implementation Note: A client that receives a response in a CON
 message may want to clean up the message state right after sending
 the ACK. If that ACK is lost and the server retransmits the CON,
 the client may no longer have any state to correlate this response
 to, making the retransmission an unexpected message; the client
 will likely send a Reset message so it does not receive any more
 retransmissions. This behavior is normal and not an indication of
 an error. (Clients that are not aggressively optimized in their
 state memory usage will still have message state that will
 identify the second CON as a retransmission. Clients that
 actually expect more messages from the server
 [I-D.ietf-core-observe] will have to keep state in any case.)

5.4. Options

 Both requests and responses may include a list of one or more
 options. For example, the URI in a request is transported in several
 options, and meta-data that would be carried in an HTTP header in
 HTTP is supplied as options as well.

 CoAP defines a single set of options that are used in both requests
 and responses:

 o Content-Format

 o ETag

 o Location-Path

 o Location-Query

Shelby, et al. Expires December 30, 2013 [Page 35]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 o Max-Age

 o Proxy-Uri

 o Proxy-Scheme

 o Uri-Host

 o Uri-Path

 o Uri-Port

 o Uri-Query

 o Accept

 o If-Match

 o If-None-Match

 o Size1

 The semantics of these options along with their properties are
 defined in detail in Section 5.10.

 Not all options are defined for use with all methods and response
 codes. The possible options for methods and response codes are
 defined in Section 5.8 and Section 5.9 respectively. In case an
 option is not defined for a method or response code, it MUST NOT be
 included by a sender and MUST be treated like an unrecognized option
 by a recipient.

5.4.1. Critical/Elective

 Options fall into one of two classes: "critical" or "elective". The
 difference between these is how an option unrecognized by an endpoint
 is handled:

 o Upon reception, unrecognized options of class "elective" MUST be
 silently ignored.

 o Unrecognized options of class "critical" that occur in a
 Confirmable request MUST cause the return of a 4.02 (Bad Option)
 response. This response SHOULD include a diagnostic payload
 describing the unrecognized option(s) (see Section 5.5.2).

Shelby, et al. Expires December 30, 2013 [Page 36]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 o Unrecognized options of class "critical" that occur in a
 Confirmable response, or piggy-backed in an Acknowledgement, MUST
 cause the response to be rejected (Section 4.2).

 o Unrecognized options of class "critical" that occur in a Non-
 confirmable message MUST cause the message to be rejected
 (Section 4.3).

 Note that, whether critical or elective, an option is never
 "mandatory" (it is always optional): These rules are defined in order
 to enable implementations to stop processing options they do not
 understand or implement.

 Critical/Elective rules apply to non-proxying endpoints. A proxy
 processes options based on Unsafe/Safe-to-Forward classes as defined
 in Section 5.7.

5.4.2. Proxy Unsafe/Safe-to-Forward and NoCacheKey

 In addition to an option being marked as Critical or Elective,
 options are also classified based on how a proxy is to deal with the
 option if it does not recognize it. For this purpose, an option can
 either be considered Unsafe to Forward (UnSafe is set) or Safe-to-
 Forward (UnSafe is clear).

 In addition, for an option that is marked Safe-to-Forward, the option
 number indicates whether it is intended to be part of the Cache-Key
 (Section 5.6) in a request or not; if some of the NoCacheKey bits are
 0, it is, if all NoCacheKey bits are 1, it is not (see
 Section 5.4.6).

 Note: The Cache-Key indication is relevant only for proxies that do
 not implement the given option as a request option and instead
 rely on the Unsafe/Safe-to-Forward indication only. E.g., for
 ETag, actually using the request option as a part of the Cache-Key
 is grossly inefficient, but it is the best thing one can do if
 ETag is not implemented by a proxy, as the response is going to
 differ based on the presence of the request option. A more useful
 proxy that does implement the ETag request option is not using
 ETag as a part of the Cache-Key.

 NoCacheKey is indicated in three bits so that only one out of
 eight codepoints is qualified as NoCacheKey, assuming this is the
 less likely case.

 Proxy behavior with regard to these classes is defined in
 Section 5.7.

Shelby, et al. Expires December 30, 2013 [Page 37]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

5.4.3. Length

 Option values are defined to have a specific length, often in the
 form of an upper and lower bound. If the length of an option value
 in a request is outside the defined range, that option MUST be
 treated like an unrecognized option (see Section 5.4.1).

5.4.4. Default Values

 Options may be defined to have a default value. If the value of
 option is intended to be this default value, the option SHOULD NOT be
 included in the message. If the option is not present, the default
 value MUST be assumed.

 Where a critical option has a default value, this is chosen in such a
 way that the absence of the option in a message can be processed
 properly both by implementations unaware of the critical option and
 by implementations that interpret this absence as the presence of the
 default value for the option.

5.4.5. Repeatable Options

 The definition of some options specifies that those options are
 repeatable. An option that is repeatable MAY be included one or more
 times in a message. An option that is not repeatable MUST NOT be
 included more than once in a message.

 If a message includes an option with more occurrences than the option
 is defined for, each supernumerary option occurrence that appears
 subsequently in the message MUST be treated like an unrecognized
 option (see Section 5.4.1).

5.4.6. Option Numbers

 An Option is identified by an option number, which also provides some
 additional semantics information: e.g., odd numbers indicate a
 critical option, while even numbers indicate an elective option.
 Note that this is not just a convention, it is a feature of the
 protocol: Whether an option is elective or critical is entirely
 determined by whether its option number is even or odd.

 More generally speaking, an Option number is constructed with a bit
 mask to indicate if an option is Critical/Elective, Unsafe/Safe-to-
 Forward and in the case of Safe-to-Forward, also a Cache-Key
 indication as shown by the following figure. In the following text,
 the bit mask is expressed as a single byte that is applied to the
 least significant byte of the option number in unsigned integer
 representation. When bit 7 (the least significant bit) is 1, an

Shelby, et al. Expires December 30, 2013 [Page 38]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 option is Critical (and likewise Elective when 0). When bit 6 is 1,
 an option is Unsafe (and likewise Safe-to-Forward when 0). When bit
 6 is 0, i.e., the option is not Unsafe, it is not a Cache-Key
 (NoCacheKey) if and only if bits 3-5 are all set to 1; all other bit
 combinations mean that it indeed is a Cache-Key. These classes of
 options are explained in the next sections.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | | NoCacheKey| U | C |
 +---+---+---+---+---+---+---+---+

 Figure 10: Option Number Mask (Least Significant Byte)

 An endpoint may use an equivalent of the C code in Figure 11 to
 derive the characteristics of an option number "onum".

 Critical = (onum & 1);
 UnSafe = (onum & 2);
 NoCacheKey = ((onum & 0x1e) == 0x1c);

 Figure 11: Determining Characteristics from an Option Number

 The option numbers for the options defined in this document are
 listed in the CoAP Option Number Registry (Section 12.2).

5.5. Payloads and Representations

 Both requests and responses may include a payload, depending on the
 method or response code respectively. If a method or response code
 is not defined to have a payload, then a sender MUST NOT include one,
 and a recipient MUST ignore it.

5.5.1. Representation

 The payload of requests or of responses indicating success is
 typically a representation of a resource ("resource representation")
 or the result of the requested action ("action result"). Its format
 is specified by the Internet media type and content coding given by
 the Content-Format Option. In the absence of this option, no default
 value is assumed and the format will need to be inferred by the
 application (e.g., from the application context). Payload "sniffing"
 SHOULD only be attempted if no content type is given.

 Implementation Note: On a quality of implementation level, there is
 a strong expectation that a Content-Format indication will be
 provided with resource representations whenever possible. This is
 not a "SHOULD"-level requirement solely because it is not a

Shelby, et al. Expires December 30, 2013 [Page 39]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 protocol requirement, and it also would be difficult to outline
 exactly in what cases this expectation can be violated.

 For responses indicating a client or server error, the payload is
 considered a representation of the result of the requested action
 only if a Content-Format Option is given. In the absence of this
 option, the payload is a Diagnostic Payload (Section 5.5.2).

5.5.2. Diagnostic Payload

 If no Content-Format option is given, the payload of responses
 indicating a client or server error is a brief human-readable
 diagnostic message, explaining the error situation. This diagnostic
 message MUST be encoded using UTF-8 [RFC3629], more specifically
 using Net-Unicode form [RFC5198].

 The message is similar to the Reason-Phrase on an HTTP status line.
 It is not intended for end-users but for software engineers that
 during debugging need to interpret it in the context of the present,
 English-language specification; therefore no mechanism for language
 tagging is needed or provided. In contrast to what is usual in HTTP,
 the payload SHOULD be empty if there is no additional information
 beyond the response code.

5.5.3. Selected Representation

 Not all responses carry a payload that provides a representation of
 the resource addressed by the request. It is, however, sometimes
 useful to be able to refer to such a representation in relation to a
 response, independent of whether it actually was enclosed.

 We use the term "selected representation" to refer to the current
 representation of a target resource that would have been selected in
 a successful response if the corresponding request had used the
 method GET and excluded any conditional request options
 (Section 5.10.8).

 Certain response options provide metadata about the selected
 representation, which might differ from the representation included
 in the message for responses to some state-changing methods. Of the
 response options defined in this specification, only the ETag
 response option (Section 5.10.6) is defined as selected
 representation metadata.

5.5.4. Content Negotiation

 A server may be able to supply a representation for a resource in one
 of multiple representation formats. Without further information from

Shelby, et al. Expires December 30, 2013 [Page 40]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 the client, it will provide the representation in the format it
 prefers.

 By using the Accept Option (Section 5.10.4) in a request, the client
 can indicate which content-format it prefers to receive.

5.6. Caching

 CoAP endpoints MAY cache responses in order to reduce the response
 time and network bandwidth consumption on future, equivalent
 requests.

 The goal of caching in CoAP is to reuse a prior response message to
 satisfy a current request. In some cases, a stored response can be
 reused without the need for a network request, reducing latency and
 network round-trips; a "freshness" mechanism is used for this purpose
 (see Section 5.6.1). Even when a new request is required, it is
 often possible to reuse the payload of a prior response to satisfy
 the request, thereby reducing network bandwidth usage; a "validation"
 mechanism is used for this purpose (see Section 5.6.2).

 Unlike HTTP, the cacheability of CoAP responses does not depend on
 the request method, but the Response Code. The cacheability of each
 Response Code is defined along the Response Code definitions in
 Section 5.9. Response Codes that indicate success and are
 unrecognized by an endpoint MUST NOT be cached.

 For a presented request, a CoAP endpoint MUST NOT use a stored
 response, unless:

 o the presented request method and that used to obtain the stored
 response match,

 o all options match between those in the presented request and those
 of the request used to obtain the stored response (which includes
 the request URI), except that there is no need for a match of any
 request options marked as NoCacheKey (Section 5.4) or recognized
 by the Cache and fully interpreted with respect to its specified
 cache behavior (such as the ETag request option, Section 5.10.6,
 see also Section 5.4.2), and

 o the stored response is either fresh or successfully validated as
 defined below.

Shelby, et al. Expires December 30, 2013 [Page 41]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 The set of request options that is used for matching the cache entry
 is also collectively referred to as the "Cache-Key". For URI schemes
 other than coap and coaps, matching of those options that constitute
 the request URI may be performed under rules specific to the URI
 scheme.

5.6.1. Freshness Model

 When a response is "fresh" in the cache, it can be used to satisfy
 subsequent requests without contacting the origin server, thereby
 improving efficiency.

 The mechanism for determining freshness is for an origin server to
 provide an explicit expiration time in the future, using the Max-Age
 Option (see Section 5.10.5). The Max-Age Option indicates that the
 response is to be considered not fresh after its age is greater than
 the specified number of seconds.

 The Max-Age Option defaults to a value of 60. Thus, if it is not
 present in a cacheable response, then the response is considered not
 fresh after its age is greater than 60 seconds. If an origin server
 wishes to prevent caching, it MUST explicitly include a Max-Age
 Option with a value of zero seconds.

 If a client has a fresh stored response and makes a new request
 matching the request for that stored response, the new response
 invalidates the old response.

5.6.2. Validation Model

 When an endpoint has one or more stored responses for a GET request,
 but cannot use any of them (e.g., because they are not fresh), it can
 use the ETag Option (Section 5.10.6) in the GET request to give the
 origin server an opportunity to both select a stored response to be
 used, and to update its freshness. This process is known as
 "validating" or "revalidating" the stored response.

 When sending such a request, the endpoint SHOULD add an ETag Option
 specifying the entity-tag of each stored response that is applicable.

 A 2.03 (Valid) response indicates the stored response identified by
 the entity-tag given in the response’s ETag Option can be reused,
 after updating it as described in Section 5.9.1.3.

 Any other response code indicates that none of the stored responses
 nominated in the request is suitable. Instead, the response SHOULD
 be used to satisfy the request and MAY replace the stored response.

Shelby, et al. Expires December 30, 2013 [Page 42]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

5.7. Proxying

 A proxy is a CoAP endpoint that can be tasked by CoAP clients to
 perform requests on their behalf. This may be useful, for example,
 when the request could otherwise not be made, or to service the
 response from a cache in order to reduce response time and network
 bandwidth or energy consumption.

 In an overall architecture for a Constrained RESTful Environment,
 proxies can serve quite different purposes. Proxies can be
 explicitly selected by clients, a role that we term "forward-proxy".
 Proxies can also be inserted to stand in for origin servers, a role
 that we term "reverse-proxy". Orthogonal to this distinction, a
 proxy can map from a CoAP request to a CoAP request (CoAP-to-CoAP
 proxy) or translate from or to a different protocol ("cross-proxy").
 Full definitions of these terms are provided in Section 1.2.

 Notes: The terminology in this specification has been selected to be
 culturally compatible with the terminology used in the wider Web
 application environments, without necessarily matching it in every
 detail (which may not even be relevant to Constrained RESTful
 Environments). Not too much semantics should be ascribed to the
 components of the terms (such as "forward", "reverse", or
 "cross").

 HTTP proxies, besides acting as HTTP proxies, often offer a
 transport protocol proxying function ("CONNECT") to enable end-to-
 end transport layer security through the proxy. No such function
 is defined for CoAP-to-CoAP proxies in this specification, as
 forwarding of UDP packets is unlikely to be of much value in
 Constrained RESTful environments. See also Section 10.2.7 for the
 cross-proxy case.

 When a client uses a proxy to make a request that will use a secure
 URI scheme (e.g., coaps or https), the request towards the proxy
 SHOULD be sent using DTLS security except where equivalent lower
 layer security is used for the leg between the client and the proxy.

5.7.1. Proxy Operation

 A proxy generally needs a way to determine potential request
 parameters for a request to a destination based on the request it
 received. This way is fully specified for a forward-proxy, but may
 depend on the specific configuration for a reverse-proxy. In
 particular, the client of a reverse-proxy generally does not indicate
 a locator for the destination, necessitating some form of namespace
 translation in the reverse-proxy. However, some aspects of the
 operation of proxies are common to all its forms.

Shelby, et al. Expires December 30, 2013 [Page 43]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 If a proxy does not employ a cache, then it simply forwards the
 translated request to the determined destination. Otherwise, if it
 does employ a cache but does not have a stored response that matches
 the translated request and is considered fresh, then it needs to
 refresh its cache according to Section 5.6. For options in the
 request that the proxy recognizes, it knows whether the option is
 intended to act as part of the key used in looking up the cached
 value or not. E.g., since requests for different Uri-Path values
 address different resources, Uri-Path values are always part of the
 Cache-Key, while, e.g., Token values are never part of the Cache-Key.
 For options that the proxy does not recognize but that are marked
 Safe-to-Forward in the option number, the option also indicates
 whether it is to be included in the Cache-Key (NoCacheKey is not all
 set) or not (NoCacheKey is all set). (Options that are unrecognized
 and marked Unsafe lead to 4.02 Bad Option.)

 If the request to the destination times out, then a 5.04 (Gateway
 Timeout) response MUST be returned. If the request to the
 destination returns a response that cannot be processed by the proxy
 (e.g, due to unrecognized critical options, message format errors),
 then a 5.02 (Bad Gateway) response MUST be returned. Otherwise, the
 proxy returns the response to the client.

 If a response is generated out of a cache, the generated (or implied)
 Max-Age Option MUST NOT extend the max-age originally set by the
 server, considering the time the resource representation spent in the
 cache. E.g., the Max-Age Option could be adjusted by the proxy for
 each response using the formula:

 proxy-max-age = original-max-age - cache-age

 For example if a request is made to a proxied resource that was
 refreshed 20 seconds ago and had an original Max-Age of 60 seconds,
 then that resource’s proxied max-age is now 40 seconds. Considering
 potential network delays on the way from the origin server, a proxy
 should be conservative in the max-age values offered.

 All options present in a proxy request MUST be processed at the
 proxy. Unsafe options in a request that are not recognized by the
 proxy MUST lead to a 4.02 (Bad Option) response being returned by the
 proxy. A CoAP-to-CoAP proxy MUST forward to the origin server all
 Safe-to-Forward options that it does not recognize. Similarly,
 Unsafe options in a response that are not recognized by the CoAP-to-
 CoAP proxy server MUST lead to a 5.02 (Bad Gateway) response. Again,
 Safe-to-Forward options that are not recognized MUST be forwarded.

 Additional considerations for cross-protocol proxying between CoAP
 and HTTP are discussed in Section 10.

Shelby, et al. Expires December 30, 2013 [Page 44]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

5.7.2. Forward-Proxies

 CoAP distinguishes between requests made (as if) to an origin server
 and a request made through a forward-proxy. CoAP requests to a
 forward-proxy are made as normal Confirmable or Non-confirmable
 requests to the forward-proxy endpoint, but specify the request URI
 in a different way: The request URI in a proxy request is specified
 as a string in the Proxy-Uri Option (see Section 5.10.2), while the
 request URI in a request to an origin server is split into the Uri-
 Host, Uri-Port, Uri-Path and Uri-Query Options (see Section 5.10.1);
 alternatively the URI in a proxy request can be assembled from a
 Proxy-Scheme option and the split options mentioned.

 When a proxy request is made to an endpoint and the endpoint is
 unwilling or unable to act as proxy for the request URI, it MUST
 return a 5.05 (Proxying Not Supported) response. If the authority
 (host and port) is recognized as identifying the proxy endpoint
 itself (see Section 5.10.2), then the request MUST be treated as a
 local (non-proxied) request.

 Unless a proxy is configured to forward the proxy request to another
 proxy, it MUST translate the request as follows: The scheme of the
 request URI defines the outgoing protocol and its details (e.g., CoAP
 is used over UDP for the "coap" scheme and over DTLS for the "coaps"
 scheme.) For a CoAP-to-CoAP proxy, the origin server’s IP address
 and port are determined by the authority component of the request
 URI, and the request URI is decoded and split into the Uri-Host, Uri-
 Port, Uri-Path and Uri-Query Options. This consumes the Proxy-Uri or
 Proxy-Scheme option, which is therefore not forwarded to the origin
 server.

5.7.3. Reverse-Proxies

 Reverse-proxies do not make use of the Proxy-Uri or Proxy-Scheme
 options, but need to determine the destination (next hop) of a
 request from information in the request and information in their
 configuration. E.g., a reverse-proxy might offer various resources
 the existence of which it has learned through resource discovery as
 if they were its own resources. The reverse-proxy is free to build a
 namespace for the URIs that identify these resources. A reverse-
 proxy may also build a namespace that gives the client more control
 over where the request goes, e.g. by embedding host identifiers and
 port numbers into the URI path of the resources offered.

 In processing the response, a reverse-proxy has to be careful that
 ETag option values from different sources are not mixed up on one
 resource offered to its clients. In many cases, the ETag can be
 forwarded unchanged. If the mapping from a resource offered by the

Shelby, et al. Expires December 30, 2013 [Page 45]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 reverse-proxy to resources offered by its various origin servers is
 not unique, the reverse-proxy may need to generate a new ETag, making
 sure the semantics of this option are properly preserved.

5.8. Method Definitions

 In this section each method is defined along with its behavior. A
 request with an unrecognized or unsupported Method Code MUST generate
 a 4.05 (Method Not Allowed) piggy-backed response.

5.8.1. GET

 The GET method retrieves a representation for the information that
 currently corresponds to the resource identified by the request URI.
 If the request includes an Accept Option, that indicates the
 preferred content-format of a response. If the request includes an
 ETag Option, the GET method requests that ETag be validated and that
 the representation be transferred only if validation failed. Upon
 success a 2.05 (Content) or 2.03 (Valid) response code SHOULD be
 present in the response.

 The GET method is safe and idempotent.

5.8.2. POST

 The POST method requests that the representation enclosed in the
 request be processed. The actual function performed by the POST
 method is determined by the origin server and dependent on the target
 resource. It usually results in a new resource being created or the
 target resource being updated.

 If a resource has been created on the server, the response returned
 by the server SHOULD have a 2.01 (Created) response code and SHOULD
 include the URI of the new resource in a sequence of one or more
 Location-Path and/or Location-Query Options (Section 5.10.7). If the
 POST succeeds but does not result in a new resource being created on
 the server, the response SHOULD have a 2.04 (Changed) response code.
 If the POST succeeds and results in the target resource being
 deleted, the response SHOULD have a 2.02 (Deleted) response code.

 POST is neither safe nor idempotent.

5.8.3. PUT

 The PUT method requests that the resource identified by the request
 URI be updated or created with the enclosed representation. The
 representation format is specified by the media type and content
 coding given in the Content-Format Option, if provided.

Shelby, et al. Expires December 30, 2013 [Page 46]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 If a resource exists at the request URI the enclosed representation
 SHOULD be considered a modified version of that resource, and a 2.04
 (Changed) response code SHOULD be returned. If no resource exists
 then the server MAY create a new resource with that URI, resulting in
 a 2.01 (Created) response code. If the resource could not be created
 or modified, then an appropriate error response code SHOULD be sent.

 Further restrictions to a PUT can be made by including the If-Match
 (see Section 5.10.8.1) or If-None-Match (see Section 5.10.8.2)
 options in the request.

 PUT is not safe, but is idempotent.

5.8.4. DELETE

 The DELETE method requests that the resource identified by the
 request URI be deleted. A 2.02 (Deleted) response code SHOULD be
 used on success or in case the resource did not exist before the
 request.

 DELETE is not safe, but is idempotent.

5.9. Response Code Definitions

 Each response code is described below, including any options required
 in the response. Where appropriate, some of the codes will be
 specified in regards to related response codes in HTTP [RFC2616];
 this does not mean that any such relationship modifies the HTTP
 mapping specified in Section 10.

5.9.1. Success 2.xx

 This class of status code indicates that the clients request was
 successfully received, understood, and accepted.

5.9.1.1. 2.01 Created

 Like HTTP 201 "Created", but only used in response to POST and PUT
 requests. The payload returned with the response, if any, is a
 representation of the action result.

 If the response includes one or more Location-Path and/or Location-
 Query Options, the values of these options specify the location at
 which the resource was created. Otherwise, the resource was created
 at the request URI. A cache receiving this response MUST mark any
 stored response for the created resource as not fresh.

 This response is not cacheable.

Shelby, et al. Expires December 30, 2013 [Page 47]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

5.9.1.2. 2.02 Deleted

 Like HTTP 204 "No Content", but only used in response to requests
 that cause the resource to cease being available, such as DELETE and
 in certain circumstances POST. The payload returned with the
 response, if any, is a representation of the action result.

 This response is not cacheable. However, a cache MUST mark any
 stored response for the deleted resource as not fresh.

5.9.1.3. 2.03 Valid

 Related to HTTP 304 "Not Modified", but only used to indicate that
 the response identified by the entity-tag identified by the included
 ETag Option is valid. Accordingly, the response MUST include an ETag
 Option, and MUST NOT include a payload.

 When a cache that recognizes and processes the ETag response option
 receives a 2.03 (Valid) response, it MUST update the stored response
 with the value of the Max-Age Option included in the response
 (explicitly, or implicitly as a default value; see also
 Section 5.6.2). For each type of Safe-to-Forward option present in
 the response, the (possibly empty) set of options of this type that
 are present in the stored response MUST be replaced with the set of
 options of this type in the response received. (Unsafe options may
 trigger similar option specific processing as defined by the option.)

5.9.1.4. 2.04 Changed

 Like HTTP 204 "No Content", but only used in response to POST and PUT
 requests. The payload returned with the response, if any, is a
 representation of the action result.

 This response is not cacheable. However, a cache MUST mark any
 stored response for the changed resource as not fresh.

5.9.1.5. 2.05 Content

 Like HTTP 200 "OK", but only used in response to GET requests.

 The payload returned with the response is a representation of the
 target resource.

 This response is cacheable: Caches can use the Max-Age Option to
 determine freshness (see Section 5.6.1) and (if present) the ETag
 Option for validation (see Section 5.6.2).

Shelby, et al. Expires December 30, 2013 [Page 48]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

5.9.2. Client Error 4.xx

 This class of response code is intended for cases in which the client
 seems to have erred. These response codes are applicable to any
 request method.

 The server SHOULD include a diagnostic payload under the conditions
 detailed in Section 5.5.2.

 Responses of this class are cacheable: Caches can use the Max-Age
 Option to determine freshness (see Section 5.6.1). They cannot be
 validated.

5.9.2.1. 4.00 Bad Request

 Like HTTP 400 "Bad Request".

5.9.2.2. 4.01 Unauthorized

 The client is not authorized to perform the requested action. The
 client SHOULD NOT repeat the request without first improving its
 authentication status to the server. Which specific mechanism can be
 used for this is outside this document’s scope; see also Section 9.

5.9.2.3. 4.02 Bad Option

 The request could not be understood by the server due to one or more
 unrecognized or malformed options. The client SHOULD NOT repeat the
 request without modification.

5.9.2.4. 4.03 Forbidden

 Like HTTP 403 "Forbidden".

5.9.2.5. 4.04 Not Found

 Like HTTP 404 "Not Found".

5.9.2.6. 4.05 Method Not Allowed

 Like HTTP 405 "Method Not Allowed", but with no parallel to the
 "Allow" header field.

Shelby, et al. Expires December 30, 2013 [Page 49]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

5.9.2.7. 4.06 Not Acceptable

 Like HTTP 406 "Not Acceptable", but with no response entity.

5.9.2.8. 4.12 Precondition Failed

 Like HTTP 412 "Precondition Failed".

5.9.2.9. 4.13 Request Entity Too Large

 Like HTTP 413 "Request Entity Too Large".

 The response SHOULD include a Size1 Option (Section 5.10.9) to
 indicate the maximum size of request entity the server is able and
 willing to handle, unless the server is not in a position to make
 this information available.

5.9.2.10. 4.15 Unsupported Content-Format

 Like HTTP 415 "Unsupported Media Type".

5.9.3. Server Error 5.xx

 This class of response code indicates cases in which the server is
 aware that it has erred or is incapable of performing the request.
 These response codes are applicable to any request method.

 The server SHOULD include a diagnostic payload under the conditions
 detailed in Section 5.5.2.

 Responses of this class are cacheable: Caches can use the Max-Age
 Option to determine freshness (see Section 5.6.1). They cannot be
 validated.

5.9.3.1. 5.00 Internal Server Error

 Like HTTP 500 "Internal Server Error".

5.9.3.2. 5.01 Not Implemented

 Like HTTP 501 "Not Implemented".

5.9.3.3. 5.02 Bad Gateway

 Like HTTP 502 "Bad Gateway".

5.9.3.4. 5.03 Service Unavailable

Shelby, et al. Expires December 30, 2013 [Page 50]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Like HTTP 503 "Service Unavailable", but using the Max-Age Option in
 place of the "Retry-After" header field to indicate the number of
 seconds after which to retry.

5.9.3.5. 5.04 Gateway Timeout

 Like HTTP 504 "Gateway Timeout".

5.9.3.6. 5.05 Proxying Not Supported

 The server is unable or unwilling to act as a forward-proxy for the
 URI specified in the Proxy-Uri Option or using Proxy-Scheme (see
 Section 5.10.2).

5.10. Option Definitions

 The individual CoAP options are summarized in Table 4 and explained
 in the subsections of this section.

 In this table, the C, U, and N columns indicate the properties,
 Critical, UnSafe, and NoCacheKey, respectively. Since NoCacheKey
 only has a meaning for options that are Safe-to-Forward (not marked
 Unsafe), the column is filled with a dash for UnSafe options. (The
 present specification does not define any NoCacheKey options, but the
 format of the table is intended to be useful for additional
 specifications.)

 +-----+----+---+---+---+----------------+--------+--------+---------+
 | No. | C | U | N | R | Name | Format | Length | Default |
 +-----+----+---+---+---+----------------+--------+--------+---------+
1	x			x	If-Match	opaque	0-8	(none)
3	x	x	-		Uri-Host	string	1-255	(see
								below)
4				x	ETag	opaque	1-8	(none)
5	x				If-None-Match	empty	0	(none)
7	x	x	-		Uri-Port	uint	0-2	(see
								below)
8				x	Location-Path	string	0-255	(none)
11	x	x	-	x	Uri-Path	string	0-255	(none)
12					Content-Format	uint	0-2	(none)
14		x	-		Max-Age	uint	0-4	60
15	x	x	-	x	Uri-Query	string	0-255	(none)
17	x				Accept	uint	0-2	(none)
20				x	Location-Query	string	0-255	(none)
35	x	x	-		Proxy-Uri	string	1-1034	(none)
39	x	x	-		Proxy-Scheme	string	1-255	(none)
60			x		Size1	uint	0-4	(none)
 +-----+----+---+---+---+----------------+--------+--------+---------+

Shelby, et al. Expires December 30, 2013 [Page 51]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

 Table 4: Options

5.10.1. Uri-Host, Uri-Port, Uri-Path and Uri-Query

 The Uri-Host, Uri-Port, Uri-Path and Uri-Query Options are used to
 specify the target resource of a request to a CoAP origin server.
 The options encode the different components of the request URI in a
 way that no percent-encoding is visible in the option values and that
 the full URI can be reconstructed at any involved endpoint. The
 syntax of CoAP URIs is defined in Section 6.

 The steps for parsing URIs into options is defined in Section 6.4.
 These steps result in zero or more Uri-Host, Uri-Port, Uri-Path and
 Uri-Query Options being included in a request, where each option
 holds the following values:

 o the Uri-Host Option specifies the Internet host of the resource
 being requested,

 o the Uri-Port Option specifies the transport layer port number of
 the resource,

 o each Uri-Path Option specifies one segment of the absolute path to
 the resource, and

 o each Uri-Query Option specifies one argument parameterizing the
 resource.

 Note: Fragments ([RFC3986], Section 3.5) are not part of the request
 URI and thus will not be transmitted in a CoAP request.

 The default value of the Uri-Host Option is the IP literal
 representing the destination IP address of the request message.
 Likewise, the default value of the Uri-Port Option is the destination
 UDP port. The default values for the Uri-Host and Uri-Port Options
 are sufficient for requests to most servers. Explicit Uri-Host and
 Uri-Port Options are typically used when an endpoint hosts multiple
 virtual servers.

 The Uri-Path and Uri-Query Option can contain any character sequence.
 No percent-encoding is performed. The value of a Uri-Path Option
 MUST NOT be "." or ".." (as the request URI must be resolved before
 parsing it into options).

 The steps for constructing the request URI from the options are
 defined in Section 6.5. Note that an implementation does not

Shelby, et al. Expires December 30, 2013 [Page 52]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 necessarily have to construct the URI; it can simply look up the
 target resource by looking at the individual options.

 Examples can be found in Appendix B.

5.10.2. Proxy-Uri and Proxy-Scheme

 The Proxy-Uri Option is used to make a request to a forward-proxy
 (see Section 5.7). The forward-proxy is requested to forward the
 request or service it from a valid cache, and return the response.

 The option value is an absolute-URI ([RFC3986], Section 4.3).

 Note that the forward-proxy MAY forward the request on to another
 proxy or directly to the server specified by the absolute-URI. In
 order to avoid request loops, a proxy MUST be able to recognize all
 of its server names, including any aliases, local variations, and the
 numeric IP addresses.

 An endpoint receiving a request with a Proxy-Uri Option that is
 unable or unwilling to act as a forward-proxy for the request MUST
 cause the return of a 5.05 (Proxying Not Supported) response.

 The Proxy-Uri Option MUST take precedence over any of the Uri-Host,
 Uri-Port, Uri-Path or Uri-Query options (which MUST NOT be included
 at the same time in a request containing the Proxy-Uri Option).

 As a special case to simplify many proxy clients, the absolute-URI
 can be constructed from the Uri-* options. When a Proxy-Scheme
 Option is present, the absolute-URI is constructed as follows: A CoAP
 URI is constructed from the Uri-* options as defined in Section 6.5.
 In the resulting URI, the initial scheme up to, but not including the
 following colon is then replaced by the content of the Proxy-Scheme
 Option. Note that this case is only applicable if the components of
 the desired URI other than the scheme component actually can be
 expressed using Uri-* options; e.g., to represent a URI with a
 userinfo component in the authority, only Proxy-Uri can be used.

5.10.3. Content-Format

 The Content-Format Option indicates the representation format of the
 message payload. The representation format is given as a numeric
 content format identifier that is defined in the CoAP Content Format
 Registry (Section 12.3). In the absence of the option, no default
 value is assumed, i.e. the representation format of any
 representation message payload is indeterminate (Section 5.5).

Shelby, et al. Expires December 30, 2013 [Page 53]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

5.10.4. Accept

 The CoAP Accept option can be used to indicate which Content-Format
 is acceptable to the client. The representation format is given as a
 numeric Content-Format identifier that is defined in the CoAP
 Content-Format Registry (Section 12.3). If no Accept option is
 given, the client does not express a preference (thus no default
 value is assumed). The client prefers the representation returned by
 the server to be in the Content-Format indicated. The server returns
 the preferred Content-Format if available. If the preferred Content-
 Format cannot be returned, then a 4.06 "Not Acceptable" MUST be sent
 as a response, unless another error code takes precedence for this
 response.

5.10.5. Max-Age

 The Max-Age Option indicates the maximum time a response may be
 cached before it is considered not fresh (see Section 5.6.1).

 The option value is an integer number of seconds between 0 and
 2**32-1 inclusive (about 136.1 years). A default value of 60 seconds
 is assumed in the absence of the option in a response.

 The value is intended to be current at the time of transmission.
 Servers that provide resources with strict tolerances on the value of
 Max-Age SHOULD update the value before each retransmission. (See
 also Section 5.7.1.)

5.10.6. ETag

 An entity-tag is intended for use as a resource-local identifier for
 differentiating between representations of the same resource that
 vary over time. It is generated by the server providing the
 resource, which may generate it in any number of ways including a
 version, checksum, hash or time. An endpoint receiving an entity-tag
 MUST treat it as opaque and make no assumptions about its content or
 structure. (Endpoints that generate an entity-tag are encouraged to
 use the most compact representation possible, in particular in
 regards to clients and intermediaries that may want to store multiple
 ETag values.)

5.10.6.1. ETag as a Response Option

 The ETag Option in a response provides the current value (i.e., after
 the request was processed) of the entity-tag for the "tagged
 representation". If no Location-* options are present, the tagged
 representation is the selected representation (Section 5.5.3) of the
 target resource. If one or more Location-* options are present and

Shelby, et al. Expires December 30, 2013 [Page 54]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 thus a location URI is indicated (Section 5.10.7), the tagged
 representation is the representation that would be retrieved by a GET
 request to the location URI.

 An ETag response option can be included with any response for which
 there is a tagged representation (e.g., it would not be meaningful in
 a 4.04 or 4.00 response). The ETag Option MUST NOT occur more than
 once in a response.

 There is no default value for the ETag Option; if it is not present
 in a response, the server makes no statement about the entity-tag for
 the tagged representation.

5.10.6.2. ETag as a Request Option

 In a GET request, an endpoint that has one or more representations
 previously obtained from the resource, and has obtained ETag response
 options with these, can specify an instance of the ETag Option for
 one or more of these stored responses.

 A server can issue a 2.03 Valid response (Section 5.9.1.3) in place
 of a 2.05 Content response if one of the ETags given is the entity-
 tag for the current representation, i.e. is valid; the 2.03 Valid
 response then echoes this specific ETag in a response option.

 In effect, a client can determine if any of the stored
 representations is current (see Section 5.6.2) without needing to
 transfer them again.

 The ETag Option MAY occur zero, one or more times in a request.

5.10.7. Location-Path and Location-Query

 The Location-Path and Location-Query Options together indicate a
 relative URI that consists either of an absolute path, a query string
 or both. A combination of these options is included in a 2.01
 (Created) response to indicate the location of the resource created
 as the result of a POST request (see Section 5.8.2). The location is
 resolved relative to the request URI.

 If a response with one or more Location-Path and/or Location-Query
 Options passes through a cache that interprets these options and the
 implied URI identifies one or more currently stored responses, those
 entries MUST be marked as not fresh.

 Each Location-Path Option specifies one segment of the absolute path
 to the resource, and each Location-Query Option specifies one
 argument parameterizing the resource. The Location-Path and

Shelby, et al. Expires December 30, 2013 [Page 55]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Location-Query Option can contain any character sequence. No
 percent-encoding is performed. The value of a Location-Path Option
 MUST NOT be "." or "..".

 The steps for constructing the location URI from the options are
 analogous to Section 6.5, except that the first five steps are
 skipped and the result is a relative URI-reference, which is then
 interpreted relative to the request URI. Note that the relative URI-
 reference constructed this way always includes an absolute-path
 (e.g., leaving out Location-Path but supplying Location-Query means
 the path component in the URI is "/").

 The options that are used to compute the relative URI-reference are
 collectively called Location-* options. Beyond Location-Path and
 Location-Query, more Location-* options may be defined in the future,
 and have been reserved option numbers 128, 132, 136, and 140. If any
 of these reserved option numbers occurs in addition to Location-Path
 and/or Location-Query and are not supported, then a 4.02 (Bad Option)
 error MUST be returned.

5.10.8. Conditional Request Options

 Conditional request options enable a client to ask the server to
 perform the request only if certain conditions specified by the
 option are fulfilled.

 For each of these options, if the condition given is not fulfilled,
 then the server MUST NOT perform the requested method. Instead, the
 server MUST respond with the 4.12 (Precondition Failed) response
 code.

 If the condition is fulfilled, the server performs the request method
 as if the conditional request options were not present.

 If the request would, without the conditional request options, result
 in anything other than a 2.xx or 4.12 response code, then any
 conditional request options MAY be ignored.

5.10.8.1. If-Match

 The If-Match Option MAY be used to make a request conditional on the
 current existence or value of an ETag for one or more representations
 of the target resource. If-Match is generally useful for resource
 update requests, such as PUT requests, as a means for protecting
 against accidental overwrites when multiple clients are acting in
 parallel on the same resource (i.e., the "lost update" problem).

Shelby, et al. Expires December 30, 2013 [Page 56]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 The value of an If-Match option is either an ETag or the empty
 string. An If-Match option with an ETag matches a representation
 with that exact ETag. An If-Match option with an empty value matches
 any existing representation (i.e., it places the precondition on the
 existence of any current representation for the target resource).

 The If-Match Option can occur multiple times. If any of the options
 match, then the condition is fulfilled.

 If there is one or more If-Match Option, but none of the options
 match, then the condition is not fulfilled.

5.10.8.2. If-None-Match

 The If-None-Match Option MAY be used to make a request conditional on
 the non-existence of the target resource. If-None-Match is useful
 for resource creation requests, such as PUT requests, as a means for
 protecting against accidental overwrites when multiple clients are
 acting in parallel on the same resource. The If-None-Match Option
 carries no value.

 If the target resource does exist, then the condition is not
 fulfilled.

 (It is not very useful to combine If-Match and If-None-Match options
 in one request, because the condition will then never be fulfilled.)

5.10.9. Size1 Option

 The Size1 option provides size information about the resource
 representation in a request. The option value is an integer number
 of bytes. Its main use is with block-wise transfers
 [I-D.ietf-core-block]. In the present specification, it is used in
 4.13 responses (Section 5.9.2.9) to indicate the maximum size of
 request entity that the server is able and willing to handle.

6. CoAP URIs

Shelby, et al. Expires December 30, 2013 [Page 57]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 CoAP uses the "coap" and "coaps" URI schemes for identifying CoAP
 resources and providing a means of locating the resource. Resources
 are organized hierarchically and governed by a potential CoAP origin
 server listening for CoAP requests ("coap") or DTLS-secured CoAP
 requests ("coaps") on a given UDP port. The CoAP server is
 identified via the generic syntax’s authority component, which
 includes a host component and optional UDP port number. The
 remainder of the URI is considered to be identifying a resource which
 can be operated on by the methods defined by the CoAP protocol. The
 "coap" and "coaps" URI schemes can thus be compared to the "http" and
 "https" URI schemes respectively.

 The syntax of the "coap" and "coaps" URI schemes is specified in this
 section in Augmented Backus-Naur Form (ABNF) [RFC5234]. The
 definitions of "host", "port", "path-abempty", "query", "segment",
 "IP-literal", "IPv4address" and "reg-name" are adopted from
 [RFC3986].

 Implementation Note: Unfortunately, over time the URI format has
 acquired significant complexity. Implementers are encouraged to
 examine [RFC3986] closely. E.g., the ABNF for IPv6 addresses is
 more complicated than maybe expected. Also, implementers should
 take care to perform the processing of percent decoding/encoding
 exactly once on the way from a URI to its decoded components or
 back. Percent encoding is crucial for data transparency, but may
 lead to unusual results such as a slash in a path component.

6.1. coap URI Scheme

 coap-URI = "coap:" "//" host [":" port] path-abempty ["?" query]

 If the host component is provided as an IP-literal or IPv4address,
 then the CoAP server can be reached at that IP address. If host is a
 registered name, then that name is considered an indirect identifier
 and the endpoint might use a name resolution service, such as DNS, to
 find the address of that host. The host MUST NOT be empty; if a URI
 is received with a missing authority or an empty host, then it MUST
 be considered invalid. The port subcomponent indicates the UDP port
 at which the CoAP server is located. If it is empty or not given,
 then the default port 5683 is assumed.

 The path identifies a resource within the scope of the host and port.
 It consists of a sequence of path segments separated by a slash
 character (U+002F SOLIDUS "/").

 The query serves to further parameterize the resource. It consists
 of a sequence of arguments separated by an ampersand character

Shelby, et al. Expires December 30, 2013 [Page 58]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 (U+0026 AMPERSAND "&"). An argument is often in the form of a
 "key=value" pair.

 The "coap" URI scheme supports the path prefix "/.well-known/"
 defined by [RFC5785] for "well-known locations" in the name-space of
 a host. This enables discovery of policy or other information about
 a host ("site-wide metadata"), such as hosted resources (see
 Section 7).

 Application designers are encouraged to make use of short, but
 descriptive URIs. As the environments that CoAP is used in are
 usually constrained for bandwidth and energy, the trade-off between
 these two qualities should lean towards the shortness, without
 ignoring descriptiveness.

6.2. coaps URI Scheme

 coaps-URI = "coaps:" "//" host [":" port] path-abempty
 ["?" query]

 All of the requirements listed above for the "coap" scheme are also
 requirements for the "coaps" scheme, except that a default UDP port
 of [IANA_TBD_PORT] is assumed if the port subcomponent is empty or
 not given, and the UDP datagrams MUST be secured through the use of
 DTLS as described in Section 9.1.

 Considerations for caching of responses to "coaps" identified
 requests are discussed in Section 11.2.

 Resources made available via the "coaps" scheme have no shared
 identity with the "coap" scheme even if their resource identifiers
 indicate the same authority (the same host listening to the same UDP
 port). They are distinct name spaces and are considered to be
 distinct origin servers.

6.3. Normalization and Comparison Rules

 Since the "coap" and "coaps" schemes conform to the URI generic
 syntax, such URIs are normalized and compared according to the
 algorithm defined in [RFC3986], Section 6, using the defaults
 described above for each scheme.

 If the port is equal to the default port for a scheme, the normal
 form is to elide the port subcomponent. Likewise, an empty path
 component is equivalent to an absolute path of "/", so the normal
 form is to provide a path of "/" instead. The scheme and host are
 case-insensitive and normally provided in lowercase; IP-literals are

Shelby, et al. Expires December 30, 2013 [Page 59]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 in recommended form [RFC5952]; all other components are compared in a
 case-sensitive manner. Characters other than those in the "reserved"
 set are equivalent to their percent-encoded bytes (see [RFC3986],
 Section 2.1): the normal form is to not encode them.

 For example, the following three URIs are equivalent, and cause the
 same options and option values to appear in the CoAP messages:

 coap://example.com:5683/˜sensors/temp.xml
 coap://EXAMPLE.com/%7Esensors/temp.xml
 coap://EXAMPLE.com:/%7esensors/temp.xml

6.4. Decomposing URIs into Options

 The steps to parse a request’s options from a string |url| are as
 follows. These steps either result in zero or more of the Uri-Host,
 Uri-Port, Uri-Path and Uri-Query Options being included in the
 request, or they fail.

 1. If the |url| string is not an absolute URI ([RFC3986]), then fail
 this algorithm.

 2. Resolve the |url| string using the process of reference
 resolution defined by [RFC3986]. At this stage the URL is in
 ASCII encoding [RFC0020], even though the decoded components will
 be interpreted in UTF-8 [RFC3629] after step 5, 8 and 9.

 NOTE: It doesn’t matter what it is resolved relative to, since we
 already know it is an absolute URL at this point.

 3. If |url| does not have a <scheme> component whose value, when
 converted to ASCII lowercase, is "coap" or "coaps", then fail
 this algorithm.

 4. If |url| has a <fragment> component, then fail this algorithm.

 5. If the <host> component of |url| does not represent the request’s
 destination IP address as an IP-literal or IPv4address, include a
 Uri-Host Option and let that option’s value be the value of the
 <host> component of |url|, converted to ASCII lowercase, and then
 converting all percent-encodings ("%" followed by two hexadecimal
 digits) to the corresponding characters.

 NOTE: In the usual case where the request’s destination IP
 address is derived from the host part, this ensures that a Uri-
 Host Option is only used for a <host> component of the form reg-
 name.

Shelby, et al. Expires December 30, 2013 [Page 60]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 6. If |url| has a <port> component, then let |port| be that
 component’s value interpreted as a decimal integer; otherwise,
 let |port| be the default port for the scheme.

 7. If |port| does not equal the request’s destination UDP port,
 include a Uri-Port Option and let that option’s value be |port|.

 8. If the value of the <path> component of |url| is empty or
 consists of a single slash character (U+002F SOLIDUS "/"), then
 move to the next step.

 Otherwise, for each segment in the <path> component, include a
 Uri-Path Option and let that option’s value be the segment (not
 including the delimiting slash characters) after converting each
 percent-encoding ("%" followed by two hexadecimal digits) to the
 corresponding byte.

 9. If |url| has a <query> component, then, for each argument in the
 <query> component, include a Uri-Query Option and let that
 option’s value be the argument (not including the question mark
 and the delimiting ampersand characters) after converting each
 percent-encoding to the corresponding byte.

 Note that these rules completely resolve any percent-encoding.

6.5. Composing URIs from Options

 The steps to construct a URI from a request’s options are as follows.
 These steps either result in a URI, or they fail. In these steps,
 percent-encoding a character means replacing each of its (UTF-8
 encoded) bytes by a "%" character followed by two hexadecimal digits
 representing the byte, where the digits A-F are in upper case (as
 defined in [RFC3986] Section 2.1; to reduce variability, the
 hexadecimal notation for percent-encoding in CoAP URIs MUST use
 uppercase letters). The definitions of "unreserved" and "sub-delims"
 are adopted from [RFC3986].

 1. If the request is secured using DTLS, let |url| be the string
 "coaps://". Otherwise, let |url| be the string "coap://".

 2. If the request includes a Uri-Host Option, let |host| be that
 option’s value, where any non-ASCII characters are replaced by
 their corresponding percent-encoding. If |host| is not a valid
 reg-name or IP-literal or IPv4address, fail the algorithm. If
 the request does not include a Uri-Host Option, let |host| be
 the IP-literal (making use of the conventions of [RFC5952]) or
 IPv4address representing the request’s destination IP address.

Shelby, et al. Expires December 30, 2013 [Page 61]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 3. Append |host| to |url|.

 4. If the request includes a Uri-Port Option, let |port| be that
 option’s value. Otherwise, let |port| be the request’s
 destination UDP port.

 5. If |port| is not the default port for the scheme, then append a
 single U+003A COLON character (:) followed by the decimal
 representation of |port| to |url|.

 6. Let |resource name| be the empty string. For each Uri-Path
 Option in the request, append a single character U+002F SOLIDUS
 (/) followed by the option’s value to |resource name|, after
 converting any character that is not either in the "unreserved"
 set, "sub-delims" set, a U+003A COLON (:) or U+0040 COMMERCIAL
 AT (@) character, to its percent-encoded form.

 7. If |resource name| is the empty string, set it to a single
 character U+002F SOLIDUS (/).

 8. For each Uri-Query Option in the request, append a single
 character U+003F QUESTION MARK (?) (first option) or U+0026
 AMPERSAND (&) (subsequent options) followed by the option’s
 value to |resource name|, after converting any character that is
 not either in the "unreserved" set, "sub-delims" set (except
 U+0026 AMPERSAND (&)), a U+003A COLON (:), U+0040 COMMERCIAL AT
 (@), U+002F SOLIDUS (/) or U+003F QUESTION MARK (?) character,
 to its percent-encoded form.

 9. Append |resource name| to |url|.

 10. Return |url|.

 Note that these steps have been designed to lead to a URI in normal
 form (see Section 6.3).

7. Discovery

7.1. Service Discovery

 As a part of discovering the services offered by a CoAP server, a
 client has to learn about the endpoint used by a server.

 A server is discovered by a client by the client (knowing or)
 learning a URI that references a resource in the namespace of the
 server. Alternatively, clients can use Multicast CoAP (see
 Section 8) and the "All CoAP Nodes" multicast address to find CoAP
 servers.

Shelby, et al. Expires December 30, 2013 [Page 62]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Unless the port subcomponent in a "coap" or "coaps" URI indicates the
 UDP port at which the CoAP server is located, the server is assumed
 to be reachable at the default port.

 The CoAP default port number 5683 MUST be supported by a server that
 offers resources for resource discovery (see Section 7.2 below) and
 SHOULD be supported for providing access to other resources. The
 default port number [IANA_TBD_PORT] for DTLS-secured CoAP MAY be
 supported by a server for resource discovery and for providing access
 to other resources. In addition other endpoints may be hosted at
 other ports, e.g. in the dynamic port space.

 Implementation Note: When a CoAP server is hosted by a 6LoWPAN node,
 header compression efficiency is improved when it also supports a
 port number in the 61616-61631 compressed UDP port space defined
 in [RFC4944] (note that, as its UDP port differs from the default
 port, it is a different endpoint from the server at the default
 port).

7.2. Resource Discovery

 The discovery of resources offered by a CoAP endpoint is extremely
 important in machine-to-machine applications where there are no
 humans in the loop and static interfaces result in fragility. To
 maximize interoperability in a CoRE environment, a CoAP endpoint
 SHOULD support the CoRE Link Format of discoverable resources as
 described in [RFC6690], except where fully manual configuration is
 desired. It is up to the server which resources are made
 discoverable (if any).

7.2.1. ’ct’ Attribute

 This section defines a new Web Linking [RFC5988] attribute for use
 with [RFC6690]. The Content-Format code "ct" attribute provides a
 hint about the Content-Formats this resource returns. Note that this
 is only a hint, and does not override the Content-Format Option of a
 CoAP response obtained by actually requesting the representation of
 the resource. The value is in the CoAP identifier code format as a
 decimal ASCII integer and MUST be in the range of 0-65535 (16-bit
 unsigned integer). For example application/xml would be indicated as
 "ct=41". If no Content-Format code attribute is present then nothing
 about the type can be assumed. The Content-Format code attribute MAY
 include a space-separated sequence of Content-Format codes,
 indicating that multiple content-formats are available. The syntax
 of the attribute value is summarized in the production ct-value in
 Figure 12, where cardinal, SP and DQUOTE are defined as in [RFC6690].

Shelby, et al. Expires December 30, 2013 [Page 63]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 ct-value = cardinal
 / DQUOTE cardinal *(1*SP cardinal) DQUOTE

 Figure 12

8. Multicast CoAP

 CoAP supports making requests to a IP multicast group. This is
 defined by a series of deltas to Unicast CoAP. A more general
 discussion of group communication with CoAP is in
 [I-D.ietf-core-groupcomm].

 CoAP endpoints that offer services that they want other endpoints to
 be able to find using multicast service discovery, join one or more
 of the appropriate all-CoAP-nodes multicast addresses (Section 12.8)
 and listen on the default CoAP port. Note that an endpoint might
 receive multicast requests on other multicast addresses, including
 the all-nodes IPv6 address (or via broadcast on IPv4); an endpoint
 MUST therefore be prepared to receive such messages but MAY ignore
 them if multicast service discovery is not desired.

8.1. Messaging Layer

 A multicast request is characterized by being transported in a CoAP
 message that is addressed to an IP multicast address instead of a
 CoAP endpoint. Such multicast requests MUST be Non-confirmable.

 A server SHOULD be aware that a request arrived via multicast, e.g.
 by making use of modern APIs such as IPV6_RECVPKTINFO [RFC3542], if
 available.

 To avoid an implosion of error responses, when a server is aware that
 a request arrived via multicast, it MUST NOT return a RST in reply to
 NON. If it is not aware, it MAY return a RST in reply to NON as
 usual. Because such a Reset message will look identical to an RST
 for a unicast message from the sender, the sender MUST avoid using a
 Message ID that is also still active from this endpoint with any
 unicast endpoint that might receive the multicast message.

 At the time of writing, multicast messages can only be carried in
 UDP, not in DTLS. This means that the security modes defined for
 CoAP in this document are not applicable to multicast.

Shelby, et al. Expires December 30, 2013 [Page 64]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

8.2. Request/Response Layer

 When a server is aware that a request arrived via multicast, the
 server MAY always ignore the request, in particular if it doesn’t
 have anything useful to respond (e.g., if it only has an empty
 payload or an error response). The decision for this may depend on
 the application. (For example, in [RFC6690] query filtering, a
 server should not respond to a multicast request if the filter does
 not match. More examples are in [I-D.ietf-core-groupcomm].)

 If a server does decide to respond to a multicast request, it should
 not respond immediately. Instead, it should pick a duration for the
 period of time during which it intends to respond. For purposes of
 this exposition, we call the length of this period the Leisure. The
 specific value of this Leisure may depend on the application, or MAY
 be derived as described below. The server SHOULD then pick a random
 point of time within the chosen Leisure period to send back the
 unicast response to the multicast request. If further responses need
 to be sent based on the same multicast address membership, a new
 leisure period starts at the earliest after the previous one
 finishes.

 To compute a value for Leisure, the server should have a group size
 estimate G, a target data transfer rate R (which both should be
 chosen conservatively) and an estimated response size S; a rough
 lower bound for Leisure can then be computed as

 lb_Leisure = S * G / R

 E.g., for a multicast request with link-local scope on an 2.4 GHz
 IEEE 802.15.4 (6LoWPAN) network, G could be (relatively
 conservatively) set to 100, S to 100 bytes, and the target rate to 8
 kbit/s = 1 kB/s. The resulting lower bound for the Leisure is 10
 seconds.

 If a CoAP endpoint does not have suitable data to compute a value for
 Leisure, it MAY resort to DEFAULT_LEISURE.

 When matching a response to a multicast request, only the token MUST
 match; the source endpoint of the response does not need to (and will
 not) be the same as the destination endpoint of the original request.

 For the purposes of interpreting the Location-* options and any links
 embedded in the representation and, the request URI (base URI)
 relative to which the response is interpreted, is formed by replacing
 the multicast address in the Host component of the original request
 URI by the literal IP address of the endpoint actually responding.

Shelby, et al. Expires December 30, 2013 [Page 65]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

8.2.1. Caching

 When a client makes a multicast request, it always makes a new
 request to the multicast group (since there may be new group members
 that joined meanwhile or ones that did not get the previous request).
 It MAY update a cache with the received responses. Then it uses both
 cached-still-fresh and ’new’ responses as the result of the request.

 A response received in reply to a GET request to a multicast group
 MAY be used to satisfy a subsequent request on the related unicast
 request URI. The unicast request URI is obtained by replacing the
 authority part of the request URI with the transport layer source
 address of the response message.

 A cache MAY revalidate a response by making a GET request on the
 related unicast request URI.

 A GET request to a multicast group MUST NOT contain an ETag option.
 A mechanism to suppress responses the client already has is left for
 further study.

8.2.2. Proxying

 When a forward-proxy receives a request with a Proxy-Uri or URI
 constructed from Proxy-Scheme that indicates a multicast address, the
 proxy obtains a set of responses as described above and sends all
 responses (both cached-still-fresh and new) back to the original
 client.

 This specification does not provide a way to indicate the unicast-
 modified request URI (base URI) in responses thus forwarded.
 Proxying multicast requests is discussed in more detail in
 [I-D.ietf-core-groupcomm]; one proposal to address the base URI issue
 can be found in section 3 of [I-D.bormann-coap-misc].

9. Securing CoAP

 This section defines the DTLS binding for CoAP.

 During the provisioning phase, a CoAP device is provided with the
 security information that it needs, including keying materials and
 access control lists. This specification defines provisioning for
 the RawPublicKey mode in Section 9.1.3.2.1. At the end of the
 provisioning phase, the device will be in one of four security modes
 with the following information for the given mode. The NoSec and
 RawPublicKey modes are mandatory to implement for this specification.

Shelby, et al. Expires December 30, 2013 [Page 66]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 NoSec: There is no protocol level security (DTLS is disabled).
 Alternative techniques to provide lower layer security SHOULD be
 used when appropriate. The use of IPsec is discussed in
 [I-D.bormann-core-ipsec-for-coap]. Certain link layers in use
 with constrained nodes also provide link layer security, which may
 be appropriate with proper key management.

 PreSharedKey: DTLS is enabled and there is a list of pre-shared keys
 [RFC4279] and each key includes a list of which nodes it can be
 used to communicate with as described in Section 9.1.3.1. At the
 extreme there may be one key for each node this CoAP node needs to
 communicate with (1:1 node/key ratio). Conversely, if more than
 two entities share a specific pre-shared key, this key only
 enables the entities to authenticate as a member of that group and
 not as a specific peer.

 RawPublicKey: DTLS is enabled and the device has an asymmetric key
 pair without a certificate (a raw public key) that is validated
 using an out-of-band mechanism [I-D.ietf-tls-oob-pubkey] as
 described in Section 9.1.3.2. The device also has an identity
 calculated from the public key and a list of identities of the
 nodes it can communicate with.

 Certificate: DTLS is enabled and the device has an asymmetric key
 pair with an X.509 certificate [RFC5280] that binds it to its
 Authority Name and is signed by some common trust root as
 described in Section 9.1.3.3. The device also has a list of root
 trust anchors that can be used for validating a certificate.

 In the "NoSec" mode, the system simply sends the packets over normal
 UDP over IP and is indicated by the "coap" scheme and the CoAP
 default port. The system is secured only by keeping attackers from
 being able to send or receive packets from the network with the CoAP
 nodes; see Section 11.5 for an additional complication with this
 approach.

 The other three security modes are achieved using DTLS and are
 indicated by the "coaps" scheme and DTLS-secured CoAP default port.
 The result is a security association that can be used to authenticate
 (within the limits of the security model) and, based on this
 authentication, authorize the communication partner. CoAP itself
 does not provide protocol primitives for authentication or
 authorization; where this is required, it can either be provided by
 communication security (i.e., IPsec or DTLS) or by object security
 (within the payload). Devices that require authorization for certain
 operations are expected to require one of these two forms of
 security. Necessarily, where an intermediary is involved,
 communication security only works when that intermediary is part of

Shelby, et al. Expires December 30, 2013 [Page 67]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 the trust relationships; CoAP does not provide a way to forward
 different levels of authorization that clients may have with an
 intermediary to further intermediaries or origin servers -- it
 therefore may be required to perform all authorization at the first
 intermediary.

9.1. DTLS-secured CoAP

 Just as HTTP is secured using Transport Layer Security (TLS) over
 TCP, CoAP is secured using Datagram TLS (DTLS) [RFC6347] over UDP
 (see Figure 13). This section defines the CoAP binding to DTLS,
 along with the minimal mandatory-to-implement configurations
 appropriate for constrained environments. The binding is defined by
 a series of deltas to Unicast CoAP. DTLS is in practice TLS with
 added features to deal with the unreliable nature of the UDP
 transport.

 +----------------------+
 | Application |
 +----------------------+
 +----------------------+
 | Requests/Responses |
 |----------------------| CoAP
 | Messages |
 +----------------------+
 +----------------------+
 | DTLS |
 +----------------------+
 +----------------------+
 | UDP |
 +----------------------+

 Figure 13: Abstract layering of DTLS-secured CoAP

 In some constrained nodes (limited flash and/or RAM) and networks
 (limited bandwidth or high scalability requirements), and depending
 on the specific cipher suites in use, all modes of DTLS may not be
 applicable. Some DTLS cipher suites can add significant
 implementation complexity as well as some initial handshake overhead
 needed when setting up the security association. Once the initial
 handshake is completed, DTLS adds a limited per-datagram overhead of
 approximately 13 bytes, not including any initialization vectors/
 nonces (e.g., 8 bytes with TLS_PSK_WITH_AES_128_CCM_8 [RFC6655]),
 integrity check values (e.g., 8 bytes with TLS_PSK_WITH_AES_128_CCM_8
 [RFC6655]) and padding required by the cipher suite. Whether and
 which mode of using DTLS is applicable for a CoAP-based application
 should be carefully weighed considering the specific cipher suites
 that may be applicable, and whether the session maintenance makes it

Shelby, et al. Expires December 30, 2013 [Page 68]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 compatible with application flows and sufficient resources are
 available on the constrained nodes and for the added network
 overhead. (For some modes of using DTLS, this specification
 identifies a mandatory to implement cipher suite. This is an
 implementation requirement to maximize interoperability in those
 cases where these cipher suites are indeed appropriate. The specific
 security policies of an application may determine the actual (set of)
 cipher suites that can be used.) DTLS is not applicable to group
 keying (multicast communication); however, it may be a component in a
 future group key management protocol.

9.1.1. Messaging Layer

 The endpoint acting as the CoAP client should also act as the DTLS
 client. It should initiate a session to the server on the
 appropriate port. When the DTLS handshake has finished, the client
 may initiate the first CoAP request. All CoAP messages MUST be sent
 as DTLS "application data".

 The following rules are added for matching an ACK or RST to a CON
 message or a RST to a NON message: The DTLS session MUST be the same
 and the epoch MUST be the same.

 A message is the same when it is sent within the same DTLS session
 and same epoch and has the same Message ID.

 Note: When a Confirmable message is retransmitted, a new DTLS
 sequence_number is used for each attempt, even though the CoAP
 Message ID stays the same. So a recipient still has to perform
 deduplication as described in Section 4.5. Retransmissions MUST NOT
 be performed across epochs.

 DTLS connections in RawPublicKey and Certificate mode are set up
 using mutual authentication so they can remain up and be reused for
 future message exchanges in either direction. Devices can close a
 DTLS connection when they need to recover resources but in general
 they should keep the connection up for as long as possible. Closing
 the DTLS connection after every CoAP message exchange is very
 inefficient.

9.1.2. Request/Response Layer

 The following rules are added for matching a response to a request:
 The DTLS session MUST be the same and the epoch MUST be the same.

 This means the response to a DTLS secured request MUST always be DTLS
 secured using the same security session and epoch. Any attempt to
 supply a NoSec response to a DTLS request simply does not match the

Shelby, et al. Expires December 30, 2013 [Page 69]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 request and (unless it does match an unrelated NoSec request)
 therefore MUST be rejected.

9.1.3. Endpoint Identity

 Devices SHOULD support the Server Name Indication (SNI) to indicate
 their Authority Name in the SNI HostName field as defined in
 Section 3 of [RFC6066]. This is needed so that when a host that acts
 as a virtual server for multiple Authorities receives a new DTLS
 connection, it knows which keys to use for the DTLS session.

9.1.3.1. Pre-Shared Keys

 When forming a connection to a new node, the system selects an
 appropriate key based on which nodes it is trying to reach and then
 forms a DTLS session using a PSK (Pre-Shared Key) mode of DTLS.
 Implementations in these modes MUST support the mandatory to
 implement cipher suite TLS_PSK_WITH_AES_128_CCM_8 as specified in
 [RFC6655].

 Depending on the commissioning model, applications may need to define
 an application profile for identity hints as required and detailed in
 [RFC4279] (Section 5.2) to enable the use of PSK identity hints.

 The security considerations of [RFC4279] (Section 7) apply. In
 particular, applications should carefully weigh whether they need
 Perfect Forward Secrecy (PFS) or not and select an appropriate cipher
 suite (7.1). The entropy of the PSK must be sufficient to mitigate
 against brute-force and (where the PSK is not chosen randomly but by
 a human) dictionary attacks (7.2). The cleartext communication of
 client identities may leak data or compromise privacy (7.3).

9.1.3.2. Raw Public Key Certificates

 In this mode the device has an asymmetric key pair but without an
 X.509 certificate (called a raw public key); e.g., the asymmetric key
 pair is generated by the manufacturer and installed on the device
 (see also Section 11.6). A device MAY be configured with multiple
 raw public keys. The type and length of the raw public key depends
 on the cipher suite used. Implementations in RawPublicKey mode MUST
 support the mandatory to implement cipher suite
 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 as specified in
 [I-D.mcgrew-tls-aes-ccm-ecc], [RFC5246], [RFC4492]. The key used
 MUST be ECDSA-capable. The curve secp256r1 MUST be supported
 [RFC4492]; this curve is equivalent to the NIST P-256 curve. The
 hash algorithm is SHA-256. Implementations MUST use the Supported
 Elliptic Curves Extension and Supported Point Format extensions
 [RFC4492]; the uncompressed point format MUST be supported; [RFC6090]

Shelby, et al. Expires December 30, 2013 [Page 70]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 can be used as an implementation method. Some guidance relevant to
 the implementation of this cipher suite can be found in [W3CXMLSEC].
 The mechanism for using raw public keys with TLS is specified in
 [I-D.ietf-tls-oob-pubkey].

 Implementation Note: Specifically, this means the extensions listed
 in Figure 14 with at least the values listed will be present in
 the DTLS handshake.

 Extension: elliptic_curves
 Type: elliptic_curves (0x000a)
 Length: 4
 Elliptic Curves Length: 2
 Elliptic curves (1 curve)
 Elliptic curve: secp256r1 (0x0017)

 Extension: ec_point_formats
 Type: ec_point_formats (0x000b)
 Length: 2
 EC point formats Length: 1
 Elliptic curves point formats (1)
 EC point format: uncompressed (0)

 Extension: signature_algorithms
 Type: signature_algorithms (0x000d)
 Length: 4
 Data (4 bytes): 00 02 04 03
 HashAlgorithm: sha256 (4)
 SignatureAlgorithm: ecdsa (3)

 Figure 14: DTLS extensions present for
 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8

9.1.3.2.1. Provisioning

 The RawPublicKey mode was designed to be easily provisioned in M2M
 deployments. It is assumed that each device has an appropriate
 asymmetric public key pair installed. An identifier is calculated by
 the endpoint from the public key as described in Section 2 of
 [RFC6920]. All implementations that support checking RawPublicKey
 identities MUST support at least the sha-256-120 mode (SHA-256
 truncated to 120 bits). Implementations SHOULD support also longer
 length identifiers and MAY support shorter lengths. Note that the
 shorter lengths provide less security against attacks and their use
 is NOT RECOMMENDED.

 Depending on how identifiers are given to the system that verifies
 them, support for URI, binary, and/or human-speakable format

Shelby, et al. Expires December 30, 2013 [Page 71]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 [RFC6920] needs to be implemented. All implementations SHOULD
 support the binary mode and implementations that have a user
 interface SHOULD also support the human-speakable format.

 During provisioning, the identifier of each node is collected, for
 example by reading a barcode on the outside of the device or by
 obtaining a pre-compiled list of the identifiers. These identifiers
 are then installed in the corresponding endpoint, for example an M2M
 data collection server. The identifier is used for two purposes, to
 associate the endpoint with further device information and to perform
 access control. During (initial and ongoing) provisioning, an access
 control list of identifiers the device may start DTLS sessions with
 SHOULD also be installed and maintained.

9.1.3.3. X.509 Certificates

 Implementations in Certificate Mode MUST support the mandatory to
 implement cipher suite TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 as
 specified in [I-D.mcgrew-tls-aes-ccm-ecc], [RFC5246], [RFC4492].
 Namely, the certificate includes a SubjectPublicKeyInfo that
 indicates an algorithm of id-ecPublicKey with namedCurves secp256r1
 [RFC5480]; the public key format is uncompressed [RFC5480]; the hash
 algorithm is SHA-256; if included the key usage extension indicates
 digitalSignature. Certificates MUST be signed with ECDSA using
 secp256r1, and the signature MUST use SHA-256. The key used MUST be
 ECDSA-capable. The curve secp256r1 MUST be supported [RFC4492]; this
 curve is equivalent to the NIST P-256 curve. The hash algorithm is
 SHA-256. Implementations MUST use the Supported Elliptic Curves
 Extension and Supported Point Format extensions [RFC4492]; the
 uncompressed point format MUST be supported; [RFC6090] can be used as
 an implementation method.

 The Authority Name in the certificate would be built out of a long
 term unique identifier for the device such as the EUI-64 [EUI64].
 The Authority Name could also be based on the FQDN that was used as
 the Host part of the CoAP URI. However, the device’s IP address
 should not typically be used as the Authority name as it would change
 over time. The discovery process used in the system would build up
 the mapping between IP addresses of the given devices and the
 Authority Name for each device. Some devices could have more than
 one Authority and would need more than a single certificate.

 When a new connection is formed, the certificate from the remote
 device needs to be verified. If the CoAP node has a source of
 absolute time, then the node SHOULD check that the validity dates of
 the certificate are within range. The certificate MUST be validated
 as appropriate for the security requirements, using functionality
 equivalent to the algorithm specified in [RFC5280] section 6. If the

Shelby, et al. Expires December 30, 2013 [Page 72]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 certificate contains a SubjectAltName, then the Authority Name MUST
 match at least one of the authority names of any CoAP URI found in a
 field of URI type in the SubjectAltName set. If there is no
 SubjectAltName in the certificate, then the Authoritative Name MUST
 match the CN found in the certificate using the matching rules
 defined in [RFC2818] with the exception that certificates with
 wildcards are not allowed.

 CoRE support for certificate status checking requires further study.
 As a mapping of OCSP [RFC2560] onto CoAP is not currently defined and
 OCSP may also not be easily applicable in all environments, an
 alternative approach may be using the TLS Certificate Status Request
 extension ([RFC6066] section 8, also known as "OCSP stapling") or
 preferably the Multiple Certificate Status Extension
 ([I-D.ietf-tls-multiple-cert-status-extension]), if available.

 If the system has a shared key in addition to the certificate, then a
 cipher suite that includes the shared key such as
 TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA [RFC5489] SHOULD be used.

10. Cross-Protocol Proxying between CoAP and HTTP

 CoAP supports a limited subset of HTTP functionality, and thus cross-
 protocol proxying to HTTP is straightforward. There might be several
 reasons for proxying between CoAP and HTTP, for example when
 designing a web interface for use over either protocol or when
 realizing a CoAP-HTTP proxy. Likewise, CoAP could equally be proxied
 to other protocols such as XMPP [RFC6120] or SIP [RFC3264]; the
 definition of these mechanisms is out of scope of this specification.

 There are two possible directions to access a resource via a forward-
 proxy:

 CoAP-HTTP Proxying: Enables CoAP clients to access resources on HTTP
 servers through an intermediary. This is initiated by including
 the Proxy-Uri or Proxy-Scheme Option with an "http" or "https" URI
 in a CoAP request to a CoAP-HTTP proxy.

 HTTP-CoAP Proxying: Enables HTTP clients to access resources on CoAP
 servers through an intermediary. This is initiated by specifying
 a "coap" or "coaps" URI in the Request-Line of an HTTP request to
 an HTTP-CoAP proxy.

 Either way, only the Request/Response model of CoAP is mapped to
 HTTP. The underlying model of Confirmable or Non-confirmable
 messages, etc., is invisible and MUST have no effect on a proxy
 function. The following sections describe the handling of requests
 to a forward-proxy. Reverse proxies are not specified as the proxy

Shelby, et al. Expires December 30, 2013 [Page 73]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 function is transparent to the client with the proxy acting as if it
 was the origin server. However, similar considerations apply to
 reverse-proxies as to forward-proxies, and there generally will be an
 expectation that reverse-proxies operate in a similar way forward-
 proxies would. As an implementation note, HTTP client libraries may
 make it hard to operate an HTTP-CoAP forward proxy by not providing a
 way to put a CoAP URI on the HTTP Request-Line; reverse-proxying may
 therefore lead to wider applicability of a proxy. A separate
 specification may define a convention for URIs operating such a HTTP-
 CoAP reverse proxy [I-D.castellani-core-http-mapping].

10.1. CoAP-HTTP Proxying

 If a request contains a Proxy-Uri or Proxy-Scheme Option with an
 ’http’ or ’https’ URI [RFC2616], then the receiving CoAP endpoint
 (called "the proxy" henceforth) is requested to perform the operation
 specified by the request method on the indicated HTTP resource and
 return the result to the client. (See also Section 5.7 for how the
 request to the proxy is formulated, including security requirements.)

 This section specifies for any CoAP request the CoAP response that
 the proxy should return to the client. How the proxy actually
 satisfies the request is an implementation detail, although the
 typical case is expected to be the proxy translating and forwarding
 the request to an HTTP origin server.

 Since HTTP and CoAP share the basic set of request methods,
 performing a CoAP request on an HTTP resource is not so different
 from performing it on a CoAP resource. The meanings of the
 individual CoAP methods when performed on HTTP resources are
 explained in the subsections of this section.

 If the proxy is unable or unwilling to service a request with an HTTP
 URI, a 5.05 (Proxying Not Supported) response is returned to the
 client. If the proxy services the request by interacting with a
 third party (such as the HTTP origin server) and is unable to obtain
 a result within a reasonable time frame, a 5.04 (Gateway Timeout)
 response is returned; if a result can be obtained but is not
 understood, a 5.02 (Bad Gateway) response is returned.

10.1.1. GET

 The GET method requests the proxy to return a representation of the
 HTTP resource identified by the request URI.

 Upon success, a 2.05 (Content) response code SHOULD be returned. The
 payload of the response MUST be a representation of the target HTTP
 resource, and the Content-Format Option be set accordingly. The

Shelby, et al. Expires December 30, 2013 [Page 74]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 response MUST indicate a Max-Age value that is no greater than the
 remaining time the representation can be considered fresh. If the
 HTTP entity has an entity tag, the proxy SHOULD include an ETag
 Option in the response and process ETag Options in requests as
 described below.

 A client can influence the processing of a GET request by including
 the following option:

 Accept: The request MAY include an Accept Option, identifying the
 preferred response content-format.

 ETag: The request MAY include one or more ETag Options, identifying
 responses that the client has stored. This requests the proxy to
 send a 2.03 (Valid) response whenever it would send a 2.05
 (Content) response with an entity tag in the requested set
 otherwise. Note that CoAP ETags are always strong ETags in the
 HTTP sense; CoAP does not have the equivalent of HTTP weak ETags,
 and there is no good way to make use of these in a cross-proxy.

10.1.2. PUT

 The PUT method requests the proxy to update or create the HTTP
 resource identified by the request URI with the enclosed
 representation.

 If a new resource is created at the request URI, a 2.01 (Created)
 response MUST be returned to the client. If an existing resource is
 modified, a 2.04 (Changed) response MUST be returned to indicate
 successful completion of the request.

10.1.3. DELETE

 The DELETE method requests the proxy to delete the HTTP resource
 identified by the request URI at the HTTP origin server.

 A 2.02 (Deleted) response MUST be returned to client upon success or
 if the resource does not exist at the time of the request.

10.1.4. POST

 The POST method requests the proxy to have the representation
 enclosed in the request be processed by the HTTP origin server. The
 actual function performed by the POST method is determined by the
 origin server and dependent on the resource identified by the request
 URI.

Shelby, et al. Expires December 30, 2013 [Page 75]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 If the action performed by the POST method does not result in a
 resource that can be identified by a URI, a 2.04 (Changed) response
 MUST be returned to the client. If a resource has been created on
 the origin server, a 2.01 (Created) response MUST be returned.

10.2. HTTP-CoAP Proxying

 If an HTTP request contains a Request-URI with a ’coap’ or ’coaps’
 URI, then the receiving HTTP endpoint (called "the proxy" henceforth)
 is requested to perform the operation specified by the request method
 on the indicated CoAP resource and return the result to the client.

 This section specifies for any HTTP request the HTTP response that
 the proxy should return to the client. Unless otherwise specified
 all the statements made are RECOMMENDED behavior; some highly
 constrained implementations may need to resort to shortcuts. How the
 proxy actually satisfies the request is an implementation detail,
 although the typical case is expected to be the proxy translating and
 forwarding the request to a CoAP origin server. The meanings of the
 individual HTTP methods when performed on CoAP resources are
 explained in the subsections of this section.

 If the proxy is unable or unwilling to service a request with a CoAP
 URI, a 501 (Not Implemented) response is returned to the client. If
 the proxy services the request by interacting with a third party
 (such as the CoAP origin server) and is unable to obtain a result
 within a reasonable time frame, a 504 (Gateway Timeout) response is
 returned; if a result can be obtained but is not understood, a 502
 (Bad Gateway) response is returned.

10.2.1. OPTIONS and TRACE

 As the OPTIONS and TRACE methods are not supported in CoAP a 501 (Not
 Implemented) error MUST be returned to the client.

10.2.2. GET

 The GET method requests the proxy to return a representation of the
 CoAP resource identified by the Request-URI.

 Upon success, a 200 (OK) response is returned. The payload of the
 response MUST be a representation of the target CoAP resource, and
 the Content-Type and Content-Encoding header fields be set
 accordingly. The response MUST indicate a max-age directive that
 indicates a value no greater than the remaining time the
 representation can be considered fresh. If the CoAP response has an
 ETag option, the proxy should include an ETag header field in the
 response.

Shelby, et al. Expires December 30, 2013 [Page 76]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 A client can influence the processing of a GET request by including
 the following options:

 Accept: The most preferred Media-type of the HTTP Accept header
 field in a request is mapped to a CoAP Accept option. HTTP Accept
 Media-type ranges, parameters and extensions are not supported by
 the CoAP Accept option. If the proxy cannot send a response which
 is acceptable according to the combined Accept field value, then
 the proxy sends a 406 (not acceptable) response. The proxy MAY
 then retry the request with further Media-types from the HTTP
 Accept header field.

 Conditional GETs: Conditional HTTP GET requests that include an "If-
 Match" or "If-None-Match" request-header field can be mapped to a
 corresponding CoAP request. The "If-Modified-Since" and "If-
 Unmodified-Since" request-header fields are not directly supported
 by CoAP, but are implemented locally by a caching proxy.

10.2.3. HEAD

 The HEAD method is identical to GET except that the server MUST NOT
 return a message-body in the response.

 Although there is no direct equivalent of HTTP’s HEAD method in CoAP,
 an HTTP-CoAP proxy responds to HEAD requests for CoAP resources, and
 the HTTP headers are returned without a message-body.

 Implementation Note: An HTTP-CoAP proxy may want to try using a
 block-wise transfer [I-D.ietf-core-block] option to minimize the
 amount of data actually transferred, but needs to be prepared for
 the case that the origin server does not support block-wise
 transfers.

10.2.4. POST

 The POST method requests the proxy to have the representation
 enclosed in the request be processed by the CoAP origin server. The
 actual function performed by the POST method is determined by the
 origin server and dependent on the resource identified by the request
 URI.

 If the action performed by the POST method does not result in a
 resource that can be identified by a URI, a 200 (OK) or 204 (No
 Content) response MUST be returned to the client. If a resource has
 been created on the origin server, a 201 (Created) response MUST be
 returned.

Shelby, et al. Expires December 30, 2013 [Page 77]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 If any of the Location-* Options are present in the CoAP response, a
 Location header field constructed from the values of these options is
 returned.

10.2.5. PUT

 The PUT method requests the proxy to update or create the CoAP
 resource identified by the Request-URI with the enclosed
 representation.

 If a new resource is created at the Request-URI, a 201 (Created)
 response is returned to the client. If an existing resource is
 modified, either the 200 (OK) or 204 (No Content) response codes is
 sent to indicate successful completion of the request.

10.2.6. DELETE

 The DELETE method requests the proxy to delete the CoAP resource
 identified by the Request-URI at the CoAP origin server.

 A successful response is 200 (OK) if the response includes an entity
 describing the status or 204 (No Content) if the action has been
 enacted but the response does not include an entity.

10.2.7. CONNECT

 This method can not currently be satisfied by an HTTP-CoAP proxy
 function as TLS to DTLS tunneling has not yet been specified. For
 now, a 501 (Not Implemented) error is returned to the client.

11. Security Considerations

 This section analyzes the possible threats to the protocol. It is
 meant to inform protocol and application developers about the
 security limitations of CoAP as described in this document. As CoAP
 realizes a subset of the features in HTTP/1.1, the security
 considerations in Section 15 of [RFC2616] are also pertinent to CoAP.
 This section concentrates on describing limitations specific to CoAP.

11.1. Protocol Parsing, Processing URIs

 A network-facing application can exhibit vulnerabilities in its
 processing logic for incoming packets. Complex parsers are well-
 known as a likely source of such vulnerabilities, such as the ability
 to remotely crash a node, or even remotely execute arbitrary code on
 it. CoAP attempts to narrow the opportunities for introducing such
 vulnerabilities by reducing parser complexity, by giving the entire
 range of encodable values a meaning where possible, and by

Shelby, et al. Expires December 30, 2013 [Page 78]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 aggressively reducing complexity that is often caused by unnecessary
 choice between multiple representations that mean the same thing.
 Much of the URI processing has been moved to the clients, further
 reducing the opportunities for introducing vulnerabilities into the
 servers. Even so, the URI processing code in CoAP implementations is
 likely to be a large source of remaining vulnerabilities and should
 be implemented with special care. CoAP access control
 implementations need to ensure they don’t introduce vulnerabilities
 through discrepancies between the code deriving access control
 decisions from a URI and the code finally serving up the resource
 addressed by the URI. The most complex parser remaining could be the
 one for the CoRE Link Format, although this also has been designed
 with a goal of reduced implementation complexity [RFC6690]. (See
 also section 15.2 of [RFC2616].)

11.2. Proxying and Caching

 As mentioned in 15.7 of [RFC2616], proxies are by their very nature
 men-in-the-middle, breaking any IPsec or DTLS protection that a
 direct CoAP message exchange might have. They are therefore
 interesting targets for breaking confidentiality or integrity of CoAP
 message exchanges. As noted in [RFC2616], they are also interesting
 targets for breaking availability.

 The threat to confidentiality and integrity of request/response data
 is amplified where proxies also cache. Note that CoAP does not
 define any of the cache-suppressing Cache-Control options that HTTP/
 1.1 provides to better protect sensitive data.

 For a caching implementation, any access control considerations that
 would apply to making the request that generated the cache entry also
 need to be applied to the value in the cache. This is relevant for
 clients that implement multiple security domains, as well as for
 proxies that may serve multiple clients. Also, a caching proxy MUST
 NOT make cached values available to requests that have lesser
 transport security properties than to which it would make available
 the process of forwarding the request in the first place.

 Unlike the "coap" scheme, responses to "coaps" identified requests
 are never "public" and thus MUST NOT be reused for shared caching
 unless the cache is able to make equivalent access control decisions
 to the ones that led to the cached entry. They can, however, be
 reused in a private cache if the message is cacheable by default in
 CoAP.

 Finally, a proxy that fans out Separate Responses (as opposed to
 Piggy-backed Responses) to multiple original requesters may provide
 additional amplification (see Section 11.3).

Shelby, et al. Expires December 30, 2013 [Page 79]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

11.3. Risk of amplification

 CoAP servers generally reply to a request packet with a response
 packet. This response packet may be significantly larger than the
 request packet. An attacker might use CoAP nodes to turn a small
 attack packet into a larger attack packet, an approach known as
 amplification. There is therefore a danger that CoAP nodes could
 become implicated in denial of service (DoS) attacks by using the
 amplifying properties of the protocol: An attacker that is attempting
 to overload a victim but is limited in the amount of traffic it can
 generate, can use amplification to generate a larger amount of
 traffic.

 This is particularly a problem in nodes that enable NoSec access,
 that are accessible from an attacker and can access potential victims
 (e.g. on the general Internet), as the UDP protocol provides no way
 to verify the source address given in the request packet. An
 attacker need only place the IP address of the victim in the source
 address of a suitable request packet to generate a larger packet
 directed at the victim.

 As a mitigating factor, many constrained networks will only be able
 to generate a small amount of traffic, which may make CoAP nodes less
 attractive for this attack. However, the limited capacity of the
 constrained network makes the network itself a likely victim of an
 amplification attack.

 Therefore, large amplification factors SHOULD NOT be provided in the
 response if the request is not authenticated. A CoAP server can
 reduce the amount of amplification it provides to an attacker by
 using slicing/blocking modes of CoAP [I-D.ietf-core-block] and
 offering large resource representations only in relatively small
 slices. E.g., for a 1000 byte resource, a 10-byte request might
 result in an 80-byte response (with a 64-byte block) instead of a
 1016-byte response, considerably reducing the amplification provided.

 CoAP also supports the use of multicast IP addresses in requests, an
 important requirement for M2M. Multicast CoAP requests may be the
 source of accidental or deliberate denial of service attacks,
 especially over constrained networks. This specification attempts to
 reduce the amplification effects of multicast requests by limiting
 when a response is returned. To limit the possibility of malicious
 use, CoAP servers SHOULD NOT accept multicast requests that can not
 be authenticated in some way, cryptographically or by some multicast
 boundary limiting the potential sources. If possible a CoAP server
 SHOULD limit the support for multicast requests to the specific
 resources where the feature is required.

Shelby, et al. Expires December 30, 2013 [Page 80]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 On some general purpose operating systems providing a Posix-style
 API, it is not straightforward to find out whether a packet received
 was addressed to a multicast address. While many implementations
 will know whether they have joined a multicast group, this creates a
 problem for packets addressed to multicast addresses of the form
 FF0x::1, which are received by every IPv6 node. Implementations
 SHOULD make use of modern APIs such as IPV6_RECVPKTINFO [RFC3542], if
 available, to make this determination.

11.4. IP Address Spoofing Attacks

 Due to the lack of a handshake in UDP, a rogue endpoint which is free
 to read and write messages carried by the constrained network (i.e.
 NoSec or PreSharedKey deployments with nodes/key ratio > 1:1), may
 easily attack a single endpoint, a group of endpoints, as well as the
 whole network e.g. by:

 1. spoofing RST in response to a CON or NON message, thus making an
 endpoint "deaf"; or

 2. spoofing an ACK in response to a CON message, thus potentially
 preventing the sender of the CON message from retransmitting, and
 drowning out the actual response; or

 3. spoofing the entire response with forged payload/options (this
 has different levels of impact: from single response disruption,
 to much bolder attacks on the supporting infrastructure, e.g.
 poisoning proxy caches, or tricking validation / lookup
 interfaces in resource directories and, more generally, any
 component that stores global network state and uses CoAP as the
 messaging facility to handle state set/update’s is a potential
 target.); or

 4. spoofing a multicast request for a target node which may result
 in both network congestion/collapse and victim DoS’ing / forced
 wakeup from sleeping; or

 5. spoofing observe messages, etc.

 Response spoofing by off-path attackers can be detected and mitigated
 even without transport layer security by choosing a non-trivial,
 randomized token in the request (Section 5.3.1). [RFC4086] discusses
 randomness requirements for security.

 In principle, other kinds of spoofing can be detected by CoAP only in
 case CON semantics is used, because of unexpected ACK/RSTs coming
 from the deceived endpoint. But this imposes keeping track of the
 used Message IDs which is not always possible, and moreover detection

Shelby, et al. Expires December 30, 2013 [Page 81]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 becomes available usually after the damage is already done. This
 kind of attack can be prevented using security modes other than
 NoSec.

 With or without source address spoofing, a client can attempt to
 overload a server by sending requests, preferably complex ones, to a
 server; address spoofing makes tracing back, and blocking, this
 attack harder. Given that the cost of a CON request is small, this
 attack can easily be executed. Under this attack, a constrained node
 with limited total energy available may exhaust that energy much more
 quickly than planned (battery depletion attack). Also, if the client
 uses a Confirmable message and the server responds with a Confirmable
 separate response to a (possibly spoofed) address that does not
 respond, the server will have to allocate buffer and retransmission
 logic for each response up to the exhaustion of MAX_TRANSMIT_SPAN,
 making it more likely that it runs out of resources for processing
 legitimate traffic. The latter problem can be mitigated somewhat by
 limiting the rate of responses as discussed in Section 4.7. An
 attacker could also spoof the address of a legitimate client, which,
 if the server uses separate responses, might block legitimate
 responses to that client because of NSTART=1. All these attacks can
 be prevented using a security mode other than NoSec, leaving only
 attacks on the security protocol.

11.5. Cross-Protocol Attacks

 The ability to incite a CoAP endpoint to send packets to a fake
 source address can be used not only for amplification, but also for
 cross-protocol attacks against a victim listening to UDP packets at a
 given address (IP address and port):

 o the attacker sends a message to a CoAP endpoint with the given
 address as the fake source address,

 o the CoAP endpoint replies with a message to the given source
 address,

 o the victim at the given address receives a UDP packet that it
 interprets according to the rules of a different protocol.

 This may be used to circumvent firewall rules that prevent direct
 communication from the attacker to the victim, but happen to allow
 communication from the CoAP endpoint (which may also host a valid
 role in the other protocol) to the victim.

 Also, CoAP endpoints may be the victim of a cross-protocol attack
 generated through an endpoint of another UDP-based protocol such as
 DNS. In both cases, attacks are possible if the security properties

Shelby, et al. Expires December 30, 2013 [Page 82]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 of the endpoints rely on checking IP addresses (and firewalling off
 direct attacks sent from outside using fake IP addresses). In
 general, because of their lack of context, UDP-based protocols are
 relatively easy targets for cross-protocol attacks.

 Finally, CoAP URIs transported by other means could be used to incite
 clients to send messages to endpoints of other protocols.

 One mitigation against cross-protocol attacks is strict checking of
 the syntax of packets received, combined with sufficient difference
 in syntax. As an example, it might help if it were difficult to
 incite a DNS server to send a DNS response that would pass the checks
 of a CoAP endpoint. Unfortunately, the first two bytes of a DNS
 reply are an ID that can be chosen by the attacker, which map into
 the interesting part of the CoAP header, and the next two bytes are
 then interpreted as CoAP’s Message ID (i.e., any value is
 acceptable). The DNS count words may be interpreted as multiple
 instances of a (non-existent, but elective) CoAP option 0, or
 possibly as a Token. The echoed query finally may be manufactured by
 the attacker to achieve a desired effect on the CoAP endpoint; the
 response added by the server (if any) might then just be interpreted
 as added payload.

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ID | T, TKL, code
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |QR| Opcode |AA|TC|RD|RA| Z | RCODE | Message ID
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | QDCOUNT | (options 0)
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ANCOUNT | (options 0)
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | NSCOUNT | (options 0)
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ARCOUNT | (options 0)
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 Figure 15: DNS Header vs. CoAP Message

 In general, for any pair of protocols, one of the protocols can very
 well have been designed in a way that enables an attacker to cause
 the generation of replies that look like messages of the other
 protocol. It is often much harder to ensure or prove the absence of
 viable attacks than to generate examples that may not yet completely
 enable an attack but might be further developed by more creative
 minds. Cross-protocol attacks can therefore only be completely

Shelby, et al. Expires December 30, 2013 [Page 83]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 mitigated if endpoints don’t authorize actions desired by an attacker
 just based on trusting the source IP address of a packet.
 Conversely, a NoSec environment that completely relies on a firewall
 for CoAP security not only needs to firewall off the CoAP endpoints
 but also all other endpoints that might be incited to send UDP
 messages to CoAP endpoints using some other UDP-based protocol.

 In addition to the considerations above, the security considerations
 for DTLS with respect to cross-protocol attacks apply. E.g., if the
 same DTLS security association ("connection") is used to carry data
 of multiple protocols, DTLS no longer provides protection against
 cross-protocol attacks between these protocols.

11.6. Constrained node considerations

 Implementers on constrained nodes often find themselves without a
 good source of entropy [RFC4086]. If that is the case, the node MUST
 NOT be used for processes that require good entropy, such as key
 generation. Instead, keys should be generated externally and added
 to the device during manufacturing or commissioning.

 Due to their low processing power, constrained nodes are particularly
 susceptible to timing attacks. Special care must be taken in
 implementation of cryptographic primitives.

 Large numbers of constrained nodes will be installed in exposed
 environments and will have little resistance to tampering, including
 recovery of keying materials. This needs to be considered when
 defining the scope of credentials assigned to them. In particular,
 assigning a shared key to a group of nodes may make any single
 constrained node a target for subverting the entire group.

12. IANA Considerations

12.1. CoAP Code Registries

 This document defines two sub-registries for the values of the Code
 field in the CoAP header within the Constrained RESTful Environments
 (CoRE) Parameters ("CoRE Parameters") registry.

 Values in the two sub-registries are eight-bit values notated as
 three decimal digits c.dd separated by a period between the first and
 the second digit; the first digit c is between 0 and 7 and denotes
 the code class; the second and third digit dd denote a decimal number
 between 00 and 31 for the detail.

 All Code values are assigned by sub-registries according to the
 following ranges:

Shelby, et al. Expires December 30, 2013 [Page 84]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 0.00 Indicates an Empty message (see Section 4.1).

 0.01-0.31 Indicates a request. Values in this range are assigned by
 the "CoAP Method Codes" sub-registry (see Section 12.1.1).

 1.00-1.31 Reserved

 2.00-5.31 Indicates a response. Values in this range are assigned by
 the "CoAP Response Codes" sub-registry (see
 Section 12.1.2).

 6.00-7.31 Reserved

12.1.1. Method Codes

 The name of the sub-registry is "CoAP Method Codes".

 Each entry in the sub-registry must include the Method Code in the
 range 0.01-0.31, the name of the method, and a reference to the
 method’s documentation.

 Initial entries in this sub-registry are as follows:

 +------+--------+-----------+
 | Code | Name | Reference |
 +------+--------+-----------+
 | 0.01 | GET | [RFCXXXX] |
 | 0.02 | POST | [RFCXXXX] |
 | 0.03 | PUT | [RFCXXXX] |
 | 0.04 | DELETE | [RFCXXXX] |
 +------+--------+-----------+

 Table 5: CoAP Method Codes

 All other Method Codes are Unassigned.

 The IANA policy for future additions to this sub-registry is "IETF
 Review or IESG approval" as described in [RFC5226].

 The documentation of a method code should specify the semantics of a
 request with that code, including the following properties:

 o The response codes the method returns in the success case.

 o Whether the method is idempotent, safe, or both.

12.1.2. Response Codes

Shelby, et al. Expires December 30, 2013 [Page 85]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 The name of the sub-registry is "CoAP Response Codes".

 Each entry in the sub-registry must include the Response Code in the
 range 2.00-5.31, a description of the Response Code, and a reference
 to the Response Code’s documentation.

 Initial entries in this sub-registry are as follows:

 +------+------------------------------+-----------+
 | Code | Description | Reference |
 +------+------------------------------+-----------+
 | 2.01 | Created | [RFCXXXX] |
 | 2.02 | Deleted | [RFCXXXX] |
 | 2.03 | Valid | [RFCXXXX] |
 | 2.04 | Changed | [RFCXXXX] |
 | 2.05 | Content | [RFCXXXX] |
 | 4.00 | Bad Request | [RFCXXXX] |
 | 4.01 | Unauthorized | [RFCXXXX] |
 | 4.02 | Bad Option | [RFCXXXX] |
 | 4.03 | Forbidden | [RFCXXXX] |
 | 4.04 | Not Found | [RFCXXXX] |
 | 4.05 | Method Not Allowed | [RFCXXXX] |
 | 4.06 | Not Acceptable | [RFCXXXX] |
 | 4.12 | Precondition Failed | [RFCXXXX] |
 | 4.13 | Request Entity Too Large | [RFCXXXX] |
 | 4.15 | Unsupported Content-Format | [RFCXXXX] |
 | 5.00 | Internal Server Error | [RFCXXXX] |
 | 5.01 | Not Implemented | [RFCXXXX] |
 | 5.02 | Bad Gateway | [RFCXXXX] |
 | 5.03 | Service Unavailable | [RFCXXXX] |
 | 5.04 | Gateway Timeout | [RFCXXXX] |
 | 5.05 | Proxying Not Supported | [RFCXXXX] |
 +------+------------------------------+-----------+

 Table 6: CoAP Response Codes

 The Response Codes 3.00-3.31 are Reserved for future use. All other
 Response Codes are Unassigned.

 The IANA policy for future additions to this sub-registry is "IETF
 Review or IESG approval" as described in [RFC5226].

 The documentation of a response code should specify the semantics of
 a response with that code, including the following properties:

 o The methods the response code applies to.

 o Whether payload is required, optional or not allowed.

Shelby, et al. Expires December 30, 2013 [Page 86]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 o The semantics of the payload. For example, the payload of a 2.05
 (Content) response is a representation of the target resource; the
 payload in an error response is a human-readable diagnostic
 payload.

 o The format of the payload. For example, the format in a 2.05
 (Content) response is indicated by the Content-Format Option; the
 format of the payload in an error response is always Net-Unicode
 text.

 o Whether the response is cacheable according to the freshness
 model.

 o Whether the response is validatable according to the validation
 model.

 o Whether the response causes a cache to mark responses stored for
 the request URI as not fresh.

12.2. Option Number Registry

 This document defines a sub-registry for the Option Numbers used in
 CoAP options within the "CoRE Parameters" registry. The name of the
 sub-registry is "CoAP Option Numbers".

 Each entry in the sub-registry must include the Option Number, the
 name of the option and a reference to the option’s documentation.

 Initial entries in this sub-registry are as follows:

 +--------+------------------+-----------+
 | Number | Name | Reference |
 +--------+------------------+-----------+
 | 0 | (Reserved) | [RFCXXXX] |
 | 1 | If-Match | [RFCXXXX] |
 | 3 | Uri-Host | [RFCXXXX] |
 | 4 | ETag | [RFCXXXX] |
 | 5 | If-None-Match | [RFCXXXX] |
 | 7 | Uri-Port | [RFCXXXX] |
 | 8 | Location-Path | [RFCXXXX] |
 | 11 | Uri-Path | [RFCXXXX] |
 | 12 | Content-Format | [RFCXXXX] |
 | 14 | Max-Age | [RFCXXXX] |
 | 15 | Uri-Query | [RFCXXXX] |
 | 17 | Accept | [RFCXXXX] |
 | 20 | Location-Query | [RFCXXXX] |
 | 35 | Proxy-Uri | [RFCXXXX] |
 | 39 | Proxy-Scheme | [RFCXXXX] |

Shelby, et al. Expires December 30, 2013 [Page 87]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 | 60 | Size1 | [RFCXXXX] |
 | 128 | (Reserved) | [RFCXXXX] |
 | 132 | (Reserved) | [RFCXXXX] |
 | 136 | (Reserved) | [RFCXXXX] |
 | 140 | (Reserved) | [RFCXXXX] |
 +--------+------------------+-----------+

 Table 7: CoAP Option Numbers

 The IANA policy for future additions to this sub-registry is split
 into three tiers as follows. The range of 0..255 is reserved for
 options defined by the IETF (IETF Review or IESG approval). The
 range of 256..2047 is reserved for commonly used options with public
 specifications (Specification Required). The range of 2048..64999 is
 for all other options including private or vendor specific ones,
 which undergo a Designated Expert review to help ensure that the
 option semantics are defined correctly. The option numbers between
 65000 and 65535 inclusive are reserved for experiments. They are not
 meant for vendor specific use of any kind and MUST NOT be used in
 operational deployments.

 +---------------+------------------------------+
 | Option Number | Policy [RFC5226] |
 +---------------+------------------------------+
 | 0..255 | IETF Review or IESG approval |
 | 256..2047 | Specification Required |
 | 2048..64999 | Designated Expert |
 | 65000..65535 | Reserved for experiments |
 +---------------+------------------------------+

 Table 8: CoAP Option Number Registry Policy

 The documentation of an Option Number should specify the semantics of
 an option with that number, including the following properties:

 o The meaning of the option in a request.

 o The meaning of the option in a response.

 o Whether the option is critical or elective, as determined by the
 Option Number.

 o Whether the option is Safe-to-Forward, and, if yes, whether it is
 part of the Cache-Key, as determined by the Option Number (see
 Section 5.4.2).

 o The format and length of the option’s value.

Shelby, et al. Expires December 30, 2013 [Page 88]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 o Whether the option must occur at most once or whether it can occur
 multiple times.

 o The default value, if any. For a critical option with a default
 value, a discussion on how the default value enables processing by
 implementations not implementing the critical option
 (Section 5.4.4).

12.3. Content-Format Registry

 Internet media types are identified by a string, such as "application
 /xml" [RFC2046]. In order to minimize the overhead of using these
 media types to indicate the format of payloads, this document defines
 a sub-registry for a subset of Internet media types to be used in
 CoAP and assigns each, in combination with a content-coding, a
 numeric identifier. The name of the sub-registry is "CoAP Content-
 Formats", within the "CoRE Parameters" registry.

 Each entry in the sub-registry must include the media type registered
 with IANA, the numeric identifier in the range 0-65535 to be used for
 that media type in CoAP, the content-coding associated with this
 identifier, and a reference to a document describing what a payload
 with that media type means semantically.

 CoAP does not include a separate way to convey content-encoding
 information with a request or response, and for that reason the
 content-encoding is also specified for each identifier (if any). If
 multiple content-encodings will be used with a media type, then a
 separate Content-Format identifier for each is to be registered.
 Similarly, other parameters related to an Internet media type, such
 as level, can be defined for a CoAP Content-Format entry.

 Initial entries in this sub-registry are as follows:

Shelby, et al. Expires December 30, 2013 [Page 89]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 +------------------+----------+-------+-----------------------------+
 | Media type | Encoding | Id. | Reference |
 +------------------+----------+-------+-----------------------------+
text/plain;	-	0	[RFC2046][RFC3676][RFC5147]
charset=utf-8			
application/	-	40	[RFC6690]
link-format			
application/xml	-	41	[RFC3023]
application/	-	42	[RFC2045][RFC2046]
octet-stream			
application/exi	-	47	[EXIMIME]
application/json	-	50	[RFC4627]
 +------------------+----------+-------+-----------------------------+

 Table 9: CoAP Content-Formats

 The identifiers between 65000 and 65535 inclusive are reserved for
 experiments. They are not meant for vendor specific use of any kind
 and MUST NOT be used in operational deployments. The identifiers
 between 256 and 9999 are reserved for future use in IETF
 specifications (IETF review or IESG approval). All other identifiers
 are Unassigned.

 Because the name space of single-byte identifiers is so small, the
 IANA policy for future additions in the range 0-255 inclusive to the
 sub-registry is "Expert Review" as described in [RFC5226]. The IANA
 policy for additions in the range 10000-64999 inclusive is "First
 Come First Served" as described in [RFC5226].

 In machine to machine applications, it is not expected that generic
 Internet media types such as text/plain, application/xml or
 application/octet-stream are useful for real applications in the long
 term. It is recommended that M2M applications making use of CoAP
 will request new Internet media types from IANA indicating semantic
 information about how to create or parse a payload. For example, a
 Smart Energy application payload carried as XML might request a more
 specific type like application/se+xml or application/se-exi.

12.4. URI Scheme Registration

 This document requests the registration of the Uniform Resource
 Identifier (URI) scheme "coap". The registration request complies
 with [RFC4395].

 URI scheme name.
 coap

 Status.

Shelby, et al. Expires December 30, 2013 [Page 90]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Permanent.

 URI scheme syntax.
 Defined in Section 6.1 of [RFCXXXX].

 URI scheme semantics.
 The "coap" URI scheme provides a way to identify resources that
 are potentially accessible over the Constrained Application
 Protocol (CoAP). The resources can be located by contacting the
 governing CoAP server and operated on by sending CoAP requests to
 the server. This scheme can thus be compared to the "http" URI
 scheme [RFC2616]. See Section 6 of [RFCXXXX] for the details of
 operation.

 Encoding considerations.
 The scheme encoding conforms to the encoding rules established for
 URIs in [RFC3986], i.e. internationalized and reserved characters
 are expressed using UTF-8-based percent-encoding.

 Applications/protocols that use this URI scheme name.
 The scheme is used by CoAP endpoints to access CoAP resources.

 Interoperability considerations.
 None.

 Security considerations.
 See Section 11.1 of [RFCXXXX].

 Contact.
 IETF Chair <chair@ietf.org>

 Author/Change controller.
 IESG <iesg@ietf.org>

 References.
 [RFCXXXX]

12.5. Secure URI Scheme Registration

 This document requests the registration of the Uniform Resource
 Identifier (URI) scheme "coaps". The registration request complies
 with [RFC4395].

 URI scheme name.
 coaps

 Status.
 Permanent.

Shelby, et al. Expires December 30, 2013 [Page 91]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 URI scheme syntax.
 Defined in Section 6.2 of [RFCXXXX].

 URI scheme semantics.
 The "coaps" URI scheme provides a way to identify resources that
 are potentially accessible over the Constrained Application
 Protocol (CoAP) using Datagram Transport Layer Security (DTLS) for
 transport security. The resources can be located by contacting
 the governing CoAP server and operated on by sending CoAP requests
 to the server. This scheme can thus be compared to the "https"
 URI scheme [RFC2616]. See Section 6 of [RFCXXXX] for the details
 of operation.

 Encoding considerations.
 The scheme encoding conforms to the encoding rules established for
 URIs in [RFC3986], i.e. internationalized and reserved characters
 are expressed using UTF-8-based percent-encoding.

 Applications/protocols that use this URI scheme name.
 The scheme is used by CoAP endpoints to access CoAP resources
 using DTLS.

 Interoperability considerations.
 None.

 Security considerations.
 See Section 11.1 of [RFCXXXX].

 Contact.
 IETF Chair <chair@ietf.org>

 Author/Change controller.
 IESG <iesg@ietf.org>

 References.
 [RFCXXXX]

12.6. Service Name and Port Number Registration

 One of the functions of CoAP is resource discovery: a CoAP client can
 ask a CoAP server about the resources offered by it (see Section 7).
 To enable resource discovery just based on the knowledge of an IP
 address, the CoAP port for resource discovery needs to be
 standardized.

 IANA has assigned the port number 5683 and the service name "coap",
 in accordance with [RFC6335].

Shelby, et al. Expires December 30, 2013 [Page 92]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Besides unicast, CoAP can be used with both multicast and anycast.

 Service Name.
 coap

 Transport Protocol.
 UDP

 Assignee.
 IESG <iesg@ietf.org>

 Contact.
 IETF Chair <chair@ietf.org>

 Description.
 Constrained Application Protocol (CoAP)

 Reference.
 [RFCXXXX]

 Port Number.
 5683

12.7. Secure Service Name and Port Number Registration

 CoAP resource discovery may also be provided using the DTLS-secured
 CoAP "coaps" scheme. Thus the CoAP port for secure resource
 discovery needs to be standardized.

 This document requests the assignment of the port number
 [IANA_TBD_PORT] and the service name "coaps", in accordance with
 [RFC6335].

 Besides unicast, DTLS-secured CoAP can be used with anycast.

 Service Name.
 coaps

 Transport Protocol.
 UDP

 Assignee.
 IESG <iesg@ietf.org>

 Contact.
 IETF Chair <chair@ietf.org>

 Description.

Shelby, et al. Expires December 30, 2013 [Page 93]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 DTLS-secured CoAP

 Reference.
 [RFCXXXX]

 Port Number.
 [IANA_TBD_PORT]

12.8. Multicast Address Registration

 Section 8, "Multicast CoAP", defines the use of multicast. This
 document requests the assignment of the following multicast addresses
 for use by CoAP nodes:

 IPv4 -- "All CoAP Nodes" address [TBD1], from the IPv4 Multicast
 Address Space Registry. As the address is used for discovery that
 may span beyond a single network, it should come from the
 Internetwork Control Block (224.0.1.x, RFC 5771).

 IPv6 -- "All CoAP Nodes" address [TBD2], from the IPv6 Multicast
 Address Space Registry, in the Variable Scope Multicast Addresses
 space (RFC3307). Note that there is a distinct multicast address
 for each scope that interested CoAP nodes should listen to; CoAP
 needs the Link-Local and Site-Local scopes only. The address
 should be of the form FF0x::nn, where nn is a single byte, to
 ensure good compression of the local-scope address with [RFC6282].

 [The explanatory text to be removed upon allocation of the addresses,
 except for the note about the distinct multicast addresses.]

13. Acknowledgements

 Brian Frank was a contributor to and co-author of previous drafts of
 this specification.

 Special thanks to Peter Bigot, Esko Dijk and Cullen Jennings for
 substantial contributions to the ideas and text in the document,
 along with countless detailed reviews and discussions.

 Thanks to Ed Beroset, Angelo P. Castellani, Gilbert Clark, Robert
 Cragie, Esko Dijk, Lisa Dusseault, Mehmet Ersue, Thomas Fossati, Tom
 Herbst, Richard Kelsey, Ari Keranen, Matthias Kovatsch, Salvatore
 Loreto, Kerry Lynn, Alexey Melnikov, Guido Moritz, Petri Mutka, Colin
 O’Flynn, Charles Palmer, Adriano Pezzuto, Robert Quattlebaum, Akbar
 Rahman, Eric Rescorla, Dan Romascanu, David Ryan, Szymon Sasin,
 Michael Scharf, Dale Seed, Robby Simpson, Peter van der Stok, Michael
 Stuber, Linyi Tian, Gilman Tolle, Matthieu Vial and Alper Yegin for
 helpful comments and discussions that have shaped the document.

Shelby, et al. Expires December 30, 2013 [Page 94]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Special thanks also to the IESG reviewers, Adrian Farrel, Martin
 Stiemerling, Pete Resnick, Richard Barnes, Sean Turner, Spencer
 Dawkins, Stephen Farrell, and Ted Lemon, who contributed in-depth
 reviews.

 Some of the text has been borrowed from the working documents of the
 IETF httpbis working group.

14. References

14.1. Normative References

 [I-D.ietf-tls-oob-pubkey]
 Wouters, P., Tschofenig, H., Gilmore, J., Weiler, S., and
 T. Kivinen, "Out-of-Band Public Key Validation for
 Transport Layer Security (TLS)", draft-ietf-tls-oob-
 pubkey-07 (work in progress), February 2013.

 [I-D.mcgrew-tls-aes-ccm-ecc]
 McGrew, D., Bailey, D., Campagna, M., and R. Dugal, "AES-
 CCM ECC Cipher Suites for TLS", draft-mcgrew-tls-aes-ccm-
 ecc-06 (work in progress), February 2013.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC2045] Freed, N. and N.S. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media
 Types", RFC 3023, January 2001.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

Shelby, et al. Expires December 30, 2013 [Page 95]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 [RFC3676] Gellens, R., "The Text/Plain Format and DelSp Parameters",
 RFC 3676, February 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005.

 [RFC4279] Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
 for Transport Layer Security (TLS)", RFC 4279, December
 2005.

 [RFC4395] Hansen, T., Hardie, T., and L. Masinter, "Guidelines and
 Registration Procedures for New URI Schemes", BCP 35, RFC
 4395, February 2006.

 [RFC5147] Wilde, E. and M. Duerst, "URI Fragment Identifiers for the
 text/plain Media Type", RFC 5147, April 2008.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, March 2008.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
 "Elliptic Curve Cryptography Subject Public Key
 Information", RFC 5480, March 2009.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785, April
 2010.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952, August 2010.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

Shelby, et al. Expires December 30, 2013 [Page 96]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, August 2012.

 [RFC6920] Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,
 Keranen, A., and P. Hallam-Baker, "Naming Things with
 Hashes", RFC 6920, April 2013.

14.2. Informative References

 [EUI64] , "GUIDELINES FOR 64-BIT GLOBAL IDENTIFIER (EUI-64)
 REGISTRATION AUTHORITY", April 2010, <http://
 standards.ieee.org/regauth/oui/tutorials/EUI64.html>.

 [EXIMIME] , "Efficient XML Interchange (EXI) Format 1.0", December
 2009, <http://www.w3.org/TR/2009/CR-exi-20091208/
 #mediaTypeRegistration>.

 [HHGTTG] Adams, D., "The Hitchhiker’s Guide to the Galaxy", October
 1979.

 [I-D.allman-tcpm-rto-consider]
 Allman, M., "Retransmission Timeout Considerations",
 draft-allman-tcpm-rto-consider-01 (work in progress), May
 2012.

 [I-D.bormann-coap-misc]
 Bormann, C. and K. Hartke, "Miscellaneous additions to
 CoAP", draft-bormann-coap-misc-22 (work in progress),
 December 2012.

 [I-D.bormann-core-ipsec-for-coap]
 Bormann, C., "Using CoAP with IPsec", draft-bormann-core-
 ipsec-for-coap-00 (work in progress), December 2012.

 [I-D.castellani-core-http-mapping]
 Castellani, A., Loreto, S., Rahman, A., Fossati, T., and
 E. Dijk, "Best Practices for HTTP-CoAP Mapping
 Implementation", draft-castellani-core-http-mapping-07
 (work in progress), February 2013.

 [I-D.ietf-core-block]

Shelby, et al. Expires December 30, 2013 [Page 97]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Bormann, C. and Z. Shelby, "Blockwise transfers in CoAP",
 draft-ietf-core-block-10 (work in progress), October 2012.

 [I-D.ietf-core-groupcomm]
 Rahman, A. and E. Dijk, "Group Communication for CoAP",
 draft-ietf-core-groupcomm-06 (work in progress), April
 2013.

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP", draft-ietf-
 core-observe-08 (work in progress), February 2013.

 [I-D.ietf-lwig-terminology]
 Bormann, C., Ersue, M., and A. Keraenen, "Terminology for
 Constrained Node Networks", draft-ietf-lwig-terminology-04
 (work in progress), April 2013.

 [I-D.ietf-tls-multiple-cert-status-extension]
 Pettersen, Y., "The TLS Multiple Certificate Status
 Request Extension", draft-ietf-tls-multiple-cert-status-
 extension-08 (work in progress), April 2013.

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", Ph.D. Dissertation,
 University of California, Irvine, 2000, <http://
 www.ics.uci.edu/˜fielding/pubs/dissertation/
 fielding_dissertation.pdf>.

 [RFC0020] Cerf, V., "ASCII format for network interchange", RFC 20,
 October 1969.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
 RFC 792, September 1981.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC2560] Myers, M., Ankney, R., Malpani, A., Galperin, S., and C.
 Adams, "X.509 Internet Public Key Infrastructure Online
 Certificate Status Protocol - OCSP", RFC 2560, June 1999.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264, June
 2002.

Shelby, et al. Expires December 30, 2013 [Page 98]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 [RFC3542] Stevens, W., Thomas, M., Nordmark, E., and T. Jinmei,
 "Advanced Sockets Application Program Interface (API) for
 IPv6", RFC 3542, May 2003.

 [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., and
 G. Fairhurst, "The Lightweight User Datagram Protocol
 (UDP-Lite)", RFC 3828, July 2004.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control
 Message Protocol (ICMPv6) for the Internet Protocol
 Version 6 (IPv6) Specification", RFC 4443, March 2006.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492, May 2006.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, September 2007.

 [RFC5405] Eggert, L. and G. Fairhurst, "Unicast UDP Usage Guidelines
 for Application Designers", BCP 145, RFC 5405, November
 2008.

 [RFC5489] Badra, M. and I. Hajjeh, "ECDHE_PSK Cipher Suites for
 Transport Layer Security (TLS)", RFC 5489, March 2009.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090, February 2011.

 [RFC6120] Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, March 2011.

 [RFC6282] Hui, J. and P. Thubert, "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
 September 2011.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)

Shelby, et al. Expires December 30, 2013 [Page 99]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165, RFC
 6335, August 2011.

 [RFC6655] McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for
 Transport Layer Security (TLS)", RFC 6655, July 2012.

 [RFC6936] Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums",
 RFC 6936, April 2013.

 [W3CXMLSEC]
 Wenning, R., "Report of the XML Security PAG", October
 2012, <http://www.w3.org/2011/xmlsec-pag/pagreport.html>.

Appendix A. Examples

 This section gives a number of short examples with message flows for
 GET requests. These examples demonstrate the basic operation, the
 operation in the presence of retransmissions, and multicast.

 Figure 16 shows a basic GET request causing a piggy-backed response:
 The client sends a Confirmable GET request for the resource coap://
 server/temperature to the server with a Message ID of 0x7d34. The
 request includes one Uri-Path Option (Delta 0 + 11 = 11, Length 11,
 Value "temperature"); the Token is left empty. This request is a
 total of 16 bytes long. A 2.05 (Content) response is returned in the
 Acknowledgement message that acknowledges the Confirmable request,
 echoing both the Message ID 0x7d34 and the empty Token value. The
 response includes a Payload of "22.3 C" and is 11 bytes long.

 Client Server
 | |
 | |
 +----->| Header: GET (T=CON, Code=0.01, MID=0x7d34)
 | GET | Uri-Path: "temperature"
 | |
 | |
 |<-----+ Header: 2.05 Content (T=ACK, Code=2.05, MID=0x7d34)
 | 2.05 | Payload: "22.3 C"
 | |

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 1 | 0 | 0 | GET=1 | MID=0x7d34 |
 +-+

Shelby, et al. Expires December 30, 2013 [Page 100]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 | 11 | 11 | "temperature" (11 B) ...
 +-+

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 1 | 2 | 0 | 2.05=69 | MID=0x7d34 |
 +-+
 |1 1 1 1 1 1 1 1| "22.3 C" (6 B) ...
 +-+

 Figure 16: Confirmable request; piggy-backed response

 Figure 17 shows a similar example, but with the inclusion of an non-
 empty Token (Value 0x20) in the request and the response, increasing
 the sizes to 17 and 12 bytes, respectively.

 Client Server
 | |
 | |
 +----->| Header: GET (T=CON, Code=0.01, MID=0x7d35)
 | GET | Token: 0x20
 | | Uri-Path: "temperature"
 | |
 | |
 |<-----+ Header: 2.05 Content (T=ACK, Code=2.05, MID=0x7d35)
 | 2.05 | Token: 0x20
 | | Payload: "22.3 C"
 | |

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 1 | 0 | 1 | GET=1 | MID=0x7d35 |
 +-+
 | 0x20 |
 +-+
 | 11 | 11 | "temperature" (11 B) ...
 +-+

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 1 | 2 | 1 | 2.05=69 | MID=0x7d35 |

Shelby, et al. Expires December 30, 2013 [Page 101]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 +-+
 | 0x20 |
 +-+
 |1 1 1 1 1 1 1 1| "22.3 C" (6 B) ...
 +-+

 Figure 17: Confirmable request; piggy-backed response

 In Figure 18, the Confirmable GET request is lost. After ACK_TIMEOUT
 seconds, the client retransmits the request, resulting in a piggy-
 backed response as in the previous example.

 Client Server
 | |
 | |
 +----X | Header: GET (T=CON, Code=0.01, MID=0x7d36)
 | GET | Token: 0x31
 | | Uri-Path: "temperature"
 TIMEOUT |
 | |
 +----->| Header: GET (T=CON, Code=0.01, MID=0x7d36)
 | GET | Token: 0x31
 | | Uri-Path: "temperature"
 | |
 | |
 |<-----+ Header: 2.05 Content (T=ACK, Code=2.05, MID=0x7d36)
 | 2.05 | Token: 0x31
 | | Payload: "22.3 C"
 | |

 Figure 18: Confirmable request (retransmitted); piggy-backed response

 In Figure 19, the first Acknowledgement message from the server to
 the client is lost. After ACK_TIMEOUT seconds, the client
 retransmits the request.

 Client Server
 | |
 | |
 +----->| Header: GET (T=CON, Code=0.01, MID=0x7d37)
 | GET | Token: 0x42
 | | Uri-Path: "temperature"
 | |
 | |
 | X----+ Header: 2.05 Content (T=ACK, Code=2.05, MID=0x7d37)
 | 2.05 | Token: 0x42

Shelby, et al. Expires December 30, 2013 [Page 102]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 | | Payload: "22.3 C"
 TIMEOUT |
 | |
 +----->| Header: GET (T=CON, Code=0.01, MID=0x7d37)
 | GET | Token: 0x42
 | | Uri-Path: "temperature"
 | |
 | |
 |<-----+ Header: 2.05 Content (T=ACK, Code=2.05, MID=0x7d37)
 | 2.05 | Token: 0x42
 | | Payload: "22.3 C"
 | |

 Figure 19: Confirmable request; piggy-backed response (retransmitted)

 In Figure 20, the server acknowledges the Confirmable request and
 sends a 2.05 (Content) response separately in a Confirmable message.
 Note that the Acknowledgement message and the Confirmable response do
 not necessarily arrive in the same order as they were sent. The
 client acknowledges the Confirmable response.

 Client Server
 | |
 | |
 +----->| Header: GET (T=CON, Code=0.01, MID=0x7d38)
 | GET | Token: 0x53
 | | Uri-Path: "temperature"
 | |
 | |
 |<- - -+ Header: (T=ACK, Code=0.00, MID=0x7d38)
 | |
 | |
 |<-----+ Header: 2.05 Content (T=CON, Code=2.05, MID=0xad7b)
 | 2.05 | Token: 0x53
 | | Payload: "22.3 C"
 | |
 | |
 +- - ->| Header: (T=ACK, Code=0.00, MID=0xad7b)
 | |

 Figure 20: Confirmable request; separate response

 Figure 21 shows an example where the client loses its state (e.g.,
 crashes and is rebooted) right after sending a Confirmable request,
 so the separate response arriving some time later comes unexpected.
 In this case, the client rejects the Confirmable response with a
 Reset message. Note that the unexpected ACK is silently ignored.

Shelby, et al. Expires December 30, 2013 [Page 103]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Client Server
 | |
 | |
 +----->| Header: GET (T=CON, Code=0.01, MID=0x7d39)
 | GET | Token: 0x64
 | | Uri-Path: "temperature"
 CRASH |
 | |
 |<- - -+ Header: (T=ACK, Code=0.00, MID=0x7d39)
 | |
 | |
 |<-----+ Header: 2.05 Content (T=CON, Code=2.05, MID=0xad7c)
 | 2.05 | Token: 0x64
 | | Payload: "22.3 C"
 | |
 | |
 +- - ->| Header: (T=RST, Code=0.00, MID=0xad7c)
 | |

 Figure 21: Confirmable request; separate response (unexpected)

 Figure 22 shows a basic GET request where the request and the
 response are Non-confirmable, so both may be lost without notice.

 Client Server
 | |
 | |
 +----->| Header: GET (T=NON, Code=0.01, MID=0x7d40)
 | GET | Token: 0x75
 | | Uri-Path: "temperature"
 | |
 | |
 |<-----+ Header: 2.05 Content (T=NON, Code=2.05, MID=0xad7d)
 | 2.05 | Token: 0x75
 | | Payload: "22.3 C"
 | |

 Figure 22: Non-confirmable request; Non-confirmable response

 In Figure 23, the client sends a Non-confirmable GET request to a
 multicast address: all nodes in link-local scope. There are 3
 servers on the link: A, B and C. Servers A and B have a matching
 resource, therefore they send back a Non-confirmable 2.05 (Content)
 response. The response sent by B is lost. C does not have matching
 response, therefore it sends a Non-confirmable 4.04 (Not Found)
 response.

Shelby, et al. Expires December 30, 2013 [Page 104]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Client ff02::1 A B C
 | | | | |
 | | | | |
 +------>| | | | Header: GET (T=NON, Code=0.01, MID=0x7d41)
 | GET | | | | Token: 0x86
 | | | | Uri-Path: "temperature"
 | | | |
 | | | |
 |<------------+ | | Header: 2.05 (T=NON, Code=2.05, MID=0x60b1)
 | 2.05 | | | Token: 0x86
 | | | | Payload: "22.3 C"
 | | | |
 | | | |
 | X------------+ | Header: 2.05 (T=NON, Code=2.05, MID=0x01a0)
 | 2.05 | | | Token: 0x86
 | | | | Payload: "20.9 C"
 | | | |
 | | | |
 |<------------------+ Header: 4.04 (T=NON, Code=4.04, MID=0x952a)
 | 4.04 | | | Token: 0x86
 | | | |

 Figure 23: Non-confirmable request (multicast); Non-confirmable
 response

Appendix B. URI Examples

 The following examples demonstrate different sets of Uri options, and
 the result after constructing an URI from them. In addition to the
 options, Section 6.5 refers to the destination IP address and port,
 but not all paths of the algorithm cause the destination IP address
 and port to be included in the URI.

 o Input:

 Destination IP Address = [2001:db8::2:1]
 Destination UDP Port = 5683

 Output:

 coap://[2001:db8::2:1]/

 o Input:

 Destination IP Address = [2001:db8::2:1]
 Destination UDP Port = 5683
 Uri-Host = "example.net"

Shelby, et al. Expires December 30, 2013 [Page 105]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Output:

 coap://example.net/

 o Input:

 Destination IP Address = [2001:db8::2:1]
 Destination UDP Port = 5683
 Uri-Host = "example.net"
 Uri-Path = ".well-known"
 Uri-Path = "core"

 Output:

 coap://example.net/.well-known/core

 o Input:

 Destination IP Address = [2001:db8::2:1]
 Destination UDP Port = 5683
 Uri-Host = "xn--18j4d.example"
 Uri-Path = the string composed of the Unicode characters U+3053
 U+3093 U+306b U+3061 U+306f, usually represented in UTF-8 as
 E38193E38293E381ABE381A1E381AF hexadecimal

 Output:

 coap://xn--18j4d.example/
 %E3%81%93%E3%82%93%E3%81%AB%E3%81%A1%E3%81%AF

 (The line break has been inserted for readability; it is not
 part of the URI.)

 o Input:

 Destination IP Address = 198.51.100.1
 Destination UDP Port = 61616
 Uri-Path = ""
 Uri-Path = "/"
 Uri-Path = ""
 Uri-Path = ""
 Uri-Query = "//"
 Uri-Query = "?&"

 Output:

 coap://198.51.100.1:61616//%2F//?%2F%2F&?%26

Shelby, et al. Expires December 30, 2013 [Page 106]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

Appendix C. Changelog

 (To be removed by RFC editor before publication.)

 Changes from ietf-17 to ietf-18: Address comments from the IESG
 reviews.

 o Accept is now critical.

 o Add Size1 option for 4.13 responses.

 Changes from ietf-15 to ietf-16: Address comments from the IESG
 reviews. These should not impact interoperability.

 o Clarify that once there has been an empty ACK, all further ACKs to
 the same message also must be empty (#301).

 o Define Cache-key properly (#302).

 o Clarify that ACKs don’t get retransmitted, the CONs do (#303).

 o Clarify: NON is like separate for CON (#304).

 o Don’t use decimal response codes, keep the 3+5 structure
 throughout (#305).

 o RFC 2119 usage in 4.5 (#306) and 8.2 (#307).

 o Ensure all protocol reactions to reserved or prohibited values are
 defined (#308).

 o URI matching rules may be scheme specific (#309).

 o Don’t dally beyond MAX_TRANSMIT_SPAN during retransmission (#310).

 o More about selecting a token length for anti-spoofing (#311).

 o Discuss spoofing ACKs (#312).

 o Qualify partial discard strategy implementation note as UDP only
 (#313).

 o Explicitly point out that UDP and DTLS don’t mix (#314).

 o Point out security consideration re URIs and access control
 (#315).

 o Point to RFC5280 section 6 (#316).

Shelby, et al. Expires December 30, 2013 [Page 107]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 o Add a paragraph about cert status checking (#317).

 o RSA is out, ECDHE is in for cert-with-PSK, too (#318).

 o Point out that requests and responses don’t always come in pairs
 (#319).

 o Clarify when there is a need for Unicode normalization (#320).

 o Point out that Uri-Host doesn’t handle user-part (#321).

 o Clarify the use of non-FQDN Authority Names in certificates.

 o Numerous editorial improvements and clarifications.

 Changes from ietf-14 to ietf-15: Address comments from IETF last-
 call, mostly implementation notes and editorial improvements. These
 should not impact interoperability.

 o Clarify bytes/characters and UTF-8/ASCII in "Decomposing URIs into
 Options" (#282).

 o Make reference to ECC/CCM DTLS ciphersuite normative (#286).

 o Add a quick warning that bytewise scanning for a payload marker is
 not a good idea (#287).

 o Make reference to PROBING_RATE explicit for saturation discussion
 (#288).

 o Mention PROCESSING_DELAY when discussion piggy-backing (#290).

 o Various editorial nits: Clarify use of noun "service" (#283),
 Reference terminology from lwig-terminology (#284), make reference
 to HTTP terms more explicit (#285), add a forward reference to
 5.9.2.9 (#289), 8 kbit/s is not "conservative" (#291).

 o Add description of resource depletion attack (#292).

 o Add description of DoS attack on congestion control (#293).

 o Add discussion of using non-trivial token for protecting against
 hijacking (#294).

 o Clarify implementation note about per-destination Message ID
 generation.

 Changed from ietf-13 to ietf-14:

Shelby, et al. Expires December 30, 2013 [Page 108]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 o Made Accept option non-repeatable.

 o Clarified that Safe options in a 2.03 Valid response update the
 cache.

 o Clarified that payload sniffing is acceptable only if no Content-
 Format was supplied.

 o Clarified URI examples (Appendix B).

 o Numerous editorial improvements and clarifications.

 Changed from ietf-12 to ietf-13:

 o Simplified message format.

 * Removed the OC (Option Count) field in the CoAP Header.

 * Changed the End-of-Options Marker into the Payload Marker.

 * Changed the format of Options: use 4 bits for option length and
 delta; insert one or two additional bytes after the option
 header if necessary.

 * Promoted the Token Option to a field following the CoAP Header.

 o Clarified when a payload is a diagnostic payload (#264).

 o Moved IPsec discussion to separate draft (#262).

 o Added a reference to a separate draft on reverse-proxy URI
 embedding (#259).

 o Clarified the use of ETags and of 2.03 responses (#265, #254,
 #256).

 o Added reserved Location-* numbers and clarified Location-*.

 o Added Proxy-Scheme proposal.

 o Clarified terms such as content negotiation, selected
 representation, representation-format, message format error.

 o Numerous clarifications and a few bugfixes.

 Changed from ietf-11 to ietf-12:

 o Extended options to support lengths of up to 1034 bytes (#202).

Shelby, et al. Expires December 30, 2013 [Page 109]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 o Added new Jump mechanism for options and removed Fenceposting
 (#214).

 o Added new IANA option number registration policy (#214).

 o Added Proxy Unsafe/Safe and Cache-Key masking to option numbers
 (#241).

 o Re-numbered option numbers to use Unsafe/Safe and Cache-Key
 compliant numbers (#241).

 o Defined NSTART and restricted the value to 1 with a MUST (#215).

 o Defined PROBING_RATE and set it to 1 Byte/second (#215).

 o Defined DEFAULT_LEISURE (#246).

 o Renamed Content-Type into Content-Format, and Media Type registry
 into Content-Format registry.

 o A large number of small editorial changes, clarifications and
 improvements have been made.

 Changed from ietf-10 to ietf-11:

 o Expanded section 4.8 on Transmission Parameters, and used the
 derived values defined there (#201). Changed parameter names to
 be shorter and more to the point.

 o Several more small editorial changes, clarifications and
 improvements have been made.

 Changed from ietf-09 to ietf-10:

 o Option deltas are restricted to 0 to 14; the option delta 15 is
 used exclusively for the end-of-options marker (#239).

 o Option numbers that are a multiple of 14 are not reserved, but are
 required to have an empty default value (#212).

 o Fixed misleading language that was introduced in 5.10.2 in coap-07
 re Uri-Host and Uri-Port (#208).

 o Segments and arguments can have a length of zero characters
 (#213).

 o The Location-* options describe together describe one location.
 The location is a relative URI, not an "absolute path URI" (#218).

Shelby, et al. Expires December 30, 2013 [Page 110]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 o The value of the Location-Path Option must not be ’.’ or ’..’
 (#218).

 o Added a sentence on constructing URIs from Location-* options
 (#231).

 o Reserved option numbers for future Location-* options (#230).

 o Fixed response codes with payload inconsistency (#233).

 o Added advice on default values for critical options (#207).

 o Clarified use of identifiers in RawPublicKey Mode Provisioning
 (#222).

 o Moved "Securing CoAP" out of the "Security Considerations" (#229).

 o Added "All CoAP Nodes" multicast addresses to "IANA
 Considerations" (#216).

 o Over 100 small editorial changes, clarifications and improvements
 have been made.

 Changed from ietf-08 to ietf-09:

 o Improved consistency of statements about RST on NON: RST is a
 valid response to a NON message (#183).

 o Clarified that the protocol constants can be configured for
 specific application environments.

 o Added implementation note recommending piggy-backing whenever
 possible (#182).

 o Added a content-encoding column to the media type registry (#181).

 o Minor improvements to Appendix D.

 o Added text about multicast response suppression (#177).

 o Included the new End-of-options Marker (#176).

 o Added a reference to draft-ietf-tls-oob-pubkey and updated the RPK
 text accordingly.

 Changed from ietf-07 to ietf-08:

 o Clarified matching rules for messages (#175)

Shelby, et al. Expires December 30, 2013 [Page 111]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 o Fixed a bug in Section 8.2.2 on Etags (#168)

 o Added an IP address spoofing threat analysis contribution (#167)

 o Re-focused the security section on raw public keys (#166)

 o Added an 4.06 error to Accept (#165)

 Changed from ietf-06 to ietf-07:

 o application/link-format added to Media types registration (#160)

 o Moved content-type attribute to the document from link-format.

 o Added coaps scheme and DTLS-secured CoAP default port (#154)

 o Allowed 0-length Content-type options (#150)

 o Added congestion control recommendations (#153)

 o Improved text on PUT/POST response payloads (#149)

 o Added an Accept option for content-negotiation (#163)

 o Added If-Match and If-None-Match options (#155)

 o Improved Token Option explanation (#147)

 o Clarified mandatory to implement security (#156)

 o Added first come first server policy for 2-byte Media type codes
 (#161)

 o Clarify matching rules for messages and tokens (#151)

 o Changed OPTIONS and TRACE to always return 501 in HTTP-CoAP
 mapping (#164)

 Changed from ietf-05 to ietf-06:

 o HTTP mapping section improved with the minimal protocol standard
 text for CoAP-HTTP and HTTP-CoAP forward proxying (#137).

 o Eradicated percent-encoding by including one Uri-Query Option per
 &-delimited argument in a query.

 o Allowed RST message in reply to a NON message with unexpected
 token (#135).

Shelby, et al. Expires December 30, 2013 [Page 112]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 o Cache Invalidation only happens upon successful responses (#134).

 o 50% jitter added to the initial retransmit timer (#142).

 o DTLS cipher suites aligned with ZigBee IP, DTLS clarified as
 default CoAP security mechanism (#138, #139)

 o Added a minimal reference to draft-kivinen-ipsecme-ikev2-minimal
 (#140).

 o Clarified the comparison of UTF-8s (#136).

 o Minimized the initial media type registry (#101).

 Changed from ietf-04 to ietf-05:

 o Renamed Immediate into Piggy-backed and Deferred into Separate --
 should finally end the confusion on what this is about.

 o GET requests now return a 2.05 (Content) response instead of 2.00
 (OK) response (#104).

 o Added text to allow 2.02 (Deleted) responses in reply to POST
 requests (#105).

 o Improved message deduplication rules (#106).

 o Section added on message size implementation considerations
 (#103).

 o Clarification made on human readable error payloads (#109).

 o Definition of CoAP methods improved (#108).

 o Max-Age removed from requests (#107).

 o Clarified uniqueness of tokens (#112).

 o Location-Query Option added (#113).

 o ETag length set to 1-8 bytes (#123).

 o Clarified relation between elective/critical and option numbers
 (#110).

 o Defined when to update Version header field (#111).

 o URI scheme registration improved (#102).

Shelby, et al. Expires December 30, 2013 [Page 113]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 o Added review guidelines for new CoAP codes and numbers.

 Changes from ietf-03 to ietf-04:

 o Major document reorganization (#51, #63, #71, #81).

 o Max-age length set to 0-4 bytes (#30).

 o Added variable unsigned integer definition (#31).

 o Clarification made on human readable error payloads (#50).

 o Definition of POST improved (#52).

 o Token length changed to 0-8 bytes (#53).

 o Section added on multiplexing CoAP, DTLS and STUN (#56).

 o Added cross-protocol attack considerations (#61).

 o Used new Immediate/Deferred response definitions (#73).

 o Improved request/response matching rules (#74).

 o Removed unnecessary media types and added recommendations for
 their use in M2M (#76).

 o Response codes changed to base 32 coding, new Y.XX naming (#77).

 o References updated as per AD review (#79).

 o IANA section completed (#80).

 o Proxy-Uri Option added to disambiguate between proxy and non-proxy
 requests (#82).

 o Added text on critical options in cached states (#83).

 o HTTP mapping sections improved (#88).

 o Added text on reverse proxies (#72).

 o Some security text on multicast added (#54).

 o Trust model text added to introduction (#58, #60).

 o AES-CCM vs. AES-CCB text added (#55).

Shelby, et al. Expires December 30, 2013 [Page 114]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 o Text added about device capabilities (#59).

 o DTLS section improvements (#87).

 o Caching semantics aligned with RFC2616 (#78).

 o Uri-Path Option split into multiple path segments.

 o MAX_RETRANSMIT changed to 4 to adjust for RESPONSE_TIME = 2.

 Changes from ietf-02 to ietf-03:

 o Token Option and related use in asynchronous requests added (#25).

 o CoAP specific error codes added (#26).

 o Erroring out on unknown critical options changed to a MUST (#27).

 o Uri-Query Option added.

 o Terminology and definitions of URIs improved.

 o Security section completed (#22).

 Changes from ietf-01 to ietf-02:

 o Sending an error on a critical option clarified (#18).

 o Clarification on behavior of PUT and idempotent operations (#19).

 o Use of Uri-Authority clarified along with server processing rules;
 Uri-Scheme Option removed (#20, #23).

 o Resource discovery section removed to a separate CoRE Link Format
 draft (#21).

 o Initial security section outline added.

 Changes from ietf-00 to ietf-01:

 o New cleaner transaction message model and header (#5).

 o Removed subscription while being designed (#1).

 o Section 2 re-written (#3).

 o Text added about use of short URIs (#4).

Shelby, et al. Expires December 30, 2013 [Page 115]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 o Improved header option scheme (#5, #14).

 o Date option removed whiled being designed (#6).

 o New text for CoAP default port (#7).

 o Completed proxying section (#8).

 o Completed resource discovery section (#9).

 o Completed HTTP mapping section (#10).

 o Several new examples added (#11).

 o URI split into 3 options (#12).

 o MIME type defined for link-format (#13, #16).

 o New text on maximum message size (#15).

 o Location Option added.

 Changes from shelby-01 to ietf-00:

 o Removed the TCP binding section, left open for the future.

 o Fixed a bug in the example.

 o Marked current Sub/Notify as (Experimental) while under WG
 discussion.

 o Fixed maximum datagram size to 1280 for both IPv4 and IPv6 (for
 CoAP-CoAP proxying to work).

 o Temporarily removed the Magic Byte header as TCP is no longer
 included as a binding.

 o Removed the Uri-code Option as different URI encoding schemes are
 being discussed.

 o Changed the rel= field to desc= for resource discovery.

 o Changed the maximum message size to 1024 bytes to allow for IP/UDP
 headers.

 o Made the URI slash optimization and method idempotence MUSTs

 o Minor editing and bug fixing.

Shelby, et al. Expires December 30, 2013 [Page 116]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Changes from shelby-00 to shelby-01:

 o Unified the message header and added a notify message type.

 o Renamed methods with HTTP names and removed the NOTIFY method.

 o Added a number of options field to the header.

 o Combines the Option Type and Length into an 8-bit field.

 o Added the magic byte header.

 o Added new ETag Option.

 o Added new Date Option.

 o Added new Subscription Option.

 o Completed the HTTP Code - CoAP Code mapping table appendix.

 o Completed the Content-type Identifier appendix and tables.

 o Added more simplifications for URI support.

 o Initial subscription and discovery sections.

 o A Flag requirements simplified.

Authors’ Addresses

 Zach Shelby
 Sensinode
 Kidekuja 2
 Vuokatti 88600
 Finland

 Phone: +358407796297
 Email: zach@sensinode.com

 Klaus Hartke
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63905
 Email: hartke@tzi.org

Shelby, et al. Expires December 30, 2013 [Page 117]

Internet-Draft Constrained Application Protocol (CoAP) June 2013

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

Shelby, et al. Expires December 30, 2013 [Page 118]

