NETMOD L. Lhotka
I nternet-Draft CZ.NC
I ntended status: Standards Track April 21, 2014
Expi res: Cctober 23, 2014

JSON Encodi ng of Data Moddel ed with YANG
draft-ietf-netnod-yang-json-00

Abst r act

Thi s docunment defines rules for representing configuration and state
data defined using YANG as JSON text. |t does so by specifying a
procedure for translating the subset of YANG conpati ble XM. docunents
to JSON text, and vice versa. A JSON encoding of XML attributes is
al so defined so as to allow for including nmetadata in JSON docunents.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute

wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on October 23, 2014.
Copyright Notice

Copyright (c) 2014 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Lhot ka Expi res Cctober 23, 2014 [Page 1]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

Tabl e of Contents

1. Introduction - 2
2. Term nol ogy and hbtatron . . 4
3. Specification of the Translatlon Procedure 5
3.1. Nanes and Nanmespaces . . 6
3.2. Mapping XM. El enments to JSCN ijects 8
3.2.1. The "leaf" Data Node . . 8
3.2.2. The "container" Data Node . 8
3.2.3. The "leaf-list" Data Node . 9
3.2.4. The "list" Data Node 9
3.2.5. The "anyxnl" Data Node . . . e e 10
3.3. Mappi ng YANG Dat at ypes to JSON values e A
3.3.1. Numeric Datatypes 11
3.3.2. The "string" Type 11
3.3.3. The "boolean" Type 1
3.3.4. The "enuneration" Type 11
3.3.5. The "bits" Type 12
3.3.6. The "binary" Type 12
3.3.7. The "leafref" Type 12
3.3.8. The "identityref" Type 12
3.3.9. The' ‘enpty” Typeo 12
3.3.10. The "uni on" Type . . <
3.3.11. The "instance- |dent|f|er Type 13

4. Encoding Metadata in JSON. 14
5. 1ANA Considerations 16
6. Security Considerations 16
7. Acknowledgrments1
8. References . . . N Y 4
8.1. Nornmtive References e v
8.2. Informative References 17
Appendi x A. A Conpl ete Exanple T
Author’s Address . . . C e e e e e s .20

1. Introduction

The aimof this document is define rules for representing
configuration and state data defined using the YANG data nodel i ng
| anguage [RFC6020] as JavaScript Object Notation (JSON)

text [RFC7159]. The result can be potentially applied in two

di fferent ways:

1. JSON may be used instead of the standard XML [XM.] encoding in
the context of the NETCONF protocol [RFC6241] and/or with
exi sting data nodels expressed in YANG An exanple application
is the RESTCONF Protocol [RESTCONF].

Lhot ka Expi res Cctober 23, 2014 [Page 2]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

2. O her docurents that choose JSON to represent structured data can
use YANG for defining the data nodel, i.e., both syntactic and
semantic constraints that the data have to satisfy.

JSON mapping rules could be specified in a sinilar way as the XM
mappi ng rules in [RFC6020]. This woul d however require solving
several problens. To begin with, YANG uses XPath [XPath] quite
extensively, but XPath is not defined for JSON and such a definition
woul d be far from straightforward.

In order to avoid these technical difficulties, this docunent enploys
an alternative approach: it defines a relatively sinple procedure
which allows for translating the subset of XML that can be nodel ed
using YANG to JSON, and vice versa. Consequently, validation of a
JSON text against a data nodel can done by translating the JSON text
to XM, which is then validated according to the rules stated in

[RFC6020] .

The transl ation procedure is adapted to YANG specifics and
requi renents, namely:

1. The translation is driven by a concrete YANG data nodel and uses
i nformati on about data types to achieve better results than
generic XM.-JSON transl ation procedures.

2. Various docunment types are supported, nanely configuration data,
configuration + state data, RPC input and output paraneters, and
notifications.

3. XM nanespaces specified in the data nodel are napped to
nanespaces of JSON objects. However, explicit nanespace
identifiers are rarely needed in JSON text.

4. Section 4 defines JSON encoding of XM. attributes. Although XM
attributes cannot be nodeled with YANG they are often used for
attaching netadata to el ements, and a standard JSON encoding is
t her ef ore needed.

5. Translation of XML m xed content, conmments and processing
instructions is outside the scope of this docunent.

Item 1 above al so neans that, depending on the data nodel, the sane
XM. el enment can be translated to different JSON objects. For
exanpl e,

<f 00>123</ f 00>

is translated to

Lhot ka Expi res Cctober 23, 2014 [Page 3]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

"foo": 123

if the "foo" node is defined as a leaf with the "uint8" datatype, or
to

"foo": ["123"]

if the "foo" node is defined as a leaf-list with the "string"
dat atype, and the <foo> el enent has no siblings of the same nane.

2. Term nol ogy and Notation
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].
The following terns are defined in [RFC6020]:
o anyxm
0 augnent
0 container
0 data node
o data tree
0 datatype
o feature
o identity
0 instance identifier
o |eaf
o leaf-list
o list
o nodul e

o subnodul e

The following terns are defined in [XMLNS]:

Lhot ka Expi res Cctober 23, 2014 [Page 4]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

3.

o local name
o prefixed nane
o qualified name
Speci fication of the Translation Procedure

The transl ation procedure defines a 1-1 correspondence between the
subset of YANG conpatible XM. docunments and JSON text. This neans
that the translation can be applied in both directions and it is
al ways invertible.

The transl ation procedure is applicable only to data hierarchies that
are nodel |l ed by a YANG data nodel. An input XM. docunent MAY contain
encl osing el enents representing NETCONF "QOperations" and "Messages"

| ayers. However, these enclosing elenents do not appear in the
resulting JSON docunent.

Any YANG conpati bl e XML docunent can be transl ated, except docunents
with mxed content. This is only a minor limtation since m xed
content is marginal in YANG - it is allowed only in anyxml data
nodes.

The followi ng sections specify rules mainly for translating XM
docunents to JSON text. Rules for the inverse translation are stated
only where necessary, otherw se they can be easily inferred.

REQUI RED paraneters of the translation procedure are:

0 YANG data nodel consisting of a set of YANG nodul es,

o type of the input docunent,

o optional features (defined via the "feature" statenent) that are
consi dered active

The permi ssible types of input docunents are listed in Table 1
together with the corresponding part of the data nodel that is used
for the translation.

Lhot ka Expi res Cctober 23, 2014 [Page 5]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

| Document Type | Data Mbdel Section |

configuration and state data mai n data tree

configuration mai n data tree ("config true")

RPC out put paraneters "out put" data nodes under "rpc"

"notification" data nodes

I
I
I
I
| RPC input parameters
I
I
I
| notification

I
I
I
I
"input" data nodes under "rpc"
I
I
I
I

Tabl e 1: YANG Docunent Types

When translating XML to JSON, the type of the input document can
often be determined formthe encapsul ati ng el enents bel onging to the
"Operations" or "Messages" |ayer as defined by the NETCONF protoco
(see Sec. 1.2 in [RFC6241]).

A particul ar application MAY decide to support only a subset of
docunent types from Table 1.

XML docunents can be translated to JSON text only if they are valid
i nstances of the YANG data nodel and sel ected document type, also
taking into account the active features, if there are any.

The resulting JSON docunent is always a single object ([RFC7159],
Sec. 4) whose nmenbers are translated fromthe original XM. docunent
using the rules specified in the foll owi ng sections.

3.1. Nanes and Nanespaces

The | ocal part of a JSON nane is always identical to the |ocal nane
of the correspondi ng XM. el enent .

Each JSON nane lives in a nanmespace which is uniquely identified by
the nane of the YANG nodul e where the correspondi ng data node is
defined. |If the data node is defined in a subnodule, then the
nanespace identifier is the nane of the nmain nodule to which the
subnodul e bel ongs. The translation procedure MJST correctly map YANG
nanespace URI's to YANG nodul e names and vice versa

The nanespace SHALL be expressed in JSON text by prefixing the |oca
nane in the followi ng way:

Lhot ka Expi res Cctober 23, 2014 [Page 6]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

<nmodul e nanme>: <l ocal nane>
Figure 1: Encodi ng a nanespace identifier with a | ocal nane.

The nanespace identifier MJST be used for |ocal nanes that are

anbi guous, i.e., whenever the data nodel permits a sibling data node
with the same local name. O herw se, the namespace identifier is
OPTI ONAL.

For exanpl e, consider the followi ng YANG nodul e:

nmodul e foonod {
nanespace "http://exanpl e. conl f oonod";
prefix "fni;
contai ner foo {
| eaf bar {
type bool ean;

}

If the data nodel consists only of this nodule, then the following is
a valid JSON docunent:

"foo": {
"bar": true
}
}

Now, assume the container "foo" is augmented from anot her nodul e:

nmodul e barnod {
nanespace "http://exanpl e. com bar nod";
prefix "bni;
i mport foonod {
prefix fm

augrment "/fmfoo" {

| eaf bar {
type uint8;
}

}

In the data nodel conbining "foonod" and "barnod", we have two
sibling data nodes with the sane | ocal name, nanely "bar". In this

Lhot ka Expi res Cctober 23, 2014 [Page 7]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

case, a valid JSON docunent has to specify an explicit namespace
identifier (nodule name) for both | eaves:

"foo": {
"foonod: bar": true,
"barnod: bar": 123

}
}

3.2. Mapping XM. El enents to JSON Obj ects
An XML elenment that is nodelled as a YANG data node is translated to
a nane/val ue pair where the nane is formed fromthe nane of the XM
el ement using the rules in Section 3.1. The val ue depends on the
type of the data node as specified in the follow ng sections.
3.2.1. The "leaf" Data Node
An XM_ el erment that is nodeled as YANG |l eaf is translated to a nane/
val ue pair and the type of the value is derived fromthe YANG
datatype of the leaf (see Section 3.3 for the datatype mapping
rul es).
Exanpl e: For the |l eaf node definition
| eaf foo {
type uint8;
the XM el enent
<f 00>123</ f 00>
corresponds to the JSON nane/val ue pair
"foo": 123
3.2.2. The "container" Data Node

An XML el enent that is npdel ed as YANG container is translated to a
name/ obj ect pair.

Exanpl e: For the container definition

Lhot ka Expi res Cctober 23, 2014 [Page 8]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

cont ai ner bar {
| eaf foo {
type uint8;

}
the XM el enent
<bar >

<f 00>123</ f 00>
</ bar >

corresponds to the JSON nane/val ue pair
"bar": {
"foo": 123
}

3.2.3. The "leaf-list" Data Node

A sequence of one or nore sibling XML elenents with the sane
qualified nanme that is nodeled as YANG leaf-list is translated to a
nane/array pair, and the array elenments are prinitive val ues whose
type depends on the datatype of the leaf-list (see Section 3.3).
Exanpl e: For the leaf-list definition

leaf-list foo {

type uint8;

the XML el enents

<f 00>123</ f 00>
<f 00>0</ f 00

correspond to the JSON nane/val ue pair
"foo": [123, O]

3.2.4. The "list" Data Node
A sequence of one or nore sibling XM. el enents with the same
qualified name that is nmodeled as YANG list is translated to a nane/
array pair, and the array el enments are JSON objects.

Unli ke the XML encodi ng, where the |list keys are required to cone
before any other siblings, and in the order specified by the data

Lhot ka Expi res Cctober 23, 2014 [Page 9]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

3.

nodel, the order of menbers within a JSON list entry is arbitrary,
because JSON objects are fundanmental ly unordered collections of
nmenbers.

Exanpl e: For the list definition

list bar {
key foo;
| eaf foo {
type uint8;

| eaf baz {
type string;

}

the XML el enents

<bar >
<f 00>123</ f 00>
<baz>zi g</ baz>
</ bar >
<bar >
<f 00>0</ f 00>
<baz>zag</ baz>
</ bar >

correspond to the JSON nane/val ue pair

"bar": [
{
"foo": 123,
"baz": "zig"
b
{
"foo": O,
"baz": "zag"
}

2.5. The "anyxnl" Data Node

An XM_ el enment that is nodel ed as a YANG anyxml data node is
translated to a name/object pair. The content of such an elenment is
not nodelled by YANG and there may not be a straightforward mapping
to JSON text (e.g., if it is a mxed XM. content). Therefore

transl ation of anyxml contents is necessarily application-specific
and outside the scope of this docunent.

Lhot ka Expi res Cctober 23, 2014 [Page 10]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

Exanpl e: For the anyxm definition
anyxm bar;
the XM. el enent

<bar >
<p xm ns="http://ww. w3. org/ 1999/ xhtm ">
This is <enpvery</ent cool
</ p>
</ bar >

may be translated to the foll owi ng JSON name/val ue pair:
"bar": {

" "This is *very* cool ."

}

p
}

3.3. Mappi ng YANG Dat at ypes to JSON Val ues

3.3.1. Numeric Datatypes
A val ue of one of the YANG nuneric datatypes ("int8", "intl16"
"int32", "int64", "uint8", "uintl16", "uint32", "uint64" and
"decimal 64") is mapped to a JSON nunber using the sanme |exica
representation.

3.3.2. The "string" Type

A "string" value is mapped to an identical JSON string, subject to
JSON encodi ng rul es.

3.3.3. The "bool ean" Type

A "bool ean" value is mapped to the corresponding JSON value 'true’ or
"fal se’.

3.3.4. The "enuneration" Type

An "enuneration" value is mapped in the sane way as a string except
that the pernmitted values are defined by "enuni statenents in YANG

Lhot ka Expi res Cctober 23, 2014 [Page 11]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

3.3.5. The "bits" Type
A "bits" value is mapped to a string identical to the |exica
representation of this value in XM., i.e., space-separated nanes
representing the individual bit values that are set.

3.3.6. The "binary" Type
A "binary" value is mapped to a JSON string identical to the |exica
representation of this value in XM., i.e., base64-encoded binary
dat a.

3.3.7. The "leafref" Type

A "leafref"” value is mapped according to the sane rules as the type
of the | eaf being referred to.

3.3.8. The "identityref" Type

An "identityref" value is mapped to a string representing the

qualified name of the identity. Its nanmespace MAY be expressed as
shown in Figure 1. |If the nanespace part is not present, the
nanespace of the nane of the JSON object containing the value is
assuned.

3.3.9. The "enpty" Type

An "enpty" value is mapped to '[null]’, i.e., an array with the
"null’ value being its only el enent.
Thi s encodi ng was chosen instead of using sinply "null’ in order to

facilitate the use of enpty leafs in comon progranm ng | anguages.
When used in a bool ean context, the "[null]’ value, unlike "null’,
eval uates to 'true’
Exanpl e: For the leaf definition

| eaf foo {

type enpty;

the XM el enent

<f oo/ >

corresponds to the JSON nane/val ue pair

"foo": [null]

Lhot ka Expi res Cctober 23, 2014 [Page 12]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

3.3.10. The "union" Type

YANG "uni on" type represents a choice anong nmultiple alternative
types. The actual type of the XM. val ue MJUST be determ ned using the
procedure specified in Sec. 9.12 of [RFC6020] and the napping rul es
for that type are used

For exanple, consider the followi ng YANG definition

leaf-list bar {
type union {
type uint 16;
type string;

}

The sequence of three XM el enents

<bar >6378</ bar >
<bar >14. 5</ bar >
<bar >i nfi ni ty</ bar>

will then be translated to this nanme/array pair:
"bar": [6378, "14.5", "infinity"]
3.3.11. The "instance-identifier" Type

An "instance-identifier" value is a string representing a sinplified
XPat h specification. It is mapped to an anal ogical JSON string in
whi ch all occurrences of XM. nanmespace prefixes are either renoved or
replaced with the correspondi ng nodul e nane according to the rul es of
Section 3. 1.

When translating such a value fromJSON to XM., all conponents of the
i nstance-identifier MJUST be given appropriate XM. nanespace prefixes.
It is RECOWENDED that these prefixes be those defined via the
"prefix" statenent in the correspondi ng YANG nodul es.

For exanple, assune "ex" is the prefix defined for the "exanple"
nmodul e. Then the XM.-encoded instance identifier

[ex: systeni ex: user[ex: nane='fred']
corresponds to the foll owi ng JSO\N-encoded instance identifier

[exanpl e: syst enf exanpl e: user [exanpl e: name="fred’]

Lhot ka Expi res Cctober 23, 2014 [Page 13]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

or sinply
/ systenfuser[nanme="fred’]

if the local nanes of the data nodes "systent, "user" and "nane" are
unanbi guous.

4. Encoding Metadata in JSON

By design, YANG does not allow for nodeling XML attributes. However,
attributes are often used in XM instance docunents for attaching
various types of metadata information to elenents. It is therefore
desirable to have a standard way for representing attributes in JSON
docunents as wel |

The netadata encoding defined in the rest of this section satisfies
the following two inportant requirenents:

1. There has to be a way for adding netadata to instances of al
types of YANG data nodes, i.e., leafs, containers, list and |eaf-
list entries, and anyxm nodes.

2. The encodi ng of YANG data node instances as defined in the
previous sections nust not change.

Exi sting proposals for netadata encoding in JSON, such as
[JSON- META], are oriented on rather specific uses of netadata, and
fall short with respect to the first requirenent.

Al'l attributes assigned to an XM. el enent are mapped in JSON to
menbers (nane/val ue pairs) of a single object, henceforth denoted as
the metadata object. The placenent of this object depends on the
type of the elenment from YANG vi ewpoint, as specified in the
fol | owi ng paragr aphs.

For an XM. elenment that is translated to a JSON object (i.e., a
cont ai ner, anyxm node and list entry), the netadata object is added
as a new nenber of that object with the name "@.

Exanpl es:

o |If "cask" is a container or anyxml node, the XM. instance with
attributes

<cask foo="a" bar="b">

</ cask>

Lhot ka Expi res Cctober 23, 2014 [Page 14]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

is mapped to the foll owing JSON object:

"cask": {

"@: {
"foo": "a",
"pbar": "b"

}

}

o If "seq" is alist, then the pair of XM el enents

<seq foo="a">
<nane>one</ nane>

</ seq>

<seq bar="b">
<nane>t wo</ nanme>

</ seq>

s mapped to the followi ng JSON array:

"seq": [
ll@:
"foo": "a"
ane": "one
b
{
@ {
"bar": "b"
I
"nane": "two"
}

]

In order to assign attributes to a leaf instance, a sibling nane/
val ue pair is added, where the name is the synbol "@ concatenated
with the identifier of the |eaf.
For exanple, the el enent

<flag foo="a" bar="b">true</foo>

is mapped to the followi ng two nane/val ue pairs:

Lhot ka Expi res Cctober 23, 2014 [Page 15]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

"flag": true,

"@lag": {
"foo": "a",
"bar": "b"

}

Finally, for a leaf-list instance, which is represented as a JSON
array with primtive values, attributes nmay be assigned to one or
nmore entries by adding a sibling nanme/value pair, where the nane is
the synbol "@ concatenated with the identifier of the leaf-list, and
the value is a JSON array whose i-th elenent is the netadata object
with attributes assigned to the i-th entry of the leaf-list, or ni

if the i-th entry has no attributes.

Trailing nil values in the array, i.e., those following the |ast non-
nil netadata object, MAY be omtted.

For exanple, a leaf-list instance with four entries
<folio>6</folio>
<folio foo="a">3</folio>
<folio bar="b">7</folio>
<folio>8</folio>

is mapped to the followi ng two nane/val ue pairs:

"folio": [6, 3, 7, 8],

"@olio": [nil, {"foo": "a"}, {"bar": "b"}]
The encoding of attributes as specified above has the follow ng two
linmtations:

o Mapping of namespaces of XM attributes is undefined.

0 Attribute values can only be strings, other data types are not
support ed.

5. | ANA Consi derations
TBD - register application/yang. data+json nedia type?
6. Security Considerations

TBD.

Lhot ka Expi res Cctober 23, 2014 [Page 16]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

7. Acknow edgrents

The aut hor wi shes to thank Andy Bi erman, Martin Bjorklund and Phil
Shafer for their hel pful comments and suggesti ons.

8. References
8. 1. Nor mat i ve Ref erences

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Levels", BCP 14, RFC 2119, March 1997.

[RFC6020] Bjorklund, M, Ed., "YANG - A Data Mdeling Language for
Net wor k Configuration Protocol (NETCONF)", RFC 6020,
Sept enber 2010.

[RFC6241] Enns, R, Bjorklund, M, Schoenwael der, J., and A
Bi erman, "NETCONF Configuration Protocol", RFC 6241, June
2011.

[RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
I nterchange Format", RFC 7159, March 2014.

[XMLNS] Bray, T., Hollander, D., Layman, A, Tobin, R, and H
Thonpson, "Nanespaces in XM. 1.0 (Third Edition)", Wrld
W de Web Consortium Reconmendati on REC- xm - nanes- 20091208,
Decenber 2009,
<http://ww. w3. or g/ TR/ 2009/ REC- xnl - nanmes-20091208>.

[XM_] Bray, T., Paoli, J., Sperberg-MQeen, C., Maler, E, and
F. Yergeau, "Extensible Mrkup Language (XM.) 1.0 (Fifth
Edition)", Wrld Wde Wb Consortium Recormendati on REC-
xm -20081126, Novenber 2008,
<http://ww. w3. or g/ TR/ 2006/ REC- xrm - 20060816>.

8.2. Informative References

[I1F-CFG Bj orklund, M, "A YANG Data Mddel for Interface
Management”, draft-ietf-netnod-interfaces-cfg-16 (work in
progress), January 2014.

[JSON- META]

Saki mura, N., "JSON Metadata", draft-sakinura-json-
nmet adat a- 01 (work in progress), Novenber 2013.

Lhot ka Expi res Cctober 23, 2014 [Page 17]

Internet-Draft JSON Encodi ng of YANG Dat a April 2014

[RESTCONF]
Bi erman, A., Bjorklund, M, Watsen, K, and R Fernando,
"RESTCONF Protocol"”, draft-ietf-netconf-restconf-00 (work
in progress), March 2014.

[XPat h] Clark, J., "XM. Path Language (XPath) Version 1.0", Wrld
W de Web Consortium Recommendati on REC- xpat h-19991116
Novernber 1999,
<http://ww. w3. org/ TR/ 1999/ REC- xpat h- 19991116>

Appendi x A. A Conpl ete Exanpl e

The JSON docunent shown bel ow was translated froma reply to the
NETCONF <get > request that can be found in Appendix D of [IF-CFQF.
The data nodel is a conbination of two YANG nodul es: "ietf-
interfaces" and "ex-vlan" (the latter is an exanple nodule from
Appendix C of [IF-CFG). The "if-mb" feature defined in the "ietf-
interfaces" nmodule is considered to be active.

{
"interfaces": {
"interface": |

{
"nanme": "eth0",
"type": "iana-if-type:ethernetCsmacd",
"enabl ed": fal se

b

{
"nanme": "ethl",
"type": "iana-if-type:ethernetCsmacd",
"enabl ed": true,
"vl an-taggi ng": true

b

{
"nane": "ethl. 10",
"type": "iana-if-type:l2vlan",
"enabl ed": true,
"base-interface": "ethl",
"vlan-id": 10

b

{
"nanme": "l ol",
"type": "iana-if-type:softwarelLoopback",
"enabl ed": true

}

]
}

interfaces-state": {

Lhot ka Expi res Cctober 23, 2014 [Page 18]

Internet-Draft JSON Encodi ng of YANG Dat a

Lhot ka

"interface": [

{

o)

"nanme": "ethO"
"type": "iana-if-type:ethernetCsmacd",
"adnmi n-status": "down",
"oper-status": "down",
"if-index": 2,
"phys-address”: "00:01: 02: 03: 04: 05",
"statistics": {
"discontinuity-time": "2013-04-01T03: 00: 00+00: 00"
}
"name": "ethl",
"type": "iana-if-type:ethernetCsmacd"
"adm n-status": "up",
"oper-status": "up",
"if-index": 7,
"phys-address”: "00:01:02: 03: 04: 06"
"hi gher-layer-if": [
"ethl. 10"
1,
"statistics": {
"discontinuity-time": "2013-04-01T03: 00: 00+00: 00"
}
"name": "ethl. 10",
"type": "iana-if-type:l2vlan",
"adm n-status": "up",
"oper-status": "up",
"if-index": 9,
"l ower-layer-if": [
"et h1"
1,
"statistics": {
"discontinuity-time": "2013-04-01T03: 00: 00+00: 00"
}

"name": "eth2",

"type": "iana-if-type:ethernetCsmacd",
"admi n-status": "down",

"oper-status": "down",

"if-index": 8,

"phys-address": "00:01:02: 03: 04: 07"
"statistics": {
"discontinuity-time": "2013-04-01T03: 00: 00+00: 00"

Expi res Cctober 23, 2014

Apri

[Page

2014

19]

Internet-Draft

}

b

{
"name": "lol",
"type":
"adm n-status": "up",
"oper-status": "up",
"if-index": 1,
"statistics": {

"discontinuity-tine":

}

}

Aut hor’ s Addr ess

Ladi sl av Lhot ka
CZ.N C

Emai |l : | hot ka@i c. cz

Lhot ka

JSON Encodi ng of YANG Dat a

"iana-if-type: sof t war eLoopback"

"2013-04-01T03: 00: 00+00

Expi res Cctober 23, 2014

: 00"

April 2014

[Page 20]

