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Abstract

   The TCP protocol relies on receivers sending accurate and timely
   feedback to the sender.  Currently the sender has no means to verify
   that a receiver is correctly sending this feedback according to the
   protocol.  A receiver that is non-compliant has the potential to
   disrupt a sender’s resource allocation, increasing its transmission
   rate on that connection which in turn could adversely affect the
   network itself.  This document presents a two stage test process that
   can be used to identify whether a receiver is non-compliant.  The
   tests enshrine the principle that one shouldn’t attribute to malice
   that which may be accidental.  The first stage test causes minimum
   impact to the receiver but raises a suspicion of non-compliance.  The
   second stage test can then be used to verify that the receiver is
   non-compliant.  This specification does not modify the core TCP
   protocol - the tests can either be implemented as a test suite or as
   a stand-alone test through a simple modification to the sender
   implementation.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 4, 2015.
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1.  Introduction

   This document details an experimental test designed to allow a TCP
   sender to identify when a receiver is misbehaving or is non-
   compliant.  It uses the standard wire protocol and protocol semantics
   of basic TCP [RFC0793] without modification.  The hope is that if the
   experiment proves successful then we will be able to obsolete the
   experimental TCP nonce [RFC3540], hence freeing up valuable
   codepoints in both the IPv4 header and the TCP header.

   When any network resource (e.g. a link) becomes congested, the
   congestion control protocol [RFC5681] within TCP/IP expects all
   receivers to correctly feed back congestion information and it
   expects each sender to respond by backing off its rate in response to
   this information.  This relies on the voluntary compliance of all
   senders and all receivers.

   Over recent years the Internet has become increasingly adversarial.
   Self-interested or malicious parties may produce non-compliant
   protocol implementations if it is to their advantage, or to the
   disadvantage of their chosen victims.  Enforcing congestion control
   when trust can not be taken for granted is extremely hard within the
   current Internet architecture.  This specification deals with one
   specific case: where a TCP sender is TCP compliant and wants to
   ensure its receivers are compliant as well.

   Simple attacks have been published showing that TCP receivers can
   manipulate feedback to fool TCP senders into massively exceeding the
   compliant rate [Savage].  Such receivers might want to make senders
   unwittingly launch a denial of service attack on other flows sharing
   part of the path between them [Sherwood].  But a more likely
   motivation is simple self-interest---a receiver can improve its own
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   download speed with the sender acting as an unwitting accomplice.
   [Savage] quotes results that show this attack can reduce the time
   taken to download an HTTP file over a real network by half, even with
   a relatively cautious optimistic acknowledgemnt strategy.

   There is currently no evidence that any TCP implementations are
   exploiting any of the attacks mentioned above.  However this may be
   simply because there is no widely available test to identify such
   attacks.  This document describes a test process that can identify
   such non-compliance by receivers should it start to become an issue.
   The aim of the authors is to provide a test that is safe to implement
   and that can be recommended by the IETF.  The test can be deployed as
   a separate test suite, or in existing senders, but this document does
   not mandate that it should be implemented by senders.

   The measures in this specification are intended for senders that can
   be trusted to behave.  This scheme can not prevent misbehaving
   senders from causing congestion collapse of the Internet.  However
   the very existence of a test scheme such as this should act as a
   disincentive against non-compliant receivers.

   Senders do not have to be motivated solely by "the common good" to
   deploy these changes.  It is directly in their own interest for
   senders serving multiple receivers (e.g. large file servers and
   certain file-sharing peers) to detect non-compliant receivers.  A
   large server relies in part on network congestion feedback to
   efficiently apportion its own resources between receivers.  If such a
   large server devotes an excessive fraction of its own resources to
   non-compliant receivers, it may well hit its own resource limits and
   have to starve other half-connections even if their network path has
   spare capacity.

   The proposed tests do not require the receiver to have deployed any
   new or optional protocol features, as any misbehaving receiver could
   simply circumvent the test by claiming it did not support the
   optional feature.  Instead, the sender emulates network re-ordering
   and then network loss to test that the receiver reacts as it should
   according to the basic TCP protocol.  It is important that the level
   of emulated re-ordering that such a test introduces should not
   adversely impact compliant receivers.

   This document specifies a two-stage test in which the sender
   deliberately re-orders some data segments so as to check if the
   destination correctly acknowledges out-of-order segments.  The first
   stage test introduces a small reordering which will have a related
   very minor performance hit.  It is not a conclusive test of
   compliance.  However, failing it strongly suggests the receiver is
   non-compliant.  This raises sufficient suspicion to warrant the more
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   intrusive but conclusive second stage if this non-compliance is going
   to be sanctioned.  The second stage proves beyond doubt whether the
   receiver is non-compliant but it also requires significant re-
   ordering, which harms performance.  Therefore it should not be used
   unless a receiver is already strongly suspected of non-compliance
   (through failing the first stage).

   The technique is designed to work with all known variants of TCP,
   with or without ECN [RFC3168], with or without SACK [RFC2018], and so
   on.  The technique is probably transferable to derivatives of TCP,
   such as SCTP [RFC2960], but separate specifications will be required
   for such related transports.  The requirements for a robust solution
   in Section 4 serve as guidelines for these separate specifications.

2.  Requirements notation

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

3.  The Problems

   TCP is widely used as the end-to-end transport in the Internet.  TCP
   utilises a number of mechanisms to avoid congestion [RFC5681] in
   order to avoid the congestion collapses that plagued the Internet in
   the mid 1980s.  These mechanisms all rely on knowing that data has
   been received (through acknowledgments of that data) and knowing when
   congestion has happened (either through knowing that a segment was
   lost in flight or through being notified of an Explicit Congestion
   Notification (ECN) [RFC3168]).  TCP also uses a flow control
   mechanism to control the rate at which data is sent [RFC0813].  Both
   the flow control and congestion avoidance mechanisms utilise a
   transmission window that limits the number of unacknowledged segments
   that are allowed to be sent at any given time.  In order to work out
   the size of the transmission window, TCP monitors the average round
   trip time (RTT) for each flow and the number of unacknowledged
   segments still in flight.

   A strategising receiver can take advantage of the congestion and flow
   control mechanisms to increase its data throughput.  The three known
   ways in which it can do this are: optimistic acknowledgements,
   concealing segment losses and dividing acknowledgements into smaller
   parts.  The first two are examined in more detail below and details
   of the third can be found in [Savage].
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3.1.  Concealing Lost Segments

   TCP is designed to view a lost segment as an indication of congestion
   on the channel.  This is because TCP makes the reasonable assumption
   that packets are most likely to be lost through deliberately being
   dropped by a congested node rather than through transmission losses
   or errors.

   In order to avoid congestion collapse [RFC3714], whichever TCP
   connection detects the congestion (through detecting that a packet
   has been dropped or marked) is expected to respond to it either by
   reducing its congestion window to 1 segment after a timeout or by
   halving it on receipt of three duplicate acks (the precise rules are
   set out in [RFC5681]).

   For applications where missing data is not an issue, it is in the
   interest of a receiver to maximise the data rate it gets from the
   sender.  If it conceals lost segments by falsely generating
   acknowledgements for them it will not suffer a reduction in data
   rate.  There are a number of ways to make an application loss-
   insensitive.  Some applications such as streaming media are
   inherently insensitive anyway, as a loss will just be seen as a
   transient error.  TCP is widely used to transmit media files, either
   audio or video, which are relatively insensitive to data loss
   (depending on the encoding used).  Also senders may be serving data
   containing redundant parity to allow the application to recreate lost
   data.  A misbehaving receiver can also exploit application layer
   protocols such as the partial GET in HTTP 1.1 [RFC2616] to recover
   missing data over a secondary connection.
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     |---.__    Drop            |     |---.__    Drop            |
     |---.__‘---#200            |     |---.__‘---#200            |
     |      ‘---.__             |     |      ‘---.__             |
     |             ‘---.__      |     |             ‘---.__      |
     |                  _,‘300->|     |                  _,‘300->|
     |           __,---’        |     |           __,---’        |
     |     _,---’               |     |     _,---’               |
     |<-100                     |     |<-300                     |
     |---.__                    |     |---.__                    |
     |---.__‘---.__             |     |---.__‘---.__             |
     |      ‘---.__‘---.__      |     |---.__‘---.__‘---.__      |
     |             ‘---.__‘400->|   ,-|---.__‘---.__‘---.__‘400->|
     |                  _,‘500->|   | |      ‘---.__‘---._,‘500->|
     |           __,---’        |   |R|           __˜---.__‘600->|
     |     _,---’               | - |T|     _,---’       _,‘700->|
     |<-100                     | | |T|<-500      __,---’        |
     |---.__                    | | | |     _,---’               |
   ,-|---.__‘---.__             | | ‘-|<-700                     |
   | |      ‘---.__‘---.__      | |<-.
   | |             ‘---._,‘600->| |   \
   |N|           __,---’_,‘700->| -    +----------------------+
   |E|     _,---’__,---’        |      | receives segment 700 |
   |W|<-100_,---’               |      | much sooner          |
   | |<-100_                    |      +----------------------+
   |R|---.__‘---.__             |
   |T|      ‘---.__‘---.__      |
   |T|             ‘---._,‘200->|
   | |           __,---’  ‘300->| <-- No ack as duplicate data
   | |     _,---’               |
   ‘-|<-700                     |

                    Figure 1: Concealing lost segments

3.2.  Optimistic Acknowledgements

   Optimistic acknowledgements were identified as a possible attack in
   [Savage].  If a receiver is downloading a file from a server, it is
   probably in its interest to acquire as high a bandwidth as possible
   for this.  One way of increasing the bandwidth is to encourage the
   sender to believe the round trip time is shorter than it actually is.
   This means the sender will open up its transmission window faster and
   thus will send data faster.  Of course any lost segments will also be
   concealed during this attack.

   The receiver can achieve this by sending acknowledgements for data it
   hasn’t actually received yet.  As long as the acknowledgement is for
   a packet that has already been transmitted, the sender will assume
   the RTT has become shorter.  This will cause it to increase its
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   transmission window more rapidly and thus send more data.  Optimistic
   acknowledgements are particularly damaging since they can also be
   used to significantly amplify the effect of a denial of service (DoS)
   attack on a network.  This form of attack is explained in more detail
   in [Sherwood].

     |---.__                    |     |---.__                    |
     |      ‘---.__             |     |      ‘---.__             |
     |             ‘---.__      |     |             ‘---.__      |
     |                  _,‘100->|     |                  _,‘100->|
     |           __,---’        |     |           __,---’        |
     |     _,---’               |     |     _,---’               |
     |<-100                     |     |<-100                     |
     |---.__                    |     |---.__                    |
   ,-|---.__‘---.__             |   ,-|---.__‘---.__             |
   | |      ‘---.__‘---.__      |   |R|      ‘---.__‘---.__      |
   |R|             ‘---.__‘200->|   |T|             ‘---._,‘200->|
   |T|                  _,‘300->|   |T|           __,---’  ‘300->|
   |T|           __,---’        |   | |     _,---’               |
   | |     _,---’               |   ‘-|<-300                     |
   ‘-|<-300                     |     |---.__                    |
     |---.__                    |     |---.__‘---.__             |
     |---.__‘---.__             |     |---.__‘---.__‘---.__      |
     |---.__‘---.__‘---.__      |     |---.__‘---.__‘---._,‘400->|
     |---.__‘---.__‘---.__‘400->|     |      ‘---.__‘---._,‘500->|
     |      ‘---.__‘---._,‘500->|     |     _,---’__˜---.__‘600->|
     |           __˜---.__‘600->|     |<-500_,---’         ‘700->|
     |     _,---’       _,‘700->|     |<-700                     |
     |<-500      __,---’        |
     |     _,---’               |
     |<-700                     |

   The flow on the left acknowledges data only once it is received.  The
   flow on the right acknowledges data before it is received and
   consequently the apparent RTT is reduced.

                   Figure 2: Optimistic acknowledgements

   In 2005 US-CERT (the United States Computer Emergency Readiness Team)
   issued a vulnerability notice [VU102014] specifically addressed to 80
   major network equipment manufacturers and vendors who could be
   affected if someone maliciously exploited optimistic acknowledgements
   to cause a denial of service.  This highlights the potential severity
   of such an attack were one to be launched.  It should be noted
   however that the primary motivation for using optimistic
   acknowledgement is likely to be the performance gain it gives rather
   than the possible negative impact on the network.  Application
   writers may well produce "Download Accelerators" that use optimistic
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   acknowledgements to achieve the performance increase rather than the
   current parallel connection approach most use.  Users of such
   software would be effectively innocent parties to the potential harm
   that such a non-compliant TCP could cause.

4.  Requirements for a robust solution

   Since the above problems come about through the inherent behaviour of
   the TCP protocol, there is no gain in introducing a new protocol as
   misbehaving receivers can claim to only support the old protocol.
   The best approach is to provide a mechanism within the existing
   protocol to test whether a receiver is compliant.  The following
   requirements should be met by any such test in TCP and are likely to
   be applicable for similar tests in other transport protocols:

   1.  The compliance test must not adversely affect the existing
       congestion control and avoidance algorithms since one of the
       primary aims of any compliance test is to reinforce the integrity
       of congestion control.

   2.  Any test should utilise existing features of the TCP protocol.
       If it can be implemented without altering the existing protocol
       then implementation and deployment are easier.

   3.  The receiver should not play an active role in the process.  It
       is much more secure to have a check for compliance that only
       requires the receiver to behave as it should anyway.

   4.  It should not require the use of any negotiable TCP options.
       Since the use of such options is by definition optional, any
       misbehaving receiver could just choose not to use the appropriate
       option.

   5.  If this is a periodic test, the receiver must not be aware that
       it is being tested for compliance.  If a misbehaving receiver can
       tell that it is being tested (by identifying the pattern of
       testing) it can choose to respond compliantly only whilst it is
       being tested.  If the test is always performed this clearly
       doesn’t apply.

   6.  If the sender actively sanctions any non-compliance it
       identifies, it should be certain of the receiver’s non-compliance
       before taking action against it.  Any false positives might lead
       to inefficient use of network resources and could damage end-user
       confidence in the network.

   7.  The testing should not significantly reduce the performance of an
       innocent receiver.

Moncaster, et al.                                               [Page 9]



                   TCP Test Against Receiver Cheating          July 2014

5.  Existing Proposals

5.1.  Randomly Skipped Segments

   [Sherwood] suggests a simple approach to test a receiver’s
   compliance.  The test involves randomly dropping segments at the
   sender before they are transmitted.  All TCP "flavours" require that
   a receiver should generate duplicate acknowledgements for all
   subsequent segments until a missing segment is received.  This system
   requires that SACK be enabled so the sender can reliably tell that
   the duplicate acknowledgements are generated by the segment that is
   meant to be missing and are not concealing other congestion.  Once
   the first duplicate acknowledgement arrives, the missing segment can
   then be "re-transmitted".  Because this loss has been deliberately
   introduced, the sender doesn’t treat it as a sign of congestion.  If
   a receiver sends an acknowledgement for a segment that was sent after
   the gap, it proves it is misbehaving or that its TCP is completely
   non-compliant.  It can then be sanctioned.  As soon as the first
   duplicate acknowledgement is received the missing segment is "re-
   transmitted".  This will introduce a 1 RTT delay for some segments
   which could adversely affect some low-latency applications.

   This scheme does work perfectly well in principle and does allow the
   sender to clearly identify misbehaviour.  However it fails to meet
   requirement 4 in Section 4 above since it requires SACK to be used.
   If SACK were not used then it would fail to meet requirement 1 as it
   would be impossible to differentiate between the loss introduced on
   purpose and any additional loss introduced by the network.

   It might be possible to incentivise the use of SACK by receivers by
   stating that senders are entitled to discriminate against receivers
   that don’t support it.  Given that SACK is now widely implemented
   across the Internet this might be a feasible, but controversial,
   deployment strategy.  However the solution in Section 6 builds on
   Sherwood’s scheme but avoids the need for SACK.

5.2.  The ECN nonce

   The authors of the ECN scheme [RFC3168] identified the failure to
   echo ECN marks as a potential attack on ECN.  The ECN nonce was
   proposed as a possible solution to this in the experimental
   [RFC3540].  It uses a 1 bit nonce in every IP header.  The nonce
   works by randomly setting the ECN field to ECT(0) or ECT(1).  The
   sender then maintains the least significant bit of the sum of this
   value and stores the expected sum for each segment boundary.  At the
   receiver end, the same cumulative 1-bit sum is calculated and is
   echoed back in the NS (nonce sum) flag added to the TCP header.  If a
   packet has been congestion marked then it loses the information of
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   which ECT codepoint it was carrying.  A receiver wishing to conceal
   the ECN mark will have to guess whether to increment NS or not.  Once
   congestion has been echoed back and the source has started a
   congestion response the nonce sum in the TCP header is not checked.
   Once congestion recovery is over the source resets its NS to that of
   the destination and starts checking again.

   On the face of it this solution also fully covers the two problems
   identified in Section 3.  If a receiver conceals a lost segment it
   has to guess what mark was there and, over several guesses, is very
   likely to be found out.  If a receiver tries to use optimistic
   acknowledgements it has to guess what nonce was set on all the
   packets it acknowledges but hasn’t received yet.  However there are
   some key weaknesses to this system.  Firstly, it assumes that ECN
   will be widely deployed (not currently true).  Secondly, it relies on
   the receiver honestly declaring support for both ECN and the ECN
   nonce - a strategising receiver can simply declare it is neither ECN
   nor ECN nonce capable and thus avoid the nonce.  Thirdly, the
   mechanism is suspended during any congestion response.  Comparing it
   against the requirements in Section 4 above, it is clear that the ECN
   nonce fails to meet requirements 3 and 4 and arguably fails to meet
   requirement 2 as [RFC3540] is experimental.  The authors do state
   that any sender that implements the ECN nonce is entitled to
   discriminate against any receiver that doesn’t support it.  Given
   there are currently no implementations of the ECN nonce,
   discriminating against the overwhelming majority of receivers that
   don’t support it is not a feasible deployment strategy.

5.3.  A transport layer nonce

   One possible solution to the above issues is a multi-bit transport
   layer nonce.  Two versions of this are proposed in [Savage].  The
   first is the so called "Singular Nonce" where each segment is
   assigned a unique random number.  This value is then echoed back to
   the receiver with the ack for that segment.  The second version is
   the "Cumulative Nonce" where the nonce is set as before, but the
   cumulative sum of all nonces is echoed back.  Whilst such a system is
   robust and allows a sender to correctly identify a misbehaving
   receiver, it has the key drawback that it requires either the
   creation of a new TCP option to carry the nonce and nonce reply or it
   requires the TCP header to be extended to include both these fields.

   This proposal clearly breaches several of the requirements listed in
   Section 4.  It breaches requirement 2 in that it needs a completely
   new TCP option or a change to the TCP header.  It breaches
   requirement 3 because it needs the receiver to actively echo the
   nonce (as does the ECN nonce scheme) and if it uses a TCP option it
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   breaches requirement 4.  On the face of it there is no obvious route
   by which this sort of system can be widely implemented.

6.  The Test for Receiver Non-compliance

6.1.  Solution Overview

   The ideal solution to the above problems should fully meet the
   requirements set out in Section 4.  The most important of these is
   that the solution should leverage existing TCP behaviours rather than
   mandating new behaviours and options.  The proposed solution utilises
   TCP’s receiver behaviour on detecting missing data.  To test a
   receiver the sender delays a segment during transmission by D
   segments.  There is a trade off because increasing D increases the
   probability of detecting non-compliance but also increases the
   probability of masking a congestion event during the test.  The
   completely safe strategy for the sender would be to reduce its rate
   pessimistically as if there were congestion during the test however
   this will impact the performance of its receivers, thus breaching
   requirement 7.  To overcome this dilemma, the test consists of two
   stages.  In the first stage, the sender uses small displacements
   without the pessimistic congestion response to determine which
   receivers appear to be non-compliant.  The sender can then prove the
   non-compliance of these receivers by subjecting them to a
   deterministic test.  This test uses a longer displacement but given
   the receiver is already under suspicion, it can risk harming
   performance by pessimistically reducing its rate as if the segment it
   held back was really lost by the network.  The tests can either be
   implemented as part of a test suite or as a stand-alone modification
   to the TCP sender implementation.  References to the TCP sender in
   the rest of this document should be taken to include either type of
   implementation.

6.2.  Probabilistic Testing

   The first requirement for a sender is to decide when to test a
   receiver.  This document doesn’t specify when the test should be
   performed but the following guidance may be helpful.  The simplest
   option is for a sender to perform the test at frequent random
   intervals for all its half-connections.  There are also some
   heuristic triggers that might indicate the need for a test.  Firstly,
   if a sender is itself too busy, it would be sensible for it to test
   all its receivers.  Secondly, if the sender has many half-connections
   that are within a RTT of a congestion response, it would be sensible
   to test all the half-connections that aren’t in a congestion
   response.  Thirdly, the sender could aim to test all its half-
   connections at least once.  Finally it is to be expected that there
   is a certain degree of existing segment reordering and thus a sender
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   should be suspicious of any receiver that isn’t generating as many
   duplicate acknowledgements as other receivers.  [Piratla] explores
   how prevalent reordering might be in the Internet though it is
   unclear whether the figures given are more widely applicable.

   Like the skipped segment solution in Section 5.1, the proposed
   solution depends on the strict requirement that all TCP receivers
   have to send a duplicate acknowledgement as soon as they receive an
   out-of-order segment.  This acknowledges that some data has been
   received, however the acknowledgement is for the last in order
   segment that was received (hence duplicating an acknowledgment
   already made).  SACK extends this behaviour to allow the sender to
   infer exactly which segments are missing.  This leads to a simple
   statement: if a receiver is behaving compliantly it must respond to
   an out-of-order packet by generating a duplicate acknowledgement.

   Following from the above statement, a sender can test the compliance
   of a given receiver by simply delaying transmission of a segment by
   several places.  A compliant receiver will respond to this by
   generating a number of duplicate acknowledgements.  The sender would
   strongly suspect a receiver of non-compliance if it received no
   duplicate acknowledgements as a result of the test.  A misbehaving
   receiver can only conceal its actions by waiting until the delayed
   segment arrives and then generating an appropriate stream of
   duplicate acknowledgements to appear to be honest.  This removes any
   benefits it may be gaining from cheating because it will
   significantly increase the RTT observed by the sender.

6.2.1.  Performing the Probabilistic Test

   The actual mechanism for conducting the test is extremely simple.
   Having decided to conduct a test the sender selects a segment, N.  It
   then chooses a displacement, D (in segments) for this segment where
   strictly 2 < D < K - 2 where K is the current window size.  In
   practice only low values of D should be chosen to conceal the test
   among the background reordering and limit the chance of masking
   congestion.  D SHOULD be 6 or less for an initial test.  D MUST be
   greater than 2 to allow for the standard fast retransmit threshold of
   3 duplicate acknowledgements.  If K is less than 5, the sender should
   arguably not perform any compliance testing.  This is because when
   the window is so small then non-compliance is not such a significnat
   issue.  The exception to this might be when this test is being used
   for testing new implementations.  To conduct the probabilistic test,
   instead of transmitting segment N, it transmits N+1, N+2, etc. as
   shown in the figure below.  Once it has transmitted N+D it can
   transmit segment N.  The sender needs to record the sequence number,
   N as well as the displacement, D.
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   According to data in [Piratla], as many as 15% of segments in the
   Internet arrive out of order though this claim may not be accurate.
   Whatever the actual degree of re-ordering, receivers always expect
   occasional losses of packets which they cannot distinguish from re-
   ordering without waiting for the re-ordered packet to arrive.
   Consequently a misbehaving receiver is unsure how to react to any
   out-of-order packets it receives.  It should be noted that the
   natural reordering may reduce the displacement deliberately
   introduced by the test so the sender should conduct the test more
   than once.

       |--.._                        |
       |--.._‘--.._                  |
       |--.._‘--.._‘--.._            |   +----------------------------+
       |--.._‘--.._‘--.._‘--.._      |   | This figure shows how a    |
       |--.._‘--.._‘--.._‘--.._‘N-1->|   | compliant receiver reacts  |
       |--.._‘--.._‘--.._‘--.._‘N+1->|   | to a probabilistic test    |
       |--.._‘--.._‘--.._‘-=.._‘N+2->|   | with D=4. It sends 4 dup.  |
       |     ‘--.._‘-=.._‘-=.._‘N+3->|   | acknowledgements back to   |
       |      _,--’_-=.._‘-=.._‘N+4->|   | the sender before sending  |
       |<-N-1’_,--’__,--’:-=.._‘-N-->|   | an acknowledgement for N+4 |
       |<-N-1’_,--’__,--’__,--’‘N+5->|   +----------------------------+
       |<-N-1’_,--’__,--’__,--’__,--’|
       |<-N-1’_,--’__,--’__,--’      |
       |<-N-1’_,--’__,--’            |
       |<-N+4’_,--’                  |
       |<-N+5’

      Figure 3: A receiver reacting honestly to a probabilistic test

   During testing, loss of segment L in the range from N+1 to N+D
   inclusive will be temporarily masked by the duplicate
   acknowledgements from the intentional gap that was introduced.  In
   this case the sender’s congestion response will be delayed by at most
   the offset D.  If there is an actual loss during the test then, once
   the receiver receives segment N, it will generate an acknowledgement
   for L-1.  This will lie between N and N+D.  Thus it is reasonable to
   treat receipt of any acknowledgement between N and N+D inclusive as
   an indication of congestion and react accordingly.  This will also
   discourage the receiver from sending optimistic acknowledgements in
   case these prove to lie in the middle of a testing sequence, in which
   case it will trigger a congestion response by the sender.  It also
   means a dishonest receiver has to wait for a full K segments after
   any genuine lost segment to be sure it isn’t a test as it will
   otherwise trigger a congestion response.  Delaying by that long will
   quickly increase the RTT estimate and will soon reduce the
   transmission rate by as much as if the receiver had reacted honestly
   to the congestion.
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   As an additional safety measure, if the sender is performing slow
   start when it decides to test the receiver, it should change to
   congestion avoidance.  The reason for this is in case there is any
   congestion that is concealed during the test.  If there is
   congestion, and the sender’s window is still increasing
   exponentially, this might significantly exacerbate the situation.
   This does mean that any receiver being tested during this period will
   suffer reduced throughput, but such testing should only be triggered
   by the sender being overloaded.

6.2.2.  Assessing the Probabilistic Test

   This approach to testing receiver compliance appears to meet all the
   requirements set out in Section 4.  The most attractive feature is
   that it enforces equivalence with compliant behaviour.  That is to
   say, a receiver can either honestly report the missing packets or it
   can suffer a reduced throughput by delaying segments and increasing
   the RTT.  The only significant drawback is that during a test it
   introduces some delay to the reporting of actual congestion.  Given
   that TCP only reacts once to congestion in each RTT the delay doesn’t
   significantly adversely affect the overall response to severe
   congestion.

   Some receivers may choose to misbehave despite this.  These can be
   quickly identified by looking at their acknowledgements.  A receiver
   that never sends duplicate acknowledgements in response to being
   tested is likely to be misbehaving.  Equally, a receiver that delays
   transmission of the duplicate acknowledgements until it is sure it is
   being tested will leave an obvious pattern of acknowledgements that
   the sender can identify.  Because a receiver is unlikely to be able
   to differentiate this test from actual re-ordering events, the
   receiver will be forced to behave in the same fashion for any re-
   ordered packet even in the absence of a test, making it continually
   appear to have longer RTT.

6.2.3.  RTT Measurement Considerations

   Clearly, if the sender has re-ordered segment N, it cannot use it to
   take an accurate RTT measurement.  However it is desirable to ensure
   that, during a test, the sender still measures the RTT of the flow.
   One of the key aspects of this test is that the only way for an
   actually dishonest receiver to cheat the test is to delay sending
   acknowledgements until it is certain a test is happening.  If
   accurate RTTs can be measured during a test, this delay will cause a
   dishonest receiver to suffer an increase in RTT and thus a reduction
   in data throughput.
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   Measurement of the RTT usually depends on receiving an
   acknowledgement for a segment and measuring the delay between when
   the segment was sent and when the acknowledgement arrives.  The TCP
   timestamp option is often used to provide accurate RTT measurement
   but again, this is not going to function correctly during the test
   phase.  During a test therefore, the RTT has to be estimated using
   the arrival of duplicate acknowledgements.  Figure 4 shows how one
   can measure the RTT in this way, and also demonstrates how this will
   increase if a dishonest sender chooses to cheat.  However it is not
   sufficient simply to measure a single RTT during the test.
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       |‘--._                      |
    ,--|‘--._‘--._                 |  +----------------------------+
   | C |‘--._‘--._‘--._            |  | Segment N is delayed by 3  |
   | h |‘--._‘--._‘--._‘--._       |  | segments. This triggers 3  |
   | e |‘--._‘--._‘--._‘--._‘-N-1->|  | duplicate acknowledgements |
   | c |     ‘--._‘--._‘--._‘-N+1->|  +----------------------------+
   | k |          ‘--._‘--._‘=N+2->|
   |   |               ‘-=._‘=N+3->|  +----------------------------+
   | R |           _,--’_,- ‘=-N=->|  | The RTT can be measured by |
   | T |      _,--’_,--’_,--’_,-’ ,|  | timing the gap between N+1 |
   | T |<-N-1’_,--’_,--’_,--’_,--’ |  | being sent and the 1st     |
    ‘--|<-N-1’_,--’_,--’_,--’      |  | duplicate acknowledgement  |
       |<-N-1’_,--’_,--’           |  | being received.            |
       |<-N-1’_,--’                |  +----------------------------+
       |<-N+3’                     |
       |                           |

       |‘--._                      |
    ,--|‘--._‘--._                 |  +----------------------------+
   | R |‘--._‘--._‘--._            |  | Segment N is delayed by 3  |
   | T |‘--._‘--._‘--._‘--._       |  | segments. The sender has   |
   | T |‘--._‘--._‘--._‘--._‘-N-1->|  | decided to cheat so it has |
   |   |     ‘--._‘--._‘--._‘-N+1->|  | to wait until it gets sent |
   | g |          ‘--._‘--._‘=N+2->|  | segment N.                 |
   | r |                ‘-=.‘-N+3->|  +----------------------------+
   | e |           _,--’    ‘--N-->|
   | a |      _,--’               ,|  +----------------------------+
   | t |<-N-1’               _,--’,|  | Once N arrives it has to   |
   | e |   |            _,--’_,--’,|  | send a couple of duplicate |
   | r |  GAP      _,--’_,--’_,--’,|  | acknowledgements so it     |
   |   |   |  _,--’_,--’_,--’      |  | appears to be honest. This |
    ‘--|<-N-1’_,--’_,--’           |  | will increase the RTT that |
       |<-N-1’_,--’                |  | the sender is measuring.   |
       |<-N+3’                     |  +----------------------------+
       |                           |

                 Figure 4: Measuring the RTT during a test

6.2.4.  Negative Impacts of the Test

   It is important to be aware that keeping track of out-of-order data
   segments uses some memory resources at the receiver.  Clearly this
   test introduces additional re-ordering to the network and
   consequently will lead to receivers using additional resources.  In
   order to mitigate against this, any sender that implements the test
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   should only conduct the test at relatively long intervals (of the
   order of several RTTs).

6.2.5.  Protocol Details for the Probabilistic Test

   o  Any TCP sender MAY use the probabilistic test periodically and
      randomly to check the compliance of its receivers.  In particular,
      it would be advantageous for any sender that is heavily loaded to
      identify if it is being taken advantage of by non-compliant
      receivers.

   o  The decision to test MUST be randomised and MAY be based on: the
      current load on the sender; whether the receiver is undergoing a
      congestion response; whether the receiver appears to have
      different flow characteristics to the others; when the receiver
      was last tested.  The interval between tests SHOULD be relatively
      long (order of several RTTs).

   o  To perform the test, the sender selects a segment N.  The
      transmission of this segment will be delayed by D places.  D MUST
      lie between 2 and K-2 exclusively where K is the current size of
      the transmit window.  D SHOULD lie between 3 and 6 inclusively
      except in those circumstances when a receiver has failed to
      respond as expected to an earlier test but the sender chooses not
      to proceed to the deterministic test.  D MUST be generated pseudo-
      randomly and unpredictably.  The actual delay SHOULD be such that
      the receiver can’t distinguish the test segment from the
      background traffic.  If there are less than D segments worth of
      data in the send buffer then the test SHOULD be omitted.

   o  If K < 5, the sender SHOULD NOT conduct a compliance test.

   o  The sequence number N of the delayed segment MUST be recorded by
      the sender as must the amount of delay D.

   o  The senders enters the test phase when it transmits segment N+1
      instead of N.

   o  The sender MUST NOT use segment N to measure the RTT of the flow.
      This is because it won’t get a true acknowledgement for this
      segment.

   o  The sender SHOULD use segment N+1 to measure the RTT using the
      first duplicate acknowledgement it receives to calculate the RTT.
      This is to ensure that a dishonest receiver will suffer from an
      increased RTT estimate.  The sender SHOULD continue checking the
      RTT throughout the test period.
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   o  If the sender receives any duplicate acknowledgements during the
      test phase it MUST check to see if they were generated by the
      delayed segment (i.e. the acknowledged sequence number must be
      that of the preceding segment).  If they are generated to report
      the missing segment N the sender SHOULD NOT react as if they are
      an indication of congestion.

   o  If the sender receives an acknowledgement for a segment with a
      sequence number between N and N+D inclusively it MUST treat this
      as an indication of congestion and react appropriately.

   o  A sender stops being in the test phase when either it receives the
      acknowledgement for segment N+D or when it has received at least D
      duplicate acknowledgments, whichever happens sooner.

   o  If a sender in the test phase receives D or more duplicate
      acknowledgements, then it MUST retransmit segment N and react as
      if there is congestion as specified in [RFC5681].  This is to
      allow for the possibility that segment N may be lost.

   o  If the sender is in the slow start phase it MUST move to
      congestion avoidance as soon as it begins a test.  It MAY choose
      to return to slow start once the test is completed.

   o  If a sender is in the test phase and receives no duplicate
      acknowledgements from the receiver it MUST treat this as
      suspicious and SHOULD perform the more rigorous deterministic test
      set out in Section 6.3.3.

   o  If a sender is in the test phase and the next segment to be
      transmitted has either the FIN or RST bits set, then it must
      immediately stop the test, and transmit segment N before
      transmitting the FIN or RST segment.

   o  A sender MAY choose to monitor the pattern of acknowledgements
      generated by a receiver.  A dishonest receiver is likely to send a
      distinctive pattern of duplicate acknowledgments during the test
      phase.  As they are unable to detect whether it is a test or not
      they are also forced to behave the same in the presence of any
      segment reordering caused by the network.

6.3.  Deterministic Testing

   If after one or more probabilistic tests the sender deems that a
   receiver is acting suspiciously, the sender can perform a
   deterministic test similar to the skipped segment scheme in
   Section 5.1 above.
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6.3.1.  Performing the Deterministic Test

   In order to perform the deterministic test the sender again needs to
   choose a segment, M to use for testing.  This time the sender holds
   back the segment until the receiver indicates that it is missing.
   Once the receiver sends a duplicate acknowledgement for segment M-1
   then the sender transmits segment M.  In the meantime data
   transmission should proceed as usual.  If SACK is not in use, this
   test clearly increases the delay in reporting of genuine segment
   losses by up to a RTT.  This is because it is only once segment M
   reaches the receiver that it will be able to acknowledge the later
   loss.  Therefore, unless SACK is in use, the sender MUST
   pessimistically perform a congestion response following the arrival
   of 3 duplicate acknowledgements for segment M-1 as mandated in
   [RFC5681].

6.3.2.  Assessing the Deterministic Test

   A dishonest receiver that is concealing segment losses will establish
   that this isn’t a probabilistic test once the missing segment fails
   to arrive within the space of 1 congestion window.  In order to
   conceal the loss the receiver will simply carry on acknowledging all
   subsequent data.  The sender can therefore state that if it receives
   an acknowledgement for a segment with a sequence number greater than
   M before it has actually sent segment M then the receiver must either
   be cheating or is very non-compliant.

   It is important to be aware that a third party who is able to
   correctly guess the initial sequence number of a connection might be
   able to masquerade as a receiver and send acknowledgements on their
   behalf to make them appear non-compliant or even dishonest.  Such an
   attack can be identified because an honest receiver will also be
   generating a stream of duplicate acknowledgements until such time as
   it receives the missing segment.

6.3.3.  Protocol Details for the Deterministic Test

   o  If a sender has reason to suspect that a receiver is reacting in a
      non-compliant manner to the probabilistic test it SHOULD perform
      the more thorough deterministic test.

   o  To perform the deterministic test the sender MUST select a segment
      M at random.  The sender MUST store this segment in the buffer of
      unacknowledged data without sending it and MUST record the
      sequence number.

   o  If SACK is not being used, the receiver MUST pessimistically
      perform a congestion response following the arrival of the first 3
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      duplicate acknowledgments for segment M-1 as mandated in
      [RFC5681].

   o  If the receiver sends an acknowledgement for a segment that was
      sent after segment M should have been sent, but before segment M
      is actually sent, then the receiver has proved its non-compliance.
      The only possible exception to this is if the receiver is also
      sending a correct stream of duplicate acknowledgements as this
      implies that a third party is interfering with the connection.

   o  As soon as the first duplicate acknowledgement for segment M-1
      arrives, segment M MUST be transmitted.  The effective delay, D,
      of segment M MUST be calculated and stored.

   o  If a sender is in the test phase and the next segment to be
      transmitted has either the FIN or RST bits set, then it must
      immediately stop the test, and transmit segment N before
      transmitting the FIN or RST segment.

   o  Any subsequent acknowledgement for a segment between M and M+D
      MUST be treated as an indication of congestion and responded to
      appropriately as specified in [RFC5681].

6.4.  Responding to Non-Compliance

   Having identified that a receiver is actually being dishonest, the
   appropriate response is to terminate the connection with that
   receiver.  If a sender is under severe attack it might also choose to
   ignore all subsequent requests to connect by that receiver.  However
   this is a risky strategy as it might give an increased incentive to
   launch an attack against someone by making them appear to be behaving
   dishonestly.  It is also risky in the current network where many
   users might share quite a small bank of IP addresses assigned
   dynamically to them by their ISP’s DHCP server.  A safer alternative
   to blacklisting a given IP address might be to simply test future
   connections more rigorously.

6.5.  Possible Interactions With Other TCP Features

   In order to be safe to deploy, this test must not cause any
   unforeseen interactions with other existing TCP features.  This
   section looks at some of the possible interactions that might happen
   and seeks to show that they are not harmful.
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6.5.1.  TCP Secure

   [RFC5961] is a WG Internet Draft that provides a solution to some
   security issues around the injection of spoofed TCP packets into a
   TCP connection.  The mitigations to these attacks revolve round
   limiting the acceptable sequence numbers for RST and SYN segments.
   In order to ensure there is no unforeseen interaction between TCP
   Secure and this test the test protocol has been specified such that
   the test will be aborted if a RST segment is sent.

6.5.2.  Nagle Algorithm

   The Nagle algorithm [RFC0896] allows a TCP sender to buffer data
   waiting to be sent until such time as it receives an acknowledgement
   for the previous segment.  This means that there is only ever one
   segment in flight and as such this test should not be performed when
   the Nagle algorithm is being used.

6.5.3.  Delayed Acknowledgements

   [RFC5681] allows for the generation of delayed acknowledgements for
   data segments.  However the tests in this document rely on triggering
   the generation of duplicate acknowledgements.  These must be
   generated for every out of order packet that is received and should
   be generated immediately the packet is received.  Consequently these
   mechanisms have no effect on the tests set out in this document.

6.5.4.  Best Effort Transport Service

   The Best Effort Transport Service (BETS) is one operating mode of the
   Space Communications Protocol Standards (SCPS) [SCPS].  SCPS is a set
   of communications protocols optimised for extremely high bandwidth-
   delay product links such as those that exist in space.  SCPS-TP (SCPS
   - Tranpsort Protocol) is based on TCP and is an official TCP option
   (number 20).  The BETS option within SCPS-TP is designed to provide a
   semi-reliable transport between endpoints.  As such it doesn’t
   necessarily ACK data in the same manner as TCP and thus, if this
   option has been negotiated on a link the tests described above should
   not be used.

6.6.  Possible Issues with the Tests

   Earlier in this document we asserted that these tests don’t change
   the TCP protocol.  We make this assertion for two reasons.  Firstly
   the protocol can be implemented as a shim that sits between the TCP
   and IP layers.  Secondly the network and receiver are unable to
   differentiate between a sender that implements these tests and a
   sender where the IP layer re-orders packets before transmission.
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   However the tests might have some impact on the debugging of a TCP
   implementation.  It will also have an impact on debugging traces as
   it creates additional reordering.  The authors feel that these
   effects are sufficiently minor to be safely ignored.  If an author of
   a new TCP implementation wishes to be certain that they won’t be
   affected by the tests during debugging they simply need to ensure
   that the sender they are connecting to is not undertaking the tests.

   A potentially more problematic consequence is the slight increase in
   packet reordering that this test might introduce.  However the degree
   of reordering introduced in the probabilistic test is strictly
   limited.  This should have minimal impact on the network as a whole
   although this assertion would benefit from testing by the wider
   Internet Community.

   The final potential problem is that this test relies on the flows
   being long-running.  However this may not be a real issue since for a
   short running flow none of the attacks described in Section 3 would
   give the receiver any advantage in a short flow.

7.  Comparison of the Different Solutions

   The following table shows how all the approaches described in this
   document compare against the requirements set out in Section 4.
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    +----------------+------+------+--------+---------+---------+
    |  Requirement   | Rand | ECN  |Transp. | Stage 1 | Stage 2 |
    |                | skip |nonce | nonce  |  test   |  test   |
    |                | segs |      |        |         |         |
    +----------------+------+------+--------+---------+---------+
    |   Congestion   |      |      |        |         |         |
    |    Control     | Yes  | Yes  |  Yes   |   Yes   |   Yes   |
    |   unaffected   |      |      |        |         |         |
    +----------------+------+------+--------+---------+---------+
    |    Utilise     |      |      |        |         |         |
    |    existing    | Yes  | No** |   No   |   Yes   |   Yes   |
    |    features    |      |      |        |         |         |
    +----------------+------+------+--------+---------+---------+
    |    Receiver    | Yes  |  No  |   No   |   Yes   |   Yes   |
    |  passive role  |      |      |        |         |         |
    +----------------+------+------+--------+---------+---------+
    | No negotiable  |Yes * |  No  |   No   |   Yes   |   Yes   |
    |  TCP options   |      |      |        |         |         |
    +----------------+------+------+--------+---------+---------+
    |    Receiver    | Yes  | N/A  |  N/A   |   Yes   |   Yes   |
    |    unaware     |      |      |        |         |         |
    +----------------+------+------+--------+---------+---------+
    |   Certain of   | Yes  | Yes  |  Yes   | strong  |   Yes   |
    | non-compliance |      |      |        |suspicion|         |
    +----------------+------+------+--------+---------+---------+
    | Innocent rcvr. |      |      |        |         |         |
    | not adversely  |  No  | Yes  |  Yes   |   Yes   |   No    |
    |   affected     |      |      |        |         |         |
    +----------------+------+------+--------+---------+---------+
   *  Safer when SACK is used
   ** Currently Experimental RFC with no known available implementation

          Comparing different solutions against the requirements

   The table highlights that the three existing schemes looked at in
   detail in Section 5 all fail on at least two of these requirements.
   Whilst this doesn’t necessarily make them bad solutions it does mean
   that they are harder to deploy than the new tests presented in this
   document.  These new tests do have potential issues (see
   Section 6.6).  However, as the table shows, they are minor compared
   to the problems the nonce-based schemes face, particularly the need
   for cooperation from the receiver and the use of additional
   codepoints in the IPv4 and TCP headers.
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8.  Alternative Uses of the Test

   Thus far, the two stage test process described in this document has
   been examined in terms of being a test for compliance by a receiver
   to the TCP protocol, specifically in terms of the protocol’s reaction
   to segment reordering.  The probabilistic test however could also be
   used for other test purposes.  For instance the test can be used to
   confirm that a receiver has correctly implemented TCP SACK.  Because
   the sender knows exactly which segments have been reordered, it can
   confirm that the gaps in the data as reported by SACK are indeed
   correct.  The test could also be incorporated as part of a test suite
   to test the overall compliance of new TCP implementations.

9.  Evaluating the Experiment

   As stated in the introduction, this is an experimental protocol.  The
   main aim of the experiment is to prove that the two tests described
   in Section 6 provide a robust and safe test for receiver non-
   compliance.  The second aim is to show that the experimental ECN
   Nonce is no longer needed as these tests provide a more robust
   defence against receiver non-compliance.

9.1.  Criteria for Success

   The criteria for a successful experiment are very simple.

   o  Do the tests accurately identify misbehaving receivers?

   o  Are the tests as described in Section 6.2 and Section 6.3 safe?
      By this we mean is the impact of the test such that it causes no
      harm to other flows and only minimal harm to honest receivers?

9.2.  Duration of the Experiment

   We believe that the experiment should be proved one way or another
   within a one year period (subject to volunteers agreeing to help with
   the evaluation).  At the end of the experiment if it is shown to be
   successful we will go back to the IESG to ask for this test to be
   moved to standards track.  At that point, it would be possible to
   obsolete the experimental ECN Nonce [RFC3540] and recover the
   codepoints assigned to it.

9.3.  Arguments for Obsoleting the ECN Nonce

   We believe the tests presented in this document provide significantly
   greater protection against misbehaving TCP receivers than that
   provided by the ECN Nonce[RFC3540].
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   1.  The ECN Nonce is acting to block the wider use of the two ECT
       codepoints defined in ECN [RFC3168].  Currently these have to be
       treated as having identical meanings except in specific
       controlled circumstances as mandated in [RFC4774] (PCN [RFC6660]
       is an example of such a use).  The authors are aware of a number
       of research projects to reduce queuing latency or to speed up
       slow-start that depend on the availability of the ECT(1)
       codepoint.  If the codepoint were freed up, these projects would
       gain traction and those with promise could be brought to the
       IETF.  Furthermore the nonce is also holding back a flag in the
       TCP header (the Nonce Sum or NS flag).

   2.  The ECN Nonce is an experimental standard intended to allow a
       sender to test whether ECN CE markings (or losses) are being
       suppressed by the receiver (or anywhere else in the feedback
       loop, such as another network or a middlebox).  In the 11 years
       since it was presented there has been no evidence of any
       deployment.  To the best of our knowledge only two
       implementations have ever existed.  One was that of the original
       authors and the other was written to test an alternative use of
       the nonce [Spurious].  Furthermore the nonce would now be nearly
       impossible to deploy retrospectively, because to catch a
       misbehaving receiver it relies on the receiver volunteering
       feedback information to incriminate itself.  A receiver that has
       been modified to misbehave can simply claim that it does not
       support nonce feedback, which will seem unremarkable given so
       many other hosts do not support it either.

   3.  As explained in Section 7, the ECN Nonce is only a limited
       solution to the security implications of failing to provide
       accurate congestion feedback.  However some authors may not
       realise its limitations and may choose to argue that its
       existence offers them sufficient protection from misbehaving
       receivers.

10.  IANA Considerations

   This memo includes no request to IANA.

11.  Security Considerations

   The two tests described in this document provide a solution to two of
   the significant security problems that were outlined in [Savage].
   Both these attacks could potentially cause major congestion of
   senders own resources (by making them transmit at too high a rate)
   and could lead to network congestion collapse through subverting the
   correct reporting of congestion or by amplifying any DoS attack
   [Sherwood].  The proposed solution cannot alone prevent misbehaving
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   senders from causing congestion collapse of the Internet.  However,
   the more widely it is deployed by trustworthy senders, the more these
   particular attacks would be mitigated through ensuring accurate
   reporting of segment losses.  The more senders that deploy these
   measures, the less likely it is that a misbehaving receiver will be
   able to find a sender to fool into causing congestion collapse.

   It should be noted that if a third party is able to correctly guess
   the initial sequence number of a connection, they might be able to
   masquerade as a receiver and send acknowledgements on their behalf to
   make them appear dishonest during a deterministic test.

   Due to the wording of [RFC5681] a receiver wishing to establish
   whether a probabilistic test is happening can keep their
   acknowledgement clock running (thus maintaining transmission rate) by
   generating pairs of duplicate acknowledgements for segments it
   received prior to the gap in the data stream caused by the test.
   This would allow a receiver to subsequently send any additional
   duplicate acknowledgements that would be necessary to make it appear
   honest.  Such behaviour by a receiver would be readily apparent by
   examining the pattern of the acknowledgements.  Should receivers
   prove able to exploit this to their advantage, there might be a need
   to change some of the musts and shoulds laid out in Section 6.2.5.

   [Savage] also identified a further attack involving splitting
   acknowledgements into smaller parts.  TCP is designed such that
   increases in the congestion window are driven by the arrival of a
   valid acknowledgement.  It doesn’t matter if this acknowledgement
   covers all of a transmitted segment or not.  This means a receiver
   that divides all its acknowledgements into two will cause the
   congestion window to open at twice the rate it would do otherwise.
   The tests described above can’t protect against that attack.  However
   there is a straightforward solution to this - every time the sender
   transmits a new segment it increments a counter; every acknowledgment
   it receives decrements that counter; if the counter reaches zero, the
   sender won’t increase its congestion window in response to a new
   acknowledgement arriving.  To comply with this document, senders MUST
   implement a solution to this problem.

12.  Conclusions

   The issue of mutual trust between TCP senders and receivers is a
   significant one in the current Internet.  This document has
   introduced a mechanism by which senders can verify that their
   receivers are compliant with the current TCP protocol.  The whole
   process is robust, lightweight, elegant and efficient.  The
   probabilistic test might delay a congestion notification by a
   fraction of a RTT, however this is compensated for by the protocol
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   reacting more rapidly to any such indication.  The deterministic test
   carries a greater risk of delaying congestion notification and
   consequently the protocol mandates that a congestion response should
   happen whilst performing the test.  The two tests combine to provide
   a mechanism to allow the sender to judge the compliance of a receiver
   in a manner that both encourages compliant behaviour and proves non-
   compliance in a robust manner.  The most attractive feature of this
   scheme is that it requires no active participation by the receiver as
   it utilises the standard behaviour of TCP in the presence of missing
   data.  The only changes required are at the sender.

   As mentioned in the introduction, the tests described in this
   document aren’t intended to become a necessary feature for compliant
   TCP stacks.  Rather, the intention is to provide a safe testing
   mechanism that a sender could choose to implement were it to decide
   there is a need.  If optimistic acknowledgements do start to become
   widely exploited the authors of this draft feel it would be valuable
   to have an IETF-approved test that can be used to identify non-
   compliant receivers.  In the mean-time these tests can be used for a
   number of alternative purposes such as testing that a new receiver
   stack is indeed compliant with the protocol and testing if a receiver
   has correctly implemented SACK.

   In the longer term it would be hoped that the TCP protocol could be
   modified to make it robust against such non-compliant behaviour,
   possibly through the incorporation of a cumulative transport layer
   nonce as described in Section 5.3.
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Appendix A.  Changes from previous drafts (to be removed by the RFC
             Editor)

   From -02 to -03:

      Draft revived after 6 year hiatus.  Status changed to
      experimental.  The primary am of the experiment is to show that
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      these tests correctly and safely identify misconfigured or
      misbehaving TCP receivers.  The secondary aim is to demonstrate
      that the ECN Nonce is not needed and hence show that that
      experiment has failed.  Minor changes made to tighten the text.

   From -01 to -02:

      A number of changes made following an extensive review from Alfred
      Hoenes.  These were largely to better comply with the stated aims
      of the previous version but also included some tidying up of the
      protocol details and a new section on a possible unwanted
      interaction.

   From -00 to -01:

      Draft rewritten to emphasise testing for non-compliance.  Some
      changes to protocol to remove possible unwanted interactions with
      other TCP variants.  Sections added on comparison of solutions and
      alternative uses of test.
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