Secure Inter-Donmain Routing M Reynol ds

I nternet-Draft | PSw
I nt ended status: Standards Track S. Kent
Expi res: Cctober 2, 2013 BBN
M Lepi nski

BBN

Apr 5, 2013

Local Trust Anchor Managenent for the Resource Public Key Infrastructure
<draft-ietf-sidr-ltangnt-08.txt>

Status of this Meno

This Internet-Draft is submtted to |ETF in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF), its areas, and its working groups. Note that
ot her groups may al so distribute working docunents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nmay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

The list of current Internet-Drafts can be accessed at
http://ww.ietf.org/lid-abstracts. htm

The list of Internet-Draft Shadow Directories can be accessed at
http://ww.ietf.org/shadow. htm

This Internet-Draft will expire on October 2, 2013.
Copyri ght and License Notice

Copyright (c) 2013 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust's Legal
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of

Reynol ds, et al Expi res Cctober 2, 2013 [Page 1]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Abst r act

Thi s docunment describes a facility to enable a relying party (RP) to
manage trust anchors (TAs) in the context of the Resource Public Key
Infrastructure (RPKI). It is conmmon in RP software (not just in the
RPKI) to allow an RP to inport TA material in the form of self-signed
certificates. However, this approach to incorporating TAs is
potentially dangerous. (These self-signed certificates rarely

i ncorporate any extensions that inpose constraints on the scope of

the inported public keys, and the RP is not able to inpose such
constraints.) The facility described in this docunment allows an RP to
i mpose constraints on such TAs. Because this mechanismis designed to
operate in the RPKI context, the nobst inportant constraints are the

I nternet Nunmber Resources (I NRs) expressed via RFC 3779 extensions.
These extentions bind address spaces and/or autononous system (AS)
nunbers to entities. The prinmary notivation for the facility described
in this docunent is to enable an RP to ensure that INR information
that it has acquired via sone trusted channel is not overridden by the
information acquired fromthe RPKI repository systemor by the putative
TAs that the RP inports. Specifically, the mechanismallows an RP to
specify a set of overriding bindings between public key identifiers and
I NR data. These bindi ngs take precedence over any conflicting bindings
acquired by the putative TAs and the certificates downl oaded fromthe

RPKI repository system This mechanismis designed for |ocal use by an RP

but any entity that is accorded adm nistrative control over a set of RPs
may use this mechanismto convey its view of the RPKI to RPs within its
jurisdiction. The nmeans by which this latter use case is effected is

out side the scope of this docunent.

Reynol ds, et al Expi res Cctober 2, 2013 [Page 2]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

Tabl e of Contents

1 Introduction 4
1.1 Termninol ogy . . 5

2 Overview of Certlflcate ProceSS|ng 5
2.1 Target Certificate ProceSS|ng . 5
2.2 Perforation . e 5
2.3 TA Re-parenting . 6
2.4 Paracertificates 6

3 Format of the constraints f|Ie 8
3.1 Relying party subsection 8
3.2 Flags subsection . 8
3.3 Tags subsection . . .)
3.3.1 Xvalidity_dates tag e K¢
3.3.2 Xcrldptag
3.3.3 Xeptag00 L0 L 0.
3.3.4 Xaiatag 011

3.4 Blocks subsection . . . e)

4 Certificate Processing Algorlthm R
4.1 Proofreading algorithm 14
4.2 TA processing algorlthnt - P <)
4.2.1 Preparatory proceSS|ng (stage 0) . e 16
4,.2.2 Target processing (stage 1) 17
4.2.3 Ancestor processing (stage 2) 18
4.2.4 Tree processing (stage 3)19
4.2.5 TA re-parenting (stage 4) 20

4.3 Discussion . . 2

5 Inplications for Path U scovery 2 §
5,1 Two answers o2
5.2 One answer e e e 22
5.3 No answer L L o000 .22

6 Inplications for Revocation 22
6.1 No state bits set23
6.2 ORIG NAL state bit set23
6.3 PARA state bit set . . e e e o o .. 23
6.4 Both ORI G NAL and PARA state b|ts set e e e e e 24

7 Security Considerations .24
8 | ANA Considerations24
9 Acknow edgenents 24
10 References . . . -
10.1 Normative References C e e e e e s 24
10.2 Informative References25
Aut hors’ Addresses . . 24)
Appendi x A: Sanpl e Cbnstralnts F|Ie .o 26
Appendi x B: Optional Sorting Al gorithmfor Ancestor Processing . . 27

Reynol ds, et al Expi res Cctober 2, 2013 [Page 3]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

1 Introduction

The Resource Public Key Infrastructure (RPKI) [RFC6480] is a

PKI in which certificates are issued to facilitate managenent of

I nternet Resource Numbers (INRs). Such resources are expressed in
the formof X 509v3 "resource" certificates with extensions defined
by RFC 3779 [RFC6487]. Validation of a resource certificate is
preceded by path discovery. In a PKI path discovery is effected by
constructing a certificate path between a target certificate and a
trust anchor (TA). No | ETF standards define how to construct a
certificate path; comonly such paths are based on a bottom up
search using Subject/lssuer nane natching, but top-down and

nmeet -i n-the-m ddl e approaches may al so be enpl oyed [RFC4158]. In
contrast, path validation is top-down, as defined by [RFC5280].

In the RPKI, certificates can be acquired in various ways, but the
default is a top-down tree wal k as described in [RFC6481],
initialized via a Trust Anchor Locator [RFC6490]. Note that the
process described there is not path discovery per sembut the
collecting of certificates to populate a | ocal cache. Thus, the
common, bottomup path discovery approach is not inconsistent
with these RFCs. Morevoer, a bottomup path discovery approach
is nore general, accommpdating certificates that might be
acquired by other neans, i.e., not froman RPKI repository. There
are circunmstances under which an RP may wish to override the INR
speci fications obtained through the RPKI distributed repository
system [RFC6481]. This docunent describes a mechani sm by which

an RP may override any conflicting information expressed via
putative TAs and the certificates downl oaded fromthe RPKI
repository system Thus the algorithms described in this docunent
adopt a bottomup path di scovery approach.

To effect this local control, this docunent calls for a relying party
to specify a set of bindings between public key identifiers and

INRs through a text file known as a constraints file. The constraints
expressed in this file then take precedence over any conpeting clains
expressed by resource certificates acquired fromthe distributed
repository system (The nmeans by which a relying party acquires the
key identifier and the RFC 3779 extension data used to popul ate the
constraints file is outside the scope of this docunent.) The relying
party also nmay use a |l ocal publication point (the root of a | oca
directory tree that is nmade available as if it were a renote
repository) as a source of certificates and CRLs (and ot her RPK
signed objects, e.g., ROAs and manifests) that do not appear in the
RPKI repository system

In order to allow reuse of existing, standard path validation

nmechani sms, the RP-inposed constraints are realized by having the RP
itself represented as the only TA known in the local certificate
validation context. To ensure that all RPKI certificates can be
validated relative to this TA this RP TA certificate nust contain
al | -enconpassing resource allocations, i.e. 0/0 for IPv4, 0::/0 for

| Pv6 and 0-4294967295 for AS nunbers. Thus, a conform ng

i mpl ement ation of this nechani smnust be able to cause a self-signed
certification authority (CA) certificate to be created with a locally
generated key pair. It also nust be able to issue CA certificates
subordinate to this TA. Finally, a conform ng inplenentation of this

Reynol ds, et al Expi res Cctober 2, 2013 [Page 4]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

mechani sm must process the constraints file and nodify certificates
as needed in order to enforce the constraints asserted in the file.

The renmai nder of this docunent describes in detail the types of
certificate nodification that nay occur, the syntax and semantics of
the constraints file, and the inplications of certificate nodification
on path discovery and revocation

1.1 Term nol ogy

It is assuned that the reader is fanmliar with the terns and concepts
described in "Internet X 509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile" [RFC5280] and "X 509
Extensions for | P Addresses and AS ldentifiers" [RFC3779].

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119.

2 Overview of Certificate Processing

The fundanental aspect of the facility described in this docunent is
one of certificate nodification. The constraints file, described in
nore detail in the next section, contains assertions about |NRs

that are to be specially processed. As a result of this processing,
certificates in the I ocal copy of the RPKI repository are transforned
into new certificates satisfying the INR constraints so specified
This enables the RP to override conflicting assertions about resource
hol di ngs as acquired fromthe RPKI repository system Three forns of
certificate nodification can occur. (Every certificate is digitally
signed and thus cannot be nodified w thout "breaking" its signature.
In the context of this document we assune that certificates that are
nmodi fi ed have been validated previously. Thus the content can be

nodi fied, locally, without the need to preserve the integrity of the
signature. These nodified certificates are referred to as
paracertificates (see section 2.4 below).)

2.1 Target Certificate Processing

If acertificate is acquired fromthe RPKI repository systemand its
Subj ect key identifier (SKI) is listed in the constraints file, it

will be reissued directly under the RP TA certificate, with (possibly)
nmodi fi ed RFC 3779 extensions. (The SKI is used as a conpact reference
to the public key in a target certificate.) The nodified extensions
will include any RFC 3779 data expressed in the constraints file. Oher
certificate fields may al so be nodified to nmaintain consistency. (These
fields are enunerated in Table 1, and discussed in Section 3.3.) In
Section 4.2, target certificate processing corresponds to stage one of
the algorithm (Wen a target certificate is re-parented, all

subordi nate signed products will still be valid, unless the set of

INRs in the targeted certificate is reduced.)

2.2 Perforation

When a target certificate is re-issued directly under the RPs TA, its
I NRs MUST be renoved fromall of its parent (CA) certificates. (If
these INRs were not renmpved, then conflicting assertions about |NRs
could arise and undernmine the authority of the RP TA.) Thus, every

certificate acquired fromthe RPKI repository MIST be exam ned to
determine if it contains an RFC 3779 extension that intersects the
resource data in the constraints file. If there is an intersection
the certificate will be reissued directly under the RP TA with

nodi fied RFC 3779 extensions. W refer to the process of nodifying
the RFC 3779 extension in an affected certificate as "perforation”
(because the process will create "holes" in these extensions). The

Reynol ds, et al Expi res Cctober 2, 2013 [Page 5]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

nmodi fi ed extensions will exclude any RFC 3779 data expressed in the
constraints file. In the certificate processing al gorithm described
in Section 4.2, perforation corresponds to stage two of the algorithm
("ancestor processing"”) and also to stage three of the algorithm
("tree processing").

2.3 TA Re-parenting

Al'l valid, self-signed certificates offered as TAs in the public RPKI
certificate hierarchy, e.g., self-signed certificates issued by | ANA

or RIRs, will be re-issued under the RP TA certificate. This processing

i s done even though all but one of these certificates mi ght not
i ntersect any resources specified in the constraints file. W refer to
this reissuance as "re-parenting"” since the issuer (parent) of the

certificate has been changed. The issuer nane is changed fromthat of
the certificate subject (this is a self-signed certificate) to that of

the RP TA. In the certificate processing algorithm described in Section

4.2, TA re-parenting corresponds to stage four of the algorithm (In
a nmore generic PKI context, re-parenting enables an RP to insert
extensions in these certificates to i npose constraings on path
processing in a fashion consistent with RFC 5280. In this fashion an
RP can i npose nane constraints, policy constraints, etc.)

2.4 Paracertificates

If acertificate is subject to any of the three fornms of processing
just described, that certificate will be referred to as an "original”
certificate and the processed (output) certificate will be referred
to as a paracertificate. Wien an original certificate is transforned
into a paracertificate all the fields and extensions fromthe
original certificate will be retained, except as indicated in Table
1, bel ow

Reynol ds, et al Expi res Cctober 2, 2013 [Page 6]

Internet-Draft RPKI Local TA Managenent

Oiginal Certificate Field

Ver si on
Serial nunber
Si gnature

| ssuer
Validity dates
Subj ect
Subj ect public key info
Ext ensi ons
Subj ect key identifier
Key usage
Basi c constraints
CRL distribution points
Certificate policy
Authority info access
Aut hority key ident
| P address bl ock
AS nunber bl ock
Subj ect info access
Al'l other extensions
Si gnature Al gorithm
Si gnature val ue

Action

unchanged
created per note A
replaced i f needed

with RP’s signing alg
replaced with RP's nane
repl aced per note B
unchanged
unchanged

unchanged

unchanged

unchanged

repl aced per note B
repl aced per note B
repl aced per note B
replaced with RP's
nodi fi ed as descri bed
nmodi fi ed as descri bed
unchanged

unchanged

sane as above

new

Table 1 Certificate Field Mddifications

Apr 5, 2013

Note A The serial nunber will be created by concatenating the
current tine (the nunber of seconds since Jan 1, 1970) with a count
of the certificates created in the current run. Because all

paracertificates are issued directly bel ow the RP TA,

ensures serial nunber uni queness.

this algorithm

Note B. These fields are derived (as described in Section 3.3 bel ow)

fromparaneters in the constraints file (if present);

ot herwi se, they

take on values fromthe certificates fromwhich the paracertificates
are derived

Reynol ds,

et al Expi res Cctober 2, 2013

[Page 7]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

3 Format of the constraints file

This section describes the syntax of the constraints file. (The
syntax has been defined to enable creation and distribution of
constraint files to a set of RPs, by an authorized third party.)

The nodel described below is nominal; inplenentations need not match
all details of this nodel as presented, but the external behavior of
i mpl ement ati ons MJST correspond to the externally observabl e
characteristics of this nodel in order to be conpliant. It is
RECOMVENDED t hat the syntax described herein be supported, to
facilitate interoperability between creators and consuners of
constraints files.

The constraints file consists of four |ogical subsections: the
replying party subsection, the flags subsection, the tags subsection
and t he bl ocks subsection. The relying party subsection and the

bl ocks subsection are REQU RED and MJUST be present; the flags and
tags subsections are OPTIONAL. Each subsection is described in nore
detail below. Note that the senicolon (;) character acts as the
comrent character, to enable annotating constraints files. Al
characters froma semcolon to the end of that line are ignored. In
addition, lines consisting only of whitespace are ignored. The
subsecti ons MJUST occur in the order indicated. An exanple constraints
file is given in Appendix A

3.1 Relying party subsection

The relying party subsection is a REQU RED subsection of the
constraints file. It MJUST be the first subsection of the constraints
file, and it MJST consist of two |ines of the form

(RECOMVENDED)

PRI VATEKEYMETHCD value [... value]
TACERTI FI CATE val ue

The first line provides a pointer (including an access nethod) to

the RP"s private key. This line consists of the string litera

PRI VATEKEYMETHOD, foll owed by one or nore whitespace delimted string
val ues. These val ues are passed to the certificate processing

al gorithm as described below. Note that this entry, as for al

entries in the constraints file, is case sensitive.

The second line of this subsection consists of the string litera
TACERTI FI CATE, followed by exactly one string value. This val ue

is the name of a file containing the relying party’'s TA certificate.
The file nane is passed to the certificate processing algorithm as
descri bed bel ow

3.2 Flags subsection

The flags subsection of the constraints file is an OPTI ONAL
subsection. If present it MJST immediately follow the relying party

Reynol ds, et al Expi res Cctober 2, 2013 [Page 8]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

subsection. The flags subsection consists of one or nore lines of the
form

CONTROL flagnane bool eanval ue

Each such line is referred to as a control line. Each control line
MUST contain exactly three whitespace delinited strings. The first
string MJUST be the literal CONTROL. The second string MJST be one of
the following three literals:

resour ce_nouni on
i ntersection_al ways
treegrowh

The third string denotes a Bool ean val ue, and MJST be one of the
literals TRUE or FALSE. Control flags influence the global operation
of the certificate processing algorithm the semantics of the flags
is described in Section 4.2. Note that each flag has a default val ue,
so that if the corresponding CONTROL |ine does not appear in the
constraints file, the algorithmflag is considered to take the
correspondi ng default value. The default value for each flag is FALSE
Thus, if any flag is not naned in a control line it takes the val ue
FALSE. If the flags subsection is absent, all three flags assune the
default val ue FALSE

3.3 Tags subsection

The tags subsection is an OPTI ONAL subsection in the constraints
file. If present it MJST imediately follow the relying party
subsection (if the flags subsection is absent) or the flags
subsection (if it is present). The tags subsection consists of one or
nmore |lines of the form

TAG tagnane tagvalue [... tagval ue]

Each such line is referred to as a tag line. Each tag |line MJST
consist of at |east three whitespace delimted string values, the
first of which nmust be the literal TAG The second string val ue gives
the nane of the tag, and subsequent string(s) give the value(s) of
the tag. The tag nane MJST be one of the follow ng four string
literals:

Xval idity_dates
Xcr | dp

Xcp

Xai a

The purpose of the tag lines is to provide an indication of the means

Reynol ds, et al Expi res Cctober 2, 2013 [Page 9]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

by which paracertificate fields, specifically those indicated above
under "Note B", of Table lare constructed. Each tag has a default, so
that if the corresponding tag line is not present in the constraints
file, the default behavior is used when constructing the
paracertificates. The syntax and semantics of each tag line is

descri bed next.

Note that the tag lines are considered to be global; the action of
each tag line (or the default action, if that tag line is not
present) applies to all paracertificates that are created as part of
the certificate processing algorithm

3.3.1 Xvalidity_ dates tag

This tag line is used to control the value of the notBefore and

not After fields in paracertificates. If this tag line is specified
and there is a single tagvalue which is the literal string C, the
paracertificate validity interval is copied fromthe origina
certificate validity interval fromwhich it is derived. If this tag
is specified and there is a single tagvalue which is the litera
string R the paracertificate validity interval is copied fromthe
validity interval of the RPPs TA certificate. If this tag is specified
and the tagvalue is neither of these literals, then exactly two
tagval ues MJUST be specified. Each nust be a Ceneralized Tine string
of the form YYYYMVDDHHWWSSZ. The first tagvalue is assigned to the
not Before field and the second tagvalue is assigned to the notAfter
field. It MIUST be the case that the tagval ues can be parsed as valid
Generalized Tinme strings such that notBefore is |l ess than notAfter,
and al so such that notAfter represents a tine in the future (i.e.
the paracertificate has not already expired).

If this tag line is not present in the constraints file the default
behavior is to copy the validity interval fromthe origina
certificate to the correspondi ng paracertificate.

3.3.2 Xcrldp tag

This tag line is used to control the value of the CRL distribution
poi nt extension in paracertificates. If this tag line is specified
and there is a single tagvalue that is the string literal C, the
CRLDP of the paracertificate is copied fromthe CRLDP of the origina
certificate fromwhich it is derived. If this tag line is specified
and there is a single tagvalue that is the string literal R the
CRLDP of the paracertificate is copied fromthe CRLDP of the RPPs TA
certificate. If this tag line is specified and there is a single
tagval ue that is not one of these two reserved literals, or if

there is nore than one tagvalue, then each tagvalue is interpreted as
a URI that will be placed in the CRLDP sequence in the

Reynol ds, et al Expi res Cctober 2, 2013 [Page 10]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

paracertificate.

If this tag line is not present in the constraints file the default
behavior is to copy the CRLDP fromthe original certificate into the
correspondi ng paracertificate.

3.3.3 Xcp tag

This tag line is used to control the value of the policyQualifierld
field in paracertificates. If this tag line is specified there MIST
be exactly one tagvalue. If the tagvalue is the string literal C, the
paracertificate value is copied fromthe value in the correspondi ng
original certificate. If the tagvalue is the string literal R the
paracertificate value is copied fromthe value in the RP s top | eve
TA certificate. If the tagvalue is the string literal D, the
paracertificate value is set to the default O D. If the tagvalue is
not one of these reserved string literals, then the tagval ue MIST be
an O D specified using the standard dotted notation. The value in the
paracertificate's policyQualifierld field is set to this OD. Note
the RFC 5280 specifies that only a single policy may be specified in
a certificate, so only a single tagvalue is permtted in this tag
line, even though the CertificatePolicy field is an ASN. 1 sequence.

If this tag line is not specified the default behavior is to use the
default ODin creating the paracertificate.

This option permts the RP to convert a value of the
policyQualifierld field in a certificate (that would not be in
conformance with the RPKI CP) to a conformng value in the
paracertificate. This conversion enables use of RPKI validation
software that checks the policy field against that specified in the
RPKI CP [RFC6484] .

3.3.4 Xaia tag

This tag line is used to control the value of the Authority

I nformati on Access (Al A) extension in the paracertificate. If this
tag line is present then it MJST have exactly one tagvalue. If this
tagvalue is the string literal C, then the AlIAfield in the
paracertificate is copied fromthe AIA field in the origina
certificate fromwhich it is derived. If this tag line is present and
the tagvalue is not the reserved string literal, then the tagval ue
MJUST be a URI. This URI is set as the Al A extension of the
paracertificates that are created.

If this tag line is not specified the default behavior is to use copy

the AIAfield fromthe original certificate to the AlA field of the
paracertificate.

Reynol ds, et al Expi res Cctober 2, 2013 [Page 11]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

3.4 Bl ocks subsection

The bl ocks subsection is a REQUI RED subsection of the constraints
file. If the tags subsection is present, the bl ocks subsecti on MJST
appear imediately after it. This MJST be the | ast subsection in

the constraints file. The bl ocks subsection consists of one or nore

bl ocks, known as target blocks. A target block is used to specify an
associ ation between a certificate (identified by an SKI) and a set

of resource assertions. Each target block contains four regions, an SK
region, an |IPv4d region, an |Pv6 region and an AS nunber region. A

regi ons MJST be present in a target bl ock

The SKI region contains a single line beginning with the string
literal SKI and followed by forty hexadeci mal characters giving the
subj ect key identifier of a certificate, known as the target
certificate. The hex character string MAY contain enbedded whitespace
or colon characters (included to inprove readability), which are

i gnored. The |IPv4 region consists of a line containing only the
string literal 1Pv4. This line is followed by zero or nore lines
containing | Pv4 prefixes in the format described in RFC 3779. The

| Pv6 region consists of a line containing only the string litera

I Pv6, followed by zero or nore |lines containing |Pv6 prefixes using
the format described in RFC 3513. (The presence of the |IPv4 and | Pv6
literals is to sinplify parsing of the constraints file.) Finally,
the AS nunber region consists of a line containing only the string
literal AS#, followed by zero or nore |lines containing AS nunbers
(one per line). The AS nunbers are specified in deciml notation as
recomended in RFC 5396. A target block is terminated by either the
end of the constraints file, or by the begi nning of the next target
bl ock, as signaled by its opening SKI region line. An exanple target
bl ock is shown bel ow. (The indentation used below is enployed to

i mprove readability and is not required.) See also the conplete
constraints file exanple in Appendix A Note that whitespace, as

al ways, is ignored.

SKI 00:12: 33: 44: 00: BA: BA: DE: EB: EE: 00: 99: 88: 77: 66: 55: 44: 33: 22: 11
| Pv4
10. 2. 3/ 24
10. 8/ 16
| Pv6
1:2:3:4:5:6/112
ASH
123
567

The bl ocks subsection MJST contain at | east one target bl ock. Note
that it is OPTIONAL that the SKI refer to a certificate that is known

Reynol ds, et al Expi res Cctober 2, 2013 [Page 12]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

or resolvable within the context of the |local RPKI repository. Also,
there is no REQU RED or inplied ordering of target blocks within the
bl ock subsection. Since blocks may occur in any order, the outcone of
processing a constraints file may depend on the order in which target
bl ocks occur within the constraints file. The next section of this
docunment contains a detailed description of the certificate processing
al gorithm

4 Certificate Processing Al gorithm

The section describes the certificate processing al gorithmby which
paracertificates are created fromoriginal certificates in the

I ocal RPKI repository. For the purposes of describing this algorithm
it will be assuned that certificates are persistently associ ated
with state (or netadata) information. This state information is

nom nally represented by an array of named bits associated with each
certificate. No specific inplenentation of this functionality is
mandat ed by this docunment. Any inplenentation that provides the

i ndi cated functionality is acceptable, and need not actually consi st
of a bit field associated with each certificate.

The following state bits used in certificate processing are

NOCHAI N
ORI G NAL
PARA
TARGET

If the NOCHAIN bit is set, this indicates that a full path between
the given certificate and a TA has not yet been discovered. If the
ORIG NAL bit is set, this indicates that the certificate in question
has been processed by sone part of the processing al gorithm described
in Section 4.2. If it was processed as part of stage one processing,
as described in section 4.2.2, the TARGET bit also will be set.
Finally, every paracertificate will have the PARA bit set.

At the beginning of algorithm processing each certificate in the

| ocal RPKI repository has the ORI G NAL, PARA and TARGET bits clear.
If a certificate has a conplete, validated path to a TA, or is itself
a TA, then that certificate will have the NOCHAIN bit clear

otherwise it will have the NOCHAIN bit set. As the certificate
processing al gorithm proceeds, the netadata state of origina
certificates may change. In addition, since the certificate
processing algorithm may al so be creating paracertificates, it is
responsible for actively setting or clearing the state of these four
bits on those paracertificates.

The certificate processing algorithmconsists of two sub-al gorithns:

Reynol ds, et al Expi res Cctober 2, 2013 [Page 13]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

"proofreadi ng" and "TA processing". Conceptually, the proofreading
al gorithm performs syntactic checks on the constraints file,

whil e the TA processing algorithmperforns the actual certificate
transformation processing. If the proofreading al gorithm does not
succeed in parsing the constraints file, the TA processing-
algorithmis not executed. Note also that if the constraints file is
not present, neither algorithmis executed and the | ocal RPK
repository is not nodified. Each of the constituent algorithnms wll
now be described in detail.

4.1 Proofreading algorithm

The proofreading al gorithm checks the constraints file for syntactic
errors, e.g., mssing REQU RED subsections, or malforned addresses.

I mpl enentation of this algorithmis OPTIONAL. If it is inplenented,

the followi ng text defines correct operation for the al gorithm

The proofreading algorithnms perforns a set of heuristic checks, such
as checking for prefixes that are too large (e.g., larger than /8).

The proofreadi ng al gorithm al so SHOULD exam ne resource regions (I|Pv4,
| Pv6 and AS# regions) within the blocks subsection, and reorder such
resources within a region in ascending nuneric order. On encountering
any error the proofreading al gorithm SHOULD provi de an error nessage
indicating the line on which the error occurred as well as informative
text that is sufficiently descriptive as to allow the user to identify
and correct the error. An inplenmentation of the proofreading algorithm
MUST NOT assune that it has access to the local RPKI repository (even
read-only access). An inplenentation of the proofreadi ng al gorithm MJST
NOT alter the local RPKI repository in any way; it also MJST NOT change
any of the netadata associated with certificates in that repository.
(Recall that the processing described here is creating a copy of that

| ocal repository.) For sinplicity the remai nder of this docunent
assunes that the proofreading al gorithm produces a transfornmed out put
file. This file contains the sanme syntactic information as the text
version of the constraints file.

The proofreading algorithmperforns the followi ng syntactic checks on
the constraints file:
- verifies the presence of the REQU RED relying party subsection
and the REQUI RED bl ocks subsecti on.
- verifies the order of the two, three or four subsections as
stated above.
- verifies that the relying party subsection conforns to the
specification given in Section 3.1 above.
- verifies that, if present, the tags and flags subsections conform
to the specifications in Sections 3.2 and 3.3 above.

After these checks have been perforned, the proofreading al gorithm
t hen checks the bl ocks subsection
- splits the bl ocks subsection into constituent target blocks, as
delinmted by the SKI region line(s)
- verifies that at |east one target block is present
- verifies that each SKI region line contains exactly forty hexadeci nal
digits and contains no additional characters other than whitespace or
col on characters

For each target the proofreading al gorithm

Reynol ds, et al Expi res Cctober 2, 2013 [Page 14]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

- verifies the presence of the IPv4, |Pv6 and AS# regi ons, and
verifies that at |east one such resource is present.

- verifies that, for each IPv4 prefix, |1Pv6 prefix and aut ononous
system nunber given, that the indicated resource is syntactically
valid according to the appropriate RFC definition, as described in
Section 3.4.

- verifies that no I Pv4 resource has a prefix larger than /8.

- optionally performng reordering within each of the three resource
regions so that stated resources occur in ascending nunerical order

(I'f the proofreading al gorithm has perforned any reordering of
information it MAY overwite the constraints file. If it does so
however, it MUST preserve all information contained within the file,
including information that is not parsed (such as comrents). If the
proof readi ng al gorithm has perforned any reordering of information
but has not overwitten the constraints file, it MAY produce a
transforned output file, as described above. If the proofreading

al gorithm has performed any reordering of information, but has
neither overwitten the constraints file nor produced a transforned
output file, it MJST provide an error nessage to the user indicating
what reordering was perforned.)

4.2 TA processing al gorithm

The TA processing algorithmacts on the constraints file (as processed
by the proofreading algorithn) and the contents of the | ocal RPK
repository to produce paracertificates for the purpose of enforcing
the resource allocations as expressed in the constraints file. The

TA processing algorithmoperates in five stages, a preparatory stage
(stage 0), target processing (stage 1), ancestor processing (stage 2),
tree processing (state 3) and TA re-parenting (stage 4). Conceptually,
during the preparatory stage the proofreader output file is read and a
set of internal RP, tag and flag variables are set based on the contents
of that file. (If the constraint file has not specified one or nore of
the tags and/or flags, those tags and flags are set to default

val ues.) During target processing all certificates specified by a
target block are processed, and the resources for those certificates
are (potentially) expanded; for each target found a new
paracertificate is manufactured with its various fields set, as shown
in Table 1, using the values of the internal variables set in the
preparatory stage and al so, of course, the fields of the origina
certificate (and, potentially, fields of the RPs TA certificate). In
stage 2 (ancestor) processing, all ancestors of the each target
certificate are found, and the cl ained resources are then renoved
(perforated). A new paracertificate with these di m ni shed resources

is crafted, with its fields generated based on internal variable
settings, original certificate field values, and, potentially, the
fields of the RPs TA certificate. In tree processing (stage 3), the

Reynol ds, et al Expi res Cctober 2, 2013 [Page 15]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

4.

2

entire local RPKI repository is searching for any other certificates
that have resources that intersect a target resource, and that were
not ot herw se processed during a preceding stage. Perforation is
again perforned for any such intersecting certificates, and
paracertificates created as in stage 2. In the fourth (last) stage,
TA re-parenting, any TA certificates in the |ocal RPK
repository that have not already been processed are now re-parented
under the RP"s TA certificate. This transformati on creates
paracertificates; however, these paracertificates may have RFC 3779
resources that were not altered during al gorithm processing. The
final output of algorithmprocessing will be threefold:
- the netadata informati on on sone (original) certificates in the
repository MAY be altered.
- paracertificates will be created, with the appropriate netadata,
and entered into the repository.
- the TA processing al gorithm SHOULD produce a human readabl e
log of its actions, indicating which paracertificates were created
and why. The remai nder of this section describes the processing
stages of the algorithmin detail.

1 Preparatory processing (stage 0)

During preparatory processing, the output of the proofreader

algorithm is read. Internal variables are set corresponding to each tag
and flag, if present, or to their defaults, if absent. Internal variables
are set corresponding to the PRI VATEKEYMETHOD val ue string(s) and the
TACERTI FI CATE string. The TA processing algorithmis queried to
determine if it supports the indicated private key access

met hodol ogy. This query is perforned in an inplenentation-specific
manner. In particular, an inplenentation is free to vacuously return
success to this query. The TA processing al gorithm next uses the

val ue string for the TACERTIFI CATE to |l ocate this certificate,

again in an inplenentation-specific manner. The certificate in

question nmay already be present in the local RPKI repository, or it

may be | ocated el sewhere. The inplenentation is free to create the

top level certificate at this time, and then assign to this

new y-created certificate the nanme indicated. It is necessary only

that, at the conclusion of this processing, a valid trust anchor
certificate for the relying party has been created or otherw se
obt ai ned.

Sone form of access to the RP's private key and top level certificate
are required for subsequent correct operation of the al gorithm
Therefore, stage 0 processing MIST term nate if one or both
conditions are not satisfied. In the error case, the inplenentation
SHOULD provide an error nessage of sufficient detail that the user
can correct the error(s). If stage O processing does not succeed, no
further stages of TA processing are executed.

Reynol ds, et al Expi res Cctober 2, 2013 [Page 16]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

4.2.2 Target processing (stage 1)

During target processing, the TA processing al gorithmreads al

target blocks in the proofreader output file. It then processes each
target block in the order specified in the file. In the description
that follows, except where noted, the operation of the algorithmon
a single target block will be described. Note, however, that all
stage 1 processing is executed before any processing in subsequent
stages i s perforned.

The algorithmfirst obtains the SKI region of the target block. It
then locates (in an inplenentation-dependent nanner) the certificate
identified by the SKI. Note that this search is performed only
against (original) certificates, not against paracertificates.

If nmore than one original certificate is found matching this SKi
there are two possible scenarios. If a resource hol der has two
certificates issued by the same CA, with overlapping validity
intervals and the sane key, but distinct subject nanes (typically,
by virtue of the Serial Nunber parts being different), then these

two certificates are both considered to be (distinct) targets, and
are both processed. If, however, a resource holder has certificates
i ssued by two different CAs, containing different resources, but
usi ng the sane key, there is no unanbi guous nethod to deci de which
of the certificates is intended as the target. In this latter case
the al gorithm MJUST issue a warning to that effect, mark the target

bl ock in question as unavail able for processing by subsequent stages
and proceed to the next target block. If no certificate is found
then the al gorithm SHOULD i ssue a warning to that effect and proceed
to process the next target block

If a single (original) certificate is found matching the indicated SKI
then the algorithmtakes the followi ng actions. First, it sets the
ORIG NAL state bit for the certificate found. Second, it sets the
TARGET state bit for the certificate found. Third, it extracts the
INRs fromthe certificate. If the global resource nounion flag is TRUE
the al gorithm conpares the extracted certificate INRS with the I NRs
specified in the constraints file. If the two resource sets are
different, the algorithm SHOULD i ssue a warning noting the difference.
An output resource set is then forned that is identical to the resource
set extracted fromthe certificate. If, however, the resource_nounion
flag is FALSE, then the output resource set is calculated by forning
the union of the resources extracted fromthe certificate and the
resources specified for this target block in the constraints file. A
paracertificate is then constructed according to Table 1, using fields
fromthe original certificate, the tags that had been set during

Reynol ds, et al Expi res Cctober 2, 2013 [Page 17]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

stage 0, and, if necessary, fields fromthe RPs TA certificate. The

I NR resources of the paracertificate are equated to the derived out put
resource set. The PARA state bit is set for the newy created
paracertificate.

4.2.3 Ancestor processing (stage 2)

The goal of ancestor processing is to discover all ancestors of a
target certificate and remove fromthose ancestors the resources
specified in the target blocks corresponding to the targets being
processed. Note that it is possible that, for a given chain froma
target certificate to a trust anchor, another target night be
encountered. This is handled by renoving all the target resources of
al |l descendants. The set of all targets that are descendants of the
given certificate is formed. The union of all the target resources of
the correspondi ng target blocks is conputed, and this union in then
removed fromthe shared ancestor

In detail, the algorithmis as follows. First, all (original) target
certificates processed during stage 1 processing are coll ected.
Second, any collected certificates that have the NOCHAIN state bit set
are elimnated fromthe collection. (Note that, as a result of
elimnating such certificates, the resulting collection nay be enpty,
in which case this stage of al gorithm processing terninates, and
processi ng advances to stage 3.) Next, an inplementation MAY sort the
collection. The optional sorting algorithmis described in Appendi x

B. Note that all stage 2 processing is conpleted before any stage 3
processi ng.

Two |l evels of nested iteration are perfornmed. The outer iteration is
effected over all certificates in the collection; the inner iteration
is over all ancestors of the designated certificate being processed.
The first certificate in the collection is chosen, and a resource set
Ris initialized based on the resources of the target block for that
certificate (since the certificate is in the collection, it nust be a
target certificate, and thus correspond to a target block). The
parent of the certificate is then |ocated using ordinary path

di scovery over original certificates only. The ancestor’s certificate
resources A are then extracted. These resources are then perforated
with respect to R That is, an output set of resources is created by
formng the intersection | of A and R, and then taking the set
difference A - | as the output resources. A paracertificate is then
created containing resources that are these output resources, and
containing other fields and extensions fromthe original certificate
(and possibly the RP s TA certificate) according to the procedure
given in Table 1. The PARA state bit is set on this paracertificate
and the ORIA NAL state bit is set on A. If Ais also a target
certificate, as indicated by its TARGET state bit being set, then

Reynol ds, et al Expi res Cctober 2, 2013 [Page 18]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

there will already have been a paracertificate created for it. This
previ ous paracertificate is destroyed in favor of the newy created
paracertificate. In this case also, the set Ris augnmented by adding
into it the set of resources of the target block for A The algorithm
then proceeds to process the parent of A This inner iteration
continues until the self-signed certificate at the root of the path

i s encountered and processed. The outer iteration then continues by
clearing R and proceeding to the next certificate in the target

col l ecti on.

Not e that ancestor processing has the potential for order dependency,
as nmentioned earlier in this docunent. |If sorting is not inplenented,
or if the sorting algorithmfails to conpletely process the
collection of target certificates because the allotted maxi num nunber
of iterations has been realized, it may be the case that an ancestor
of a certificate logically occurs before that certificate in the

col l ection. Whenever an existing paracertificate is replaced by a
newy created paracertificate during ancestor processing, the

al gorithm SHOULD al ert the user, and SHOULD | og sufficient detai

such that the user is able to determ ne which resources were
perforated fromthe original certificate in order to create the (new
paracertificate.

In addition, inplementations MJUST provide for conflict detection and
notification during ancestor processing. During ancestor processing
a certificate may be encountered two or nore tinmes and the
nmodi fi cations dictated by the ancestor processing algorithm my be
inconflict. If this situation arises the algorithm MJST refrain
fromprocessing that certificate. Further, the inplenentati on MJST
present the user with an error nessage that contains enough det ai

so that the user can locate those directives in the constraints file
that are creating the conflict. For exanple, during one stage of the
processing algorithmit may be directed that resources Rl be added to
a certificate C, while during a different stage of the processing
algorithmit nmay be directed that resources R2 be renoved from
certificate C. If the resource sets RlL and R2 have a non-enpty
intersection, that is a conflict.

4.2.4 Tree processing (stage 3)

The goal of tree processing is to |locate other certificates
containing INRs that conflict with the resources allocated to a
target, by virtue of the INRs specified in the constraints file.
The certificates processed are not ancestors of any target. The
al gorithmused is described bel ow

First, all target certificates are collected. Second, all target

certificates that have the NOCHAIN state bit set are elin nated
fromthis collection. Third, if the intersection_always

Reynol ds, et al Expi res Cctober 2, 2013 [Page 19]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

global flag is set, target blocks that occur in the constraints
file, but that did not correspond to a certificate in the loca
repository, are added to the collection. In tree processing,

unl i ke ancestor processing, this collection is not sorted. An
iteration is now perforned over each certificate (or set of target
bl ock resources) in the collection. Note that the collection may be
enpty, in which case this stage of algorithm processing termn nates,
and processing advances to stage 4. Note also that all stage 3
processing is perforned before any stage 4 processing.

Gven a certificate or target resource block, each top | evel origina
TA certificate is examned. If that TA certificate has an
intersection with the target block resources, then the certificate is
perforated with respect to those resources. A paracertificate is
created based on the contents of the original certificate (and
possibly the RPs TA certificate, as indicated in Table 1) using the
perforated resources. The ORIGA NAL state bit is set on the origina
certificate processed in this manner, and the PARA state bit is set
on the paracertificate just created. An inner iteration then begins
on the descendants of the original certificate just processed. There
are two ways in which this iteration may proceed. If the treegrowth
global flag is clear, then exam nation of the children proceeds unti
all children are exhausted, or until one child is found with
intersecting resources. |If the treegrowth global flag is set, al
children are examined. If a transfer of resources is in process,

nmore than one child nmay possess intersecting resources. In this case,
it is RECOWENDED that the treegrowh flag be set. The inner iteration
proceeds until all descendants have been exanm ned and no further

i ntersecting resources are found. The outer iteration then continues
with the next certificate or target resource block in the collection.
Note that unlike ancestor processing, there is no concept of a
potentially curmul ating resource collection R, only the resources

in the target block are used for perforation

4.2.5 TA re-parenting (stage 4)

In the final stage of TA algorithm processing, all TA certificates
(other than the RP"s TA certificate) that have not already been
processed are now processed. At this stage all unprocessed TA
certificates have no intersection with any target resource bl ocks.
As such, in creating the correspondi ng paracertificates, the output
resource set is identical to the input resource set. Oher
transformati ons as described in Table 1 are performed. The origina
TA certificates have the ORIG NAL state bit set; the newy created
paracertificates have the PARA state bit set. Note that once stage
four processing is conpletely, only a single TA certificate wll
remain in an unprocessed state, nanmely the relying party’s own

TA certificate.

Reynol ds, et al Expi res Cctober 2, 2013 [Page 20]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

4.3 Discussion

The al gorithm described in this docunment effectively creates two
coexisting certificate hierarchies: the original certificate

hi erarchy and the paracertificate hierarchy. Oigina

certificates are not renoved during any of the processing described
in the previous section. Sonme original certificates nmay nove from
having no state bits set (or only the NOCHAIN state bit set) to
havi ng one or both of the ORIG NAL and TARGET state bits set. In
addition, the NOCHAIN state bit will still be set if it was set
bef ore any processing. The paracertificate hierarchy, however, is
i ntended to supersede the original hierarchy for ROA validation
The presence of two hierarchies has inplications for path

di scovery, and for revocation

If one thinks of a certificate as being "naned" by its SKI, then
there can now be two certificates with the sane nane, an origina
certificate and a paracertificate. The next two sections discuss the
inmplications of this duality in detail. Before proceeding, it is
worth noting that even wi thout the existence of the paracertificate
hi erarchy, cases may exist in which two or nore origina
certificates have the same SKI. As noted earlier, in Section

4.2.2, these cases nay be subdivided into the case in which such
certificates are distinguishable by virtue of having different

subj ect names, but identical issuers and resource sets, versus al
other cases. In the distinguishable case, the path di scovery
algorithmtreats the original certificates as separate certificates
and processes them separately. In all other cases, the origina
certificates should be treated as indistinguishable, and path

val idation should fail.

5 Inplications for Path Discovery

Pat h di scovery proceeds froma child certificate C by asking for a
parent certificate P such that the AKI of Cis equal to the SKI of P.
Wth one hierarchy this question would produce at nbst one answer
Wth two hierarchies, the original certificate hierarchy and the
paracertificate hierarchy, the question may produce two answers, one
answer, or no answer. Each of these cases is considered in turn.

5.1 Two answers

If two paths are discovered, it SHOULD be the case that one of the
matches is a certificate with the ORIG NAL state bit set and the
PARA state bit clear, while the other match inversely has the
ORIG NAL state bit clear and the PARA state bit set. If any other
conbi nation of ORIG NAL and PARA state bits obtains, the path

di scovery algorithm MJUST alert the user. In addition, the path

di scovery al gorithm SHOULD refrain fromattenpting to nake a

Reynol ds, et al Expi res Cctober 2, 2013 [Page 21]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

choice as to which of the two certificates is the putative parent. In
the no-error case, with the state bits are as indicated, the
certificate with the PARA state bit set is chosen as the parent P
Note this neans, in effect, that all children of the origina
certificate have been re-parented under the paracertificate.

5.2 One answer

If the matching certificate has neither the ORIG NAL state bit set
nor the PARA state bit set, this certificate is the parent. If the
mat ching certificate has the PARA state bit set but the ORI G NAL
state bit not set, this certificate is the parent. (This situation
woul d arise, for exanple, if the original certificate had been
revoked by its issuer but the paracertificate had not been revoked by
the RP.) If the matching certificate has the ORIG NAL state bit set
but the PARA state bit not set, this is not an error but it is a
situation in which path discovery MJST be forced to fail. The parent
P MUST be set to NULL, and the NOCHAIN state bit nust be set on C and
all its descendants; the user SHOULD be warned. Even if the RP has
revoked the paracertificate, the original certificate MAY persist.
Forcing path di scovery to unsuccessfully termnate is a reflection of
the RP's preference for path discovery to fail as opposed to using
the original hierarchy. Finally, if the matching certificate has both
the ORI G NAL and PARA state bits set, this is an error. The parent P
MUST be set to NULL, and the user MJST be warned.

5.3 No answer

This situation occurs when C has no parent in either the origina

hi erarchy or the paracertificate hierarchy. In this case the parent P
is NULL and path discovery term nates unsuccessfully. The NOCHAI N
state bit must be set on C and all its descendants.

6 Inplications for Revocation

In a standard i nplenmentation of revocation in a PKI, a valid CRL
nanes a (sibling) certificate by serial nunmber. That certificate is
revoked and is purged fromthe | ocal RPKI repository. The origina
certificate hierarchy and the paracertificate hierarchy created by
appl ying the algorithns described above are closely related. It

can thus be asked how revocation is handled in the presence of these
two hierarchies. In particular do changes in one of the hierarchies
trigger correspondi ng changes in the other hierarchy. There are four
cases based on the state of the ORIA NAL and PARA bits. These are

di scussed in the subsections below. It should be noted that the

exi stence of two hierarchies presents a particular challenge with
respect to revocation. If a CRL arrives and is processed, that

Reynol ds, et al Expi res Cctober 2, 2013 [Page 22]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

processing can result in the descrution of one of the path chains.

In the case of a single hierarchy this would mean that certain objects
would fail to validate. In the presence of two hierarchies, however,

a CRL revocation nay force the preferred path to be destroyed. If

the RP later deternines that the CRL revocation should not have
occurred, he is faced with an undesirable situation: the deprecated
path will be discovered. In order to prevent this outcome, an RP

MUST be able to configure one or nore additional repository URI'S

in support of local trust anchor managenent.

6.1 No state bits set

If the CRL nanmes a certificate that has neither the ORIG@ NAL state
bit set nor the PARA state bit set, revocation proceeds normally. Al
children of the revoked certificate have their state nodified so that
the NOCHAIN state bit is set.

6.2 ORIG@ NAL state bit set

If the CRL nanes a certificate with the ORIG NAL state bit set and
the PARA state bit clear, then this certificate is revoked as usual
If this original certificate also has the TARGET state bit set, then
the correspondi ng paracertificate (if it exists) is not revoked; if
this original certificate has the TARGET state bit clear, then the
correspondi ng paracertificate is revoked as well. Note that since all
the children of the original certificate have been re-parented to be
children of the correspondi ng paracertificate, as described above,
the revocation algorithm MJUST NOT set the NOCHAIN state bit on these
children unless the paracertificate is also revoked. Note al so that
if the original certificate is revoked but the paracertificate is not
revoked, the paracertificate retains its PARA state bit. This is to
ensure that path discovery proceeds preferentially through the
paracertificate hierarchy, as described above.

6.3 PARA state bit set

If the CRL names a certificate with the PARA state bit set and the
ORI G NAL state bit clear, this CRL nust have been issued, perforce

by the RP itself. This is because all the paracertificates are
children of the RPPs TA certificate. (Recall that a TAis not revoked
via a CRL; it is nerely renoved fromthe repository.) The
paracertificate is revoked and all children of the paracertificate
have the NOCHAIN state bit set. No action is taken on the
corresponding original certificate; in particular, its ORIA NAL state
bit is not cleared.

Note that the serial nunbers of paracertificates are synthesized

according to the procedure given in Table 1, rather than being
assigned by an al gorithmunder the control of the (original) issuer

Reynol ds, et al Expi res Cctober 2, 2013 [Page 23]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

6.4 Both ORIG NAL and PARA state bits set

10

10.

This is an error. The revocation algorithm MJST alert the user and
take no further action.

Security Considerations

The goal of the algorithmdescribed in this docunent is to enable an
RP to inpose its own view of the RPKI, which is intrinsically a
ecurity function. An RP using a constraints file is trusting the
assertions made in that file. Errors in the constraints file used

by an RP can undernine the security offered by the RPKI, to that RP.
In particular, since the paracertificate hierarchy is intended to
trunp the original certificate hierarchy for the purposes of path

di scovery, an inproperly constructed paracertificate hierarchy could
val idate ROAs that would otherwise be invalid. It could al so

declare as invalid ROAs that would otherwi se be valid. As a result,
an RP nust carefully consider the security inplications of the
constraints file being used, especially if the file is provided by

a third party.

| ANA Consi der ati ons

[Note to | ANA, to be renoved prior to publication: there are no | ANA
considerations stated in this version of the docunent.]

Acknowl edgenent s
The authors would |Iike to acknow edge the significant contributions
of Charles Gardiner, who was the original author of an interna
version of this document, and who contributed significantly to its
evolution into the current version

Ref er ences

1 Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Levels", BCP 14, RFC 2119, March 1997.

[RFC3513] Hi nden, R, and S. Deering, "lInternet Protocol Version 6
(1 Pv6) Addressing Architecture", RFC 3513, April 2003.

[RFC3779] Lynn, C., Kent, S., and K Seo, "X 509 Extensions for IP
Addresses and AS Identifiers", RFC 3779, June 2004.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housl ey, R, and W Polk, "Internet X 509 Public Key

Reynol ds, et al Expi res Cctober 2, 2013 [Page 24]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", RFC 5280, May 2008.

[RFC5396] Huston, G, and G M chael son, "Textual Representation of
Aut ononobus System (AS) Nunbers", RFC 5396, Decenber 2008.

[RFC6480] Lepinski, M and S. Kent, "An Infrastructure to Support
Secure Internet Routing", RFC 6480, February 2012.

[RFC6481] Huston, G, Loomans, R, and G Mchaelson, "A Profile
for Resource Certificate Policy Structure", RFC 6481,
Feburary 2012.

[RFC6487] Huston, G, Mchaelson, G, and R Loomans, "A Profile

for X. 509 PKI X Resource Certificates", RFC 6487, February
2012.

10.2 Informative References
None.

Aut hors’ Addr esses

St ephen Kent

Rayt heon BBN Technol ogi es
10 Moul ton St.

Canbri dge, MA 02138

Emai | : kent @bn. com
Mat t hew Lepi nski

Rayt heon BBN Technol ogi es
10 Mbulton St.

Canbri dge, MA 02138

Emai | : m epi nsk@bn. com
Mark C. Reynol ds

I sl and Peak Software

328 Virginia Road
Concord, MNA 01742

Emai | : ncr @ sl andpeaksof t war e. com

Reynol ds, et al Expi res Cctober 2, 2013 [Page 25]

| nt er net -

Appendi x

TBO
via

Dr aft RPKI Local TA Managenent

A: Sanple Constraints File

Sanpl e constraints file for TBO LTA Test Corporation

manages its own | ocal (10.x.x.x) address space
the target blocks in this file.

: Rel ying party subsection. TBO uses ssh-agent as
; a software cryptographi c agent.

PRI VATEKEYMETHCD OB(Q(ssh- agent)
TACERTI FI CATE t bonast er. cer

Fl ags subsecti on

Al ways use the resources in this file to augnent

Al ways process resource conflicts in the tree, even
if the target certificate is m ssing.
Al ways search the entire tree.

; certificate resources

CONTROL resource_nouni on FALSE
CONTROL intersection_al ways TRUE
CONTROL treegrowh TRUE

Tags subsection

Copy the original cert’s validity dates.

; Use
. Use
i Use
TAG
TAG

TAG
TAG

the default policy OD.
our own CRLDP.
our own Al A

Xval idity dates C
Xcp D
Xcrl dp rsync://tbo_lta_test.conl pub/ CRLs
Xai a rsync://tbo_lta_test.coni pub/repos

; Bl ock subsection

Reynol ds,

et al Expi res Cctober 2, 2013

Apr 5, 2013

[Page 26]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

; First block: TBO Corporate

; Resource Hol der: TBO Corporation

SKI 00112233445566778899998877665544332211
| Pv4
10.2.3/ 24
10. 8/ 16
| Pv6
2001: db8::/32
ASH
60123
5507

: Second bl ock: TBO LTA Test Enforcenent Division

; Resource Hol der: TBO Corporation

SKI' 653420AF758421CF600029FF857422AA6833299F
| Pv4
10. 2. 8/ 24
10. 47/ 16
| Pv6
ASH
60124

Third bl ock: TBO LTA Test Acceptance Corporation
Quality financial services since sonetine
| at e yest erday.

; Resource Hol der: TBO Acceptance Corporation

SKI 19: 82: 34: 90: 8b: a0: 9c: ef : 00: af : a0: 98: 23: 09: 82: 4b: ef : ab: 98: 09
| Pv4
10.3.3/24
| Pv6
ASH
60125

; End of TBO constraints file
Appendi x B: Optional Sorting Al gorithmfor Ancestor Processing

Sorting is perforned in an effort to elimnate any order dependencies
in ancestor processing, as described in section 4.2.3 of this

Reynol ds, et al Expi res Cctober 2, 2013 [Page 27]

Internet-Draft RPKI Local TA Managenent Apr 5, 2013

docunment. The sorting algorithmdoes this by rearranging the
processing of certificates such that if Ais an ancestor of B, Bis
processed before A. The sorting algorithmis an OPTI ONAL part of
ancestor processing. Sorting proceeds as follows. The collection
created at the beginning of ancestor processing is traversed and any
certificate in the collection that is visited as a result of path

di scovery is tenmporarily nmarked. After the traversal, all unmarked
certificates are noved to the begi nning of the collection. The

remai ning marked certificates are unmarked, and a traversal again
perforned through this sub-collection of previously narked
certificates. The sorting algorithmproceeds iteratively until al
certificates have been sorted or until a predeterm ned fixed nunber
of iterations has been performed. (Eight is suggested as a nunificent
val ue for the upper bound, since the nunber of sorting steps need not
be any greater than the maxi num depth of the tree.) Finally, the
ancestor processing algorithmis applied in turn to each certificate
in the remaining sorted collection. If the sorting algorithmfails to
converge, that is if the maxi mum nunber of iterations has been
reached and unsorted certificates remain, the inplenentati on SHOULD
warn the user.

Reynol ds, et al Expi res Cctober 2, 2013 [Page 28]

