HTTPbi s Wor ki ng G oup M Bel she

I nternet-Draft Twi st
I nt ended status: Standards Track R Peon
Expi res: August 15, 2015 Googl e, Inc
M Thonson, Ed.

Mozill a

February 11, 2015

Hypertext Transfer Protocol version 2
draft-ietf-httpbis-http2-17

Abst ract

This specification describes an optim zed expression of the semantics
of the Hypertext Transfer Protocol (HTTP). HITP/2 enables a nore
efficient use of network resources and a reduced perception of

| atency by introducing header field conpression and allowing multiple
concurrent exchanges on the sane connection. It also introduces
unsolicited push of representations fromservers to clients.

This specification is an alternative to, but does not obsolete, the
HTTP/ 1.1 nessage syntax. HITP's existing semantics remai n unchanged.

Edi

torial Note (To be renoved by RFC Editor)

Di scussion of this draft takes place on the HTTPBI S wor ki ng group
mailing list (ietf-http-wg@3.org), which is archived at [1].

Working Group information can be found at [2]; that specific to
HTTP/ 2 are at [3].

The changes in this draft are sunmarized in Appendix B
Status of This Meno

This Internet-Draft is submitted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

Bel she, et al. Expi res August 15, 2015 [Page 1]

Internet-Draft HTTP/ 2

This Internet-Draft wll

Copyright Notice

expi re on August 15, 2015.

February 2015

Copyright (c) 2015 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

Thi s docunent

Provisions Relating to | ETF Documents

(http://trustee.ietf.org/license-info)
publication of this docunent.
careful ly,
to this docunent.

is subject to BCP 78 and the | ETF Trust’s Legal

in effect on the date of

Pl ease revi ew these docunents

as they describe your rights and restrictions with respect
Code Conponents extracted fromthis docunent nust

include Sinplified BSD License text as described in Section 4.e of
Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD Li cense.

t he

Tabl e of Contents

1.
2.

Bel she,

PS”P’P“S“S“WS”P’NS“P‘!‘U)W!\’PEW%Ww!\’!‘

I nt roducti on e
HTTP/ 2 Protocol Overvi ew

.1. Docunent Oganization . .
.2. Conventions and Terni nol ogy .

Starting HTTP/ 2 . . .
HTTP/ 2 Versi on Identlflcatlon ..
Starting HTTP/2 for "http" URIs .

.2.1. HITP2-Settings Header Field .
Starting HTITP/2 for "https" UR's

HTTP/ 2 Connecti on Preface .
TP Franes .

Frame For mat

Franme Size

treans and Ml tipl exi ng
Stream States . .

1.1. Streamldentlflers
1.2. Stream Concurrency

Fl ow Cont r ol .
.1. Flow Control Pr|n0|ples .o
.2. Appropriate Use of Flow Cont roI
Streampriority . Ce
1 Stream Dependenm es .

2 Dependency Wi ghting

3 Reprlorltlzatlon .
4, Prioritization State l\/anagenent
5 Co
E

NN

. Default Priorities
rror Handling

et al. Expi res August 15, 2015

Starting HTTP/2 with Prior Know ed.ge.

Header Conpr essi on and Decorrpre55| on

O©oO~NOO U~

10

11
11
12
13
14
14
15
16
21
22
23
23
24

25
26
27

29
29

[Page 2]

Internet-Draft HTTP/ 2

10.

Bel sh

o

MEOOOOONDOIONAWN R TONO OO

-~ O

SRS

RSN

.1. Connection Error Handling .

.2. Stream Error Handling .

.3. Connection Term nation
Ext endi ng HTTP/ 2

rame Definitions .

DATA . .

HEADERS .

PRICRI TY .

RST_STREAM

SETTINGS . .

. 1. SETTI NGS Fornat S .

.2. Defined SETTI NGS Pararret ers .

.3. Settings Synchronization

PUSH_PROM SE

PING .

GOAWAY . .

W NDOW_ UPDATE . .

.1. The Flow Control Wndow. .o

.2. Initial Flow Control Wndow Size

.3. Reducing the Stream W ndow Si ze .

CONTI NUATI ON

or Codes . . .

P Message Exchanges .

HTTP Request/ Response Exchange

1. Upgrading From HTTP/ 2 .

2 HTTP Header Fi el ds

3 Examples . .

4. Request Reli ab| I i ty Mecham sms i n HTTP/ 2

1

2.

A

[G2WE e

© O O

_|ﬂ

1.
1.
1.
1.

erver Push . .
Push Requests .
Push Responses
The CONNECT Met hod .
ddi ti onal HTTP Requi r enent s/ ConS| deratl ons .
Connecti on Managenent
.1.1. Connection Reuse

2.
2.

P°9°P°!\’.°°.°°9°.°°!“5

>

Use of TLS Features .
.2.1. TLS 1.2 Features . . .
.2.2. TLS 1.2 G pher Suites .
ecurity Considerations .

(N ©O©ON©OR

10.1. Server Authority . .

10. 2. Cross-Protocol Attacks . . .
10.3. Internediary Encapsul ation Attacks .
10.4. Cacheability of Pushed Responses .
10.5. Denial of Service Considerations .

10.5.1. Limts on Header Bl ock Size
10.5.2. CONNECT |ssues .

10. 6. Use of Conpression .

e!

et al. Expi res August 15, 2015

.1.2. The 421 (M sdirect ed Request) Stat us Code

February 2015

29
30
30
30
31
31
33
35
36
37
38
38
40
40
42
43
46
47
48
49
49
50
51
51
53
53
57
59
60
61
62
63
64
64
65
66
66
67
68
68
68
68
69
69
70
71
71
72

[Page 3]

Bel she,

Internet-Draft

HTTP/ 2

February 2015

10.7. Use of Padding . . 72
10.8. Privacy Cbn5|derat|ons . 73
11. 1 ANA Consi derations . Y <
11.1. Registration of FWTP/Z Ident|f|cat|on Str|ngs Y
11.2. Frane Type Registry e e e 74
11.3. Settings Registry 75
11.4. Error Code Registry T 4 ¢
11.5. HITP2-Settings Header Field Registration S 4
11.6. PRI Method Registration 78
11.7. The 421 (M sdirected Request) HTTP Status Code 78
12. Acknow edgenents . e 78
13. References . 79
13.1. Normative References . 79
13.2. Informative References . 80
13.3. URIso 81
Appendix A TLS 1.2 Ci pher Suite Black List 82
Appendi x B. Change Log . . e 86
B.1. Since draft-ietf- httpbls—http2—15 . 86
B.2 Since draft-ietf-httpbis-http2-14 . 86
B.3 Since draft-ietf-httpbis-http2-13 . 87
B.4. Since draft-ietf-httpbis-http2-12 . 87
B.5. Since draft-ietf-httpbis-http2-11 . 87
B. 6 Since draft-ietf-httpbis-http2-10 . 87
B.7 Since draft-ietf-httpbis-http2-09 . 88
B.8 Since draft-ietf-httpbis-http2-08 . 88
B.9. Since draft-ietf-httpbis-http2-07 . 89
B.10. Since draft-ietf-httpbis-http2-06 . 89
B.11. Since draft-ietf-httpbis-http2-05 . 89
B.12. Since draft-ietf-httpbis-http2-04 . 89
B.13. Since draft-ietf-httpbis-http2-03 . 90
B.14. Since draft-ietf-httpbis-http2-02 . 90
B.15. Since draft-ietf-httpbis-http2-01 . 90
B.16. Since draft-ietf-httpbis-http2-00 . 91
B.17. Since draft-nbel she-httpbis-spdy- 00 . 91
I ntroduction

The Hypertext Transfer

pr ot ocol

([RFC7230],
negative overal

In particu

Ho

|l ar,
a tine on a given TCP connecti on.

wever ,

Pr ot ocol

Section 6) has severa

(HTTP)

is awldly successful
how HTTP/ 1.1 uses the underlying transport
characteristics that have a
ef fect on application perfornmance today.

HTTP/ 1.0 all owed only one request to be outstanding at
HTTP/ 1.1 added request pipelining,

but this only partially addressed request concurrency and stil

suffers from head-of-1ine bl ocki ng.

Ther ef ore,

HTTP/ 1.0 and HTTP/ 1.1

clients that need to nake nmany requests use nultiple connections to a
server in order to achieve concurrency and thereby reduce |atency.

et al.

Expi res August 15, 2015

[Page 4]

Internet-Draft HTTP/ 2 February 2015

Furt hermore, HITP header fields are often repetitive and verbose,
causi ng unnecessary network traffic, as well as causing the initial
TCP [TCP] congestion windowto quickly fill. This can result in
excessive |latency when nultiple requests are made on a new TCP
connecti on.

HTTP/ 2 addresses these issues by defining an optim zed nmappi ng of
HTTP's semantics to an underlying connection. Specifically, it

all ows interleaving of request and response nmessages on the same
connection and uses an efficient coding for HTTP header fields. It
al so allows prioritization of requests, letting nore inportant
requests conplete nore quickly, further inproving performance.

The resulting protocol is nmore friendly to the network, because fewer
TCP connections can be used in conparison to HITP/1.x. This neans

| ess conpetition with other flows, and | onger-1lived connections,
which in turn leads to better utilization of avail able network
capacity.

Finally, HTTP/2 also enables nore efficient processing of nmessages
t hrough use of binary nmessage fram ng

2. HTTP/ 2 Protocol Overview

HTTP/ 2 provides an optim zed transport for HTTP semantics. HITP/2
supports all of the core features of HITP/ 1.1, but ains to be nore
efficient in several ways.

The basic protocol unit in HITP/2 is a frane (Section 4.1). Each
frane type serves a different purpose. For exanple, HEADERS and DATA
frames formthe basis of HITP requests and responses (Section 8.1);
other frane types |ike SETTINGS, W NDOW UPDATE, and PUSH PROM SE are
used in support of other HTTP/ 2 features.

Mul tipl exi ng of requests is achieved by having each HTTP request -
response exchange associated with its own stream (Section 5).
Streans are | argely independent of each other, so a bl ocked or
stall ed request or response does not prevent progress on other
streans.

Fl ow control and prioritization ensure that it is possible to
efficiently use nultiplexed streams. Flow control (Section 5.2)
hel ps to ensure that only data that can be used by a receiver is
transmitted. Prioritization (Section 5.3) ensures that linited
resources can be directed to the nost inportant streans first.

HTTP/ 2 adds a new interaction node, whereby a server can push
responses to a client (Section 8.2). Server push allows a server to

Bel she, et al. Expi res August 15, 2015 [Page 5]

Internet-Draft HTTP/ 2 February 2015

2

2

1.

2

specul atively send data to a client that the server anticipates the

client will need, trading off sone network usage against a potentia

| atency gain. The server does this by synthesizing a request, which
it sends as a PUSH PROM SE frane. The server is then able to send a
response to the synthetic request on a separate stream

Because HTTP header fields used in a connection can contain |arge
anounts of redundant data, franes that contain them are conpressed
(Section 4.3). This has especially advantageous inmpact upon request
sizes in the common case, allow ng many requests to be conpressed

i nto one packet.

Docurent Organi zati on
The HTTP/ 2 specification is split into four parts:

0 Starting HITP/2 (Section 3) covers how an HTTP/ 2 connection is
initiated.

o The framing (Section 4) and streams (Section 5) |ayers describe
the way HTTP/2 frames are structured and formed into nultipl exed
streans.

o0 Frane (Section 6) and error (Section 7) definitions include
details of the frane and error types used in HITP/ 2

0 HTTP mappi ngs (Section 8) and additional requirenents (Section 9)
descri be how HTTP senmantics are expressed using franes and
streans.

Whil e sone of the frane and stream |l ayer concepts are isolated from
HTTP, this specification does not define a conpletely generic fram ng
|l ayer. The framing and streans |ayers are tailored to the needs of
the HTTP protocol and server push

Conventi ons and Ter mi nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].

Al'l nuneric values are in network byte order. Values are unsigned
unl ess otherwi se indicated. Literal values are provided in deci nmal
or hexadeci mal as appropriate. Hexadecimal literals are prefixed
with "0x" to distinguish themfromdeciml literals.

The following terns are used:

Bel she, et al. Expi res August 15, 2015 [Page 6]

Internet-Draft HTTP/ 2 February 2015
client: The endpoint that initiates an HITP/2 connection. Cients
send HTTP requests and recei ve HITP responses.
connection: A transport-layer connection between two endpoints.

connection error: An error that affects the entire HITP/ 2
connecti on.

endpoint: Either the client or server of the connection

frame: The smallest unit of communication within an HTTP/ 2
connection, consisting of a header and a vari abl e-1ength sequence
of octets structured according to the frane type.

peer: An endpoint. Wen discussing a particular endpoint, "peer”
refers to the endpoint that is renote to the prinmary subject of
di scussi on.

receiver: An endpoint that is receiving franmes.

sender: An endpoint that is transmitting franes.

server: The endpoint that accepts an HITP/ 2 connection. Servers
receive HTTP requests and serve HTTP responses

stream A bi-directional flow of frames within the HTTP/ 2
connecti on.

streamerror: An error on the individual HTTP/ 2 stream

Finally, the terns "gateway", "internediary", "proxy", and "tunnel"
are defined in Section 2.3 of [RFC7230]. Internediaries act as both
client and server at different tines.

The term "payl oad body" is defined in Section 3.3 of [RFC7230].
3. Starting HTTP/ 2

An HTTP/ 2 connection is an application |layer protocol running on top
of a TCP connection ([TCP]). The client is the TCP connection
initiator.

HTTP/ 2 uses the sane "http" and "https" URl schenmes used by HTTP/ 1.1
HTTP/ 2 shares the same default port nunbers: 80 for "http" URIs and
443 for "https" URIs. As a result, inplenentations processing
requests for target resource URIs |ike "http://exanple.org/foo" or
"https://exanple.combar” are required to first discover whether the

Bel she, et al. Expi res August 15, 2015 [Page 7]

Internet-Draft HTTP/ 2 February 2015

upstream server (the i mediate peer to which the client wi shes to
establish a connection) supports HITP/ 2

The means by which support for HTTP/2 is deternmined is different for
"http" and "https" URIs. Discovery for "http" URIs is described in
Section 3.2. Discovery for "https" URIs is described in Section 3.3.

3.1. HITP/2 Version ldentification
The protocol defined in this docunent has two identifiers

0 The string "h2" identifies the protocol where HTTP/2 uses TLS
[TLS12]. This identifier is used in the TLS application |ayer
protocol negotiation extension (ALPN) [TLS-ALPN] field and in any
pl ace where HTTP/ 2 over TLS is identified.

The "h2" string is serialized into an ALPN protocol identifier as
the two octet sequence: 0x68, 0x32

0 The string "h2c" identifies the protocol where HITP/2 is run over
cleartext TCP. This identifier is used in the HITP/ 1.1 Upgrade
header field and in any place where HITP/2 over TCP is identified.

The "h2c" string is reserved fromthe ALPN identifier space, but
describes a protocol that does not use TLS

Negoti ating "h2" or "h2c" inmplies the use of the transport, security,
fram ng and nessage senmantics described in this docunent.

[[CREF1l: RFC Editor’s Note: please renove the renmi nder of this
section prior to the publication of a final version of this
docunent .]]

Only inplenentations of the final, published RFC can identify
t hemsel ves as "h2" or "h2c". Until such an RFC exi sts,
i mpl ement ati ons MUST NOT identify thensel ves using these strings.

I mpl enent ati ons of draft versions of the protocol MJST add the string
"-" and the corresponding draft nunber to the identifier. For
exanple, draft-ietf-httpbis-http2-11 over TLS is identified using the
string "h2-11".

Non- compati bl e experinents that are based on these draft versions
MUST append the string "-" and an experiment nane to the identifier.
For exanple, an experinental inplenentation of packet npod-based
encodi ng based on draft-ietf-httpbis-http2-09 mght identify itself
as "h2-09-enmp". Note that any |abel MJST conformto the "token"
syntax defined in Section 3.2.6 of [RFC7230]. Experinenters are

Bel she, et al. Expi res August 15, 2015 [Page 8]

Internet-Draft HTTP/ 2 February 2015

encouraged to coordinate their experiments on the ietf-http-wy@a.org
mailing list.

3.2. Starting HITP/2 for "http" UR's

A client that nakes a request for an "http" URl w thout prior

know edge about support for HITP/2 on the next hop uses the HITP
Upgrade nechani sm (Section 6.7 of [RFC7230]). The client does so by
maki ng an HTTP/ 1.1 request that includes an Upgrade header field with
the "h2c" token. Such an HTTP/ 1.1 request MJST include exactly one
HTTP2- Settings (Section 3.2.1) header field.

For exanpl e:

GET / HTTP/1.1

Host: server. exanpl e. com

Connection: Upgrade, HTTP2-Settings

Upgr ade: h2c

HTTP2- Setti ngs: <base64url encodi ng of HITP/ 2 SETTI NGS payl oad>

Requests that contain an payl oad body MJUST be sent in their entirety
before the client can send HTTP/2 franmes. This neans that a large
request can bl ock the use of the connection until it is conpletely
sent.

If concurrency of an initial request with subsequent requests is
i mportant, an OPTIONS request can be used to performthe upgrade to
HTTP/ 2, at the cost of an additional round-trip.

A server that does not support HTTP/2 can respond to the request as
t hough the Upgrade header field were absent:

HTTP/ 1.1 200 K
Content - Lengt h: 243
Cont ent - Type: text/htm

A server MJST ignore an "h2" token in an Upgrade header field.
Presence of a token with "h2" inplies HTTP/ 2 over TLS, which is
i nstead negoti ated as described in Section 3.3.

A server that supports HTTP/ 2 accepts the upgrade with a 101
(Switching Protocols) response. After the enpty line that term nates
the 101 response, the server can begin sending HITP/2 franes. These
frames MJST include a response to the request that initiated the

Upgr ade.

Bel she, et al. Expi res August 15, 2015 [Page 9]

Internet-Draft HTTP/ 2 February 2015

For exanpl e:

HTTP/ 1.1 101 Switching Protocols
Connecti on: Upgrade
Upgr ade: h2c

[HTTP/ 2 connection ..

The first HITP/ 2 frame sent by the server MJST be a SETTINGS frame
(Section 6.5) as the server connection preface (Section 3.5). Upon
receiving the 101 response, the client MJST send a connection preface
(Section 3.5), which includes a SETTINGS frane.

The HTTP/ 1.1 request that is sent prior to upgrade is assigned a
streamidentifier of 1 (see Section 5.1.1) with default priority

val ues (Section 5.3.5). Streaml1l is inplicitly "half closed" from
the client toward the server (see Section 5.1), since the request is
compl eted as an HTTP/ 1.1 request. After conmencing the HITP/ 2
connection, stream1l is used for the response.

3.2.1. HITP2-Settings Header Field

A request that upgrades fromHITTP/ 1.1 to HTTP/2 MJST include exactly
one "HTTP2-Settings" header field. The "HITP2-Settings" header field
is a connection-specific header field that includes paraneters that
govern the HTTP/ 2 connection, provided in anticipation of the server
accepting the request to upgrade.

HTTP2- Set ti ngs = t oken68

A server MJUST NOT upgrade the connection to HTTP/2 if this header
field is not present, or if nore than one is present. A server MJST
NOT send this header field.

The content of the "HTTP2-Settings" header field is the payload of a
SETTINGS frane (Section 6.5), encoded as a base64url string (that is,
the URL- and fil enane-safe Base64 encodi ng described in Section 5 of
[RFCA648], with any trailing '= characters omtted). The ABNF

[RFC5234] production for "token68" is defined in Section 2.1 of

[RFC7235] .

Since the upgrade is only intended to apply to the inmediate
connection, a client sending "HTTP2-Settings" MJST al so send
"HTTP2-Settings" as a connection option in the "Connection" header
field to prevent it frombeing forwarded (see Section 6.1 of

[RFC7230]) .

Bel she, et al. Expi res August 15, 2015 [Page 10]

Internet-Draft HTTP/ 2 February 2015

A server decodes and interprets these values as it would any other
SETTINGS frame. Explicit acknow edgenent of these settings

(Section 6.5.3) is not necessary, since a 101 response serves as
implicit acknow edgnent. Providing these values in the Upgrade
request gives a client an opportunity to provide paraneters prior to
receiving any frames fromthe server.

3.3. Starting HITP/2 for "https" URl's

A client that nmakes a request to an "https" URI uses TLS [TLS12] with
the application | ayer protocol negotiation (ALPN) extension
[TLS-ALPN] .

HTTP/ 2 over TLS uses the "h2" protocol identifier. The "h2c"
protocol identifier MJUST NOT be sent by a client or selected by a
server; the "h2c" protocol identifier describes a protocol that does
not use TLS

Once TLS negotiation is conplete, both the client and the server MJST
send a connection preface (Section 3.5).

3.4. Starting HTTP/2 with Prior Know edge

A client can learn that a particular server supports HITP/2 by other
means. For exanple, [ALT-SVC] describes a nechanismfor advertising
this capability.

A client MJST send the connection preface (Section 3.5), and then MAY
i medi ately send HTTP/ 2 frames to such a server; servers can identify
t hese connections by the presence of the connection preface. This
only affects the establishnent of HTTP/2 connections over cleartext
TCP; inplenmentations that support HTTP/2 over TLS MUST use protoco
negotiation in TLS [TLS- ALPN].

Li kewi se, the server MJST send a connection preface (Section 3.5).

W thout additional information, prior support for HITP/2 is not a
strong signal that a given server will support HTTP/2 for future
connections. For exanple, it is possible for server configurations
to change, for configurations to differ between instances in
clustered servers, or for network conditions to change.

3.5. HITP/ 2 Connection Preface
In HITP/ 2, each endpoint is required to send a connection preface as
a final confirmation of the protocol in use, and to establish the

initial settings for the HITP/ 2 connection. The client and server
each send a different connection preface.

Bel she, et al. Expi res August 15, 2015 [Page 11]

Internet-Draft HTTP/ 2 February 2015

The client connection preface starts with a sequence of 24 octets,
which in hex notation are:

0x505249202a20485454502f 322e300d0a0d0a534d0d0a0d0a

(the string "PRI * HTTP/2.0\r\n\r\nSMr\n\r\n"). This sequence MJST
be followed by a SETTINGS frame (Section 6.5), which MAY be enpty.
The client sends the client connection preface i mediately upon
recei pt of a 101 Switching Protocols response (indicating a
successful upgrade), or as the first application data octets of a TLS
connection. |If starting an HTTP/2 connection with prior know edge of
server support for the protocol, the client connection preface is
sent upon connection establishnent.

The client connection preface is selected so that a | arge
proportion of HTTP/1.1 or HITP/ 1.0 servers and internedi aries do
not attenpt to process further frames. Note that this does not
address the concerns raised in [TALKI NG .

The server connection preface consists of a potentially enpty
SETTINGS frane (Section 6.5) that MJST be the first frame the server
sends in the HTTP/ 2 connecti on

The SETTINGS franes received froma peer as part of the connection
preface MJST be acknow edged (see Section 6.5.3) after sending the
connection preface.

To avoid unnecessary latency, clients are pernmitted to send
additional franes to the server imediately after sending the client
connection preface, without waiting to receive the server connection
preface. It is inportant to note, however, that the server
connection preface SETTINGS frame m ght include paraneters that
necessarily alter how a client is expected to comunicate with the
server. Upon receiving the SETTINGS frane, the client is expected to
honor any paraneters established. In sone configurations, it is
possible for the server to transnmit SETTINGS before the client sends
addi tional franes, providing an opportunity to avoid this issue.

Clients and servers MJST treat an invalid connection preface as a
connection error (Section 5.4.1) of type PROTOCOL_ERROR A GOAVAY
franme (Section 6.8) MAY be onitted in this case, since an invalid
preface indicates that the peer is not using HTTP/ 2

4. HITP Franes

Once the HITP/ 2 connection is established, endpoints can begin
exchangi ng franes.

Bel she, et al. Expi res August 15, 2015 [Page 12]

Internet-Draft HTTP/ 2 February 2015

4.

1.

Franme For mat

Al frames begin with a fixed 9-octet header followed by a variabl e-
| engt h payl oad.

___ +
Length (24)
--------------- T
Type (8) | Flags (8 |

T Fom e e e oo Fom e e e e e e e e e m oo oo +

| R Stream I dentifier (31)

+=+ +
Frame Payl oad (O...) ..

___ +

Figure 1: Frane Layout

The fields of the frane header are defined as:

Length: The length of the frame payl oad expressed as an unsi gned

24-bit integer. Values greater than 2714 (16, 384) MJST NOT be
sent unless the receiver has set a |arger value for
SETTI NGS_MAX_FRAME_SI ZE

The 9 octets of the frane header are not included in this val ue.

Type: The 8-bit type of the frane. The frame type determ nes the

format and semantics of the franme. |nplenentations MJST ignore
and discard any frane that has a type that is unknown.

Flags: An 8-bit field reserved for frane-type specific bool ean

fl ags.

Fl ags are assigned senantics specific to the indicated frame type.
Fl ags that have no defined senantics for a particular frane type
MUST be ignored, and MJST be |l eft unset (0x0) when sendi ng.

A reserved 1-bit field. The semantics of this bit are undefi ned
and the bit MJST remain unset (0x0) when sendi ng and MJST be
i gnored when recei ving.

Stream ldentifier: A streamidentifier (see Section 5.1.1) expressed

as an unsigned 31-bit integer. The value 0x0 is reserved for
frames that are associated with the connection as a whole as
opposed to an individual stream

The structure and content of the franme payload is dependent entirely
on the frane type.

Bel she, et al. Expi res August 15, 2015 [Page 13]

Internet-Draft HTTP/ 2 February 2015

4.2. Frame Size

The size of a frame payload is limted by the maxi num size that a
recei ver advertises in the SETTINGS MAX FRAME SI ZE setting. This
setting can have any val ue between 2714 (16, 384) and 2724-1

(16, 777,215) octets, inclusive.

Al'l inplenmentations MIST be capable of receiving and nminimally
processing frames up to 2714 octets in length, plus the 9 octet frane
header (Section 4.1). The size of the frane header is not included
when describing frame sizes.

Note: Certain frane types, such as PING (Section 6.7), inpose
additional linmts on the anmount of payload data all owed.

An endpoi nt MJUST send a FRAVE SIZE ERROR error if a frane exceeds the
size defined in SETTINGS MAX FRAME SIZE, any linit defined for the
frame type, or it is too small to contain mandatory frame data. A
frame size error in a frane that could alter the state of the entire
connection MIST be treated as a connection error (Section 5.4.1);
this includes any frane carrying a header block (Section 4.3) (that

i s, HEADERS, PUSH PROM SE, and CONTI NUATI ON), SETTINGS, and any frame
with a streamidentifier of O.

Endpoints are not obligated to use all available space in a frane.
Responsi veness can be inproved by using franmes that are smaller than
the permtted maxi mum size. Sending |arge frames can result in

del ays in sending tinme-sensitive frames (such as RST_STREAM

W NDOW UPDATE, or PRIORITY) which if bl ocked by the transm ssion of a
| arge frame, could affect perfornmance

4.3. Header Conpression and Deconpression

Just as in HITP/1, a header field in HTTP/2 is a name with one or
nmore associ ated values. They are used within HTTP request and
response nessages as well as server push operations (see

Section 8.2).

Header |ists are collections of zero or nore header fields. Wen
transmtted over a connection, a header list is serialized into a
header bl ock using HTTP Header Conpression [COWPRESSION]. The
serialized header block is then divided into one or npre octet
sequences, called header block fragnents, and transmtted within the
payl oad of HEADERS (Section 6.2), PUSH PROM SE (Section 6.6) or

CONTI NUATI ON (Section 6.10) franes.

The Cooki e header field [COXKIE] is treated specially by the HTTP
mappi ng (see Section 8.1.2.5).

Bel she, et al. Expi res August 15, 2015 [Page 14]

Internet-Draft HTTP/ 2 February 2015

A receiving endpoint reassenbles the header block by concatenating
its fragments, then deconpresses the block to reconstruct the header
list.

A conpl ete header bl ock consists of either

0o a single HEADERS or PUSH PROM SE frame, with the END HEADERS fl ag
set, or

0 a HEADERS or PUSH PROM SE franme with the END HEADERS flag cl eared
and one or nore CONTI NUATI ON franes, where the |ast CONTI NUATI ON
frane has the END HEADERS fl ag set.

Header conpression is stateful. One conpression context and one
deconpressi on context is used for the entire connection. A decoding
error in a header block MJUST be treated as a connection error
(Section 5.4.1) of type COVPRESSI ON ERROR

Each header block is processed as a discrete unit. Header bl ocks
MUST be transnmitted as a contiguous sequence of frames, with no
interleaved franes of any other type or fromany other stream The
last frame in a sequence of HEADERS or CONTI NUATION frames has the
END HEADERS flag set. The last frane in a sequence of PUSH PROM SE
or CONTI NUATI ON franes has the END HEADERS flag set. This allows a
header bl ock to be logically equivalent to a single frane.

Header bl ock fragnments can only be sent as the payl oad of HEADERS
PUSH PROM SE or CONTI NUATI ON frames, because these franes carry data
that can nodify the conpression context nmintained by a receiver. An
endpoi nt receivi ng HEADERS, PUSH PROM SE or CONTI NUATI ON frames needs
to reassenbl e header bl ocks and perform deconpression even if the
franes are to be discarded. A receiver MJST term nate the connection
with a connection error (Section 5.4.1) of type COVPRESSI ON_ERROR i f
it does not deconpress a header bl ock

5. Streanms and Ml tipl exing
A "streant is an independent, bi-directional sequence of franes
exchanged between the client and server within an HTTP/ 2 connecti on
Streans have several inportant characteristics
o0 A single HTITP/ 2 connection can contain multiple concurrently open
streanms, with either endpoint interleaving franes fromnultiple
streans.

0 Streans can be established and used unilaterally or shared by
either the client or server

Bel she, et al. Expi res August 15, 2015 [Page 15]

Internet-Draft HTTP/ 2 February 2015

0 Streans can be closed by either endpoint.

o0 The order in which franes are sent on a streamis significant.
Reci pi ents process franes in the order they are received. In
particul ar, the order of HEADERS, and DATA franes is semantically
significant.

0 Streans are identified by an integer. Streamidentifiers are
assigned to streans by the endpoint initiating the stream

5.1. Stream States

The lifecycle of a streamis shown in Figure 2.

Bel she, et al. Expi res August 15, 2015 [Page 16]

Internet-Draft HTTP/ 2 February 2015

oo +
send PP | | recv PP
g e | idle |--------
/ [[\
% Fom - + %
Fom e + | Fom e +
| | | send H/ | |
R | reserved | | recv H | reserved |------ .
I | (local) | I | (renote) | I
[[R + \% [R + [
I I Ho-ooo-- + I I
| | recv ES | | send ES | |
| send H | R | open |------- | recv H |
I I / I I \ I I
| Y, Y, Fommmm o + Y, Y, |
[[R + [[R + [
[[hal f [[[hal f [[
	closed		send R/	<closed	
	(renote)		recv R	(local)	
Foemmem e +	Foemmem e +				
I I I I I					
[send ES / [recv ES /	[
	send R/ % send R/				
[recv R Feommmmm - + recv R				
send R/ ‘'-----n-n--- >		<-----mm--- " send R/			
recv R	closed	recv R			
e e e e e e oo - >| I L !
Hom e e oo - +
send: endpoi nt sends this frame
recv: endpoi nt receives this frane

H: HEADERS frame (with inplied CONTI NUATI ONs)

PP: PUSH_PROM SE frame (with inplied CONTI NUATI ONs)
ES: END_STREAM f| ag

R RST_STREAM frane

Figure 2: Stream States

Note that this diagram shows streamstate transitions and the franes
and flags that affect those transitions only. In this regard,

CONTI NUATI ON frames do not result in state transitions; they are
effectively part of the HEADERS or PUSH PROM SE that they foll ow

For the purpose of state transitions, the END STREAMflag is
processed as a separate event to the franme that bears it; a HEADERS
franme with the END STREAM fl ag set can cause two state transitions.

Bel she, et al. Expi res August 15, 2015 [Page 17]

Internet-Draft HTTP/ 2 February 2015

Bot h endpoi nts have a subjective view of the state of a streamthat
could be different when franes are in transit. Endpoints do not
coordinate the creation of streans; they are created unilaterally by
ei ther endpoint. The negative consequences of a mismatch in states
are limted to the "closed" state after sending RST_STREAM where
frames might be received for some tinme after closing.

Streans have the foll owi ng states:

idle:
Al streans start in the "idle" state.

The following transitions are valid fromthis state

* Sending or receiving a HEADERS frane causes the streamto
becone "open". The streamidentifier is selected as described
in Section 5.1.1. The same HEADERS frane can al so cause a
streamto i medi ately becone "hal f cl osed"

* Sending a PUSH PROM SE frane on another streamreserves the
idle streamthat is identified for later use. The streamstate
for the reserved streamtransitions to "reserved (local)".

* Receiving a PUSH PROM SE franme on another streamreserves an
idle streamthat is identified for later use. The streamstate
for the reserved streamtransitions to "reserved (renote)".

* Note that the PUSH PROM SE frane is not sent on the idle
stream but references the newy reserved streamin the
Pronmi sed Stream ID field.

Recei ving any frame other than HEADERS or PRIORITY on a streamin
this state MJUST be treated as a connection error (Section 5.4.1)
of type PROTOCOL_ERROR

reserved (local):
A streamin the "reserved (local)" state is one that has been
prom sed by sending a PUSH PROM SE frane. A PUSH PROM SE frane
reserves an idle stream by associating the streamw th an open
streamthat was initiated by the renote peer (see Section 8.2).

In this state, only the following transitions are possible:

* The endpoint can send a HEADERS frame. This causes the stream
to open in a "half closed (renpte)" state.

* Either endpoint can send a RST_STREAM frame to cause the stream
to beconme "closed". This releases the streamreservation

Bel she, et al. Expi res August 15, 2015 [Page 18]

Internet-Draft HTTP/ 2 February 2015

An endpoi nt MJST NOT send any type of franme other than HEADERS,
RST_STREAM or PRICRITY in this state.

A PRICRITY or W NDOW UPDATE frame MAY be received in this state.
Recei ving any type of frame other than RST_STREAM PRIORITY or
W NDOW_UPDATE on a streamin this state MIST be treated as a
connection error (Section 5.4.1) of type PROTOCCOL_ERRCR

reserved (renote):

A streamin the "reserved (renote)" state has been reserved by a
renot e peer.

In this state, only the following transitions are possible:

* Receiving a HEADERS franme causes the streamto transition to
"hal f cl osed (local)".

* Either endpoint can send a RST_STREAM frame to cause the stream
to beconme "closed". This releases the streamreservation.

An endpoint MAY send a PRIOCRITY frame in this state to
reprioritize the reserved stream An endpoint MJST NOT send any
type of frane other than RST_STREAM W NDOW UPDATE, or PRIORITY in
this state.

Recei ving any type of frame ot her than HEADERS, RST_STREAM or
PRIORITY on a streamin this state MIST be treated as a connection
error (Section 5.4.1) of type PROTOCOL_ERRCR

open:
A streamin the "open" state nay be used by both peers to send
franes of any type. |In this state, sending peers observe
advertised streamlevel flow control limts (Section 5.2).

Fromthis state either endpoint can send a frane with an
END_STREAM fl ag set, which causes the streamto transition into
one of the "half closed" states: an endpoint sending an END_STREAM
flag causes the streamstate to beconme "half closed (local)"; an
endpoi nt receiving an END STREAM fl ag causes the streamstate to
becone "half closed (renote)".

Ei t her endpoint can send a RST_STREAM frane fromthis state,
causing it to transition inrediately to "closed".

hal f closed (Il ocal):
A streamthat is in the "half closed (local)" state cannot be used

for sending franmes other than W NDOW UPDATE, PRI ORI TY and
RST_STREAM

Bel she, et al. Expi res August 15, 2015 [Page 19]

Internet-Draft HTTP/ 2 February 2015

A streamtransitions fromthis state to "closed" when a frame that
contains an END STREAM flag i s received, or when either peer sends
a RST_STREAM frane.

An endpoint can receive any type of frane in this state.
Providing flow control credit using WNDOW UPDATE frames is
necessary to continue receiving flow controlled franes. A
recei ver can ignore WNDOW UPDATE franmes in this state, which
m ght arrive for a short period after a frame bearing the
END STREAM flag is sent.

PRIORI TY franmes received in this state are used to reprioritize
streans that depend on the identified stream

hal f closed (renote):
A streamthat is "half closed (renpte)” is no | onger being used by
the peer to send franes. In this state, an endpoint is no |onger
obligated to naintain a receiver flow control w ndow.

If an endpoint receives additional frames for a streamthat is in
this state, other than W NDOW UPDATE, PRIORITY or RST_STREAM it
MUST respond with a streamerror (Section 5.4.2) of type
STREAM_CLOSED.

A streamthat is "half closed (renote)" can be used by the
endpoint to send frames of any type. |In this state, the endpoint
continues to observe advertised streamlevel flow control limts
(Section 5.2).

A streamcan transition fromthis state to "closed" by sending a
franme that contains an END STREAM fl ag, or when either peer sends
a RST_STREAM frane.

cl osed:
The "cl osed"” state is the term nal state.

An endpoi nt MJUST NOT send franes other than PRIORITY on a cl osed
stream An endpoint that receives any frame other than PRIORI TY
after receiving a RST_STREAM MJST treat that as a streamerror
(Section 5.4.2) of type STREAM CLOSED. Sinmilarly, an endpoint
that receives any franes after receiving a frane with the
END_STREAM fl ag set MUST treat that as a connection error
(Section 5.4.1) of type STREAM CLCSED, unless the frame is
permitted as described bel ow.

W NDOW UPDATE or RST_STREAM franes can be received in this state

for a short period after a DATA or HEADERS frane containing an
END STREAM flag is sent. Until the renote peer receives and

Bel she, et al. Expi res August 15, 2015 [Page 20]

Internet-Draft HTTP/ 2 February 2015

processes RST_STREAM or the frane bearing the END STREAM fl ag, it
m ght send frames of these types. Endpoints MJST ignore

W NDOW UPDATE or RST_STREAM franmes received in this state, though
endpoi nts MAY choose to treat frames that arrive a significant
time after sending END STREAM as a connection error

(Section 5.4.1) of type PROTOCOL_ERROR

PRIORI TY frames can be sent on closed streans to prioritize
streans that are dependent on the closed stream Endpoints SHOULD
process PRIORITY franes, though they can be ignored if the stream
has been renoved fromthe dependency tree (see Section 5.3.4).

If this state is reached as a result of sending a RST_STREAM
franme, the peer that receives the RST_STREAM ni ght have al ready
sent - or enqueued for sending - frames on the streamthat cannot
be withdrawn. An endpoint MJST ignore frames that it receives on
closed streans after it has sent a RST_STREAM franme. An endpoi nt
MAY choose to linmt the period over which it ignores franes and
treat franes that arrive after this time as being in error

Fl ow controlled frames (i.e., DATA) received after sending
RST_STREAM are counted toward the connection flow control w ndow.
Even though these franes m ght be ignored, because they are sent
before the sender receives the RST_STREAM the sender will
consider the frames to count against the flow control w ndow.

An endpoi nt mght receive a PUSH PROM SE frane after it sends
RST_STREAM PUSH PROM SE causes a streamto becone "reserved"
even if the associ ated stream has been reset. Therefore, a
RST_STREAM i s needed to cl ose an unwanted prom sed stream

In the absence of nore specific guidance el sewhere in this docunent,

i mpl ement ati ons SHOULD treat the receipt of a frane that is not
expressly pernmitted in the description of a state as a connection
error (Section 5.4.1) of type PROTOCOL_ERROR Note that PRICRITY can
be sent and received in any streamstate. Franes of unknown types
are ignored.

An exanpl e of the state transitions for an HITP request/response
exchange can be found in Section 8.1. An exanple of the state
transitions for server push can be found in Section 8.2.1 and
Section 8.2.2.

5.1.1. Streamldentifiers
Streans are identified with an unsigned 31-bit integer. Streans

initiated by a client MJST use odd-nunbered streamidentifiers; those
initiated by the server MJUST use even-nunbered streamidentifiers. A

Bel she, et al. Expi res August 15, 2015 [Page 21]

Internet-Draft HTTP/ 2 February 2015

streamidentifier of zero (0x0) is used for connection contro
messages; the streamidentifier zero cannot be used to establish a
new stream

HTTP/ 1.1 requests that are upgraded to HITP/2 (see Section 3.2) are
responded to with a streamidentifier of one (0Oxl). After the
upgrade conpl etes, streamOx1l is "half closed (local)" to the client.
Therefore, stream Ox1l cannot be selected as a new streamidentifier
by a client that upgrades fromHITP/ 1.1

The identifier of a newy established stream MUST be nunerically
greater than all streans that the initiating endpoint has opened or
reserved. This governs streans that are opened using a HEADERS frane
and streans that are reserved using PUSH PROM SE. An endpoi nt that
recei ves an unexpected streamidentifier MJST respond with a
connection error (Section 5.4.1) of type PROTOCOL ERROR

The first use of a new streamidentifier inmplicitly closes al

streans in the "idle" state that night have been initiated by that
peer with a | ower-valued streamidentifier. For exanple, if a client
sends a HEADERS frane on stream 7 without ever sending a frame on
stream 5, then stream5 transitions to the "closed" state when the
first frane for stream?7 is sent or received

Streamidentifiers cannot be reused. Long-lived connections can
result in an endpoint exhausting the avail abl e range of stream
identifiers. Aclient that is unable to establish a new stream
identifier can establish a new connection for new streans. A server
that is unable to establish a new streamidentifier can send a GOAVAY
frane so that the client is forced to open a new connection for new
streans.

5.1.2. Stream Concurrency

A peer can limt the nunber of concurrently active streans using the
SETTI NGS_MAX_ CONCURRENT_STREAMS par aneter (see Section 6.5.2) within
a SETTINGS frane. The maximum concurrent streams setting is specific
to each endpoint and applies only to the peer that receives the
setting. That is, clients specify the maxi num nunber of concurrent
streans the server can initiate, and servers specify the maxi mum
nunmber of concurrent streams the client can initiate.

Streans that are in the "open" state, or either of the "half closed"
states count toward the maxi mum nunber of streans that an endpoint is
permtted to open. Streans in any of these three states count toward
the linmt advertised in the SETTI NGS_MAX CONCURRENT STREAMS setti ng.
Streanms in either of the "reserved" states do not count toward the
streamlimt.

Bel she, et al. Expi res August 15, 2015 [Page 22]

Internet-Draft HTTP/ 2 February 2015

Endpoi nts MUST NOT exceed the limt set by their peer. An endpoint
that receives a HEADERS frane that causes their advertised concurrent
streamlimt to be exceeded MIST treat this as a streamerror
(Section 5.4.2) of type PROTOCOL_ERROR or REFUSED STREAM The choice
of error code determ nes whether the endpoint wishes to enable
automatic retry, see Section 8.1.4) for details.

An endpoint that w shes to reduce the val ue of

SETTI NGS_MAX CONCURRENT _STREAMS to a value that is bel ow the current
nunber of open streans can either close streans that exceed the new
val ue or allow streans to conpl ete

5.2. Fl ow Control

Using streans for nultiplexing introduces contention over use of the
TCP connection, resulting in blocked streans. A flow control schene
ensures that streans on the sane connection do not destructively
interfere with each other. Flow control is used for both individua
streans and for the connection as a whole.

HTTP/ 2 provides for flow control through use of the W NDOW UPDATE
frame (Section 6.9).

5.2.1. Flow Control Principles

HTTP/ 2 stream fl ow control ains to allow a variety of flow contro
algorithnms to be used without requiring protocol changes. Flow
control in HTTP/2 has the follow ng characteristics

1. Flow control is specific to a connection. Both types of flow
control are between the endpoints of a single hop, and not over
the entire end-to-end path.

2. Flow control is based on wi ndow update franes. Receivers
adverti se how nany octets they are prepared to receive on a
streamand for the entire connection. This is a credit-based
schene.

3. Flowcontrol is directional with overall control provided by the
receiver. A receiver MAY choose to set any wi ndow size that it
desires for each streamand for the entire connection. A sender

MUST respect flow control limts inposed by a receiver. dients,
servers and internmediaries all independently advertise their flow
control w ndow as a receiver and abide by the flow control limts

set by their peer when sending.

4, The initial value for the flow control w ndow is 65,535 octets
for both new streans and the overall connection

Bel she, et al. Expi res August 15, 2015 [Page 23]

Internet-Draft HTTP/ 2 February 2015

5. The frame type deternines whether flow control applies to a
frane. O the frames specified in this docunment, only DATA
franes are subject to flow control; all other frame types do not
consune space in the advertised flow control wi ndow. This
ensures that inportant control franes are not bl ocked by flow
control

6. Fl ow control cannot be di sabl ed.

7. HITP/ 2 defines only the format and senantics of the W NDOW UPDATE
franme (Section 6.9). This docunent does not stipulate how a
recei ver decides when to send this frane or the value that it
sends, nor does it specify how a sender chooses to send packets.
| mpl enentations are able to select any algorithmthat suits their
needs.

| npl enent ati ons are al so responsi bl e for managi ng how requests and
responses are sent based on priority; choosing how to avoid head of
I'ine blocking for requests; and managi ng the creation of new streans.
Al gorithm choi ces for these could interact with any flow control

al gorithm

5.2.2. Appropriate Use of Flow Contro

Fl ow control is defined to protect endpoints that are operating under
resource constraints. For exanple, a proxy needs to share nenory

bet ween many connections, and al so m ght have a sl ow upstream
connection and a fast downstream one. Flow control addresses cases
where the receiver is unable to process data on one stream yet wants
to continue to process other streans in the same connection

Depl oyments that do not require this capability can advertise a fl ow
control w ndow of the maximum size (2731-1), and by maintaining this
wi ndow by sendi ng a W NDOW UPDATE frane when any data is received
This effectively disables flow control for that receiver

Conversely, a sender is always subject to the flow control w ndow
advertised by the receiver.

Depl oyments with constrai ned resources (for exanple, nmenory) can
enploy flow control to linmt the anount of nenory a peer can consune.
Not e, however, that this can lead to suboptimal use of available
network resources if flow control is enabled w thout know edge of the
bandwi dt h- del ay product (see [RFC7323]).

Even with full awareness of the current bandw dt h-del ay product,

i mpl ementation of flow control can be difficult. Wen using flow
control, the receiver MJUST read fromthe TCP receive buffer in a

Bel she, et al. Expi res August 15, 2015 [Page 24]

Internet-Draft HTTP/ 2 February 2015

timely fashion. Failure to do so could |ead to a deadl ock when
critical frames, such as W NDOW UPDATE, are not read and acted upon

5.3. Streampriority

A client can assign a priority for a new stream by including
prioritization information in the HEADERS franme (Section 6.2) that
opens the stream At any other time, the PRRORITY frame

(Section 6.3) can be used to change the priority of a stream

The purpose of prioritization is to allow an endpoint to express how
it would prefer its peer allocate resources when managi ng concurrent
streans. Most inportantly, priority can be used to sel ect streans
for transmtting frames when there is linmted capacity for sending.

Streans can be prioritized by marki ng them as dependent on the
conpl etion of other streans (Section 5.3.1). Each dependency is
assigned a relative weight, a nunber that is used to determ ne the
relative proportion of available resources that are assigned to
streans dependent on the sane stream

Explicitly setting the priority for a streamis input to a
prioritization process. It does not guarantee any particul ar
processing or transm ssion order for the streamrelative to any other
stream An endpoint cannot force a peer to process concurrent
streans in a particular order using priority. Expressing priority is
therefore only ever a suggestion

Prioritization information can be onitted from nessages. Defaults
are used prior to any explicit values being provided (Section 5.3.5).

5.3.1. Stream Dependenci es

Each stream can be given an explicit dependency on another stream
I ncludi ng a dependency expresses a preference to allocate resources
to the identified streamrather than to the dependent stream

A streamthat is not dependent on any other streamis given a stream
dependency of 0x0. In other words, the non-existent streamO forns
the root of the tree.

A streamthat depends on another streamis a dependent stream The
stream upon which a streamis dependent is a parent stream A
dependency on a streamthat is not currently in the tree - such as a
streamin the "idle" state - results in that stream being given a
default priority (Section 5.3.5).

Bel she, et al. Expi res August 15, 2015 [Page 25]

Internet-Draft HTTP/ 2 February 2015

When assigning a dependency on another stream the streamis added as
a new dependency of the parent stream Dependent streans that share
the sane parent are not ordered with respect to each other. For
exanple, if streans B and C are dependent on stream A, and if stream
Dis created with a dependency on stream A, this results in a
dependency order of A followed by B, C, and D in any order.

A A
I\ ==> /1\
B C BDC

Fi gure 3: Exanple of Default Dependency Creation

An exclusive flag allows for the insertion of a new |evel of
dependenci es. The exclusive flag causes the streamto becone the
sol e dependency of its parent stream causing other dependencies to
becone dependent on the exclusive stream In the previous exanpl e,

if streamDis created with an exclusive dependency on streamA, this
results in D becom ng the dependency parent of B and C

A
A |
[\ ==> D
B C /I \
B C

Fi gure 4: Exanpl e of Exclusive Dependency Creation

I nsi de the dependency tree, a dependent stream SHOULD only be

al l ocated resources if all of the streans that it depends on (the
chain of parent streanms up to Ox0) are either closed, or it is not
possi bl e to nake progress on them

A stream cannot depend on itself. An endpoint MJST treat this as a
streamerror (Section 5.4.2) of type PROTOCO.L_ERROR

5.3.2. Dependency Weighting

Al'l dependent streans are allocated an integer weight between 1 and
256 (inclusive).

Streans with the sane parent SHOULD be all ocated resources
proportionally based on their weight. Thus, if stream B depends on
stream A with weight 4, and C depends on stream A with wei ght 12, and
if no progress can be made on A, stream B ideally receives one third
of the resources allocated to stream C

Bel she, et al. Expi res August 15, 2015 [Page 26]

Internet-Draft HTTP/ 2 February 2015

5.3.3. Reprioritization

Streampriorities are changed using the PRIORITY frame. Setting a
dependency causes a streamto becone dependent on the identified
parent stream

Dependent streans nove with their parent streamif the parent is
reprioritized. Setting a dependency with the exclusive flag for a
reprioritized stream noves all the dependencies of the new parent
streamto becone dependent on the reprioritized stream

If a streamis made dependent on one of its own dependencies, the
formerly dependent streamis first noved to be dependent on the
reprioritized streami s previous parent. The noved dependency retains
its weight.

For exanpl e, consider an original dependency tree where B and C
depend on A, D and E depend on C, and F depends on D. If A is nade
dependent on D, then D takes the place of A. Al other dependency
rel ati onshi ps stay the sane, except for F, which beconmes dependent on
Aif the reprioritization is exclusive.

? ? ? ?
I [\ I I
A D A D D
/I \ / /I \ /I o\ [
B C =-=> F B C == F A OoR A
/I \ [/I \ I\
D E E B C BCF
I I I
F E E
(i nternedi at e) (non-excl usi ve) (excl usi ve)

Fi gure 5: Exanpl e of Dependency Reordering
5.3.4. Prioritization State Managenent

When a streamis renoved fromthe dependency tree, its dependencies
can be noved to becone dependent on the parent of the closed stream
The wei ghts of new dependencies are recal cul ated by distributing the
wei ght of the dependency of the closed stream proportionally based on
the weights of its dependenci es.

Streans that are renoved fromthe dependency tree cause sone
prioritization information to be lost. Resources are shared between
streans with the sane parent stream which neans that if a streamin
that set closes or becones bl ocked, any spare capacity allocated to a
streamis distributed to the i nmedi ate nei ghbors of the stream

Bel she, et al. Expi res August 15, 2015 [Page 27]

Internet-Draft HTTP/ 2 February 2015

However, if the common dependency is renoved fromthe tree, those
streans share resources with streans at the next highest |evel

For exanple, assune streans A and B share a parent, and streans C and
D both depend on stream A, Prior to the renoval of streamA if
streans A and D are unable to proceed, then stream C receives all the

resources dedicated to streamA. |If streamAis renoved fromthe
tree, the weight of stream A is divided between streans C and D. If
stream D is still unable to proceed, this results in streamC

receiving a reduced proportion of resources. For equal starting
wei ghts, C receives one third, rather than one half, of available
resour ces

It is possible for a streamto becone closed while prioritization
information that creates a dependency on that streamis in transit.
If a streamidentified in a dependency has no associated priority

i nformati on, then the dependent streamis instead assigned a default
priority (Section 5.3.5). This potentially creates subopti nal
prioritization, since the streamcould be given a priority that is
different to what is intended.

To avoid these problens, an endpoint SHOULD retain stream
prioritization state for a period after streanms becone closed. The
| onger state is retained, the |ower the chance that streans are
assigned incorrect or default priority val ues.

Simlarly, streams that are in the "idle" state can be assigned
priority or becone a parent of other streans. This allows for the
creation of a grouping node in the dependency tree, which enables
nore flexible expressions of priority. Ildle streans begin with a
default priority (Section 5.3.5).

The retention of priority information for streans that are not
counted toward the limt set by SETTINGS MAX CONCURRENT STREAMS coul d
create a large state burden for an endpoint. Therefore the anount of
prioritization state that is retained MAY be limted.

The amount of additional state an endpoint maintains for
prioritization could be dependent on |oad; under high | oad,
prioritization state can be discarded to |limt resource conmtnents.
In extrene cases, an endpoint could even discard prioritization state
for active or reserved streans. |If alint is applied, endpoints
SHOULD naintain state for at | east as many streans as all owed by
their setting for SETTINGS _MAX CONCURRENT STREAMS. | npl enentations
SHOULD al so attenpt to retain state for streans that are in active
use in the priority tree.

Bel she, et al. Expi res August 15, 2015 [Page 28]

Internet-Draft HTTP/ 2 February 2015

An endpoint receiving a PRIORITY frane that changes the priority of a
cl osed stream SHOULD alter the dependencies of the streans that
depend on it, if it has retai ned enough state to do so.

5.3.5. Default Priorities

Al'l streanms are initially assigned a non-excl usive dependency on
stream 0x0. Pushed streans (Section 8.2) initially depend on their
associated stream In both cases, streans are assigned a default
wei ght of 16.

5.4. Error Handling
HTTP/ 2 fram ng permts two classes of error:

0o An error condition that renders the entire connection unusable is
a connection error.

0 An error in an individual streamis a streamerror
A list of error codes is included in Section 7.
5.4.1. Connection Error Handling

A connection error is any error which prevents further processing of
the fram ng |l ayer, or which corrupts any connection state.

An endpoi nt that encounters a connection error SHOULD first send a
GOAVAY franme (Section 6.8) with the streamidentifier of the |ast
streamthat it successfully received fromits peer. The GOAVAY frane
i ncludes an error code that indicates why the connection is

term nating. After sending the GOAWAY frane for an error condition

t he endpoi nt MJUST close the TCP connecti on

It is possible that the GOAVWAY will not be reliably received by the
recei ving endpoint (see [RFC7230], Section 6.6). |In the event of a
connection error, GOAWAY only provides a best effort attenpt to
comruni cate with the peer about why the connection is being

term nated

An endpoint can end a connection at any tine. |In particular, an
endpoi nt MAY choose to treat a streamerror as a connection error
Endpoi nts SHOULD send a GOAWAY franme when endi ng a connection
providing that circunstances permt it.

Bel she, et al. Expi res August 15, 2015 [Page 29]

Internet-Draft HTTP/ 2 February 2015

5.4.2. Stream Error Handling

A streamerror is an error related to a specific streamthat does not
af fect processing of other streans.

An endpoint that detects a streamerror sends a RST_STREAM frane
(Section 6.4) that contains the streamidentifier of the stream where
the error occurred. The RST_STREAM frane includes an error code that
i ndi cates the type of error

A RST STREAM is the last frane that an endpoint can send on a stream
The peer that sends the RST_STREAM frame MJST be prepared to receive
any frames that were sent or enqueued for sending by the renote peer.
These frames can be ignored, except where they nodify connection
state (such as the state maintai ned for header conpression

(Section 4.3), or flow control).

Normal Iy, an endpoint SHOULD NOT send nore than one RST_STREAM frane
for any stream However, an endpoint MAY send additional RST_STREAM
franes if it receives frames on a closed stream after nore than a
round-trip time. This behavior is permtted to deal with m sbehaving
i mpl enent ati ons.

An endpoi nt MJST NOT send a RST _STREAM in response to a RST_STREAM
frane, to avoid | ooping.

5.4.3. Connection Term nation

If the TCP connection is closed or reset while streans remain in open
or half closed states, then the affected streans cannot be
automatically retried (see Section 8.1.4 for details).

5.5. Extending HTTP/ 2

HTTP/ 2 permits extension of the protocol. Protocol extensions can be
used to provide additional services or alter any aspect of the
protocol, within the linmtations described in this section

Extensions are effective only within the scope of a single HITP/ 2
connecti on.

This applies to the protocol elenents defined in this docunent. This
does not affect the existing options for extending HTTP, such as
defini ng new net hods, status codes, or header fields.

Extensions are permtted to use new frane types (Section 4.1), new

settings (Section 6.5.2), or new error codes (Section 7). Registries
are established for nmanagi ng these extension points: frane types

Bel she, et al. Expi res August 15, 2015 [Page 30]

Internet-Draft HTTP/ 2 February 2015

(Section 11.2), settings (Section 11.3) and error codes
(Section 11.4).

| mpl enent ati ons MUST i gnore unknown or unsupported values in all
extensi bl e protocol elenents. |nplenentations MJST discard franes

t hat have unknown or unsupported types. This nmeans that any of these
ext ensi on points can be safely used by extensions w thout prior
arrangenent or negotiation. However, extension franmes that appear in
the m ddl e of a header block (Section 4.3) are not permitted; these
MUST be treated as a connection error (Section 5.4.1) of type
PROTOCOL_ERROR

Ext ensi ons that coul d change the semantics of existing protoco
components MJUST be negoti ated before being used. For example, an

ext ensi on that changes the | ayout of the HEADERS franme cannot be used
until the peer has given a positive signal that this is acceptable.
In this case, it could also be necessary to coordi nate when the
revised layout comes into effect. Note that treating any frame other
than DATA frames as flow controlled is such a change in senantics

and can only be done through negotiation

This docunent doesn’t nmandate a specific nethod for negotiating the
use of an extension, but notes that a setting (Section 6.5.2) could
be used for that purpose. |f both peers set a value that indicates
willingness to use the extension, then the extension can be used. |If
a setting is used for extension negotiation, the initial value MJST
be defined in such a fashion that the extension is initially

di sabl ed.

6. Frame Definitions

This specification defines a nunber of frane types, each identified
by a unique 8-bit type code. Each frane type serves a distinct
purpose either in the establishnment and managenent of the connection
as a whol e, or of individual streans.

The transmni ssion of specific frane types can alter the state of a
connection. |If endpoints fail to maintain a synchronized view of the
connection state, successful communication within the connection wll
no |l onger be possible. Therefore, it is inportant that endpoints
have a shared conprehension of how the state is affected by the use
any given frane.

6.1. DATA
DATA franes (type=0x0) convey arbitrary, variabl e-length sequences of

octets associated with a stream One or nore DATA frames are used,
for instance, to carry HTTP request or response payl oads.

Bel she, et al. Expi res August 15, 2015 [Page 31]

Internet-Draft HTTP/ 2 February 2015

DATA franes MAY al so contain padding. Padding can be added to DATA
franes to obscure the size of messages. Padding is a security
feature; see Section 10.7.

o e oo +
| Pad Length? (8)]

T oo e et e e e e e e e e e e e e e e e e e eee— oo - +
I Data (*)

o m m e +
[Paddi ng (*)

o o m eeee o +

Fi gure 6: DATA Franme Payl oad
The DATA frame contains the follow ng fields:

Pad Length: An 8-bit field containing the length of the frane
padding in units of octets. This field is conditional and is only
present if the PADDED flag is set.

Data: Application data. The anount of data is the remainder of the
frame payl oad after subtracting the length of the other fields
that are present.

Paddi ng: Paddi ng octets that contain no application senmantic val ue.
Paddi ng octets MJUST be set to zero when sending. A receiver is
not obligated to verify padding, but MAY treat non-zero paddi ng as
a connection error (Section 5.4.1) of type PROTOCO.L_ERROR

The DATA frame defines the followi ng flags:

END STREAM (0x1): Bit O being set indicates that this frame is the
| ast that the endpoint will send for the identified stream
Setting this flag causes the streamto enter one of the "half
cl osed" states or the "closed" state (Section 5.1).

PADDED (0x8): Bit 3 being set indicates that the Pad Length field
and any padding that it describes is present.

DATA franes MJUST be associated with a stream |If a DATA frane is
recei ved whose streamidentifier field is 0x0, the recipient MJST
respond with a connection error (Section 5.4.1) of type
PROTOCOL_ERROR

DATA franes are subject to flow control and can only be sent when a
streamis in the "open" or "half closed (renpote)" states. The entire
DATA frane payload is included in flow control, including Pad Length
and Padding fields if present. |f a DATA frame is received whose

Bel she, et al. Expi res August 15, 2015 [Page 32]

Internet-Draft HTTP/ 2 February 2015

streamis not in "open" or "half closed (local)" state, the recipient
MUST respond with a streamerror (Section 5.4.2) of type
STREAM_CLOSED

The total nunber of padding octets is determ ned by the value of the
Pad Length field. |If the length of the padding is the length of the
frame payl oad or greater, the recipient MIJST treat this as a
connection error (Section 5.4.1) of type PROTOCOL_ERROR

Note: A franme can be increased in size by one octet by including a
Pad Length field with a value of zero.

6. 2. HEADERS

The HEADERS franme (type=0x1l) is used to open a stream (Section 5.1),
and additionally carries a header block fragnent. HEADERS franmes can
be sent on a streamin the "open" or "half closed (renote)" states.

I +

| Pad Length? (8)]

T o mm ee— o +
| E| St ream Dependency? (31)

IRy . +
| Weight? (8) |

B I TN +
| Header Bl ock Fragment (*)

o m m e +
[Paddi ng (*)

S I N.. +

Fi gure 7: HEADERS Frane Payl oad
The HEADERS frane payl oad has the follow ng fields

Pad Length: An 8-bit field containing the length of the frane
padding in units of octets. This field is only present if the
PADDED flag is set.

E: Asingle bit flag indicates that the stream dependency is
excl usive, see Section 5.3. This field is only present if the
PRIORITY flag is set.

Stream Dependency: A 31-bit streamidentifier for the streamthat
this stream depends on, see Section 5.3. This field is only
present if the PRIORITY flag is set.

Weight: An unsigned 8-bit integer representing a priority weight for
the stream see Section 5.3. Add one to the value to obtain a

Bel she, et al. Expi res August 15, 2015 [Page 33]

Internet-Draft HTTP/ 2 February 2015

wei ght between 1 and 256. This field is only present if the
PRIORITY flag is set.

Header Bl ock Fragnent: A header block fragnent (Section 4.3).
Paddi ng: Paddi ng octets.
The HEADERS franme defines the follow ng flags:

END STREAM (0x1): Bit O being set indicates that the header bl ock
(Section 4.3) is the last that the endpoint will send for the
identified stream

A HEADERS frane carries the END STREAM fl ag that signals the end
of a stream However, a HEADERS frame with the END STREAM fl ag
set can be foll owed by CONTI NUATION franes on the sane stream
Logi cally, the CONTINUATION franes are part of the HEADERS frane.

END_HEADERS (0x4): Bit 2 being set indicates that this frane
contains an entire header block (Section 4.3) and is not followed
by any CONTI NUATI ON franes.

A HEADERS frane wi thout the END HEADERS flag set MJUST be foll owed
by a CONTI NUATION frame for the same stream A receiver MJST
treat the receipt of any other type of frane or a frame on a
different streamas a connection error (Section 5.4.1) of type
PROTOCOL_ ERROR

PADDED (0x8): Bit 3 being set indicates that the Pad Length field
and any padding that it describes is present.

PRIORITY (0x20): Bit 5 being set indicates that the Exclusive Flag
(E), Stream Dependency, and Weight fields are present; see
Section 5. 3.

The payl oad of a HEADERS frane contains a header block fragnent
(Section 4.3). A header block that does not fit within a HEADERS
frame is continued in a CONTI NUATI ON franme (Section 6.10).

HEADERS frames MJUST be associated with a stream |f a HEADERS frane
is received whose streamidentifier field is 0x0, the recipient MJST
respond with a connection error (Section 5.4.1) of type
PROTOCOL_ERROR

The HEADERS franme changes the connection state as described in
Section 4. 3.

Bel she, et al. Expi res August 15, 2015 [Page 34]

Internet-Draft HTTP/ 2 February 2015

The HEADERS frame can include padding. Padding fields and flags are
identical to those defined for DATA frames (Section 6.1).

Prioritization information in a HEADERS frane is |ogically equival ent
to a separate PRIORITY frane, but inclusion in HEADERS avoi ds the
potential for churn in streamprioritization when new streans are
created. Prioritization fields in HEADERS franes subsequent to the
first on a streamreprioritize the stream (Section 5. 3. 3).

6.3. PRICRITY

The PRIORITY frame (type=0x2) specifies the sender-advised priority
of a stream (Section 5.3). It can be sent at any tinme for any
stream including idle or closed streans.

Figure 8: PRIORITY Frane Payl oad
The payload of a PRIORITY frane contains the followi ng fields:

E: Asingle bit flag indicates that the stream dependency is
excl usive, see Section 5.3.

Stream Dependency: A 31-bit streamidentifier for the streamthat
this stream depends on, see Section 5. 3.

Weight: An unsigned 8-bit integer representing a priority weight for
the stream see Section 5.3. Add one to the value to obtain a
wei ght between 1 and 256.

The PRIORITY frane does not define any flags.

The PRIORITY frane always identifies a stream |If a PRIORITY frane
is received with a streamidentifier of 0x0, the recipient MIST
respond with a connection error (Section 5.4.1) of type
PROTOCOL_ERROR

The PRIORITY frane can be sent on a streamin any state, though it
cannot be sent between consecutive franmes that conprise a single
header bl ock (Section 4.3). Note that this frame could arrive after
processing or frane sendi ng has conpl eted, which would cause it to
have no effect on the identified stream For a streamthat is in the
"hal f closed (renmote)" or "closed" - state, this frame can only

Bel she, et al. Expi res August 15, 2015 [Page 35]

Internet-Draft HTTP/ 2 February 2015

af fect processing of the identified streamand its dependent streans
and not frame transm ssion on that stream

The PRIORITY frame can be sent for a streamin the "idle" or "closed"
states. This allows for the reprioritization of a group of dependent
streans by altering the priority of an unused or cl osed parent
stream

A PRICRITY frame with a length other than 5 octets MJST be treated as
a streamerror (Section 5.4.2) of type FRAME Sl ZE ERROR

6.4. RST_STREAM

The RST_STREAM frame (type=0x3) allows for imediate term nation of a
stream RST_STREAMis sent to request cancellation of a stream or
to indicate that an error condition has occurred.

Fi gure 9: RST_STREAM Franme Payl oad

The RST_STREAM frame contains a single unsigned, 32-bit integer
identifying the error code (Section 7). The error code indicates why
the streamis being term nated.

The RST_STREAM franme does not define any fl ags.

The RST_STREAM frame fully term nates the referenced stream and
causes it to enter the closed state. After receiving a RST_STREAM on
a stream the receiver MJST NOT send additional franes for that
stream wth the exception of PRIORITY. However, after sending the
RST_STREAM the sendi ng endpoi nt MJST be prepared to receive and
process additional frames sent on the streamthat m ght have been
sent by the peer prior to the arrival of the RST_STREAM

RST_STREAM frames MJUST be associated with a stream |f a RST_STREAM
franme is received with a streamidentifier of 0x0, the recipient MIST
treat this as a connection error (Section 5.4.1) of type
PROTOCOL_ERROR.

RST_STREAM frames MJUST NOT be sent for a streamin the "idle" state.
If a RST_STREAM frame identifying an idle streamis received, the
reci pient MIST treat this as a connection error (Section 5.4.1) of
type PROTOCOL_ERRCR.

Bel she, et al. Expi res August 15, 2015 [Page 36]

Internet-Draft HTTP/ 2 February 2015

A RST_STREAM frame with a I ength other than 4 octets MJST be treated
as a connection error (Section 5.4.1) of type FRAME_SI ZE ERROR

6.5. SETTINGS

The SETTINGS frane (type=0x4) conveys configuration paraneters that
af fect how endpoi nts communi cate, such as preferences and constraints
on peer behavior. The SETTINGS frane is al so used to acknow edge the
recei pt of those parameters. Individually, a SETTINGS paraneter can
al so be referred to as a "setting".

SETTI NGS paraneters are not negotiated; they describe characteristics
of the sending peer, which are used by the receiving peer. Different
val ues for the same paraneter can be advertised by each peer. For
exanple, a client mght set a high initial flow control w ndow,
whereas a server mght set a |ower value to conserve resources

A SETTINGS franme MJST be sent by both endpoints at the start of a
connection, and MAY be sent at any other time by either endpoint over
the lifetime of the connection. |nplenmentations MJST support all of
the paraneters defined by this specification

Each paraneter in a SETTINGS frame replaces any existing value for
that parameter. Paraneters are processed in the order in which they
appear, and a receiver of a SETTINGS frane does not need to maintain
any state other than the current value of its parameters. Therefore,
the value of a SETTINGS paraneter is the last value that is seen by a
receiver.

SETTI NGS paraneters are acknow edged by the receiving peer. To
enable this, the SETTINGS frame defines the follow ng flag:

ACK (0x1): Bit O being set indicates that this frame acknow edges
recei pt and application of the peer’s SETTINGS frane. Wen this
bit is set, the payload of the SETTINGS frane MJUST be enpty.
Receipt of a SETTINGS frame with the ACK flag set and a |l ength
field value other than 0 MJST be treated as a connection error
(Section 5.4.1) of type FRAME SIZE ERROR. For nore info, see
Settings Synchronization (Section 6.5.3).

SETTI NGS franes al ways apply to a connection, never a single stream
The streamidentifier for a SETTINGS frame MJST be zero (0x0). |If an
endpoi nt receives a SETTINGS frane whose streamidentifier field is
anyt hi ng other than 0x0, the endpoint MJST respond with a connection
error (Section 5.4.1) of type PROTOCOL_ERROR

Bel she, et al. Expi res August 15, 2015 [Page 37]

Internet-Draft HTTP/ 2 February 2015

The SETTINGS frane affects connection state. A badly formed or
i nconpl ete SETTINGS franme MJUST be treated as a connection error
(Section 5.4.1) of type PROIOCCOL_ERROR

A SETTINGS frame with a length other than a nultiple of 6 octets MJST
be treated as a connection error (Section 5.4.1) of type
FRAME_SI ZE _ERROR

6.5.1. SETTI NGS For mat
The payl oad of a SETTINGS frane consists of zero or nore paraneters,

each consisting of an unsigned 16-bit setting identifier and an
unsi gned 32-bit val ue.

Fom e e e e e e e e e e ee oo +

[Identifier (16) [

o m e e e e e e e eeee oo n o m e e e e e e e eeee oo n +
| Val ue (32)

o o o ee e +

Figure 10: Setting Format
6.5.2. Defined SETTINGS Paraneters
The foll owi ng paraneters are defi ned:

SETTI NGS_HEADER TABLE_SI ZE (0x1): Allows the sender to informthe
renot e endpoi nt of the nmaxi mum size of the header conpression
tabl e used to decode header blocks, in octets. The encoder can
sel ect any size equal to or less than this value by using
signaling specific to the header conpression format inside a
header bl ock, see [COWRESSION]. The initial value is 4,096
octets.

SETTI NGS_ENABLE PUSH (0x2): This setting can be use to disable
server push (Section 8.2). An endpoint MJST NOT send a
PUSH PROM SE frame if it receives this paranmeter set to a val ue of
0. An endpoint that has both set this paraneter to 0 and had it
acknow edged MJST treat the receipt of a PUSH PROM SE frame as a
connection error (Section 5.4.1) of type PROTOCOL ERROR

The initial value is 1, which indicates that server push is
permitted. Any value other than 0 or 1 MJST be treated as a
connection error (Section 5.4.1) of type PROTOCOL_ERROR

SETTI NGS_MAX_CONCURRENT_STREAMS (0x3): Indicates the naxi mum nunber

of concurrent streanms that the sender will allow. This limt is
directional: it applies to the nunmber of streans that the sender

Bel she, et al. Expi res August 15, 2015 [Page 38]

Internet-Draft HTTP/ 2 February 2015

permits the receiver to create. Initially thereis nolinit to
this value. It is recommended that this value be no smaller than
100, so as to not unnecessarily limt parallelism

A value of 0 for SETTI NGS_MAX CONCURRENT_STREAMS SHOULD NOT be
treated as special by endpoints. A zero value does prevent the
creation of new streans, however this can al so happen for any
limt that is exhausted with active streans. Servers SHOULD only
set a zero value for short durations; if a server does not wish to
accept requests, closing the connection is nore appropriate.

SETTINGS | NI TI AL_WNDOW SI ZE (0x4): Indicates the sender’'s initia
wi ndow size (in octets) for streamlevel flow control. The
initial value is 2716-1 (65,535) octets.

This setting affects the wi ndow size of all streans, see
Section 6.9. 2.

Val ues above the maxi num fl ow control w ndow size of 2731-1 MJST
be treated as a connection error (Section 5.4.1) of type
FLOW CONTROL_ERROR

SETTI NGS_MAX FRAME_SI ZE (0x5): Indicates the size of the |argest
frame payload that the sender is willing to receive, in octets.

The initial value is 2714 (16,384) octets. The value advertised
by an endpoint MJUST be between this initial value and the maxi num
all owed frane size (27"24-1 or 16,777,215 octets), inclusive.

Val ues outside this range MJST be treated as a connection error
(Section 5.4.1) of type PROTOCOL_ERROR

SETTI NGS_MAX_HEADER LI ST_SI ZE (0x6): This advisory setting informs a
peer of the maxi mum size of header list that the sender is
prepared to accept, in octets. The value is based on the
unconpressed size of header fields, including the length of the
nane and value in octets plus an overhead of 32 octets for each
header field.

For any given request, a lower limt than what is advertised MAY
be enforced. The initial value of this setting is unlinted.

An endpoint that receives a SETTINGS frane with any unknown or
unsupported identifier MJIST ignore that setting.

Bel she, et al. Expi res August 15, 2015 [Page 39]

Internet-Draft HTTP/ 2 February 2015

6.5.3. Settings Synchronization

Most values in SETTINGS benefit fromor require an understandi ng of
when the peer has received and applied the changed paraneter val ues.
In order to provide such synchronization tinepoints, the recipient of
a SETTINGS frane in which the ACK flag is not set MJST apply the
updat ed paraneters as soon as possi bl e upon receipt.

The values in the SETTINGS frame MJST be processed in the order they
appear, with no other frame processing between values. Unsupported
paraneters MJST be ignored. Once all values have been processed, the
reci pient MUST i mediately enit a SETTINGS frane with the ACK flag
set. Upon receiving a SETTINGS frane with the ACK flag set, the
sender of the altered paraneters can rely on the setting having been
appl i ed.

If the sender of a SETTINGS frane does not receive an acknow edgenent
within a reasonable anbunt of tine, it MAY i ssue a connection error
(Section 5.4.1) of type SETTI NGS_TI MEQUT

6.6. PUSH _PROM SE

The PUSH PROM SE frane (type=0x5) is used to notify the peer endpoint
i n advance of streans the sender intends to initiate. The

PUSH PROM SE frane includes the unsigned 31-bit identifier of the
streamthe endpoint plans to create along with a set of headers that
provi de additional context for the stream Section 8.2 contains a

t horough description of the use of PUSH PROM SE franes.

o e oo +

| Pad Length? (8)]

B S TS, e +
| R Prom sed Stream I D (31)

T 2 +
| Header Bl ock Fragnent (*)

o o o eee o +
| Paddi ng (*)
o +

Figure 11: PUSH PROM SE Payl oad For nat
The PUSH PROM SE frame payl oad has the following fields
Pad Length: An 8-bit field containing the length of the frane
padding in units of octets. This field is only present if the
PADDED flag is set.

R A single reserved bit.

Bel she, et al. Expi res August 15, 2015 [Page 40]

Internet-Draft HTTP/ 2 February 2015

Promi sed Stream I D: An unsigned 31-bit integer that identifies the
streamthat is reserved by the PUSH PROM SE. The prom sed stream
identifier MIST be a valid choice for the next stream sent by the
sender (see new streamidentifier (Section 5.1.1)).

Header Bl ock Fragnment: A header bl ock fragment (Section 4.3)
cont ai ni ng request header fields.

Paddi ng: Paddi ng octets.
The PUSH PROM SE frane defines the follow ng flags:

END_HEADERS (0x4): Bit 2 being set indicates that this frane
contains an entire header block (Section 4.3) and is not followed
by any CONTI NUATI ON franes.

A PUSH PROM SE frame without the END HEADERS flag set MJST be
foll owed by a CONTINUATION frame for the same stream A receiver
MUST treat the receipt of any other type of frane or a frame on a
different streamas a connection error (Section 5.4.1) of type
PROTOCOL_ ERROR

PADDED (0x8): Bit 3 being set indicates that the Pad Length field
and any padding that it describes is present.

PUSH PROM SE frames MJST be associated with a peer-initiated stream
that is in either the "open" or "half closed (renmpote)" state. The
streamidentifier of a PUSH PROM SE frane indicates the streamit is
associated with. |If the streamidentifier field specifies the value
0x0, a recipient MIST respond with a connection error (Section 5.4.1)
of type PROTOCOL_ERROR

Promi sed streans are not required to be used in the order they are
pronmi sed. The PUSH PROM SE only reserves streamidentifiers for
| ater use.

PUSH_PROM SE MUST NOT be sent if the SETTI NGS_ENABLE_PUSH setting of
the peer endpoint is set to 0. An endpoint that has set this setting
and has received acknowl edgement MJST treat the receipt of a

PUSH PROM SE frane as a connection error (Section 5.4.1) of type
PROTOCOL_ERROR

Reci pi ents of PUSH PROM SE franmes can choose to reject pronised
streanms by returning a RST_STREAM referencing the prom sed stream
identifier back to the sender of the PUSH PROM SE

A PUSH PROM SE franme nodifies the connection state in two ways. The
i nclusion of a header block (Section 4.3) potentially nodifies the

Bel she, et al. Expi res August 15, 2015 [Page 41]

Internet-Draft HTTP/ 2 February 2015

state maintai ned for header conpression. PUSH PROM SE al so reserves
a streamfor later use, causing the pronmised streamto enter the
"reserved"” state. A sender MJST NOT send a PUSH PROM SE on a stream
unl ess that streamis either "open" or "half closed (renote)"; the
sender MJST ensure that the pronised streamis a valid choice for a
new streamidentifier (Section 5.1.1) (that is, the pronised stream
MJUST be in the "idle" state).

Si nce PUSH PROM SE reserves a stream ignoring a PUSH PROM SE frame
causes the stream state to becone indetermnate. A receiver MJST
treat the receipt of a PUSH PROM SE on a streamthat is neither
"open" nor "half closed (local)" as a connection error

(Section 5.4.1) of type PROTOCO._ERROR. However, an endpoint that
has sent RST_STREAM on t he associ ated stream MJST handl e PUSH PROM SE
frames that m ght have been created before the RST_STREAM frane is
recei ved and processed.

A receiver MJST treat the receipt of a PUSH PROM SE that prom ses an
illegal streamidentifier (Section 5.1.1) (that is, an identifier for
a streamthat is not currently in the "idle" state) as a connection
error (Section 5.4.1) of type PROTOCOL_ERROR

The PUSH PROM SE frane can include padding. Padding fields and fl ags
are identical to those defined for DATA frames (Section 6.1).

6.7. PING

The PING franme (type=0x6) is a mechanismfor neasuring a mninal
round trip time fromthe sender, as well as deternining whether an
idle connection is still functional. PING franes can be sent from
any endpoi nt.

Figure 12: PING Payl oad For nmat

In addition to the frame header, PING frames MJST contain 8 octets of
data in the payload. A sender can include any value it chooses and
use those octets in any fashion.

Receivers of a PING frane that does not include an ACK flag MJST send
a PING frame with the ACK flag set in response, with an identica

payl oad. PI NG responses SHOULD be given higher priority than any

ot her frane.

Bel she, et al. Expi res August 15, 2015 [Page 42]

Internet-Draft HTTP/ 2 February 2015

The PING frame defines the followi ng fl ags:

ACK (0x1): Bit O being set indicates that this PING frame is a PING
response. An endpoint MJST set this flag in PING responses. An
endpoi nt MUST NOT respond to PING franes containing this flag.

PING franes are not associated with any individual stream If a PING
frame is received with a streamidentifier field value other than

0x0, the recipient MIST respond with a connection error

(Section 5.4.1) of type PROTOCOL_ERROR

Receipt of a PING frame with a length field value other than 8 MJUST
be treated as a connection error (Section 5.4.1) of type
FRAME_SI ZE_ERRCR

6.8. GOAWAY

The GOAVAY frane (type=0x7) infornms the renote peer to stop creating
streams on this connection. GOAWAY can be sent by either the client
or the server. Once sent, the sender will ignore franes sent on any
new streanms with identifiers higher than the included | ast stream
identifier. Receivers of a GOAWAY franme MJST NOT open additiona
streans on the connection, although a new connection can be
establ i shed for new streans.

The purpose of this frame is to allow an endpoint to gracefully stop
accepting new streans, while still finishing processing of previously
established streams. This enables adninistrative actions, |ike
server mai ntenance

There is an inherent race condition between an endpoi nt starting new
streans and the renote sending a GOAVAY frane. To deal with this
case, the GOAWAY contains the streamidentifier of the |ast peer-
initiated stream which was or m ght be processed on the sending
endpoint in this connection. For instance, if the server sends a
GOAVAY frane, the identified streamis the highest nunbered stream
initiated by the client.

If the receiver of the GOAWAY has sent data on streans with a higher
streamidentifier than what is indicated in the GOAWAY frane, those
streans are not or will not be processed. The receiver of the GOAVWAY
frane can treat the streans as though they had never been created at
all, thereby allowing those streans to be retried later on a new
connecti on.

Endpoi nts SHOULD al ways send a GOAWAY franme before closing a

connection so that the renote peer can know whether a stream has been
partially processed or not. For exanple, if an HITP client sends a

Bel she, et al. Expi res August 15, 2015 [Page 43]

Internet-Draft HTTP/ 2 February 2015

POST at the sanme time that a server closes a connection, the client
cannot know if the server started to process that POST request if the
server does not send a GOAVWAY frame to indicate what streans it night
have acted on.

An endpoi nt might choose to close a connection wi thout sendi ng GOAWAY
for m sbehavi ng peers.

B +
| R Last-Stream | D (31) [
. +
| Error Code (32) |
T N +
| Addi tional Debug Data (*) |
o m m e +

Fi gure 13: GOAVAY Payl oad For mat
The GOAVAY frame does not define any flags

The GOAWAY frame applies to the connection, not a specific stream
An endpoint MJST treat a GOAVAY frame with a streamidentifier other
than 0x0 as a connection error (Section 5.4.1) of type
PROTOCOL_ERROR

The | ast streamidentifier in the GOAWAY franme contains the highest
nunbered streamidentifier for which the sender of the GOAVWAY frame
m ght have taken sone action on, or night yet take action on. All
streans up to and including the identified stream m ght have been
processed in sone way. The last streamidentifier can be set to O if
no streans were processed.

Note: In this context, "processed"” neans that sonme data fromthe
stream was passed to sonme higher |ayer of software that m ght have
taken sonme action as a result.

If a connection ternminates without a GOAWAY frane, the |ast stream
identifier is effectively the highest possible streamidentifier.

On streans with | ower or equal nunbered identifiers that were not
closed conpletely prior to the connection being closed, re-attenpting
requests, transactions, or any protocol activity is not possible,
with the exception of idenpotent actions |ike HITP GET, PUT, or
DELETE. Any protocol activity that uses higher nunbered streans can
be safely retried using a new connection

Activity on streans nunbered | ower or equal to the |ast stream
identifier might still conplete successfully. The sender of a GOAVWAY

Bel she, et al. Expi res August 15, 2015 [Page 44]

Internet-Draft HTTP/ 2 February 2015

franme night gracefully shut down a connection by sendi ng a GOAVAY
franme, maintaining the connection in an open state until all in-
progress streans conpl ete.

An endpoi nt MAY send nultiple GOAWAY franes if circunmstances change
For instance, an endpoint that sends GOAWAY with NO ERRCR during
graceful shutdown could subsequently encounter a condition that
requires inmedi ate termnati on of the connection. The [ast stream
identifier fromthe | ast GOAWAY franme received indi cates which
streans coul d have been acted upon. Endpoints MJST NOT increase the
value they send in the last streamidentifier, since the peers night
al ready have retried unprocessed requests on another connection

A client that is unable to retry requests |loses all requests that are
in flight when the server closes the connection. This is especially
true for internediaries that m ght not be serving clients using
HTTP/ 2. A server that is attenpting to gracefully shut down a
connection SHOULD send an initial GOAWAY frame with the |ast stream
identifier set to 2231-1 and a NO ERROR code. This signals to the
client that a shutdown is inmnent and that no further requests can
be initiated. After waiting at |least one round trip time, the server
can send anot her GOAVAY franme with an updated | ast streamidentifier.
This ensures that a connection can be cleanly shut down wi thout

| osi ng requests.

After sending a GOAWAY frame, the sender can discard franmes for
streanms with identifiers higher than the identified |ast stream
However, any frames that alter connection state cannot be conpletely
i gnored. For instance, HEADERS, PUSH PROM SE and CONTI NUATI ON franes
MUST be ninimally processed to ensure the state naintai ned for header
conpression is consistent (see Section 4.3); simlarly DATA franes
MUST be counted toward the connection flow control w ndow. Failure
to process these frames can cause flow control or header conpression
state to becone unsynchroni zed.

The GOAVAY frane al so contains a 32-bit error code (Section 7) that
contains the reason for closing the connection

Endpoi nts MAY append opaque data to the payl oad of any GOAVAY frane.
Addi tional debug data is intended for diagnostic purposes only and
carries no semantic value. Debug information could contain security-
or privacy-sensitive data. Logged or otherw se persistently stored
debug data MJUST have adequate safeguards to prevent unauthorized
access.

Bel she, et al. Expi res August 15, 2015 [Page 45]

Internet-Draft HTTP/ 2 February 2015

6.9. W NDOW UPDATE

The W NDOW UPDATE frane (type=0x8) is used to inplenment flow control;
see Section 5.2 for an overvi ew

FIl ow control operates at two | evels: on each individual stream and on
the entire connection.

Both types of flow control are hop-by-hop; that is, only between the
two endpoints. Internediaries do not forward W NDOW UPDATE franes
bet ween dependent connections. However, throttling of data transfer
by any receiver can indirectly cause the propagation of flow control
i nformati on toward the original sender.

Fl ow control only applies to frames that are identified as being
subject to flow control. O the frane types defined in this
docunent, this includes only DATA frames. Franes that are exenpt
fromflow control MJST be accepted and processed, unless the receiver
is unable to assign resources to handling the frame. A receiver MAY
respond with a streamerror (Section 5.4.2) or connection error
(Section 5.4.1) of type FLOWCONTROL_ERRCR if it is unable to accept

a frane.
T +
| R W ndow Si ze | ncrenent (31)
s +

Fi gure 14: W NDOW UPDATE Payl oad For mat

The payl oad of a W NDOW UPDATE frane is one reserved bit, plus an
unsi gned 31-bit integer indicating the nunber of octets that the
sender can transmit in addition to the existing flow control w ndow.
The | egal range for the increnent to the flow control windowis 1 to
2731-1 (2,147,483, 647) octets.

The W NDOW _UPDATE frane does not define any fl ags.

The W NDOW UPDATE frane can be specific to a streamor to the entire
connection. In the former case, the frame’s streamidentifier
indicates the affected stream in the latter, the value "0" indicates
that the entire connection is the subject of the frane.

A receiver MIST treat the receipt of a WNDOW UPDATE franme with an
flow control wi ndow increment of O as a streamerror (Section 5.4.2)
of type PROTOCOL_ERROR; errors on the connection flow control w ndow
MUST be treated as a connection error (Section 5.4.1).

Bel she, et al. Expi res August 15, 2015 [Page 46]

Internet-Draft HTTP/ 2 February 2015

W NDOW UPDATE can be sent by a peer that has sent a frane bearing the
END STREAM flag. This neans that a receiver could receive a

W NDOW UPDATE frame on a "half closed (renote)” or "closed" stream

A receiver MIUST NOT treat this as an error, see Section 5. 1.

A receiver that receives a flow controlled frame MJST al ways account
for its contribution against the connection flow control w ndow,

unl ess the receiver treats this as a connection error

(Section 5.4.1). This is necessary even if the frane is in error.
Since the sender counts the franme toward the flow control w ndow, if
the receiver does not, the flow control w ndow at sender and receiver
can becone different.

A W NDOW UPDATE frane with a |l ength other than 4 octets MJST be
treated as a connection error (Section 5.4.1) of type
FRAVE_SI ZE_ERROR.

6.9.1. The Fl ow Control W ndow

Fl ow control in HITP/2 is inplenented using a w ndow kept by each
sender on every stream The flow control window is a sinple integer
val ue that indicates how many octets of data the sender is pernitted
to transmt; as such, its size is a nmeasure of the buffering capacity
of the receiver.

Two flow control wi ndows are applicable: the streamflow control

wi ndow and the connection flow control wi ndow. The sender MJST NOT
send a flow controlled frane with a |l ength that exceeds the space
available in either of the flow control wi ndows advertised by the
receiver. Frames with zero length with the END STREAM fl ag set (that
is, an enpty DATA franme) MAY be sent if there is no avail abl e space
in either flow control w ndow.

For flow control calculations, the 9 octet frame header is not
count ed.

After sending a flow controlled frame, the sender reduces the space
available in both windows by the length of the transmtted frane.

The receiver of a frane sends a WNDOW UPDATE frane as it consunes
data and frees up space in flow control wi ndows. Separate

W NDOW _UPDATE franes are sent for the stream and connection | evel
flow control w ndows.

A sender that receives a W NDOW UPDATE frane updates the
correspondi ng wi ndow by the anount specified in the frane.

Bel she, et al. Expi res August 15, 2015 [Page 47]

Internet-Draft HTTP/ 2 February 2015

A sender MJST NOT allow a flow control wi ndow to exceed 2731-1
octets. |If a sender receives a WNDOW UPDATE that causes a flow
control window to exceed this maximumit MJST term nate either the
stream or the connection, as appropriate. For streans, the sender
sends a RST_STREAM with the error code of FLOW CONTROL_ERRCR code;
for the connection, a GOAVAY frane with a FLON CONTROL_ERROR code.

Fl ow controll ed franes fromthe sender and W NDOW UPDATE franmes from
the receiver are conpletely asynchronous with respect to each other.
This property allows a receiver to aggressively update the w ndow
size kept by the sender to prevent streans fromstalling.

6.9. 2. Initial Flow Control Wndow Size

When an HTTP/ 2 connection is first established, new streans are
created with an initial flow control w ndow size of 65,535 octets.
The connection flow control w ndow is 65,535 octets. Both endpoints
can adjust the initial w ndow size for new streans by including a
val ue for SETTINGS_| NI TI AL_W NDOW SI ZE in the SETTINGS frane that
forns part of the connection preface. The connection flow control

wi ndow can only be changed usi ng W NDOW UPDATE fr anes.

Prior to receiving a SETTINGS franme that sets a value for

SETTI NGS_I NI TI AL_W NDOW Sl ZE, an endpoi nt can only use the default
initial w ndow size when sending flow controlled frames. Sinilarly,
the connection flow control windowis set to the default initial

wi ndow si ze until a W NDOW UPDATE frame is received.

A SETTINGS frame can alter the initial flow control w ndow size for
all streans in the "open" or "half closed (renote)" state. Wen the
val ue of SETTINGS_I NI TI AL_W NDOW SI ZE changes, a receiver MJST adj ust
the size of all streamflow control wi ndows that it maintains by the
di fference between the new val ue and the old val ue.

A change to SETTINGS | NI TI AL_W NDOW SI ZE can cause the avail able
space in a flow control wi ndow to becone negative. A sender MJST
track the negative flow control wi ndow, and MJUST NOT send new fl ow
controlled franes until it receives WNDOWN UPDATE franmes that cause
the flow control w ndow to becone positive.

For exanple, if the client sends 60KB i medi ately on connection
establishnent, and the server sets the initial w ndow size to be
16KB, the client will recalculate the available flow control w ndow
to be -44KB on receipt of the SETTINGS frane. The client retains a
negative flow control w ndow until W NDOW UPDATE frames restore the
wi ndow to being positive, after which the client can resune sending.

A SETTINGS frame cannot alter the connection flow control w ndow.

Bel she, et al. Expi res August 15, 2015 [Page 48]

Internet-Draft HTTP/ 2 February 2015

An endpoint MJST treat a change to SETTINGS_ | NI TI AL_W NDOW SI ZE t hat
causes any flow control wi ndow to exceed the maxi mum size as a
connection error (Section 5.4.1) of type FLOW CONTROL_ERROR

6.9.3. Reducing the Stream W ndow Si ze

A receiver that wi shes to use a smaller flow control wi ndow than the
current size can send a new SETTINGS franme. However, the receiver
MJUST be prepared to receive data that exceeds this w ndow size, since
the sender nmight send data that exceeds the lower limt prior to
processing the SETTI NGS frane.

After sending a SETTINGS franme that reduces the initial flow control
wi ndow si ze, a receiver MAY continue to process streans that exceed

flow control limts. Allow ng streans to continue does not allow the
receiver to inmedi ately reduce the space it reserves for flow control
wi ndows. Progress on these streans can also stall, since

W NDOW_UPDATE franes are needed to allow the sender to resune
sending. The receiver MAY instead send a RST_STREAM with
FLOW CONTROL_ERRCR error code for the affected streans.

6.10. CONTI NUATI ON
The CONTI NUATION frame (type=0x9) is used to continue a sequence of
header bl ock fragments (Section 4.3). Any nunber of CONTI NUATI ON
franes can be sent, as long as the preceding frame is on the sane

stream and is a HEADERS, PUSH PROM SE or CONTI NUATI ON franme wi t hout
the END HEADERS fl ag set.

| Header Bl ock Fragnment (*)

Fi gure 15: CONTI NUATI ON Frane Payl oad

The CONTI NUATI ON franme payl oad contains a header bl ock fragnent
(Section 4.3).

The CONTI NUATI ON frame defines the follow ng flag:

END HEADERS (0x4): Bit 2 being set indicates that this frane ends a
header bl ock (Section 4.3).

If the END HEADERS bit is not set, this frame MJST be foll owed by
anot her CONTI NUATI ON frame. A receiver MIST treat the receipt of
any other type of franme or a frane on a different streamas a
connection error (Section 5.4.1) of type PROTOCOL_ERROR

Bel she, et al. Expi res August 15, 2015 [Page 49]

Internet-Draft HTTP/ 2 February 2015

The CONTI NUATI ON frame changes the connection state as defined in
Section 4. 3.

CONTI NUATI ON franes MJUST be associated with a stream |If a

CONTI NUATION frane is recei ved whose streamidentifier field is 0xO,
the recipient MJUST respond with a connection error (Section 5.4.1) of
type PROTOCCL_ERROR

A CONTI NUATI ON frame MJUST be preceded by a HEADERS, PUSH PROM SE or
CONTI NUATI ON frane without the END HEADERS flag set. A recipient
that observes violation of this rule MIST respond with a connection
error (Section 5.4.1) of type PROTOCOL_ERROR

7. Error Codes

Error codes are 32-bit fields that are used in RST_STREAM and GOAVWAY
franes to convey the reasons for the stream or connection error.

Error codes share a common code space. Sone error codes apply only
to either streans or the entire connecti on and have no defi ned
semantics in the other context.

The followi ng error codes are defined:

NO _ERROR (0x0): The associated condition is not as a result of an
error. For example, a GOAWAY night include this code to indicate
graceful shutdown of a connection.

PROTOCOL_ERRCR (0x1): The endpoint detected an unspecific protocol
error. This error is for use when a nore specific error code is
not avail abl e.

| NTERNAL_ERRCR (0x2): The endpoi nt encountered an unexpected
internal error.

FLOW CONTROL_ERROR (0x3): The endpoint detected that its peer
viol ated the flow control protocol.

SETTI NGS_TI MEQUT (0x4): The endpoint sent a SETTINGS franme, but did
not receive a response in a tinely manner. See Settings
Synchroni zation (Section 6.5.3).

STREAM CLCSED (0x5): The endpoint received a frame after a stream
was hal f cl osed.

FRAVE_SI ZE ERROR (0x6): The endpoint received a franme with an
invalid size.

Bel she, et al. Expi res August 15, 2015 [Page 50]

Internet-Draft HTTP/ 2 February 2015

REFUSED_STREAM (0x7): The endpoint refuses the streamprior to
perform ng any application processing, see Section 8.1.4 for
details.

CANCEL (0x8): Used by the endpoint to indicate that the streamis no
| onger needed.

COVPRESSI ON_ERROR (0x9): The endpoint is unable to maintain the
header conpression context for the connection

CONNECT_ERROR (0xa): The connection established in response to a
CONNECT request (Section 8.3) was reset or abnormally closed.

ENHANCE _YOUR _CALM (0xb): The endpoint detected that its peer is
exhi biting a behavior that m ght be generating excessive | oad.

| NADEQUATE_SECURI TY (0xc): The underlying transport has properties
that do not meet mninum security requirenents (see Section 9.2).

HTTP_1 1 REQUI RED (0Oxd): The endpoint requires that HTTP/ 1.1 be used
i nstead of HITP/ 2

Unknown or unsupported error codes MJST NOT trigger any speci al
behavi or. These MAY be treated by an inplenentation as being
equi val ent to | NTERNAL_ERROR

8. HITP Message Exchanges

HTTP/2 is intended to be as conpatible as possible with current uses
of HTTP. This means that, fromthe application perspective, the
features of the protocol are |argely unchanged. To achieve this, al
request and response semantics are preserved, although the syntax of
conveyi ng those semanti cs has changed.

Thus, the specification and requirenments of HTTP/1.1 Semantics and
Content [RFC7231], Conditional Requests [RFC7232], Range Requests

[RFC7233], Caching [RFC7234] and Authentication [RFC7235] are
applicable to HTTP/2. Selected portions of HITP/ 1.1 Message Syntax
and Routing [RFC7230], such as the HTTP and HTTPS URI schenes, are
al so applicable in HTTP/ 2, but the expression of those semantics for
this protocol are defined in the sections bel ow

8.1. HITP Request/ Response Exchange
A client sends an HTTP request on a new stream using a previously

unused streamidentifier (Section 5.1.1). A server sends an HITP
response on the same stream as the request.

Bel she, et al. Expi res August 15, 2015 [Page 51]

Internet-Draft HTTP/ 2 February 2015

An HTTP nessage (request or response) consists of:

1. for a response only, zero or nore HEADERS franes (each foll owed
by zero or nore CONTI NUATI ON franes) containing the nessage
headers of informational (1xx) HITP responses (see [RFC7230],
Section 3.2 and [RFC7231], Section 6.2), and

2. one HEADERS franme (followed by zero or nore CONTI NUATI ON franes)
contai ni ng the message headers (see [RFC7230], Section 3.2), and

3. zero or nore DATA franes containing the payl oad body (see
[RFC7230], Section 3.3), and

4. optionally, one HEADERS franme, foll owed by zero or nore
CONTI NUATI ON frames containing the trailer-part, if present (see
[RFC7230], Section 4.1.2).

The last frame in the sequence bears an END STREAM fl ag, noting that
a HEADERS frame bearing the END STREAM flag can be fol |l owed by

CONTI NUATI ON frames that carry any remaining portions of the header
bl ock.

O her franes (fromany strean) MJST NOT occur between either HEADERS
frame and any CONTI NUATION franmes that mght follow

HTTP/ 2 uses DATA frames to carry nessage payl oads. The "chunked"
transfer encoding defined in Section 4.1 of [RFC7230] MJUST NOT be
used in HTTP/ 2

Trailing header fields are carried in a header block that also
term nates the stream Such a header block is a sequence starting
with a HEADERS frame, foll owed by zero or nore CONTI NUATI ON franes,
where the HEADERS frane bears an END STREAM fl ag. Header bl ocks
after the first that do not ternminate the streamare not part of an
HTTP request or response.

A HEADERS franme (and associ ated CONTI NUATI ON franes) can only appear
at the start or end of a stream An endpoint that receives a HEADERS
franme without the END STREAM fl ag set after receiving a final (non-

i nformati onal) status code MJUST treat the correspondi ng request or
response as nal formed (Section 8.1.2.6).

An HTTP request/response exchange fully consunes a single stream A
request starts with the HEADERS franme that puts the streaminto an
"open" state. The request ends with a frame beari ng END_STREAM

whi ch causes the streamto becone "half closed (local)" for the
client and "half closed (renote)" for the server. A response starts

Bel she, et al. Expi res August 15, 2015 [Page 52]

Internet-Draft HTTP/ 2 February 2015

with a HEADERS frame and ends with a frame bearing END_STREAM whi ch
pl aces the streamin the "cl osed" state.

An HTTP response is conplete after the server sends - or the client
receives - a franme with the END STREAM fl ag set (including any

CONTI NUATI ON frames needed to conpl ete a header block). A server can
send a conpl ete response prior to the client sending an entire
request if the response does not depend on any portion of the request
that has not been sent and received. Wen this is true, a server MAY
request that the client abort transm ssion of a request w thout error
by sending a RST_STREAM with an error code of NO ERROR after sending
a conplete response (i.e., a frame with the END STREAM fl ag) .

Clients MJUST NOT discard responses as a result of receiving such a
RST_STREAM though clients can al ways di scard responses at their

di scretion for other reasons.

8.1.1. Upgrading From HTTP/ 2

HTTP/ 2 renoves support for the 101 (Swi tching Protocols)
i nformati onal status code ([RFC7231], Section 6.2.2).

The senmantics of 101 (Switching Protocols) aren’t applicable to a
mul ti pl exed protocol. Alternative protocols are able to use the sane
mechani snms that HTTP/ 2 uses to negotiate their use (see Section 3).

8.1.2. HTTP Header Fi el ds

HTTP header fields carry infornmation as a series of key-val ue pairs.
For a listing of registered HTTP headers, see the Message Header
Field Registry maintained at [4].

Just as in HITP/1.x, header field names are strings of ASClI
characters that are conpared in a case-insensitive fashion. However,
header field nanes MJUST be converted to | owercase prior to their
encoding in HITP/2. A request or response containi ng uppercase
header field nanes MJUST be treated as nal formed (Section 8.1.2.6).

8.1.2.1. Pseudo- Header Fi el ds

Whil e HTTP/ 1. x used the nessage start-line (see [RFC7230],

Section 3.1) to convey the target URI and net hod of the request, and
the status code for the response, HITP/ 2 uses special pseudo-header
fields beginning with ':’ character (ASCII 0x3a) for this purpose.

Pseudo- header fields are not HITP header fields. Endpoints MJST NOT

gener at e pseudo- header fields other than those defined in this
docunent .

Bel she, et al. Expi res August 15, 2015 [Page 53]

Internet-Draft HTTP/ 2 February 2015

Pseudo- header fields are only valid in the context in which they are
defined. Pseudo-header fields defined for requests MJST NOT appear
in responses; pseudo-header fields defined for responses MJST NOT
appear in requests. Pseudo-header fields MJUST NOT appear in
trailers. Endpoints MJST treat a request or response that contains
undefined or invalid pseudo-header fields as nal forned

(Section 8.1.2.6).

Al'l pseudo- header fields MJST appear in the header block before
regul ar header fields. Any request or response that contains a
pseudo- header field that appears in a header block after a regul ar
header field MJUST be treated as mal formed (Section 8.1.2.6).

8.1.2.2. Connection-Specific Header Fields

HTTP/ 2 does not use the "Connection" header field to indicate
connection-specific header fields; in this protocol, connection-
specific netadata is conveyed by other neans. An endpoint MJST NOT
generate an HITP/ 2 nessage containi ng connecti on-specific header
fields; any message contai ni ng connection-specific header fields MJST
be treated as malforned (Section 8.1.2.6).

The only exception to this is the TE header field, which MAY be
present in an HTTP/ 2 request; when it is, it MJST NOT contain any
val ue other than "trailers".

This means that an internediary transform ng an HITP/ 1. x nessage to
HTTP/2 will need to renove any header fields noninated by the
Connection header field, along with the Connection header field
itself. Such internediaries SHOULD al so renpve ot her connection-
specific header fields, such as Keep-Alive, Proxy-Connection
Transf er- Encodi ng and Upgrade, even if they are not nom nated by
Connecti on.

Note: HTTP/ 2 purposefully does not support upgrade to another
protocol. The handshake net hods described in Section 3 are
believed sufficient to negotiate the use of alternative protocols.

8.1.2.3. Request Pseudo-Header Fields

The foll owi ng pseudo-header fields are defined for HTTP/ 2 requests:

o The ":nethod" pseudo-header field includes the HTTP net hod
([RFC7231], Section 4).

0 The ":schene" pseudo-header field includes the schenme portion of
the target URI ([RFC3986], Section 3.1).

Bel she, et al. Expi res August 15, 2015 [Page 54]

Internet-Draft HTTP/ 2 February 2015

":schene" is not restricted to "http" and "https" schemed URIs. A
proxy or gateway can translate requests for non-HITP schenes,
enabling the use of HITP to interact with non-HITP services.

o The ":authority" pseudo-header field includes the authority
portion of the target URI ([RFC3986], Section 3.2). The authority
MUST NOT i nclude the deprecated "userinfo" subconponent for "http"
or "https" schenmed URIs.

To ensure that the HITP/ 1.1 request line can be reproduced
accurately, this pseudo-header field MJST be onitted when
translating froman HTTP/ 1.1 request that has a request target in
origin or asterisk form(see [RFC7230], Section 5.3). dients
that generate HITP/ 2 requests directly SHOULD use the ":authority"
pseudo- header field instead of the "Host" header field. An
intermedi ary that converts an HTTP/2 request to HITP/ 1.1 MJST
create a "Host" header field if one is not present in a request by
copyi ng the value of the ":authority" pseudo-header field.

o The ":path" pseudo-header field includes the path and query parts
of the target URI (the "path-absol ute" production from [RFC3986]
and optionally a *?" character followed by the "query" production,
see [RFC3986], Section 3.3 and [RFC3986], Section 3.4). A request
in asterisk formincludes the value '*’' for the ":path" pseudo-
header field.

Thi s pseudo-header field MUST NOT be enpty for "http" or "https"”
URIs; "http" or "https" URIs that do not contain a path conponent
MUST include a value of '/’'. The exception to this rule is an
OPTI ONS request for an "http" or "https" UR that does not include
a path conponent; these MJST include a ":path" pseudo-header field
with a value of '*' (see [RFC7230], Section 5.3.4).

Al'l HTTP/ 2 requests MJST include exactly one valid value for the
":met hod", ":schene", and ":path" pseudo-header fields, unless it is
a CONNECT request (Section 8.3). An HTTP request that onits

mandat ory pseudo- header fields is nalformed (Section 8.1.2.6).

HTTP/ 2 does not define a way to carry the version identifier that is
included in the HTTP/ 1.1 request line.

8.1.2.4. Response Pseudo- Header Fields

For HTTP/ 2 responses, a single ":status" pseudo-header field is
defined that carries the HITP status code field (see [RFC7231],
Section 6). This pseudo-header field MJST be included in al

responses, otherw se the response is nmalformed (Section 8.1.2.6).

Bel she, et al. Expi res August 15, 2015 [Page 55]

Internet-Draft HTTP/ 2 February 2015

HTTP/ 2 does not define a way to carry the version or reason phrase
that is included in an HITP/1.1 status |ine.

8.1.2.5. Conpressing the Cookie Header Field

The Cooki e header field [COOKIE] uses a semi-colon (";") to delimt
cookie-pairs (or "crunbs"). This header field doesn't follow the
list construction rules in HTTP (see [RFC7230], Section 3.2.2), which
prevents cookie-pairs frombeing separated into different name-val ue
pairs. This can significantly reduce conpression efficiency as

i ndi vi dual cooki e-pairs are updat ed.

To allow for better conmpression efficiency, the Cookie header field
MAY be split into separate header fields, each with one or nore

cookie-pairs. If there are multiple Cookie header fields after
deconpressi on, these MJUST be concatenated into a single octet string
using the two octet delinmiter of Ox3B, 0x20 (the ASCI| string "; ")

bef ore bei ng passed into a non-HTTP/ 2 context, such as an HTTP/ 1.1
connection, or a generic HTTP server application

Therefore, the following two |lists of Cookie header fields are
semantical |y equival ent.

cooki e: a=b; c=d; e=f

cookie: a
cookie: c
e

b
d
cooki e: f

8.1.2.6. Malfornmed Requests and Responses

A mal forned request or response is one that is an otherw se valid
sequence of HITP/ 2 franes, but is otherwise invalid due to the
presence of extraneous frames, prohibited header fields, the absence
of mandatory header fields, or the inclusion of uppercase header
field nanes.

A request or response that includes an payl oad body can include a
"content-length" header field. A request or response is also

mal fornmed if the value of a "content-length" header field does not
equal the sum of the DATA franme payload | engths that formthe body.

A response that is defined to have no payl oad, as described in

[RFC7230], Section 3.3.2, can have a non-zero "content-|ength" header
field, even though no content is included in DATA franes.

Internediaries that process HITP requests or responses (i.e., any

intermedi ary not acting as a tunnel) MJST NOT forward a nal f or ned
request or response. Malfornmed requests or responses that are

Bel she, et al. Expi res August 15, 2015 [Page 56]

Internet-Draft HTTP/ 2 February 2015

detected MUST be treated as a streamerror (Section 5.4.2) of type
PROTOCOL_ERROR

For mal forned requests, a server NMAY send an HTTP response prior to
closing or resetting the stream dients MJST NOT accept a nal forned
response. Note that these requirenments are intended to protect

agai nst several types of conmmon attacks agai nst HITP;, they are
deliberately strict, because being pernissive can expose

i npl ementations to these vulnerabilities.

8.1.3. Exanples

This section shows HITP/ 1.1 requests and responses, with
illustrations of equivalent HTTP/2 requests and responses.

An HTTP GET request includes request header fields and no payl oad
body and is therefore transmitted as a single HEADERS frane, followed
by zero or nore CONTI NUATION frames containing the serialized bl ock
of request header fields. The HEADERS frane in the foll ow ng has
bot h t he END_HEADERS and END STREAM fl ags set; no CONTI NUATI ON franes

are sent:
GET /resource HTTP/ 1.1 HEADERS
Host: exanpl e.org ==> + END_STREAM
Accept: inmage/jpeg + END_HEADERS

:method = GET
:schene = https
:path = /resource
host = exanple.org
accept = image/|jpeg

Simlarly, a response that includes only response header fields is
transmtted as a HEADERS franme (again, followed by zero or nore
CONTI NUATI ON franes) containing the serialized bl ock of response
header fi el ds.

HTTP/ 1.1 304 Not Modified HEADERS

ETag: "xyzzy" ==> + END_STREAM

Expires: Thu, 23 Jan ... + END_HEADERS
:status = 304
etag = "xyzzy"

expires = Thu, 23 Jan ..

An HTTP POST request that includes request header fields and payl oad
data is transnmitted as one HEADERS frane, followed by zero or nore
CONTI NUATI ON franmes containing the request header fields, followed by
one or nore DATA frames, with the |ast CONTI NUATI ON (or HEADERS)

Bel she, et al. Expi res August 15, 2015 [Page 57]

Internet-Draft

HTTP/ 2

frame having the END HEADERS flag set and the final

the END STREAM fl ag set:

POST /resource HTTP/ 1.1

Host: exanpl e.org
Cont ent - Type: inage/|jpeg
Content - Lengt h: 123

{bi nary dat a}

HEADERS
==> - END_STREAM
- END_HEADERS

February 2015

DATA frane having

:met hod = POST
:path = /resource

:schene =

CONTI NUATI ON
+ END_HEADERS
content-type
host =

DATA
+ END_STREAM
{bi nary data}

htt ps

= i mage/ j peg
exanpl e. org
content-length =

123

Note that data contributing to any given header field could be spread

bet ween header bl ock fragnents.

franes in this exanple is illustrative only.

A response that

transmtted as a HEADERS frane,
foll owed by one or nore DATA franes,

frames,

foll owed by zero or
with th

in the sequence having the END STREAM fl ag set:

HTTP/ 1.1 200 K
Cont ent - Type: inage/|jpeg
Content - Lengt h: 123

{bi nary data}

An i nformational

transmtted as a HEADERS frane,

frames.

HEADERS
==> - END_STREAM
+ END_HEADERS
:status = 200
content-type
content -1 engt

DATA

+ END_STREAM
{bi nary dat a}

foll owed by zero or

The all ocation of header fields to

i ncl udes header fields and payload data is

nor e CONTI NUATI ON
e | ast DATA frane

mage/ j peg

=i
h = 123

response using a 1xx status code other than 101 is

mor e CONTI NUATI ON

Trailing header fields are sent as a header block after both the

Bel she,

request or response header block and all the DATA franmes have been
sent. The HEADERS frane starting the trailers header block has the
END_STREAM f | ag set.

et al. Expi res August 15, 2015 [Page 58]

Internet-Draft HTTP/ 2 February 2015

8.

The foll owi ng exanpl e includes both a 100 (Continue) status code,
which is sent in response to a request containing a "100-conti nue'
token in the Expect header field, and trailing header fields:

HTTP/ 1.1 100 Conti nue HEADERS
Ext ensi on-Fi el d: bar ==> - END_STREAM
+ END_HEADERS
:status = 100
extension-field = bar

HTTP/ 1.1 200 K HEADERS
Cont ent - Type: inage/|jpeg => - END_STREAM
Transf er - Encodi ng: chunked + END_HEADERS
Trailer: Foo :status = 200
content-length = 123
123 content-type = inmage/jpeg
{bi nary data} trailer = Foo
0
Foo: bar DATA
- END_STREAM

{bi nary dat a}

HEADERS
+ END_ STREAM
+ END_HEADERS
foo = bar

1.4. Request Reliability Mechanisns in HITP/ 2

In HTTP/ 1.1, an HTTP client is unable to retry a non-i denpotent
request when an error occurs, because there is no neans to determ ne
the nature of the error. It is possible that sone server processing
occurred prior to the error, which could result in undesirable
effects if the request were reattenpted.

HTTP/ 2 provi des two nmechani sms for providing a guarantee to a client
that a request has not been processed:

0 The GOAVAY frane indicates the highest stream nunber that m ght
have been processed. Requests on streans with higher nunbers are
therefore guaranteed to be safe to retry.

0 The REFUSED STREAM error code can be included in a RST_STREAM
frane to indicate that the streamis being closed prior to any
processi ng having occurred. Any request that was sent on the
reset streamcan be safely retried.

Bel she, et al. Expi res August 15, 2015 [Page 59]

Internet-Draft HTTP/ 2 February 2015

Requests that have not been processed have not failed; clients MAY
automatically retry them even those with non-idenpotent mnethods.

A server MJST NOT indicate that a stream has not been processed
unless it can guarantee that fact. |If frames that are on a stream
are passed to the application |ayer for any stream then
REFUSED_STREAM MUST NOT be used for that stream and a GOAVAY franme
MUST include a streamidentifier that is greater than or equal to the
given streamidentifier

In addition to these nechanisns, the PING frame provides a way for a
client to easily test a connection. Connections that remain idle can
becone broken as sone m ddl eboxes (for instance, network address
translators, or |oad balancers) silently discard connection bindi ngs.
The PING frame allows a client to safely test whether a connection is
still active w thout sending a request.

8.2. Server Push

HTTP/ 2 allows a server to pre-enptively send (or "push") responses
(along with correspondi ng "prom sed" requests) to a client in
association with a previous client-initiated request. This can be
useful when the server knows the client will need to have those
responses available in order to fully process the response to the
original request.

A client can request that server push be disabled, though this is
negoti ated for each hop independently. The SETTI NGS_ENABLE PUSH
setting can be set to 0 to indicate that server push is disabled.

Proni sed requests MJST be cacheabl e (see [RFC7231], Section 4.2.3),
MUST be safe (see [RFC7231], Section 4.2.1) and MJST NOT include a
request body. Cients that receive a prom sed request that is not
cacheabl e, is not known to be safe or that indicates the presence of
a request body MJST reset the pronmised streamwith a streamerror
(Section 5.4.2) of type PROTOCOL_ERROR. Note this could result in
the pronised streambeing reset if the client does not recognize a
new y defined method as bei ng safe.

Pushed responses that are cacheable (see [RFC7234], Section 3) can be
stored by the client, if it inplements an HTTP cache. Pushed
responses are consi dered successfully validated on the origin server

(e.g., if the "no-cache" cache response directive [RFC7234],
Section 5.2.2 is present) while the streamidentified by the pronised
streamIDis still open.

Bel she, et al. Expi res August 15, 2015 [Page 60]

Internet-Draft HTTP/ 2 February 2015

Pushed responses that are not cacheabl e MUST NOT be stored by any
HTTP cache. They MAY be made available to the application
separately.

The server MUST include a value in the ":authority" header field for
which the server is authoritative (see Section 10.1). A client MJST
treat a PUSH PROM SE for which the server is not authoritative as a
streamerror (Section 5.4.2) of type PROTOCOL_ERROR

An internediary can receive pushes fromthe server and choose not to
forward themon to the client. In other words, how to nmake use of
the pushed information is up to that intermediary. Equally, the

i ntermedi ary night choose to nmake additional pushes to the client,

wi t hout any action taken by the server.

A client cannot push. Thus, servers MJST treat the receipt of a
PUSH PROM SE frane as a connection error (Section 5.4.1) of type
PROTOCOL_ERROR. dients MIST reject any attenpt to change the

SETTI NGS_ENABLE_PUSH setting to a value other than O by treating the
message as a connection error (Section 5.4.1) of type PROTOCOL_ERROR

8.2.1. Push Requests

Server push is semantically equivalent to a server responding to a
request; however, in this case that request is also sent by the
server, as a PUSH PROM SE frarne.

The PUSH PROM SE frane includes a header block that contains a

compl ete set of request header fields that the server attributes to
the request. It is not possible to push a response to a request that
i ncl udes a request body.

Pushed responses are always associated with an explicit request from
the client. The PUSH PROM SE franes sent by the server are sent on
that explicit request’s stream The PUSH PROM SE frane al so incl udes
a promised streamidentifier, chosen fromthe streamidentifiers
avail able to the server (see Section 5.1.1).

The header fields in PUSH PROM SE and any subsequent CONTI NUATI ON
frames MJUST be a valid and conplete set of request header fields
(Section 8.1.2.3). The server MJST include a nethod in the ":nethod"
header field that is safe and cacheable. |If a client receives a
PUSH PROM SE t hat does not include a conplete and valid set of header
fields, or the ":nethod" header field identifies a nmethod that is not
safe, it MJST respond with a streamerror (Section 5.4.2) of type
PROTOCOL_ERROR

Bel she, et al. Expi res August 15, 2015 [Page 61]

Internet-Draft HTTP/ 2 February 2015

The server SHOULD send PUSH PROM SE (Section 6.6) frames prior to
sendi ng any frames that reference the proni sed responses. This
avoi ds a race where clients issue requests prior to receiving any
PUSH PROM SE fr anes.

For exanple, if the server receives a request for a docunent
cont ai ni ng enbedded Iinks to multiple inmage files, and the server
chooses to push those additional images to the client, sending push
prom ses before the DATA franes that contain the image |inks ensures
that the client is able to see the pronises before discovering
enbedded links. Simlarly, if the server pushes responses referenced
by the header block (for instance, in Link header fields), sending
the push promi ses before sending the header block ensures that
clients do not request them

PUSH PROM SE frames MJUST NOT be sent by the client.

PUSH_PROM SE franes can be sent by the server in response to any
client-initiated stream but the stream MUST be in either the "open"
or "half closed (renpte)" state with respect to the server.

PUSH PROM SE franmes are interspersed with the frames that conprise a
response, though they cannot be interspersed with HEADERS and

CONTI NUATI ON franmes that conprise a single header bl ock

Sendi ng a PUSH PROM SE frame creates a new stream and puts the stream
into the "reserved (local)" state for the server and the "reserved
(renmote)" state for the client.

8.2.2. Push Responses

After sending the PUSH PROM SE frame, the server can begin delivering
the pushed response as a response (Section 8.1.2.4) on a server-
initiated streamthat uses the prom sed streamidentifier. The
server uses this streamto transmt an HTTP response, using the sane
sequence of frames as defined in Section 8.1. This stream becones
"hal f closed" to the client (Section 5.1) after the initial HEADERS
frame is sent.

Once a client receives a PUSH PROM SE frame and chooses to accept the
pushed response, the client SHOULD NOT issue any requests for the
promi sed response until after the pronised stream has cl osed

If the client determines, for any reason, that it does not wish to
recei ve the pushed response fromthe server, or if the server takes
too long to begin sending the prom sed response, the client can send
an RST_STREAM frane, using either the CANCEL or REFUSED STREAM codes,
and referencing the pushed streanis identifier.

Bel she, et al. Expi res August 15, 2015 [Page 62]

Internet-Draft HTTP/ 2 February 2015

A client can use the SETTI NGS_MAX_CONCURRENT_STREAMS setting to limt
the nunber of responses that can be concurrently pushed by a server.
Advertising a SETTI NGS_MAX_ CONCURRENT_STREAMS val ue of zero disables
server push by preventing the server fromcreating the necessary
streans. This does not prohibit a server from sendi ng PUSH PROM SE
franes; clients need to reset any pronised streans that are not

want ed.

Clients receiving a pushed response MJST validate that either the
server is authoritative (see Section 10.1), or the proxy that

provi ded the pushed response is configured for the correspondi ng
request. For exanple, a server that offers a certificate for only
the "exanpl e.com’ DNS-1D or Common Nane is not pernmitted to push a
response for "https://ww. exanpl e. org/ doc"

The response for a PUSH PROM SE stream begins with a HEADERS frane,
which i mediately puts the streaminto the "half closed (renote)"
state for the server and "half closed (local)" state for the client,
and ends with a frane bearing END STREAM which places the streamin
the "cl osed" state.

Note: The client never sends a franme with the END STREAM flag for a
server push.

8.3. The CONNECT Met hod

In HITP/ 1. x, the pseudo-nmethod CONNECT ([RFC7231], Section 4.3.6) is
used to convert an HTTP connection into a tunnel to a renote host.
CONNECT is primarily used with HTTP proxies to establish a TLS
session with an origin server for the purposes of interacting with
"https" resources.

In HTTP/ 2, the CONNECT nethod is used to establish a tunnel over a

single HITP/2 streamto a renpote host, for simlar purposes. The

HTTP header field mappi ng works as defined in Request Header Fields

(Section 8.1.2.3), with a few differences. Specifically:

o0 The ":nethod" header field is set to "CONNECT".

0 The ":schene" and ":path" header fields MJST be onmtted.

0 The ":authority" header field contains the host and port to
connect to (equivalent to the authority-form of the request-target
of CONNECT requests, see [RFC7230], Section 5.3).

A CONNECT request that does not conformto these restrictions is
mal fornmed (Section 8.1.2.6).

Bel she, et al. Expi res August 15, 2015 [Page 63]

Internet-Draft HTTP/ 2 February 2015

A proxy that supports CONNECT establishes a TCP connection [TCP] to
the server identified in the ":authority" header field. Once this
connection is successfully established, the proxy sends a HEADERS
frame containing a 2xx series status code to the client, as defined
in [RFC7231], Section 4. 3.6.

After the initial HEADERS frane sent by each peer, all subsequent
DATA franes correspond to data sent on the TCP connection. The

payl oad of any DATA frames sent by the client is transnmitted by the
proxy to the TCP server; data received fromthe TCP server is
assenbl ed i nto DATA frames by the proxy. Frane types other than DATA
or stream managenent franmes (RST_STREAM W NDOW UPDATE, and PRI ORI TY)
MUST NOT be sent on a connected stream and MJST be treated as a
streamerror (Section 5.4.2) if received.

The TCP connection can be closed by either peer. The END STREAM fl ag
on a DATA frane is treated as being equivalent to the TCP FIN bit. A
client is expected to send a DATA frane with the END STREAM fl ag set
after receiving a frame bearing the END STREAM flag. A proxy that
receives a DATA frame with the END STREAM fl ag set sends the attached
data with the FIN bit set on the last TCP segnment. A proxy that
receives a TCP segnent with the FIN bit set sends a DATA frame with
the END STREAM fl ag set. Note that the final TCP segnent or DATA
franme could be enpty.

A TCP connection error is signaled with RST_STREAM A proxy treats
any error in the TCP connection, which includes receiving a TCP
segment with the RST bit set, as a streamerror (Section 5.4.2) of
type CONNECT_ERROR. Correspondi ngly, a proxy MJST send a TCP segnent
with the RST bit set if it detects an error with the streamor the
HTTP/ 2 connection

9. Additional HITP Requirenents/Considerations

This section outlines attributes of the HITP protocol that inprove
interoperability, reduce exposure to known security vulnerabilities,
or reduce the potential for inplenentation variation

9.1. Connection Managenent

HTTP/ 2 connections are persistent. For best performance, it is
expected clients will not close connections until it is determ ned
that no further comunication with a server is necessary (for
exanpl e, when a user navigates away froma particul ar web page), or
until the server closes the connection

Bel she, et al. Expi res August 15, 2015 [Page 64]

Internet-Draft HTTP/ 2 February 2015

Clients SHOULD NOT open nore than one HTTP/ 2 connection to a given
host and port pair, where host is derived froma URI, a selected
alternative service [ALT-SVC], or a configured proxy.

A client can create additional connections as replacenents, either to
repl ace connections that are near to exhausting the avail able stream
identifier space (Section 5.1.1), to refresh the keying material for
a TLS connection, or to replace connections that have encountered
errors (Section 5.4.1).

A client MAY open multiple connections to the sane | P address and TCP
port using different Server Name |ndication [TLS-EXT] values or to
provide different TLS client certificates, but SHOULD avoid creating
mul ti ple connections with the same configuration

Servers are encouraged to maintain open connections for as |long as
possi ble, but are permitted to termnate idle connections if
necessary. When either endpoint chooses to close the transport-Iayer
TCP connection, the term nating endpoint SHOULD first send a GOAVAY
(Section 6.8) frame so that both endpoints can reliably determnne
whet her previously sent frames have been processed and gracefully
conplete or term nate any necessary renaining tasks.

9.1.1. Connection Reuse

Connections that are made to an origin server, either directly or
through a tunnel created using the CONNECT met hod (Section 8.3) MAY
be reused for requests with nultiple different URI authority
conmponents. A connection can be reused as |long as the origin server
is authoritative (Section 10.1). For TCP connections w thout TLS
this depends on the host having resolved to the sane | P address.

For "https" resources, connection reuse additionally depends on
having a certificate that is valid for the host in the URI. The
certificate presented by the server MJIST satisfy any checks that the
client would performwhen formng a new TLS connection for the host
in the URI.

An origin server mght offer a certificate with nultiple
"subj ect AltNane" attributes, or nanes with wildcards, one of which is
valid for the authority in the URI. For exanple, a certificate with
a "subject Al t Name" of "*.exanple.conl night pernit the use of the
sane connection for requests to URIs starting with
"https://a.exanple.com" and "https://b. exanpl e.com"

I n sone depl oynents, reusing a connection for nmultiple origins can

result in requests being directed to the wong origin server. For
exanple, TLS termination night be perforned by a m ddl ebox that uses

Bel she, et al. Expi res August 15, 2015 [Page 65]

Internet-Draft HTTP/ 2 February 2015

the TLS Server Name Indication (SNI) [TLS-EXT] extension to select an
origin server. This nmeans that it is possible for clients to send
confidential information to servers that might not be the intended
target for the request, even though the server is otherw se
authoritative.

A server that does not wish clients to reuse connections can indicate
that it is not authoritative for a request by sending a 421

(M sdirected Request) status code in response to the request (see
Section 9.1.2).

A client that is configured to use a proxy over HITP/2 directs
requests to that proxy through a single connection. That is, al
requests sent via a proxy reuse the connection to the proxy.

9.1.2. The 421 (Msdirected Request) Status Code

The 421 (M sdirected Request) status code indicates that the request
was directed at a server that is not able to produce a response.
This can be sent by a server that is not configured to produce
responses for the conbination of schenme and authority that are
included in the request URI

Clients receiving a 421 (M sdirected Request) response froma server
MAY retry the request - whether the request nethod is idenpotent or
not - over a different connection. This is possible if a connection
is reused (Section 9.1.1) or if an alternative service is selected
([ALT-sVQ)).

This status code MJST NOT be generated by proxies.

A 421 response is cacheable by default; i.e., unless otherw se
i ndi cated by the nethod definition or explicit cache controls (see
Section 4.2.2 of [RFC7234]).

9.2. Use of TLS Features

| mpl enent ati ons of HITP/2 MJUST use TLS [TLS12] version 1.2 or higher
for HITP/2 over TLS. The general TLS usage gui dance in [TLSBCP]
SHOULD be followed, with some additional restrictions that are
specific to HITP/ 2

The TLS i npl enentati on MJST support the Server Name Indication (SN)
[TLS- EXT] extension to TLS. HITP/2 clients MJST indicate the target
domai n nane when negoti ating TLS

Depl oynments of HTTP/2 that negotiate TLS 1.3 or higher need only
support and use the SN extension; deploynments of TLS 1.2 are subject

Bel she, et al. Expi res August 15, 2015 [Page 66]

Internet-Draft HTTP/ 2 February 2015

to the requirenents in the followi ng sections. |Inplenentations are
encouraged to provide defaults that conply, but it is recognized that
depl oynents are ultimately responsi ble for conpliance.

9.2.1. TLS 1.2 Features

Thi s section describes restrictions on the TLS 1.2 feature set that
can be used with HITP/2. Due to deploynent linmitations, it mght not
be possible to fail TLS negotiation when these restrictions are not
met. An endpoint MAY inmediately ternminate an HITP/ 2 connection that
does not neet these TLS requirenents with a connection error

(Section 5.4.1) of type | NADEQUATE_SECURI TY.

A depl oynent of HTTP/2 over TLS 1.2 MJST di sabl e compression. TLS
conmpression can |lead to the exposure of information that woul d not
otherw se be reveal ed [RFC3749]. GCeneric conpression i s unnecessary
since HTTP/ 2 provides conpression features that are nore aware of
context and therefore likely to be nmore appropriate for use for
performance, security or other reasons.

A depl oynent of HTTP/2 over TLS 1.2 MJST di sabl e renegotiation. An
endpoint MUST treat a TLS renegotiation as a connection error
(Section 5.4.1) of type PROTOCOL_ERROR. Note that disabling
renegotiation can result in long-lived connections beconi ng unusabl e
due to limts on the nunmber of nessages the underlying cipher suite
can enci pher.

An endpoi nt MAY use renegotiation to provide confidentiality
protection for client credentials offered in the handshake, but any
renegoti ati on MJST occur prior to sending the connection preface. A
server SHOULD request a client certificate if it sees a renegotiation
request immediately after establishing a connection

This effectively prevents the use of renegotiation in response to a
request for a specific protected resource. A future specification
m ght provide a way to support this use case. Alternatively, a
server night use an error (Section 5.4) of type HTTP_1 1 REQURED to
request the client use a protocol which supports renegotiation

| npl enent ati ons MUST support epheneral key exchange sizes of at |east
2048 bits for cipher suites that use epheneral finite field Dffie-
Hel | man (DHE) [TLS12] and 224 bits for cipher suites that use
epheneral elliptic curve Diffie-Hellman (ECDHE) [RFC4492]. dients
MUST accept DHE sizes of up to 4096 bits. Endpoints MAY treat

negoti ati on of key sizes smaller than the lower linmts as a
connection error (Section 5.4.1) of type | NADEQUATE SECURITY.

Bel she, et al. Expi res August 15, 2015 [Page 67]

Internet-Draft HTTP/ 2 February 2015

9.

10.

10.

10.

Be

2.2. TLS 1.2 Cipher Suites

A depl oynent of HTTP/2 over TLS 1.2 SHOULD NOT use any of the cipher
suites that are listed in the cipher suite black list (Appendix A).

Endpoi nts MAY choose to generate a connection error (Section 5.4.1)
of type | NADEQUATE SECURITY if one of the cipher suites fromthe
black list are negotiated. A deploynent that chooses to use a bl ack-
listed cipher suite risks triggering a connection error unless the
set of potential peers is known to accept that cipher suite.

I mpl ement ati ons MUST NOT generate this error in reaction to the
negoti ati on of a cipher suite that is not on the black list.
Consequently, when clients offer a cipher suite that is not on the
black list, they have to be prepared to use that cipher suite with
HTTP/ 2.

The black list includes the cipher suite that TLS 1.2 nakes

mandat ory, which nmeans that TLS 1.2 deploynments coul d have non-
intersecting sets of pernitted cipher suites. To avoid this problem
causi ng TLS handshake failures, deploynents of HITP/2 that use TLS
1.2 MUST support TLS _ECDHE RSA W TH_AES 128_GCM SHA256 [TLS- ECDHE]
with the P256 elliptic curve [FlPS186].

Note that clients m ght advertise support of cipher suites that are
on the black list in order to allow for connection to servers that do
not support HTTP/2. This allows servers to select HITP/1.1 with a

ci pher suite that is on the HITP/2 black list. However, this can
result in HTTP/2 being negotiated with a black-listed cipher suite if
the application protocol and cipher suite are independently sel ected.

Security Considerations
1. Server Authority

HTTP/ 2 relies on the HTITP/ 1.1 definition of authority for determning
whet her a server is authoritative in providing a given response, see
[RFC7230], Section 9.1. This relies on local name resolution for the
"http" URI scheme, and the authenticated server identity for the
"https" schenme (see [RFC2818], Section 3).

2. Cross-Protocol Attacks
In a cross-protocol attack, an attacker causes a client to initiate a
transaction in one protocol toward a server that understands a

different protocol. An attacker nmight be able to cause the
transaction to appear as valid transaction in the second protocol

| she, et al. Expi res August 15, 2015 [Page 68]

Internet-Draft HTTP/ 2 February 2015

10.

10.

In conbination with the capabilities of the web context, this can be
used to interact with poorly protected servers in private networKks.

Conpl eting a TLS handshake with an ALPN identifier for HITP/2 can be
consi dered sufficient protection against cross protocol attacks.
ALPN provides a positive indication that a server is willing to
proceed with HTTP/ 2, which prevents attacks on other TLS-based

pr ot ocol s.

The encryption in TLS nmakes it difficult for attackers to control the
data which could be used in a cross-protocol attack on a cleartext
pr ot ocol

The cl eartext version of HITP/2 has mininal protection against cross-
protocol attacks. The connection preface (Section 3.5) contains a
string that is designed to confuse HITP/ 1.1 servers, but no speci al
protection is offered for other protocols. A server that is willing
to ignore parts of an HTTP/ 1.1 request containing an Upgrade header
field in addition to the client connection preface could be exposed
to a cross-protocol attack.

3. Internediary Encapsul ation Attacks

The HTTP/ 2 header field encoding all ows the expression of nanes that
are not valid field nanes in the Internet Message Syntax used by
HTTP/ 1.1. Requests or responses containing invalid header field
nanes MJUST be treated as mal forned (Section 8.1.2.6). An
intermedi ary therefore cannot translate an HTTP/ 2 request or response
containing an invalid field nane into an HITP/ 1.1 nessage.

Similarly, HITP/2 all ows header field values that are not valid.
Whi |l e nost of the values that can be encoded will not alter header
field parsing, carriage return (CR, ASCII Oxd), line feed (LF, ASClI
Oxa), and the zero character (NUL, ASCI|I 0x0) m ght be exploited by
an attacker if they are translated verbatim Any request or response
that contains a character not permtted in a header field val ue MJST
be treated as malformed (Section 8.1.2.6). Valid characters are
defined by the "field-content” ABNF rule in Section 3.2 of [RFC7230].

4. Cacheability of Pushed Responses

Pushed responses do not have an explicit request fromthe client; the
request is provided by the server in the PUSH PROM SE frane.

Cachi ng responses that are pushed is possible based on the gui dance
provided by the origin server in the Cache-Control header field.
However, this can cause issues if a single server hosts nore than one

Bel she, et al. Expi res August 15, 2015 [Page 69]

Internet-Draft HTTP/ 2 February 2015

10.

tenant. For exanple, a server might offer nmultiple users each a
small portion of its URl space.

Where nultiple tenants share space on the sane server, that server
MUST ensure that tenants are not able to push representations of
resources that they do not have authority over. Failure to enforce
this would allow a tenant to provide a representation that would be
served out of cache, overriding the actual representation that the
aut horitative tenant provides.

Pushed responses for which an origin server is not authoritative (see
Section 10.1) MJST NOT be used or cached.

5. Deni al of Service Considerations

An HTTP/ 2 connection can denand a greater comm tnent of resources to
operate than a HTTP/ 1.1 connection. The use of header conpression
and flow control depend on a commi tnent of resources for storing a
greater amount of state. Settings for these features ensure that
menory commitments for these features are strictly bounded.

The nunber of PUSH PROM SE franmes is not constrained in the sane
fashion. A client that accepts server push SHOULD linit the nunber
of streanms it allows to be in the "reserved (renote)" state.
Excessi ve nunmber of server push streanms can be treated as a stream
error (Section 5.4.2) of type ENHANCE YOUR CALM

Processi ng capacity cannot be guarded as effectively as state
capacity.

The SETTINGS frane can be abused to cause a peer to expend additiona
processing time. This night be done by pointlessly changi ng SETTI NGS
paraneters, setting nultiple undefined paraneters, or changing the
same setting nmultiple tines in the sane frane. W NDOW UPDATE or
PRIORI TY franes can be abused to cause an unnecessary waste of

resour ces

Large nunbers of small or enpty frames can be abused to cause a peer
to expend time processing frane headers. Note however that sone uses
are entirely legitimte, such as the sending of an enpty DATA or
CONTI NUATI ON frane at the end of a stream

Header conpression also offers some opportunities to waste processing
resources; see Section 7 of [COVWPRESSION] for nore details on
potential abuses.

Limts in SETTINGS paraneters cannot be reduced instantaneously,
whi ch | eaves an endpoi nt exposed to behavior froma peer that could

Bel she, et al. Expi res August 15, 2015 [Page 70]

Internet-Draft HTTP/ 2 February 2015

10.

10.

exceed the new limits. |In particular, imediately after establishing
a connection, limts set by a server are not known to clients and
coul d be exceeded w t hout being an obvi ous protocol violation

Al'l these features - i.e., SETTINGS changes, snumll franes, header
conpression - have legitimte uses. These features becone a burden
only when they are used unnecessarily or to excess.

An endpoi nt that doesn’t monitor this behavior exposes itself to a
risk of denial of service attack. Inplenentations SHOULD track the
use of these features and set linmits on their use. An endpoint NAY
treat activity that is suspicious as a connection error

(Section 5.4.1) of type ENHANCE_YOUR CALM

5. 1. Limts on Header Bl ock Size

A large header block (Section 4.3) can cause an inplenentation to
commit a |arge amount of state. Header fields that are critical for
routing can appear toward the end of a header bl ock, which prevents
stream ng of header fields to their ultimte destination. This
ordering and other reasons, such as ensuring cache correctness, neans
that an endpoint m ght need to buffer the entire header block. Since
there is no hard linit to the size of a header bl ock, some endpoints
could be forced to coimmit a |arge anpbunt of available nenory for
header fi el ds.

An endpoi nt can use the SETTI NGS_MAX HEADER LI ST_SI ZE to advi se peers
of limts that m ght apply on the size of header blocks. This
setting is only advisory, so endpoints MAY choose to send header

bl ocks that exceed this limt and risk having the request or response
being treated as nmal fornmed. This setting is specific to a
connection, so any request or response could encounter a hop with a

| ower, unknown limt. An intermediary can attenpt to avoid this
probl em by passing on values presented by different peers, but they
are not obligated to do so

A server that receives a larger header block than it is willing to
handl e can send an HTTP 431 (Request Header Fields Too Large) status
code [RFC6585]. A client can discard responses that it cannot
process. The header block MJUST be processed to ensure a consi stent
connection state, unless the connection is closed.

5.2. CONNECT | ssues

The CONNECT met hod can be used to create disproportionate | oad on an
proxy, since streamcreation is relatively inexpensive when conpared
to the creation and nmi ntenance of a TCP connection. A proxy nmnight

al so mai ntain sonme resources for a TCP connection beyond the closing

Bel she, et al. Expi res August 15, 2015 [Page 71]

Internet-Draft HTTP/ 2 February 2015

10.

10.

of the streamthat carries the CONNECT request, since the outgoing
TCP connection remains in the TIMEWAIT state. A proxy therefore
cannot rely on SETTI NGS_MAX_CONCURRENT_STREAMS alone to limt the
resources consuned by CONNECT requests.

6. Use of Conpression

Conpression can allow an attacker to recover secret data when it is
compressed in the same context as data under attacker control

HTTP/ 2 enabl es conpression of header fields (Section 4.3); the

foll owi ng concerns also apply to the use of HTTP conpressed content-
codi ngs ([RFC7231], Section 3.1.2.1).

There are denonstrabl e attacks on conpression that exploit the
characteristics of the web (e.g., [BREACH]). The attacker induces
mul tiple requests containing varying plaintext, observing the length
of the resulting ciphertext in each, which reveals a shorter |ength
when a guess about the secret is correct.

| mpl enent ati ons conmuni cati ng on a secure channel MJST NOT conpress

content that includes both confidential and attacker-controlled data
unl ess separate conpression dictionaries are used for each source of
data. Conpression MJST NOT be used if the source of data cannot be

reliably determined. GCeneric stream conpression, such as that

provi ded by TLS MJST NOT be used with HTTP/2 (see Section 9.2).

Furt her considerations regarding the conpression of header fields are
described in [COWPRESSI OV .

7. Use of Padding

Padding within HTTP/2 is not intended as a replacenent for genera
pur pose paddi ng, such as m ght be provided by TLS [TLS12]. Redundant
paddi ng coul d even be counterproductive. Correct application can
depend on having specific know edge of the data that is being padded.

To mtigate attacks that rely on conpression, disabling or liniting
conmpression night be preferable to padding as a counterneasure.

Paddi ng can be used to obscure the exact size of frane content, and
is provided to nitigate specific attacks within HTTP. For exanpl e,
attacks where conpressed content includes both attacker-controlled
pl ai ntext and secret data (see for exanple, [BREACH)).

Use of padding can result in less protection than m ght seem

i medi ately obvious. At best, padding only nmakes it nore difficult
for an attacker to infer length information by increasing the nunber
of franes an attacker has to observe. Incorrectly inplenented

Bel she, et al. Expi res August 15, 2015 [Page 72]

Internet-Draft HTTP/ 2 February 2015

10.

11.

paddi ng schenes can be easily defeated. In particular, random zed
padding with a predictable distribution provides very little
protection; simlarly, padding payloads to a fixed size exposes

i nformati on as payl oad sizes cross the fixed size boundary, which
could be possible if an attacker can control plaintext.

I nternediari es SHOULD retain paddi ng for DATA franes, but MAY drop
paddi ng for HEADERS and PUSH PROM SE frames. A valid reason for an
intermedi ary to change the anount of padding of franes is to inprove
the protections that paddi ng provides.

8. Privacy Considerations

Several characteristics of HITP/ 2 provide an observer an opportunity
to correlate actions of a single client or server over tinme. This

i ncludes the value of settings, the nmanner in which flow contro

wi ndows are nmanaged, the way priorities are allocated to streans,
timng of reactions to stinmulus, and handling of any features that
are controlled by settings.

As far as this creates observable differences in behavior, they could
be used as a basis for fingerprinting a specific client, as defined
in Section 1.8 of [HTM.D5].

HTTP/ 2 s preference for using a single TCP connection all ows
correlation of a user’s activity on a site. |If connections are
reused for different origins, this allows tracking across those
ori gins.

Because the PING and SETTINGS franmes solicit i medi ate responses,
they can be used by an endpoint to neasure latency to their peer
This m ght have privacy inplications in certain scenarios.

| ANA Consi der ati ons

A string for identifying HTTP/2 is entered into the "Application
Layer Protocol Negotiation (ALPN) Protocol |Ds" registry established
in [TLS-ALPN].

Thi s docunent establishes a registry for frane types, settings, and
error codes. These new registries are entered into a new "Hypertext
Transfer Protocol (HTTP) 2 Paraneters" section

Thi s docunent registers the "HITP2-Settings" header field for use in
HTTP;, and the 421 (M sdirected Request) status code.

This docunent registers the "PRI" nethod for use in HTTP, to avoid
collisions with the connection preface (Section 3.5).

Bel she, et al. Expi res August 15, 2015 [Page 73]

Internet-Draft HTTP/ 2 February 2015

11.

11.

1. Registration of HITTP/2 Identification Strings

This docunment creates two registrations for the identification of

HTTP/2 in the "Application Layer Protocol Negotiation (ALPN) Protoco

| Ds" registry established in [TLS-ALPN].

The "h2" string identifies HITP/2 when used over TLS

Protocol: HITP/2 over TLS

I dentification Sequence: 0x68 0x32 ("h2")

Speci fication: This docunent

The "h2c" string identifies HITP/ 2 when used over cleartext TCP

Protocol: HTTP/2 over TCP

I dentification Sequence: 0x68 0x32 0x63 ("h2c")

Speci fication: This docunent

2. Frane Type Registry

Thi s docunent establishes a registry for HITP/2 frame type codes

The "HTTP/ 2 Frame Type" registry manages an 8-bit space. The "HITP/2

Frame Type" registry operates under either of the "I ETF Review' or

"I ESG Approval " policies [RFC5226] for val ues between 0x00 and Oxef,

wi th val ues between 0xf0 and Oxff being reserved for experinental

use.

New entries in this registry require the follow ng information

Frame Type: A nane or |abel for the frane type

Code: The 8-bit code assigned to the franme type.

Specification: A reference to a specification that includes a
description of the frane layout, its semantics, and flags that the
frame type uses, including any parts of the frane that are

conditionally present based on the value of flags.

The entries in the following table are registered by this docunent.

Bel she, et al. Expi res August 15, 2015 [Page 74]

Internet-Draft HTTP/ 2 February 2015

I e I +
| Frane Type | Code | Section |
e e e o Homm - - S +
| DATA | OxO | Section 6.1 |
| HEADERS | Ox1 | Section 6.2 |
| PRORITY | Ox2 | Section 6.3
| RST_STREAM | Ox3 | Section 6.4
| SETTI NGS | Ox4 | Section 6.5 |
| PUSH PROMSE | Ox5 | Section 6.6
| PING | Ox6 | Section 6.7
| GOAWAY | Ox7 | Section 6.8 |
| W NDOW UPDATE | Ox8 | Section 6.9
| CONTINUATION | Ox9 | Section 6.10 |
B Fomm - - - B +

11.3. Settings Registry
Thi s docunment establishes a registry for HITP/2 settings. The
"HTTP/ 2 Settings" registry nanages a 16-bit space. The "HITP/ 2
Settings" registry operates under the "Expert Review' policy
[RFC5226] for values in the range from 0x0000 to Oxefff, with val ues
bet ween and Oxf000 and Oxffff being reserved for experinental use.
New regi strations are advised to provide the follow ng infornation:

Nanme: A synbolic name for the setting. Specifying a setting name is
opti onal

Code: The 16-bit code assigned to the setting.
Initial Value: An initial value for the setting.

Speci fication: An optional reference to a specification that
descri bes the use of the setting.

An initial set of setting registrations can be found in
Section 6.5. 2.

e e e e e e e e oo Homm - - e e e o e e e o +
| Nane | Code | Initial Value | Specification
e . . . +
| HEADER TABLE S| ZE | Ox1 | 4096 | Section 6.5.2 |
| ENABLE_PUSH | Ox2 | 1 | Section 6.5.2
| MAX _CONCURRENT_STREAMS | 0x3 | (infinite) | Section 6.5.2
| I'NITI AL_W NDOW SI ZE | Ox4 | 65535 | Section 6.5.2
| MAX_FRAME_SI ZE | Ox5 | 16384 | Section 6.5.2
| MAX HEADER LIST SIZE | 0x6 | (infinite) | Section 6.5.2 |
T Femmans . . +

Bel she, et al. Expi res August 15, 2015 [Page 75]

Internet-Draft HTTP/ 2 February 2015

11.4. Error Code Registry
Thi s docunment establishes a registry for HITP/2 error codes. The
"HTTP/ 2 Error Code" registry manages a 32-bit space. The "HITP/ 2
Error Code" registry operates under the "Expert Review' policy
[RFC5226] .
Regi strations for error codes are required to include a description
of the error code. An expert reviewer is advised to exam ne new
registrations for possible duplication with existing error codes.
Use of existing registrations is to be encouraged, but not nandat ed.
New regi strations are advised to provide the follow ng infornation:

Nane: A name for the error code. Specifying an error code nane is
optional

Code: The 32-bit error code val ue.

Description: A brief description of the error code semantics, |onger
if no detailed specification is provided.

Specification: An optional reference for a specification that
defines the error code.

The entries in the following table are registered by this docunent.

Bel she, et al. Expi res August 15, 2015 [Page 76]

Internet-Draft HTTP/ 2 February 2015

11.

Fom e e e oo [S, oo e e e a oo oo T +
| Nare | Code | Description | Specification |
e e e e e e e e o Homm - - e e e e e e e e e e e o +
| NO_ERROR | 0xO0 | Graceful shutdown | Section 7 [
| PROTOCOL_ERROR | Ox1 | Protocol error | Section 7 |
| | | detected | |
| | NTERNAL_ERROR | Ox2 | Inplenmentation fault | Section 7 [
| FLOW CONTROL_ERROR | 0x3 | Flow control limts | Section 7 |
| | | exceeded | |
| SETTI NGS_TI MEQUT | O0x4 | Settings not | Section 7 [
		acknow edged	
STREAM CLOSED	Ox5	Frame received for	Section 7
		closed stream	
FRAME_SI ZE ERROR	Ox6	Frame size incorrect	Section 7
REFUSED_ STREAM	Ox7	Stream not processed	Section 7
CANCEL	0x8	Stream cancelled	Section 7 [
COWPRESSI ON ERROR	0x9	Conpression state	Section 7
		not updated [[
CONNECT_ERROR	Oxa	TCP connection error	Section 7
		for CONNECT rmet hod	
ENHANCE YOUR CALM	Oxb	Processing capacity	Section 7
[[exceeded [[
	NADEQUATE SECURI TY	Oxc	Negotiated TLS
		parameters not	
[[acceptable		
HTTP_.1 1 REQURED	Oxd	Use HTITP/1.1 for the	Section 7
		request	
Fom e e e e oo oo Homm - - - Fom e e e e oo Fom e e e oo +

5. HITP2-Settings Header Field Registration

This section registers the "HTTP2-Settings" header field in the
Per mmanent Message Header Field Registry [BCP90].

Header field name: HTTP2-Settings

Applicable protocol: http

Status: standard

Aut hor/ Change controller: |ETF

Speci fication docunent(s): Section 3.2.1 of this docunent

Rel ated information: This header field is only used by an HTTP/ 2
client for Upgrade-based negoti ation.

Bel she, et al. Expi res August 15, 2015 [Page 77]

Internet-Draft HTTP/ 2 February 2015

11.

11.

12.

6. PRI Method Registration

This section registers the "PRI" method in the HITP Method Registry
([RFC7231], Section 8.1).

Met hod Nanme: PRI

Safe Yes

| denpotent Yes

Speci fication docunent(s) Section 3.5 of this docunent

Rel ated i nformation: This method is never used by an actual client.
This method will appear to be used when an HTTP/ 1.1 server or
intermedi ary attenpts to parse an HTTP/ 2 connection preface.

7. The 421 (M sdirected Request) HITP Status Code

Thi s docunment registers the 421 (M sdirected Request) HITP Status

code in the Hypertext Transfer Protocol (HTTP) Status Code Registry

([RFC7231], Section 8.2).

Status Code: 421

Short Description: M sdirected Request

Specification: Section 9.1.2 of this docunent

Acknow edgenent s

Thi s docunent includes substantial input fromthe foll ow ng
i ndi vi dual s:

0 Adam Langl ey, Wan-Teh Chang, Jim Morrison, Mark Nottingham Al yssa
W Ik, Costin Manolache, WIliam Chan, Vitaliy Lvin, Joe Chan, Adam
Barth, Ryan Hanilton, Gavin Peters, Kent Al stad, Kevin Lindsay,
Paul Amer, Fan Yang, Jonathan Lei ghton (SPDY contri butors).

0 Gabriel Montenegro and WIly Tarreau (Upgrade nechani sm.

o WIIliam Chan, Salvatore Loreto, Osanma Mazahir, Gabriel Montenegro,
Jitu Padhye, Roberto Peon, Rob Trace (Fl ow control).

o0 Mke Bishop (Extensibility).

o Mark Nottingham Julian Reschke, Janes Snell, Jeff Pinner, M ke
Bi shop, Herve Ruellan (Substantial editorial contributions).

Bel she, et al. Expi res August 15, 2015 [Page 78]

Internet-Draft HTTP/ 2 February 2015

13.

13.

(o]

1.

Kari Hurtta, Tatsuhiro Tsujikawa, Geg WIkins, Poul-Henning Kanp,
Jonat han Thackr ay.

Al exey Mel ni kov was an editor of this docunent during 2013.

A substantial proportion of Martin’s contribution was supported by
M crosoft during his enploynment there.

The Japanese HTTP/ 2 community provided an inval uabl e contri buti on,
i ncluding a nunber of inplenentations, plus nunerous technical and
editorial contributions.

Ref erences

Nor mati ve Ref erences

[COVPRESS| ON|

Ruel l an, H and R Peon, "HPACK - Header Conpression for
HTTP/ 2", draft-ietf-httpbis-header-conpression-11 (work in
progress), February 2015.

[COXI E] Barth, A, "HTTP State Managenent Mechani sni, RFC 6265,

April 2011,

[FIPS186] NI ST, "Digital Signature Standard (DSS)", FIPS PUB 186- 4,

July 2013, <http://dx.doi.org/10.6028/ Nl ST. FI PS. 186- 4>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

Requi renment Level s", BCP 14, RFC 2119, March 1997.

[RFC2818] Rescorla, E., "HITP Over TLS', RFC 2818, May 2000.

[RFC3986] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform

Resource ldentifier (URI): Generic Syntax", STD 66, RFC
3986, January 2005.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data

Encodi ngs", RFC 4648, Cctober 2006.

[RFC5226] Narten, T. and H Alvestrand, "Quidelines for Witing an

| ANA Consi derations Section in RFCs", BCP 26, RFC 5226,
May 2008.

[RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax

Speci fications: ABNF', STD 68, RFC 5234, January 2008.

Bel she, et al. Expi res August 15, 2015 [Page 79]

Internet-Draft HTTP/ 2 February 2015

[RFC7230] Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Message Syntax and Routing", RFC
7230, June 2014.

[RFC7231] Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
June 2014.

[RFC7232] Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Conditional Requests", RFC 7232, June
2014.

[RFC7233] Fielding, R, Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
"Hypertext Transfer Protocol (HTTP/1.1): Range Requests”
RFC 7233, June 2014.

[RFC7234] Fielding, R, Ed., Nottingham M, Ed., and J. Reschke
Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching"
RFC 7234, June 2014.

[RFC7235] Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Authentication", RFC 7235, June 2014.

[TCP] Postel, J., "Transm ssion Control Protocol", STD 7, RFC
793, Septenber 1981

[TLS- ALPN|
Friedl, S., Popov, A, Langley, A, and E Stephan
"Transport Layer Security (TLS) Application-Layer Protoco
Negoti ati on Extension", RFC 7301, July 2014.

[TLS- ECDHE]
Rescorla, E., "TLS Elliptic Curve Cipher Suites with
SHA- 256/ 384 and AES Gal oi s Counter Mdde (GCM ", RFC 5289,
August 2008.

[TLS- EXT] Eastlake, D., "Transport Layer Security (TLS) Extensions:
Extension Definitions", RFC 6066, January 2011.

[TLS12] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

13.2. Informative References
[ALT-SVC] Nottingham M, MManus, P., and J. Reschke, "HITP

Al ternative Services", draft-ietf-httpbis-alt-svc-06 (work
in progress), February 2015.

Bel she, et al. Expi res August 15, 2015 [Page 80]

Internet-Draft HTTP/ 2 February 2015

[BCP90] Klyne, G, Nottingham M, and J. Mgul, "Registration
Procedures for Message Header Fields", BCP 90, RFC 3864,
Sept enber 2004.

[BREACH]| G uck, Y., Harris, N, and A Prado, "BREACH. Reviving the
CRI ME Attack", July 2013, <http://breachattack.conf
resour ces/
BREACHY20- %20SSL, %20gone%20i n%?2030%20seconds. pdf >.

[HTML5] Hi ckson, 1., Berjon, R, Faulkner, S., Leithead, T., Doyle
Navara, E., O Connor, E., and S. Pfeiffer, "HITM.5", WBC
Recomrendati on REC-html 5- 20141028, COctober 2014,
<http: //www. w3. or g/ TR/ 2014/ REC- ht ml 5- 20141028/ >.

Latest version avail able at [5].

[RFC3749] Hol |l enbeck, S., "Transport Layer Security Protocol
Conpr essi on Met hods", RFC 3749, May 2004.

[RFC4492] Bl ake-Wlson, S., Bolyard, N, Gupta, V., Hawk, C., and B.
Moeller, "Elliptic Curve Cryptography (ECC) G pher Suites
for Transport Layer Security (TLS)", RFC 4492, My 2006.

[RFC6585] Nottingham M and R Fielding, "Additional HITP Status
Codes", RFC 6585, April 2012.

[RFC7323] Borman, D., Braden, B., Jacobson, V., and R
Schef f enegger, "TCP Extensions for Hi gh Performance", RFC
7323, Septenber 2014.

[TALKING Huang, L-S., Chen, E., Barth, A, Rescorla, E, and C
Jackson, "Talking to Yourself for Fun and Profit", 2011,
<http://w2spconf.com 2011/ paper s/ websocket . pdf >.

[TLSBCP] Sheffer, Y., Holz, R, and P. Saint-Andre,
"Recommendations for Secure Use of TLS and DTLS", draft-
ietf-uta-tls-bcp-08 (work in progress), Decenber 2014.

13.3. URI's
[1] https://ww.iana.org/assignnent s/ nessage- headers

[2] https://groups.google.conlforum ?frongroups#!topic/spdy-dev/
cf Uef 2gL3i U

[3] https://tools.ietf.org/htm/draft-nontenegro-httpbis-http2-fc-
princi pl es-01

Bel she, et al. Expi res August 15, 2015 [Page 81]

Internet-Draft HTTP/ 2 February 2015

Appendi x A. TLS 1.2 Ci pher Suite Bl ack Li st

An HTTP/ 2 inplenentation MAY treat the negotiation of any of the
foll owi ng ci pher suites with TLS 1.2 as a connection error

(Section 5.4.1) of type | NADEQUATE_SECURI TY: TLS_NULL_W TH_NULL_NULL,
TLS RSA W TH _NULL_MD5, TLS RSA W TH _NULL_SHA,

TLS_RSA EXPORT_W TH_RC4_40_MD5, TLS RSA W TH RC4_ 128 MD5,

TLS RSA W TH_RC4_128 SHA, TLS_RSA EXPORT_W TH_RC2_CBC 40_MND5,

TLS RSA W TH_ | DEA CBC _SHA, TLS RSA EXPORT_W TH _DES40_CBC_SHA,

TLS RSA W TH_DES_CBC_SHA, TLS_RSA W TH_3DES_EDE_CBC_SHA,

TLS DH DSS EXPORT_W TH _DES40_CBC _SHA, TLS _DH DSS W TH_DES_CBC_SHA,
TLS _DH DSS W TH_3DES_EDE _CBC_SHA,

TLS_DH RSA EXPORT W TH DES40_CBC SHA, TLS DH RSA W TH_DES CBC_SHA,
TLS DH _RSA W TH_3DES_EDE_CBC_SHA,

TLS DHE _DSS EXPORT_W TH _DES40_CBC SHA, TLS DHE DSS W TH_DES CBC_SHA,
TLS DHE DSS W TH_3DES_EDE_CBC_SHA,

TLS DHE_RSA EXPORT_W TH_DES40_CBC_SHA, TLS DHE RSA W TH_DES CBC_SHA,
TLS_DHE_RSA W TH 3DES EDE_CBC_SHA,

TLS _DH anon_EXPORT_W TH RC4_40_MD5, TLS DH anon_W TH _RC4_128_ MD5,
TLS DH anon_EXPORT_W TH _DES40_CBC SHA, TLS DH anon_W TH _DES CBC_SHA,
TLS DH anon_W TH _3DES_EDE _CBC _SHA, TLS KRB5_ W TH_DES CBC_SHA,

TLS _KRB5_W TH_3DES _EDE_CBC _SHA, TLS KRB5 W TH_RCA_128_ SHA,

TLS KRB5_W TH_| DEA CBC _SHA, TLS KRB5_W TH_DES_CBC_MD5,

TLS KRB5 W TH 3DES _EDE _CBC MD5, TLS_ KRB5 _WTH RC4_128 MD5,

TLS_KRB5_W TH_| DEA CBC MD5, TLS_KRB5_EXPORT_W TH_DES CBC 40_SHA,
TLS_KRB5_EXPORT W TH_RC2_CBC_40_SHA, TLS KRB5_ EXPORT_W TH_RC4_40_ SHA,
TLS_KRB5_EXPORT_W TH_DES_CBC_40_MD5,

TLS_KRB5_EXPORT_W TH_RC2_CBC_40_MD5, TLS_KRB5_EXPORT_W TH_RCA_40_MD5,
TLS PSK W TH_NULL_SHA, TLS DHE PSK W TH_NULL_SHA,

TLS RSA PSK W TH NULL_SHA, TLS RSA W TH_AES 128 CBC_SHA,

TLS DH DSS W TH _AES 128 CBC SHA, TLS DH RSA W TH_AES 128 CBC_SHA,
TLS _DHE_DSS W TH_AES_128 CBC_SHA, TLS DHE _RSA W TH_AES 128 CBC_SHA,
TLS DH anon_W TH_AES 128 CBC_SHA, TLS _RSA W TH_AES 256_CBC_SHA,

TLS DH DSS W TH_AES 256_CBC_SHA, TLS DH RSA W TH_AES 256 _CBC_SHA,

TLS DHE DSS W TH_AES 256_CBC_SHA, TLS DHE RSA W TH_AES 256_CBC_SHA,
TLS_DH anon_W TH_AES 256_CBC SHA, TLS_RSA W TH_NULL_SHA256,

TLS RSA W TH_AES 128 CBC_SHA256, TLS RSA W TH_AES _256_CBC_SHA256,
TLS DH DSS W TH_AES 128 CBC_SHA256,

TLS DH RSA W TH_AES 128 CBC_SHA256,

TLS DHE _DSS W TH_AES_128_CBC_SHA256,

TLS RSA W TH CAMELLI A 128 CBC_SHA,

TLS DH DSS W TH_CAMELLI A 128 CBC_SHA,

TLS DH RSA W TH _CAVELLI A 128 CBC_SHA,

TLS DHE _DSS W TH_CAMELLI A 128 CBC SHA,

TLS DHE RSA W TH _CAMELLI A 128 CBC_SHA,

TLS _DH anon_W TH_CAMELLI A 128 CBC_SHA,

TLS DHE _RSA W TH_AES_128_CBC_SHA256,

TLS DH DSS W TH_AES 256_CBC_SHA256,

Bel she, et al. Expi res August 15, 2015 [Page 82]

Internet-Draft HTTP/ 2 February 2015

TLS DH RSA W TH_AES 256 CBC_SHA256,

TLS DHE DSS W TH_AES 256 CBC SHA256,

TLS DHE RSA W TH_AES 256 CBC SHA256,

TLS DH anon_W TH_AES 128 CBC _SHA256,

TLS DH anon_W TH_AES 256_CBC_SHA256,

TLS RSA WTH CAMELLI A 256 CBC_SHA,

TLS DH DSS W TH_ CAMELLI A 256 CBC_SHA,

TLS_DH_RSA_W TH_CAIVELLI A_256_CBC_SHA

TLS DHE DSS W TH _CAMELLI A 256 _CBC_SHA,

TLS DHE RSA W TH _CAMELLI A 256 _CBC_SHA,

TLS DH anon_W TH _CAMELLI A 256 _CBC SHA, TLS PSK W TH RC4_ 128 SHA,
TLS PSK W TH 3DES EDE CBC SHA, TLS PSK W TH AES 128 CBC SHA,

TLS PSK W TH_AES 256 _ CBC SHA, TLS DHE PSK W TH RC4 _ 128 SHA,

TLS DHE PSK | WTH 3DES EDE_CBC_SHA, TLS DHE PSK WTH AES 128 CBC_SHA,
TLS DHE PSK W TH_AES 256 CBC SHA, TLS RSA PSK W TH_RC4_128_SHA

TLS RSA PSK W TH 3DES EDE CBC SHA, TLS RSA PSK W TH AES 128 CBC SHA,
TLS RSA PSK W TH_AES 256 CBC SHA, TLS RSA W TH SEED CBC_SHA,

TLS DH DSS W TH SEED CBC SHA, TLS DH RSA W TH _SEED CBC SHA,

TLS DHE DSS W TH_SEED CBC SHA, TLS DHE RSA W TH_SEED CBC_SHA,

TLS DH anon_W TH SEED CBC SHA, TLS RSA W TH AES 128 GCM SHA256,

TLS RSA W TH AES 256 GCM SHA384, TLS DH RSA W TH AES 128 GCM SHA256,
TLS DH RSA W TH AES 256 GCM SHA384,

TLS DH DSS W TH _AES 128 GCM SHA256,

TLS DH DSS W TH AES 256 GCM SHA384,

TLS_DH anon_W TH_AES 128_GCM SHA256,

TLS DH anon_ W TH_AES 256 GCM SHA384, TLS PSK W TH AES 128 GCM SHA256,
TLS PSK W TH AES 256 GCM SHA384, TLS RSA PSK W TH AES 128 GCM SHA256,
TLS RSA PSK W TH_AES 256 GCM SHA384, TLS PSK W TH AES 128 CBC SHA256,
TLS PSK W TH AES 256 CBC SHA384, TLS PSK W TH NULL_SHA256,

TLS PSK W TH NULL SHA384, TLS DHE PSK W TH_AES 128 CBC SHA256,

TLS DHE PSK W TH_. AES 256_CBC_ SHA384, TLS _DHE PSK | WTH NULL_SHA256,
TLS DHE PSK WTH NULL SHA384, TLS RSA PSK | WTH AES 128 CBC SHA256,
TLS RSA PSK W TH_AES_256_CBC_SHA384 TLS RSA PSK W TH_NUL L_SHA256,
TLS RSA PSK W TH _NULL_SHA384, TLS RSA W TH CAMELLI A 128 CBC SHA256,
TLS DH DSS W TH CAMELLI A 128 CBC _SHA256,

TLS DH RSA W TH CAMELLI A 128 CBC SHA256,

TLS DHE DSS W TH_CAMELLI A 128 CBC_SHA256,

TLS DHE RSA W TH CAMELLI A 128 CBC SHA256,

TLS DH anon_ W TH CAMELLI A 128 CBC SHA256,

TLS RSA W TH CAMELLI A 256 CBC_SHA256,

TLS DH DSS W TH CAMELLI A 256 CBC _SHA256,

TLS DH RSA W TH CAMELLI A 256 CBC _SHA256,

TLS DHE DSS W TH_CAMELLI A 256_CBC_SHA256,

TLS DHE RSA W TH CAMELLI A 256 CBC SHA256,

TLS DH anon_ W TH _CAMELLI A 256 CBC _SHA256,

TLS _EMPTY_RENEGOTI ATI ON_I NFO SCSV, TLS ECDH ECDSA W TH NULL_SHA,

TLS ECDH ECDSA W TH RC4_128 SHA,

TLS ECDH ECDSA W TH 3DES _EDE CBC SHA,

Bel she, et al. Expi res August 15, 2015 [Page 83]

Internet-Draft HTTP/ 2 February 2015

TLS_ECDH _ECDSA W TH_AES_ 128 CBC_SHA,
TLS_ECDH_ECDSA W TH_AES 256_CBC_SHA, TLS_ECDHE_ECDSA W TH_NULL_SHA,
TLS_ECDHE_ECDSA W TH_RCA4_128_SHA,

TLS_ECDHE_ECDSA_W TH_3DES_EDE_CBC_SHA,

TLS_ECDHE_ECDSA_W TH_AES 128_CBC_SHA,

TLS_ECDHE_ECDSA W TH_AES 256_CBC SHA, TLS ECDH RSA W TH NULL_SHA,
TLS_ECDH RSA W TH RC4_128 SHA, TLS ECDH RSA W TH_3DES_EDE_CBC_SHA,
TLS_ECDH_RSA W TH_AES_128_CBC SHA, TLS_ECDH_RSA W TH_AES 256_CBC_SHA,
TLS_ECDHE_RSA W TH_NULL_SHA, TLS_ECDHE_RSA W TH_RC4_128 SHA,
TLS_ECDHE_RSA W TH_3DES_EDE_CBC_SHA,

TLS_ECDHE_RSA W TH_AES 128_CBC_SHA,

TLS_ECDHE_RSA W TH_AES_256_CBC _SHA, TLS ECDH anon_W TH NULL_SHA,
TLS_ECDH anon_W TH_RC4_128_SHA, TLS_ECDH anon_W TH_3DES_EDE_CBC_SHA,
TLS_ECDH_anon_W TH_AES_128_CBC_SHA,

TLS_ECDH_anon_W TH_AES_256_CBC_SHA,

TLS_SRP_SHA W TH_3DES_EDE_CBC_SHA,

TLS_SRP_SHA RSA W TH_3DES_EDE_CBC_SHA,

TLS_SRP_SHA DSS W TH_3DES_EDE_CBC_SHA,

TLS_SRP_SHA W TH_AES_128_CBC_SHA,

TLS_SRP_SHA RSA W TH_AES_128_CBC_SHA,

TLS_SRP_SHA _DSS_W TH_AES_128_CBC_SHA,

TLS_SRP_SHA W TH_AES_256_CBC_SHA,

TLS_SRP_SHA RSA W TH_AES 256_CBC_SHA,

TLS_SRP_SHA DSS W TH_AES 256_CBC_SHA,

TLS_ECDHE_ECDSA W TH_AES_128_CBC_SHA256,

TLS_ECDHE_ECDSA_W TH_AES_256_CBC_SHA384,

TLS_ECDH_ECDSA W TH_AES 128 CBC_SHA256,

TLS_ECDH_ECDSA W TH_AES_256_CBC_SHA384,

TLS_ECDHE_RSA W TH_AES 128 _CBC_SHA256,

TLS_ECDHE_RSA W TH_AES_256_CBC_SHA384,

TLS_ECDH RSA W TH_AES 128 _CBC_SHA256,

TLS_ECDH_RSA_ W TH_AES_256_CBC_SHA384,

TLS_ECDH_ECDSA W TH_AES 128 _GCM SHA256,

TLS_ECDH_ECDSA_ W TH_AES_256_GCM SHA384,

TLS_ECDH_RSA W TH_AES_128_GCM SHA256,

TLS_ECDH_RSA W TH_AES_256_GCM SHA384, TLS ECDHE PSK W TH_RCA_ 128 SHA,
TLS_ECDHE_PSK_W TH_3DES_EDE_CBC_SHA,

TLS_ECDHE_PSK_W TH_AES 128 _CBC_SHA,

TLS_ECDHE_PSK_W TH_AES_256_CBC_SHA,

TLS_ECDHE_PSK_W TH_AES_128_CBC_SHA256,

TLS_ECDHE_PSK_W TH_AES_256_CBC_SHA384, TLS_ECDHE_PSK_W TH_NULL_SHA,
TLS_ECDHE_PSK_W TH_NULL_SHA256, TLS ECDHE PSK W TH NULL_SHA384,
TLS_RSA W TH_ARI A 128 _CBC SHA256, TLS_RSA W TH_ARI A 256_CBC_SHA384,
TLS_DH DSS W TH_ARI A 128 _CBC_SHA256,

TLS_DH_DSS_W TH_ARI A_256_CBC_SHA384,

TLS_DH_RSA W TH_ARI A_128_CBC_SHA256,

TLS_DH_RSA W TH_ARI A_256_CBC_SHA384,

TLS DHE DSS W TH ARI A 128 CBC_SHA256,

Bel she, et al. Expi res August 15, 2015 [Page 84]

Internet-Draft HTTP/ 2 February 2015

TLS_DHE_DSS_W TH_ARI A_256_CBC_SHA384,
TLS_DHE_RSA W TH_ARI A_128_CBC_SHA256,
TLS_DHE_RSA W TH_ARI A_256_CBC_SHA384,
TLS_DH_anon_W TH_ARI A_128_CBC_SHA256,
TLS_DH_anon_W TH_ARI A_256_CBC_SHA384,
TLS_ECDHE_ECDSA W TH_ARI A_128_CBC_SHA256,
TLS_ECDHE_ECDSA W TH_ARI A_256_CBC_SHA384,
TLS_ECDH_ECDSA W TH_ARI A _128_CBC_SHA256,
TLS_ECDH_ECDSA_ W TH_ARI A_256_CBC_SHA384,
TLS_ECDHE_RSA W TH_ARI A 128 _CBC_SHA256,
TLS_ECDHE_RSA W TH_ARI A_256_CBC_SHA384,
TLS_ECDH_RSA W TH_ARI A 128 _CBC_SHA256,
TLS_ECDH_RSA_W TH_ARI A_256_CBC_SHA384,
TLS_RSA W TH_ARI A_128_GCM SHA256, TLS _RSA W TH_ARI A 256_GCM SHA384,
TLS_DH_RSA W TH_ARI A_128_GCM SHA256,
TLS_DH_RSA W TH_ARI A_256_GCM SHA384,
TLS_DH_DSS_W TH_ARI A_128_GCM SHA256,
TLS_DH_DSS_W TH_ARI A_256_GCM SHA384,
TLS_DH_anon_W TH_ARI A_128_GCM SHA256,
TLS_DH_anon_W TH_ARI A_256_GCM _SHA384,
TLS_ECDH_ECDSA W TH_ARI A _128_GCM SHA256,
TLS_ECDH_ECDSA W TH_ARI A_256_GCM_SHA384,
TLS_ECDH_RSA W TH_ARI A_128_GCM SHA256,
TLS_ECDH_RSA W TH_ARI A_256_GCM SHA384,
TLS_PSK W TH_ARI A_128_CBC SHA256, TLS_PSK W TH_ARI A _256_CBC_SHA384,
TLS_DHE_PSK W TH_ARI A_128_CBC_SHA256,
TLS_DHE_PSK_W TH_ARI A_256_CBC_SHA384,
TLS_RSA_PSK_W TH_ARI A_128_CBC_SHA256,
TLS_RSA_PSK_W TH_ARI A_256_CBC_SHA384,
TLS_PSK_W TH ARl A_128_GCM SHA256, TLS PSK_W TH_ARI A 256_GCM SHA384,
TLS_RSA _PSK_W TH_ARI A_128_GCM SHA256,
TLS_RSA_PSK_W TH_ARI A_256_GCM _SHA384,
TLS_ECDHE_PSK_W TH_ARI A_128_CBC_SHA256,
TLS_ECDHE_PSK_W TH_ARI A_256_CBC_SHA384,
TLS_ECDHE_ECDSA W TH_CAVELLI A_128_CBC_SHA256,
TLS_ECDHE_ECDSA W TH_CAMELLI A_256_CBC_SHA384,
TLS_ECDH ECDSA W TH_CAMELLI A 128 _CBC_SHA256,
TLS_ECDH_ECDSA_ W TH_CAVELLI A_256_CBC_SHA384,
TLS_ECDHE_RSA W TH_CAMELLI A _128_CBC_SHA256,
TLS_ECDHE_RSA W TH_CAMELLI A_256_CBC_SHA384,
TLS_ECDH_RSA W TH_CAMELLI A _128_CBC_SHA256,
TLS_ECDH_RSA W TH_CAMELLI A_256_CBC_SHA384,
TLS_RSA W TH_CAVELLI A 128 GCM SHA256,
TLS_RSA_W TH_CAMELLI A_256_GCM _SHA384,
TLS_DH_RSA W TH_CAMELLI A 128 _GCM SHA256,
TLS_DH_RSA W TH_CAMELLI A_256_GCM_SHA384,
TLS_DH_DSS_W TH_CAMELLI A_128_GCM_SHA256,
TLS_DH_DSS_W TH_CAMELLI A_256_GCM SHA384,

Bel she, et al. Expi res August 15, 2015 [Page 85]

Internet-Draft HTTP/ 2 February 2015

TLS_DH_anon_W TH_CAVELLI A 128 GCM SHA256,
TLS_DH_anon_W TH_CAMELLI A_256_GCM_SHA384,
TLS_ECDH_ECDSA W TH_CAVELLI A 128 GCM SHA256,
TLS_ECDH_ECDSA_ W TH_CAVELLI A_256_GCM _SHA384,
TLS_ECDH_RSA W TH_CAMELLI A_128_GCM SHA256,
TLS_ECDH_RSA W TH_CAMELLI A_256_GCM_SHA384,

TLS_PSK W TH_CAMVELLI A 128 GCM SHA256,

TLS_PSK_W TH_CAMELLI A_256_GCM _SHA384,

TLS_RSA_PSK_W TH_CAMELLI A_128_GCM_SHA256,
TLS_RSA_PSK_W TH_CAMELLI A_256_GCM_SHA384,

TLS_PSK_W TH_CAMELLI A_128_CBC_SHA256,

TLS_PSK_W TH_CAMELLI A_256_CBC_SHA384,

TLS_DHE_PSK W TH_CAMELLI A_128_CBC_SHA256,
TLS_DHE_PSK_W TH_CAMELLI A_256_CBC_SHA384,
TLS_RSA_PSK_W TH_CAMELLI A_128_CBC_SHA256,
TLS_RSA_PSK_W TH_CAMELLI A_256_CBC_SHA384,
TLS_ECDHE_PSK_W TH_CAMELLI A 128_CBC_SHA256,
TLS_ECDHE_PSK_W TH_CAMELLI A_256_CBC_SHA384, TLS RSA W TH_AES 128 _CCM
TLS_RSA W TH_AES 256_CCM TLS_RSA W TH_AES 128 _CCM 8,
TLS_RSA_ W TH_AES_256_CCM 8, TLS_PSK W TH_AES 128 CCM
TLS_PSK_W TH_AES_256_CCM TLS_PSK_W TH_AES_128_CCM 8,
TLS_PSK_W TH_AES_256_CCM 8.

Note: This list was assenbled fromthe set of registered TLS cipher
suites at the tinme of witing. This list includes those cipher
suites that do not offer an epheneral key exchange and those that
are based on the TLS null, streamor block cipher type (as defined
in Section 6.2.3 of [TLS12]). Additional cipher suites with these
properties could be defined; these would not be explicitly
pr ohi bi t ed.

Appendi x B. Change Log

This section is to be renoved by RFC Editor before publication
B.1. Since draft-ietf-httpbis-http2-15

Enabl ed the sending of PRRORITY for any stream state.

Added a ci pher suite blacklist and nmade several changes to the TLS
usage section.

B.2. Since draft-ietf-httpbis-http2-14
Renanmed Not Authoritative status code to M sdirected Request.

Added HTTP_1 1 REQUI RED error code

Bel she, et al. Expi res August 15, 2015 [Page 86]

Internet-Draft HTTP/ 2 February 2015

B.3. Since draft-ietf-httpbis-http2-13

Pseudo- header fields are now required to appear strictly before
regul ar ones.

Restored 1xx series status codes, except 101.

Changed franme length field 24-bits. Expanded frane header to 9
octets. Added a setting to limt the damage.

Added a setting to advise peers of header set size linits.

Renoved segnents.

Made non-semanti c-beari ng HEADERS franmes illegal in the HITP mappi ng.
B.4. Since draft-ietf-httpbis-http2-12

Restored extensibility options.

Restricting TLS cipher suites to AEAD only.

Renovi ng Cont ent - Encodi ng requi renents.

Permitting the use of PRRORITY after stream cl ose.

Renmoved ALTSVC frane.

Renoved BLOCKED frane.

Reduci ng t he maxi mum paddi ng size to 256 octets; renoving paddi ng
from CONTI NUATI ON franes.

Renoved per-franme GZI P conpression.
B.5. Since draft-ietf-httpbis-http2-11

Added BLOCKED frame (at risk).

Sinplified priority schene.

Added DATA per-frame GZI P conpression.
B.6. Since draft-ietf-httpbis-http2-10

Changed "connection header" to "connection preface" to avoid
conf usi on.

Bel she, et al. Expi res August 15, 2015 [Page 87]

Internet-Draft HTTP/ 2 February 2015

Added dependency-based streamprioritization

Added "h2c" identifier to distinguish between cleartext and secured

HTTP/ 2.

Addi ng mi ssing paddi ng to PUSH PROM SE

Integrate ALTSVC frame and supporting text.

Dr oppi ng

requi renent on "deflate" Content-Encoding.

I nproving security considerations around use of conpression

B.7. Since

draft-ietf-httpbis-http2-09

Addi ng padding for data franes.

Renunbering frane types, error codes, and settings.

Addi ng | NADEQUATE_SECURI TY error code

Updati ng
Renovi ng
Changi ng
Renovi ng
Changi ng

Changi ng
userinfo

Al'l owi ng
Reserved

B.8. Since

TLS usage requirenments to 1.2; forbidding TLS conpression
extensibility for frames and settings.

setting identifier size.

the ability to disable flow control

the protocol identification token to "h2"

the use of :authority to make it optional and to all ow
in non-HTTP cases.

split on 0x0 for Cookie.
PRI method in HITP/1.1 to avoid possible future collisions.

draft-ietf-httpbis-http2-08

Added cookie crunbling for nore efficient header conpression

Added header field ordering with the val ue-concatenati on mechani sm

Bel she, et al. Expi res August 15, 2015 [Page 88]

Internet-Draft HTTP/ 2 February 2015

B.9. Since draft-ietf-httpbis-http2-07
Marked draft for inplenmentation.

B.10. Since draft-ietf-httpbis-http2-06
Addi ng definition for CONNECT net hod.

Constraining the use of push to safe, cacheable methods with no
request body.

Changing from:host to :authority to renmove any potential confusion
Addi ng setting for header conpression table size.
Addi ng settings acknow edgenent.

Renovi ng unnecessary and potentially problematic flags from
CONTI NUATI ON

Added deni al of service considerations.
B.11. Since draft-ietf-httpbis-http2-05
Marking the draft ready for inplenentation.
Renunberi ng END PUSH PROM SE f 1 ag.
Editorial clarifications and changes.
B.12. Since draft-ietf-httpbis-http2-04
Added CONTI NUATI ON frame for HEADERS and PUSH PROM SE

PUSH PROM SE is no longer inplicitly prohibited if
SETTI NGS_MAX_ CONCURRENT_STREAMS is zero.

Push expanded to allow all safe nmethods w thout a request body.

Clarified the use of HTTP header fields in requests and responses.
Prohi bited HTTP/ 1.1 hop-by-hop header fields.

Requiring that internediaries not forward requests with m ssing or
illegal routing :-headers.

Clarified requirenents around handling different frames after stream
cl ose, streamreset and GOAVAY

Bel she, et al. Expi res August 15, 2015 [Page 89]

Internet-Draft HTTP/ 2 February 2015

Added nore specific prohibitions for sending of different frame types
in various stream states.

Maki ng the | ast received setting value the effective val ue.
Clarified requirenments on TLS version, extension and ciphers.
B.13. Since draft-ietf-httpbis-http2-03
Conmitted major restructuring atrocities.
Added reference to first header conpression draft.
Added nore formal description of frame |ifecycle.
Moved END STREAM (renaned from FI NAL) back to HEADERS/ DATA.
Renoved HEADERS+PRI ORI TY, added optional priority to HEADERS frane.
Added PRIORITY frane.
B.14. Since draft-ietf-httpbis-http2-02
Added continuations to frames carrying header bl ocks.

Repl aced use of "session"™ with "connection" to avoid confusion wth
other HTTP stateful concepts, |ike cookies.

Renoved "nessage"
Switched to TLS ALPN from NPN
Editori al changes.

B.15. Since draft-ietf-httpbis-http2-01

Added | ANA consi derations section for frame types, error codes and
settings.

Renoved data frane conpression

Added PUSH PROM SE.

Added gl obally applicable flags to fram ng.
Renoved zli b-based header conpression nmechani sm

Updat ed ref erences.

Bel she, et al. Expi res August 15, 2015 [Page 90]

Internet-Draft HTTP/ 2 February 2015

Clarified streamidentifier reuse.

Renoved CREDENTI ALS frame and associ at ed nechani sns.
Added advi ce agai nst naive inplenentation of flow control
Added session header section.

Restructured franme header. Renoved distinction between data and
control franes.

Altered flow control properties to include session-level linits.

Added note on cacheability of pushed resources and nultiple tenant
servers.

Changed protocol |abel form based on di scussions.
B.16. Since draft-ietf-httpbis-http2-00
Changed title throughout.
Renoved section on Inconpatibilities with SPDY draft#2.
Changed | NTERNAL_ERROR on GOAWAY to have a value of 2 [6].
Repl aced abstract and introduction.
Added section on starting HTTP/ 2.0, including upgrade nechani sm
Renmoved unused references.
Added flow control principles (Section 5.2.1) based on [7].
B.17. Since draft-nbel she-htt pbi s-spdy-00
Adopted as base for draft-ietf-httpbis-http2
Updat ed authors/editors |ist.
Added status note.
Aut hors’ Addresses

M ke Bel she
Twi st

EMai | : nbel she@hrom um org

Bel she, et al. Expi res August 15, 2015 [Page 91]

Internet-Draft HTTP/ 2 February 2015
Robert o Peon
Googl e, Inc
EMai | : feni x@oogl e.com
Martin Thonson (editor)
Mozill a
331 E Evelyn Street
Mountain View, CA 94041
us

EMai | : martin.thomson@nuail.com

Bel she, et al. Expi res August 15, 2015 [Page 92]

