TCP Mai ntenance and M nor Extensions (TCPM W5 A. Zi nmer mann

I nternet-Draft Net App, Inc.
I ntended status: Standards Track L. Schulte
Expires: May 14, 2015 Aalto University

C WIff

A. Hannemann
credativ GrbH
Novenmber 10, 2014

Detection and Quantification of Packet Reordering with TCP
draft-zi mrer mann-t cpmreordering-detection-02

Abstract

This docunent specifies an algorithmfor the detection and
quantification of packet reordering for TCP. 1In the absence of
explicit congestion notification fromthe network, TCP uses only
packet |oss as an indication of congestion. One of the signals TCP
uses to determne loss is the arrival of three duplicate

acknow edgments. However, this heuristic is not always correct,
notably in the case when paths reorder packets. This results in
degraded perfornmance.

The algorithmfor the detection and quantification of reordering in
this docunment uses information gathered fromthe TCP Ti nestanps
Option, the TCP SACK Option and its DSACK extension. Wen a
reordering event is detected, the algorithmcal cul ates a reordering
extent by determ ning the nunber of segnents the reordered segnent
was |late with respect to its position in the sequence nunber space.
Additionally, the algorithm conmputes a second reordering extent that
is relative to the anpbunt of outstanding data and thus provides a
better estimation of the reordering delay when other sender state
changes.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunents valid for a nmaxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any

Zi mrer mann, et al. Expi res May 14, 2015 [Page 1]

Internet-Draft TCP Reordering Detection Novenber 2014

time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on May 14, 2015.
Copyright Notice

Copyright (c) 2014 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction 3
2. Term nol ogy . 4
3. Basic Concepts 5
4. The Algorithm. . 5
4.1. Initialization Durlng Cbnnectlon Establlshnent 6
4.2 Recei vi ng Acknowl edgnents . . 6
4.3 Recei vi ng Acknow edgrent d 05|ng HoIe .o 7
4.4 Recei ving Duplicate Selective Acknomﬁedgnent 8
4.5 Reorderi ng Extent Conputation . 8
4.6 Retransmitting Segnent 9
4.7 Pl acehol der for Response Algorlthn1 9
4.8. Retransm ssion Ti nmeout 9
5. Protocol Steps in Detail e e e e e s 9
6. Discussion of the Algorithm. . . . 4
6.1. Reasoning for the Relative Reorderlng Extent o o112
6.2. Calculation of the Relative Reordering Extent 13
6.3. Persistent Reception of Selective Acknow edgnents 13
6.4. Unreliable ACK reception 15
6.5. Packet Duplication 15
7. Related Wrk . . e)
8. [ANA Cbn5|derat|ons e v
9. Security Considerations 17
10. Acknow edgments 17
11. References . . . T I 4
11.1. Nornmative References e
11.2. Informative References 18

Zi mrer mann, et al. Expi res May 14, 2015 [Page 2]

Internet-Draft TCP Reordering Detection Novenber 2014

Appendi x A. Changes from previ ous versions of the draft 20
A.1. Changes from draft-zi nmrer mann-tcpm reorderi ng-
detection-01 21
A. 2. Changes fromdraft-zi nmer mann-tcpmreorderi ng-
detection-002
Authors’ Addresses 22
1. Introduction

When the Transni ssion Control Protocol (TCP) [RFC0793] deci des that
the ol dest outstanding segnment is lost, it perforns a retransni ssion
and changes the sending rate [RFC5681]. This occurs either when the
Retransm ssion Tinmeout (RTO tiner expires for a segnent [RFC6298],
or when three duplicate acknow edgnments (ACKs) for a segnent have
been received (Fast Retransmit/Fast Recovery) [RFC5681]. The
assunption behind Fast Retransnit is that non-congestion events that
can cause duplicate ACKs to be generated (packet duplication, packet
reordering and packet corruption) are infrequent. However, a numnber
of Internet measurement studies have shown that packet reordering is
not a rare phenomenon [Pax97], [BPS99], [BS02], [zZMd4], [GPL0O4],

[JI DKTO7] and has negative perfornmance inplications on TCP [BAO2],

[ZKFPO3] .

From TCP' s perspective, the result of packet reordering on the
forward-path is the reception of out-of-order segnents by the TCP
receiver. |n response to every received out-of-order segnent, the
TCP receiver imredi ately sends a duplicate ACK. (Note: [RFC5681]
recomends that del ayed ACKs not be used when the ACK is triggered by
an out-of-order segnent.) The sender side, if the nunber of
consecutively received duplicate ACKs exceeds the duplicate

acknow edgnment threshold (DupThresh), retransmits the first
unacknowl edged segnment [RFC5681] and continues with a | oss recovery
al gorithm such as NewReno [RFC6582] or the Sel ective Acknow edgnent
(SACK) based | oss recovery [RFC6675]. |If a segnent arrives due to
reordering nore than three segnents (the default value of DupThresh
[RFC5681]) too late at the TCP receiver, the sender is not able to
di stinguish this reordering event froma segnent |oss, resulting in
an unnecessary retransm ssion and rate reduction

Since DupThresh is defined in segnents rather than bytes [RFC5681],
TCP usual ly quantifies packet reordering in terns of segnents.
Informally, the reordering extent [RFC4737] is defined as the maxi mum
di stance in segnments between the reception of a reordered segnent and
the earliest segnent received with a | arger sequence nunmber. |If a
segnment is received in-order, its reordering extent is undefined

[RFCAT737] .

Zi mrer mann, et al. Expi res May 14, 2015 [Page 3]

Internet-Draft TCP Reordering Detection Novenber 2014

Anot her approach taken by this specification quantifies the
reordering extend for a packet not only through an absol ute val ue,
but also through a neasure that is relative to the amount of
outstanding data, in an attenpt to approximte a tine-based neasure.
The presented schene can thereby easily be adapted to the Stream
Control Transm ssion Protocol (SCTP) [RFC2960], since SCTP uses
congestion control algorithns simlar to TCP

Overall, this docunment describes mechanisnms to detect reordering on
the forward-path during a TCP connection, and provides these sanpl es
as an input for an additional reaction algorithm

The renmai nder of this docunent is organized as follows. Section 3
provi des a high-1evel description of the packet reordering detection
mechani sms. In Section 4, the algorithmis specified. |In Section 5,
each step of the algorithmis discussed in detail. Section 6

provi des a di scussion of several design decisions of the al gorithm
Section 7 discusses related work. Section 9 discusses security
concerns.

2. Term nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described [RFC2119].

The reader is expected to be famliar with the TCP state vari abl es
given in [RFC0O793] (SEG SEQ SND.UNA), [RFC5681] (FlightSize), and
[RFC6675] (DupThresh, SACK scoreboard). SND. FACK (forward

acknow edgnent) is used to describe the hi ghest sequence nunber -
plus one - that has been either cumul atively or selectively

acknow edged by the receiver and subsequently seen by the sender
[MW6]. Further, the term’ acceptable acknow edgnent’ is used as
defined in [RFC0793]. That is, an ACK that increases the
connection’s cumul ati ve ACK poi nt by acknow edgi ng previously
unacknowl edged data. The term ’'duplicate acknow edgnent’ is used as
defined in [RFC6675], which is different fromthe definition of
dupl i cate acknow edgnent in [RFC5681].

This specification defines the four TCP sender states ’'open’
"disorder’, 'recovery', and 'loss’ as follows. As |long as no
duplicate ACK is received and no segnent is considered |ost, the TCP
sender is in the 'open’ state. Upon the reception of the first
consecutive duplicate ACK, TCP will enter the ’'disorder’ state.

After receiving DupThresh duplicate ACKs, the TCP sender switches to
the "recovery’ state and executes standard | oss recovery procedures
|ike Fast Retransmt and Fast Recovery [RFC5681]. Upon a

retransm ssion tinmeout, the TCP sender enters the 'loss’ state. The

Zi mrer mann, et al. Expi res May 14, 2015 [Page 4]

Internet-Draft TCP Reordering Detection Novenber 2014

"recovery’ state can only be reached by a transition fromthe
"disorder’ state, the 'loss’ state can be reached from any ot her
st at e.

3. Basic Concepts

The follow ng specification depends on the TCP Ti nestanps option

[RFC1323], the TCP Sel ective Acknow edgment (SACK) [RFC2018] option
and the latter’s Duplicate Sel ective Acknow edgnent (DSACK) extension
[RFC2883]. The reader is assuned to be famliar with the algorithns
specified in these docunents.

Reordering is quantified by an absolute and a relative reordering
extent. |If a hole in the SACK scoreboard of the TCP sender is closed
either cunul atively by an acceptable ACK or selectively by a new
SACK, then the absolute reordering extent is conputed as the nunber
of segnents in the SACK scoreboard between the sequence nunber of the
reordered segnent and the highest selectively or cunulatively

acknow edged sequence nunber. The relative reordering extent is then
computed as the ratio between the absolute reordering extent and the
Fl i ght Si ze stored when entering the ’disorder’ state.

If the hole that was closed in the SACK scoreboard corresponds to a
segnment that was not retransmitted, or if the retransm ssion of such
a segnment can be determ ned as a spurious retransm ssion by neans of
the Eifel detection algorithm|[RFC3522], then the cal cul ated
reordering extent is imediately valid. Oherwise, if the
verification of the Eifel detection algorithmhas not been possible,
the reordering extent is stored for a possibly subsequent DSACK. | f
no such DSACK is received in the next two round-trip tinmes (RTTs),
the reordering extents are di scarded.

4. The Al gorithm

G ven that usually both the Nagle al gorithm|[RFC0896] [RFC1122] and
the TCP Sel ective Acknow edgnent Option [RFC2018] are enabled, a TCP
sender MAY enploy the following algorithmto detect and quantify the
current perceived packet reordering in the network.

Wthout the Nagle algorithm there is no straight forward way to
accurately cal cul ate the nunber of outstanding segnents in the
network (and, therefore, no good way to derive an appropriate
reordering extent) w thout adding state to the TCP sender. A TCP
connection that does not enploy the Nagle al gorithm SHOULD NOT use
thi s met hodol ogy.

If a TCP sender inplenents the following algorithm the
i mpl ementati on MUST foll ow the various specifications provided in

Zi mrer mann, et al. Expi res May 14, 2015 [Page 5]

Internet-Draft TCP Reordering Detection Novenber 2014

Sections 4.1 to 4.8. The algorithm MJUST be executed *before* the
Transm ssion Control Block or the SACK scoreboard have been updat ed
by another |oss recovery al gorithm

4.1. Initialization During Connection Establishnent

After the conpletion of the TCP connection establishment, the
followi ng state variables MIST be initialized in the TCP transm ssion
control bl ock:

(C.1) The variable Dsack, which indicates whether a DSACK has been
received so far, and the data structure Sanples, which stores
the conputed reordering extents, MJST be initialized as:

Dsack = fal se
Sanples = []

(C.2) |If the TCP Tinestanps option [RFC1122] has been negoti at ed,
then the variable Timestanps MJST be activated and the data
structure Retrans_ TS, which stores the value of the TSva
field of the retransm ssions sent during Fast Recovery, MJST
be initialized. Additionally, the data structure
Retrans_Dsack MAY be used in order to detect reordering |onger
than RTT with Ti mestanps and DSACK:

Ti mestanps = true
Retrans_TS]
Retrans_Dsack = []

O herwi se, the Tinestanps-based detection SHOULD be
deact i vat ed:

Ti mestanps = fal se
4.2. Receiving Acknow edgnents

For each received ACK that either a) carries SACK information, *or*
b) is a full ACK that term nates the current Fast Recovery procedure
or c) is an acceptable ACK that is received i Mmediately after a
duplicate ACK, execute steps (A 1) to (A 4), otherwise skip to step
(A 4).

(A1) If a) the ACK carries new SACK i nformation, *and* b) the SACK
scoreboard is enpty (i.e., the TCP sender has received no SACK
informati on fromthe receiver), then the TCP sender MJST save
the amobunt of current outstandi ng data:

Fl i ght Si zePrev = FlightSize

Zi mrer mann, et al. Expi res May 14, 2015 [Page 6]

Internet-Draft TCP Reordering Detection Novenber 2014

(A 2)

(A 3)

(A 4)

If the received ACK either a) cumul atively acknow edges at

nmost SMSS bytes, *or* b) selectively acknow edges at nost SMSS
bytes in the sequence number space in the SACK scoreboard,

t hen:

The TCP sender MJST execute steps (S. 1) to (S. 4)

If a) Tinestanps == fal se *and* b) the received ACK carries a
DSACK option [RFC2883] and the segnent identified by the DSACK
option can be marked according to step (A 1) to (A 4) of

[RFC3708] as a valid duplicate, then:

The TCP sender MJST execute steps (D. 1) to (D.3)
The TCP sender MJST termi nate the processing of the ACK by

this algorithmand MUST continue with the default processing
of the ACK

4.3. Receiving Acknow edgrment C osing Hol e

(S.1)

(S.2)

(S.3)

(S. 4)

If (a) the newwy cumul atively or selectively acknow edged
segnment SEG is a retransm ssion *and* b) both equations Dsack
== fal se and Timestanps == fal se hold, then the TCP sender
MUST skip to step (A 4).

Conpute the relative and absol ute reordering extent Reor ExtR
Reor Ext A:

The TCP sender MJST execute steps (E. 1) to (E 4)

If a) the newly acknow edged segnent SEG was not retransnmitted
before *or* b) both equations Ti mestanps == true and
Retrans_TS[SEG SE(J > ACK TSecr hold, i.e., the ACK

acknow edges the original transm ssion and not a

retransm ssion, then hand over the reordering extents to an
addi tional reaction algorithm

The TCP sender MJST execute step (P)

If a) the previous step (S.3) was not executed *and* b) both
equations Dsack == true and Ti nestanps == fal se hold, save the
reordering extents for the newy acknow edged segnent SEG for
at least two RTTs:

Sanpl es[SEG SEQ . Reor Ext R
Sanpl es[SEG. SEQ . Reor Ext A

Reor Ext R
Reor Ext A

Zi mrer mann, et al. Expi res May 14, 2015 [Page 7]

Internet-Draft TCP Reordering Detection Novenber 2014

(S.5) |If a) the newly acknow edged segnent SEG was retransnitted
bef ore exactly once *and* b) both equations Dsack == true and
Ti mestanps == true hold *and* c) Retrans_TS[SEG SEQ ==
ACK. TSecr, then save FlightSizePrev for this segnment in order
to be calculate the metrics in case a DSACK arrives, i.e.
reordering delay is greater than RTT:

Retrans_Dsack[SEG SEQ] = FlightSi zePrev
4.4, Receiving Duplicate Selective Acknow edgnent
(D.1) If no DSACK has been received so far, the sender MJST set:
Dsack = true
(D.2) If a) the previous step (D. 1) was not executed *and* a
reordering extent was cal culated for the segnent SEG
identified by the DSACK option, then the TCP sender MJST
restore the values of the variables Reor ExtR and Reor Ext A and

del ete the corresponding entries in the data structure:

Reor Ext R = Sanpl es[SEG. SEQ . Reor Ext R
Reor Ext A = SAVPLES[SEG. SEQ . Reor Ext A

(D.3) If a) step (D.1) was not executed *and* b) FlightSizePrev was
saved in step (S.4) for the segnent, then the TCP sender MJST
calculate the reordering extent for the segnent with the E
series of steps by using the FlightSizePrev saved for this
segnment and afterwards delete the correspondi ng entries:

Fl i ght Si zePrev_saved = Retrans_Dsack[SEG SEQ

(D.4) Hand the new reordering extents over to an additional reaction
al gorithm

The TCP sender SHOULD execute step (P)
4.5. Reordering Extent Conputation

(E.1) SEG SEQ is the sequence nunber of the newy cunul atively or
sel ectively acknow edged segnment SEG

(E.2) SND.FACK is the highest either cumnulatively or selectively
acknow edged sequence number so far plus one.

(E.3) The TCP sender MJST conpute the absolute reordering extent
Reor Ext A as

Zi mrer mann, et al. Expi res May 14, 2015 [Page 8]

Internet-Draft TCP Reordering Detection Novenber 2014

Reor Ext A = (SND. FACK - SEG SEQ / SMsS

(E.4) The TCP sender MJST conpute the relative reordering extent
Reor Ext R as

Reor ExXt R= ReorExt A * (SMSS / Flight Si zePrev)
4.6. Retransmitting Segnent

If the TCP Tinestanps option [RFC1323] is used to detect packet
reordering, the TCP sender nust save the TCP Ti mestanps option of all
retransmtted segnents during Fast Recovery.

(RET) If a) a segnent SEGis retransmtted during Fast Recovery,
and b) the equation Tinestanps = true holds, the TCP sender
MJUST save the value of the TSval field of the retransmtted
segnment :

Retrans_TS[SEG SEQ = SEG TSval
4.7. Placehol der for Response Al gorithm

(P) This is a placehol der for an additional reaction algorithm
that takes further action using the results of this algorithm
for exanple, the adjustnment of the DupThresh based on relative
and absol ute reordering extent Reor ExtR and Reor Ext A.

4.8. Retransm ssion Ti neout

The expiration of the retransm ssion tinmer should be interpreted as
an indication of a change in path characteristics, and the TCP sender
shoul d consider all saved reordering extents as outdated and del ete

t hem

(RTO If an retransm ssion tineout (RTO occurs, a TCP sender SHOULD
reset the follow ng variabl es:

Samples =[]
Retrans_TS = []
FlightSizePrev = 0

5. Protocol Steps in Detai

The reception of an ACK represents the starting point for the
detecti on schene above. For each received SACK, DSACK or acceptable
ACK that pronpts the TCP sender to enter the 'disorder’ state, to
remain in the 'disorder’ state or to | eave either the ’disorder’ or
"recovery’ states towards the 'open’ state, steps (A 1) to (A 4) are

Zi mrer mann, et al. Expi res May 14, 2015 [Page 9]

Internet-Draft TCP Reordering Detection Novenber 2014

performed. Al other received ACKs are not relevant for the
detection of packet reordering and can be ignored. |If the TCP sender
changes fromthe 'open’ to the 'disorder’ state due to the reception
of a duplicate ACK (i.e., the SACK scoreboard is enpty and an ACK
arrives carrying new SACK information), the current anount of
outstanding data, FlightSize, is stored for the subsequent
calculation of the relative reordering extent (step (A 1)).

Whenever a received acceptable ACK or SACK closes a hole in the
sequence nunber space of the SACK scoreboard either partially or
completely, this is an indication of packet reordering in the network
(step (A.2)). The prerequisite for an accurate quantification of the
reordering is that only one segnent is newy acknow edged (nmaxi num
SMSS bytes of data). |If nore than one segnment per ACK is

acknow edged, either by reordering on the reverse path or the | oss of
ACKs, the order in which the segnents have been received by the TCP
receiver is no longer accurately determnable so that in this case a
reordering extent is not calculated. Finally, if the received ACK
carries a DSACK option that identifies a segnent that was
retransmtted only once, then this is sufficient to conclude
reordering (step (A 3)), so that a previously cal cul ated reordering
extent can be passed to another algorithm (steps (D.3) and (P)).

Wth just the information provided by the ACK field or SACK

i nformati on above SND. UNA, the TCP sender is unable to distinguish
whet her the ACK that finally acknow edges retransnmitted data (either
cumul atively or selectively) was sent in response to the origina
segnment or a retransm ssion of the segnment. This is described as the
retransm ssion anbiguity problemin [KP87]. Therefore, the detection
and quantification of reordering depends on other neans to

di stingui sh between acknow edgnents for transmi ssion and

retransm ssion to detect if a retransm ssion was spurious. |If

nei ther a DSACK has been received (Dsack == false) so far nor the TCP
Ti nest anps option has been enabl ed on connection establishnent
(Timestanps == false) then there is no possibility for the TCP sender
to identify spurious retransm ssions. Hence, the processing of the
recei ved ACK by the detection algorithmnmust be term nated for
retransmtted segnents (step (S.1)). Oherwise, if the segnent that
corresponds to the closed hole in the sequence nunber space of the
SACK scoreboard has not been retransmitted or the retransni ssion can
be identified by the Eifel detection algorithm|[RFC3522] as a
spurious retransm ssion, the previously cal culated reordering extent
is valid (step (S.2)) and an additional reaction algorithm can be
executed (steps (S.3) and (P)).

For the use of the Eifel detection it is necessary to store the TCP

Ti restanps option of all retransnissions sent during Fast Recovery
(step (Ret)). However, if the use of the Eifel detection algorithm

Zi mrer mann, et al. Expi res May 14, 2015 [Page 10]

Internet-Draft TCP Reordering Detection Novenber 2014

is not possible (Tinmestanps == false), the extent of a possible
reordering is stored for the possibility of a subsequent arrival of a
DSACK (step (P.4)). If no such DSACK is received in the next two
round-trip times, the reordering extent is discarded. Since the
DSACK extension is not negotiated during connection establishnent

[RFC2883], the reordering extent is only stored if a DSACK was
previously received for the TCP connection (DSACK == true, step
(D.1)).

Regar dl ess of whether packet reordering is detected by using the
SACK- based net hodol ogy, the DSACK-based net hodol ogy, or the TCP

Ti mest anps option, quantification of the reordering will always be
done when closing a hole in the sequence nunber space of the SACK
scoreboard (step (A 2), step (P.2)). The only difference is the time
of detection, which is in the case of DSACK-based net hodol ogy at

| east one RTT after the time of the quantification. The absolute
reordering extent ReorExtA results fromthe nunber of segnents in the
SACK scor eboard between the sequence nunber of the newy acknow edged
segnent and the highest either cumul atively or selectively

acknow edged sequence nunber so far plus one (SND. FACK) (step (E. 3)).

In the case that the reordering delay is longer than RTT, the
reordering can not be detected by tinestanps or DSACK al one, but both
al gorithms are needed: when a packet is retransnitted, but no
reordering could be detected when it was acknow edged, then it m ght
be possible that a DSACK arrives for this packet. Then, the
reordering extent was |longer than RTT and the reordering extent has
to be calculated at the point in tinme the DSACK arrives (step D.3).
Therefore, we save the FlightSizePrev for a retransmtted segnent
when it is acked and no reordering is detected (step S.5).

It is worth noting that the absolute reordering extent includes al
segnments (bytes) between the closed hole and the hi ghest acknow edged
sequence nunber so far, i.e., it also includes segnents (bytes) that
are not selectively acknow edged. The reason is that if packet
reordering is considered froma tenporal perspective, it is

irrel evant whether there are |l ost segnents or not. The inportant
fact is that the | ost segments have been sent after the del ayed
segnment and before the hi ghest acknow edged segnent, which is
expressed by the netric. |In step (E. 4), the relative reordering
extent ReorExtR is then calculated by the ratio between the absol ute
reordering extent ReorExtA and the amount of outstanding data stored
by step (A 1).

Zi mrer mann, et al. Expi res May 14, 2015 [Page 11]

Internet-Draft TCP Reordering Detection Novenber 2014

6

Di scussion of the Al gorithm

The focus of the follow ng discussion is on the quantification of
reordering by the relative reordering extent and to el aborate on
possi bl e sources of error, which nay lead to an inaccurate detection
and quantification of reordering in the network

.1. Reasoning for the Relative Reordering Extent

A problemthat arises with the way of quantifying reordering solemly
by the absolute reordering extent is that even in the presence of
constant reordering, reordering extents may vary if the transm ssion
rate of the TCP sender changes. Therefore, by using a DupThresh that
directly reflects the neasured reordering extent, spurious

retransm ssions cannot be fully avoi ded.

The following exanple illustrates this issue. Assune a path with a
reordering probability of 1% a reordering delay of 20 ns, and a
bottl eneck bandwi dth of 3 Md/s. Because segnents that are del ayed by
reordering arrive 20 ms too late, the TCP receiver can receive a

maxi mum of ((20 * 3 * 1073) / 8) = 7500 bytes out-of-order before the
reordered segnment arrives. Hence, with a Sender Maxi mum Segnment Size
(SMBS) of 1460 bytes, the | argest possible reordering extent is close
to 5 segnents. |If the bottleneck bandwi dth changes from3 MJ/s to 4
Mo/ s, the maxi mumreordering extent will increase to 7 segments,

al t hough the reordering delay renmains constant.

This sinple exanpl e shows that even with constant reordering,
spurious retransm ssions cannot be conpletely avoided if the
DupThresh directly reflects the reordering extent. On the other
hand, the reordering extent and the resulting DupThresh can sonetines
al so be nmuch too high and do not correspond to the actual packet
reordering present on the path. For exanple, a slow start overshoot
[Hoe96], [MwB6], [MSMX>@7] at the end of slow start mght induce such
a probl em

An obvious solution to the problemwould be to quantify packet
reordering not by calculating a reordering extent, but by using the
reordering late time offset [RFC4737]. Since the reordering late
time offset is not specified in segnents but captures the difference
bet ween the expected and actual reception tinme of a reordered
segrment, this way of quantifying reordering is independent of the
current transmission rate. D sadvantages of this approach are
however a higher conplexity and a worse integration into the TCP
specification, since an inplenentation would require additiona
timers, whereas TCP itself is self-clocked

Zi mrer mann, et al. Expi res May 14, 2015 [Page 12]

Internet-Draft TCP Reordering Detection Novenber 2014

6.2. Calculation of the Relative Reordering Extent

Generally, the characteristics of a relative reordering extent should
be that if packet reordering on a path is constant in terns of rate
and delay, the relative reordering extent should al so be constant,
regardl ess of the current transmi ssion rate of the TCP sender. The
schene proposed in this docunent is to calculate the relative
reordering by getting the rati o between absolute reordering (the
anount of data the reordered segnent was received too late) and the
anount of outstanding data stored when TCP sender was entering the
"disorder’ state (the maxi rum anount of data a reordered segnment can
be received too late). Therefore, the relative reordering extent
expresses the portion of currently outstanding data that is

sel ectively acknow edged before the reordered segment is cunul atively

acknow edged. If the transm ssion rate changes, the absolute
reordering extent changes as well, but together with the anount of
out st andi ng data, and hence the relative reordering extent stays
constant.

A characteristic of the calculation of the relative reordering extent
on the basis of currently outstanding anount of data is that the
FlightSize reflects the bandwi dt h-del ay- product and not the

transmi ssion rate. As a consequence, the relative reordering extent
is not independent of the RTT. |If the RTT of the communi cation path

changes, the anobunt of outstanding data changes as well, but the
absol ute reordering extent remains constant. Hence, the relative
reordering extent adapts. In principle it is possible to design an

algorithmto conpute the relative reordering extent independently of

the RTT and to reflect only the characteristics of packet reordering

of the path. But since the calculation would be far fromtrivial and
i ntroduci ng nore conplexity, this is considered to be future

resear ch.

6.3. Persistent Reception of Selective Acknow edgnents

Especially on paths with a hi gh bandwi dt h-del ay-product, it is

possi ble that even with a minor packet reordering, several segnments
in a single wi ndow of data are delayed. |If, in addition, the
sequence nunbers of those segnents are w dely spaced in the sequence
nunber space and the delay caused by packet reordering is
sufficiently high, this mght lead to a constant reception of out-of-
order data. Hence, for each received segnment, regardl ess of whether
a hole in the sequence nunber space of the receive w ndowis closed
or not, an ACK is sent that carries SACK i nformati on. From TCP
sender’s perspective, this persistent receiving of new SACK
information | eads to the situation that the TCP sender enters the
"disorder’ state when receiving the first SACK and never |eaves it

Zi mrer mann, et al. Expi res May 14, 2015 [Page 13]

Internet-Draft TCP Reordering Detection Novenber 2014

again during the connection lifetime if no segnent is lost in
bet ween.

In case of the above reordering detection and quantification schene,
the persistent reception of SACK bl ocks causes the anount of

out standi ng data, which is stored when the TCP sender enters the
"disorder’ state, to never be updated, since FlightSize is only saved
in step (A1) when the SACK scoreboard is enpty. |f the transm ssion
rate of the TCP sender, and therefore al so the maxi mum anount of data
a reordered segnent can be received too |ate, changes significantly
during its stay in the "disorder’ state, the actual anount of
reordering is not accurately deternmined by the relative reordering
extent. A decrease of the transmission rate would result in an
overestimation of the reordering extent and vice versa.

A sinple solution to the problemwould be to store the nmaxi num of f set
in ternms of sequence nunber space by which a reordered segnent can be
received too late only when entering the 'disorder’ state, but
individually for every potentially reordered segnent, that is, for
every hole in the sequence nunmber space of the SACK scoreboard.

(Note: The maxinumoffset in terns of sequence nunber space by which
a reordered segnment can be received too late is strictly speaking the
amount of data that have been transnitted |ater than the reordered
segment. This amount of data can only be expressed by FlightSize
within the "open’ state and not within the 'disorder’ state, since
the cunul ati ve ACK point may not advance).

The problemwith this sinple idea is that for a new hole in the SACK
scoreboard, it is not possible to deternine whether it is a result of
packet reordering or loss, and therefore it results in increased
menory usage (to store the anount of data for each hole).

Addi tionally, the packet reordering would be inaccurately quantified
if the transm ssion rate changes significantly for a short amount of
time. For exanple, if the anount of outstanding data is | ow when
entering the 'disorder’ state is entered, the execution of Carefu
Extended Linmted Transnmit (as described in

[1-D.zi mrermann-tcpmreordering-reaction] [RFC4653]) leads to a
significant short-term change of the transmi ssion rate. Wen the
anount of data by which the reordering segnment can be del ayed is
determned individually for every new hole, it leads to an
overestimation of the relative reordering extent, since the maxi num
anount of data possible is "artificially' reduced by Careful Extended
Limted Transnit.

A solution to this problemis to store the maxi numoffset in terms of
sequence nunber space by which a reordered segnent can be received
too late not for every segnent individually (which does not guarantee
an accurate calculation of the relative reordering extent) but only

Zi mrer mann, et al. Expi res May 14, 2015 [Page 14]

Internet-Draft TCP Reordering Detection Novenber 2014

sufficiently often, e.g., once per RTT. The identification of what
frequency woul d be adequate, though, is neither trivial nor

uni versal ly applicable, since a concrete solution depends on the
transm ssion behavior of the used TCP in the 'disorder’ state and
whether it is nore beneficial for an additional reordering response
algorithmto over- or underestinmate the packet reordering on the
path. [If, for exanple, TCP-aNCR

[1-D.zi mermann-tcpmreordering-reaction] is used as additiona
reordering response algorithm the maxi numoffset in terns of
sequence nunber space by which a reordered segnent can be received
too late is not only stored when entering the 'disorder’ state but
al so updated every RTT (every cwnd worth of data transmitted without
a loss) while the TCP sender stays in the 'disorder’ state.

6.4. Unreliable ACK reception
ACK | oss and ACK reordering are a cause for inaccuracies in sanples.
6.5. Packet Duplication

Al t hough the probl em of packet duplication in today' s |Internet
[JIDKTO7], [MMVRO8] is negligible, it may happen in rare cases that
segnents on the path to the TCP receiver are duplicated. |If a
segnment is duplicated on the path, the first incom ng segnment causes
the receiver to send either an acceptable ACK or a SACK, depending on
whet her the segnment is the next expected one or not. Each subsequent
i dentical segment then causes either a duplicate ACK or a DSACK
respectively, depending on whether the DSACK extension [RFC3708] is

i mpl emented or not.

If by a conbination of packet |oss and packet duplication the case
occurs that a Fast Retransmit for a |lost segnment is duplicated on the
path, the TCP sender is not able to distinguish this from packet
reordering. The first received ACK closes a hole in the sequence
nunber space of the SACK scoreboard, while the second received ACK is
a valid DSACK. Although both cases are indistinguishable froma
theoretical point of view, the TCP sender can take neasures to ensure
as far as possible that the DSACK received was not the result of
packet duplication.

For this purpose, step (A 3) of the above detection nethod checks via
the steps (A1) to (A 4) of [RFC3708] whether the segnent identified
by the DSACK option is nmarked as a valid duplicate. Unfortunately,
the steps of [RFC3708] do not check that nore DSACKs have been

recei ved than retransm ssi ons have been sent, which is a
characteristic of suffering both packet reordering and packet
duplication at the sane tine. By sinply counting the received

Zi mrer mann, et al. Expi res May 14, 2015 [Page 15]

Internet-Draft TCP Reordering Detection Novenber 2014

DSACKs, for exanple, as additional step (A.5) in [RFC3708], this
corner case can be covered as wel|.

7. Related Wrk

Because of retransm ssion anbiguity probl em[KP87], which describes
TCP sender’s inability to to distinguish whether the first acceptable
ACK that arrives after a retransmt was sent in response to the
original transmt or the retransmt, two different approaches can
generally be taken to detect and quantify packet reordering. First,
for transm ssions (non-retransmtted segnents), the detection is
usual Iy conducted by detecting a cl osed hole in sequence nunber space
of the SACK scoreboard. Second, for retransnissions, the detection
of packet reordering is acconpani ed by the detection of the spurious
Fast Retransmts.

Wthin the | ETF, several proposals have been published in the RFC
series to detect and quantify packet reordering. Wth [RFC4737] the
| PPM Worki ng Goup [I PPM defines several netrics to eval uate whet her
a network path has maintained packet order on a packet-by- packet
basis. [RFC4A737] gives concrete, well-defined nmetrics, along with a
met hodol ogy for applying the netric to a generic packet stream The
metric discussed in this docunent has a different purpose fromthe

| PPM netrics; this docunent discusses a TCP specific reordering
metric cal culated on the TCP sender’s SACK scoreboard.

Besi des the | PPM work, several other proposals have been devel oped to
detect spurious retransmi ssions with TCP. The Eifel detection

al gorithm [RFC3522] uses the TCP Ti nestanps option to determn ne

whet her the ACK for a given retransnmit is for the origina

transm ssion or a retransm ssion. The F-RTO schene [RFC5682]
slightly alters TCP' s sending pattern i mediately followi ng a
retransm ssion tineout to indicate whether the retransmtted segnent
was needed. Finally, the DSACK-based al gorithm [RFC3708] uses the
TCP SACK option [RFC2018] with the DSACK extension [RFC2883] to

i dentify unnecessary retransnissions. The nechanismfor detecting
packet reordering outlined in this docunent rely on the detection
schenes of those docunments (except F-RTO that only works for spurious
retransmts triggered by TCP s retransm ssion tinmer), although they
do not provide netrics for the reordering extent whereas the

al gorithm described in this docunent does.

RR- TCP [ZKFP0O3] describes a reordering detection and quantification
schene that is al so based on holes in the sequence nunber space of
the SACK scoreboard and the reception of DSACKs. For every hole in
the SACK scoreboard, RR-TCP cal culates a reordering extent. If the
segment was retransnmitted before an ACK was received, it waits for a
DSACK that proves that the segnent was spuriously retransmtted. The

Zi mrer mann, et al. Expi res May 14, 2015 [Page 16]

Internet-Draft TCP Reordering Detection Novenber 2014

reordering sanple in such a case is the mean between the sanple
calculated due to the hole in the sequence nunber space and the
sampl e cal culated in responding to the recei ved DSACK

The Linux kernel [Linux] inplements a reordering detection based on
SACK, DSACK and TCP Ti nestanps option as well. The detection and
gquantification of non-retransmitted segnents with SACK or for
retransmtted segnents with TCP Ti mestanps option operates nuch |ike
the schene described in this docunment, with the exception of the
DSACK detection. First, Linux does not store any information (e.qg.
reordering extent) bel ow the cunul ati ve ACK point, so that DSACKs
bel ow t he cumul ative ACK point are ignored (for the purpose for
reordering quantification). Second, Linux also does not store any
i nformati on about a possible reordering event when a hole in the
sequence nunber space of the SACK scoreboard is closed. Therefore,
for a DSACK reporting a duplicate above the cunul ative ACK, Linux
needs to approximate the reordering on arrival of a DSACK by the

di stance between the DSACK and the hi ghest sel ectively acknow edged
segnent .

8. | ANA Consi derations
This meno includes no request to | ANA
9. Security Considerations

The described al gorithm neither inproves nor degrades the current
security of TCP, since this docunent only detects and quantifies
reordering and does not change the TCP behavior. General security
consi derations for SACK based | oss recovery are outlined in

[RFC6675] .

10. Acknow edgnents

The aut hors thank the flowgrind [Fl owgrind] authors and contributors
for their perfornmance nmeasurenent tool, which give us a powerful too
to analyze TCP's congestion control and | oss recovery behavior in
detail.

11. References
11.1. Normative References
[1-D.zi mrer mann-t cpmreor dering-reacti on]
Zi mrer mann, A., Schulte, L., WIff, C, and A Hannemann
"An adaptive Robustness of TCP to Non- Congestion Events",

draft-zi mernmann-tcpmreordering-reaction-01 (work in
progress), Novenber 2013.

Zi mrer mann, et al. Expi res May 14, 2015 [Page 17]

Internet-Draft

[MVB6]

[RFC0793]

[RFC1323]

[RFC2018]

[RFC2119]

[RFC2883]

[RFC3522]

[RFC3708]

[RFC5681]

TCP Reordering Detection Novenber 2014

Mathis, M and J. Mahdavi, "Forward Acknow edgenent:

Refi ning TCP Congestion Control", ACM SI GCOVW 1996
Proceedi ngs, in ACM Conputer Conmunication Review 26 (4),
pp. 281-292, Cctober 1996.

Postel, J., "Transm ssion Control Protocol", STD 7, RFC
793, Septenber 1981.

Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
for H gh Performance", RFC 1323, May 1992.

Mat his, M, Mhdavi, J., Floyd, S., and A Romanow, "TCP
Sel ective Acknow edgnent Options", RFC 2018, Cctober 1996.

Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119, March 1997.

Fl oyd, S., Mahdavi, J., Mathis, M, and M Podol sky, "An
Extension to the Sel ective Acknow edgenment (SACK) Option
for TCP", RFC 2883, July 2000.

Ludwig, R and M Meyer, "The Eifel Detection A gorithm
for TCP', RFC 3522, April 2003.

Blanton, E. and M Allman, "Using TCP Duplicate Selective
Acknow edgenent (DSACKs) and Stream Control Transm ssion
Prot ocol (SCTP) Duplicate Transm ssi on Sequence Nunbers
(TSNs) to Detect Spurious Retransm ssions", RFC 3708,
February 2004.

Allman, M, Paxson, V., and E. Bl anton, "TCP Congestion
Control", RFC 5681, Septenber 2009.

11.2. Informmtive References

[BAO2]

[BPS99]

[BSO2]

Blanton, E. and M Al lnman, "On Mking TCP More Robust to
Packet Reordering", ACM Conputer Communication Revi ew
vol .32, no. 1, pp. 20-30, January 2002.

Bennett, J., Partridge, C., and N Shectnman, "Packet
reordering is not pathol ogi cal network behavior", | EEE/ ACM
Transactions on Networking vol. 7, no. 6, pp. 789-798,
Decenber 1999.

Bellardo, J. and S. Partridge, "Measuring Packet
Reordering", Proceedings of the 2nd ACM SI GCOVM Wér kshop
on Internet Measurnent (I MNO02) pp. 97-105, Novenber 2002.

Zi mrer mann, et al. Expi res May 14, 2015 [Page 18]

Internet-Draft TCP Reordering Detection Novenber 2014

[Fl owgri nd]
"Fl owgri nd Home Page", <http://ww.fl owgrind. net>.

[GPLO4] Gharai, L., Perkins, C., and T. Lehman, "Packet
Reordering, Hi gh Speed Networks and Transport Protocol
Per f or mance", Proceedi ngs of the 13th | EEE International
Conf erence on Comput er Communi cations and Networ ks
(1 CCCN 04) pp. 73-78, Cctober 2004.

[Hoe96] Hoe, J., "Inproving the Start-up Behavior of a Congestion
Control Schene for TCP", Proceedings of the Conference on
Applications, Technol ogi es, Architectures, and Protocols
for Conputer Comunication (SIGCOW 96) pp. 270-280,
August 1996.

[1PPM "I P Performance Metrics (I PPM Working G oup”,
<http://ww.ietf.org/htnml.charters/ippmcharter.htnl >,

[JIDKTO7] Jaiswal, S., lannaccone, G, Diot, C, Kurose, J., and D.
Towsl ey, "Measurement and O assification of Cut-of-
Sequence Packets in a Tier-1 | P Backbone", |EEE ACM
Transactions on Networking vol. 15, no. 1, pp. 54-66,
February 2007.

[KP87] Karn, P. and C. Partridge, "Inproving Round-Trip Tine
Estimates in Reliable Transport Protocols", ACM SI GCOW
Conput er Communi cation Review vol. 17, no. 5, pp. 2-7,
Novenber 1987.

[Li nux] "The Linux Project", <http://ww.Kkernel.org>.

[MVMRO8] Mellia, M, Meo, M, Muscariello, L., and D. Rossi,
"Passive analysis of TCP anomalies", Conputer Networks
vol. 52, no. 14, pp. 2663-2676, Cctober 2008.

[MBMOO7] Mat his, M, Senke, J., Mahdavi, J., and T. Ot, "The
Macr oscopi ¢ Behavi or of the TCP Congesti on Avoi dance
Al gorithnt, ACM SI GCOW Conput er Conmuni cati on Revi ew vol .
27, no. 3, pp. 67-82, July 1997.

[Pax97] Paxson, V., "End-to-End Internet Packet Dynam cs", |EEE
ACM Transactions on Networking vol. 7, no.3, pp. 277-292,
June 1997.

[RFCO896] Nagle, J., "Congestion control in |IP/ TCP internetworks",
RFC 896, January 1984.

Zi mrer mann, et al. Expi res May 14, 2015 [Page 19]

Internet-Draft TCP Reordering Detection Novenber 2014

[RFC1122] Braden, R, "Requirenents for Internet Hosts -
Conmuni cati on Layers", STD 3, RFC 1122, Cctober 1989.

[RFC2960] Stewart, R, Xie, Q, Mrneault, K, Sharp, C,
Schwar zbauer, H., Taylor, T., Rytina, |I., Kalla, M,
Zhang, L., and V. Paxson, "Stream Control Transni ssion
Protocol ", RFC 2960, OCctober 2000.

[RFC4653] Bhandarkar, S., Reddy, A, Allman, M, and E. Bl anton,
"I mprovi ng the Robustness of TCP to Non- Congestion
Events", RFC 4653, August 2006.

[RFCA737] Morton, A, G avattone, L., Ramachandran, G, Shal unov,
S., and J. Perser, "Packet Reordering Metrics", RFC 4737,
Novenber 2006.

[RFC5682] Sarolahti, P., Kojo, M, Yamanoto, K, and M Hata,
"Forward RTO Recovery (F-RTO): An Algorithmfor Detecting
Spurious Retransmi ssion Tinmeouts with TCP", RFC 5682,
Sept enrber 2009.

[RFC6298] Paxson, V., Allman, M, Chu, J., and M Sargent,
"Conmputing TCP's Retransmi ssion Tiner", RFC 6298, June
2011.

[RFC6582] Henderson, T., Floyd, S., @urtov, A, and Y. N shida, "The
NewReno Modification to TCP's Fast Recovery Al gorithnt,
RFC 6582, April 2012.

[RFC6675] Blanton, E., Allman, M, Wang, L., Jarvinen, |., Kojo, M,
and Y. Nishida, "A Conservative Loss Recovery Al gorithm
Based on Sel ective Acknow edgnent (SACK) for TCP', RFC
6675, August 2012.

[ZKFPO3] Zhang, M, Karp, B., Floyd, S., and L. Peterson, "RR-TCP:
A Reordering- Robust TCP with DSACK", Proceedi ngs of the
11th | EEE International Conference on Network Protocols
(1 CNP' 03) pp. 95-106, Novenber 2003.

[ZvD4] Zhou, X. and P. M eghem "Reordering of |IP Packets in
Internet", Lecture Notes in Conputer Science vol. 3015,
pp. 237-246, April 2004.

Appendi x A. Changes from previ ous versions of the draft

Thi s appendi x should be renoved by the RFC Editor before publishing
thi s docunent as an RFC.

Zi mrer mann, et al. Expi res May 14, 2015 [Page 20]

Internet-Draft TCP Reordering Detection Novenber 2014

A.1. Changes from draft-zi mrer mann-tcpm reordering-detection-01

0 Moved reasoning for relative reordering extent to di scussion

0 Extended algorithmfor calculation of reordering extents greater
than RTT (steps C. 2, S.5 and D. 3)

0 Renove reverse-path reordering fromintro

A. 2. Changes from draft-zi mrer mann-tcpm reorderi ng-detection-00

0 |Inproved the wording throughout the docunent.
0 Replaced and updat ed sone references.

Aut hors’ Addr esses

Al exander Zi nmer mann
Net App, I nc.
Sonnenal l ee 1

Ki rchhei m 85551

Ger many

Phone: +49 89 900594712
Enai | : al exander. zi nmer mann@et app. com

Lennart Schulte
Aalto University
QG akaari 5 A
Espoo 02150

Fi nl and

Phone: +358 50 4355233
Email: |l ennart.schulte@alto.fi

Carsten Wl ff

credativ GrbH
Hohenzol | ernstrasse 133
Moenchengl adbach 41061
Ger many

Phone: +49 2161 4643 182
Enmail : carsten.wol ff @redativ. de

Zi mrer mann, et al. Expi res May 14, 2015 [Page 21]

Internet-Draft TCP Reordering Detection Novenber 2014

Arnd Hannemann

credativ GrbH

Hohenzol | ernstrasse 133
Moenchengl adbach 41061
Ger many

Phone: +49 2161 4643 134
Emai | : arnd. hannemann@r edati v. de

Zi mrer mann, et al. Expi res May 14, 2015 [Page 22]

