
TCP Maintenance and Minor Extensions T. Moncaster, Ed.
Internet-Draft University of Cambridge
Intended status: Experimental B. Briscoe
Expires: January 4, 2015 A. Jacquet
 BT
 July 03, 2014

 A TCP Test to Allow Senders to Identify Receiver Non-Compliance
 draft-moncaster-tcpm-rcv-cheat-03

Abstract

 The TCP protocol relies on receivers sending accurate and timely
 feedback to the sender. Currently the sender has no means to verify
 that a receiver is correctly sending this feedback according to the
 protocol. A receiver that is non-compliant has the potential to
 disrupt a sender’s resource allocation, increasing its transmission
 rate on that connection which in turn could adversely affect the
 network itself. This document presents a two stage test process that
 can be used to identify whether a receiver is non-compliant. The
 tests enshrine the principle that one shouldn’t attribute to malice
 that which may be accidental. The first stage test causes minimum
 impact to the receiver but raises a suspicion of non-compliance. The
 second stage test can then be used to verify that the receiver is
 non-compliant. This specification does not modify the core TCP
 protocol - the tests can either be implemented as a test suite or as
 a stand-alone test through a simple modification to the sender
 implementation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2015.

Moncaster, et al. [Page 1]

 TCP Test Against Receiver Cheating July 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Requirements notation . 5
 3. The Problems . 5
 3.1. Concealing Lost Segments 6
 3.2. Optimistic Acknowledgements 7
 4. Requirements for a robust solution 9
 5. Existing Proposals . 10
 5.1. Randomly Skipped Segments 10
 5.2. The ECN nonce . 10
 5.3. A transport layer nonce 11
 6. The Test for Receiver Non-compliance 12
 6.1. Solution Overview . 12
 6.2. Probabilistic Testing 12
 6.2.1. Performing the Probabilistic Test 13
 6.2.2. Assessing the Probabilistic Test 15
 6.2.3. RTT Measurement Considerations 15
 6.2.4. Negative Impacts of the Test 17
 6.2.5. Protocol Details for the Probabilistic Test 18
 6.3. Deterministic Testing 19
 6.3.1. Performing the Deterministic Test 20
 6.3.2. Assessing the Deterministic Test 20
 6.3.3. Protocol Details for the Deterministic Test 20
 6.4. Responding to Non-Compliance 21
 6.5. Possible Interactions With Other TCP Features 21
 6.5.1. TCP Secure . 22
 6.5.2. Nagle Algorithm 22
 6.5.3. Delayed Acknowledgements 22
 6.5.4. Best Effort Transport Service 22
 6.6. Possible Issues with the Tests 22
 7. Comparison of the Different Solutions 23
 8. Alternative Uses of the Test 25

Moncaster, et al. [Page 2]

 TCP Test Against Receiver Cheating July 2014

 9. Evaluating the Experiment 25
 9.1. Criteria for Success 25
 9.2. Duration of the Experiment 25
 9.3. Arguments for Obsoleting the ECN Nonce 25
 10. IANA Considerations . 26
 11. Security Considerations 26
 12. Conclusions . 27
 13. Acknowledgements . 28
 14. Comments Solicited . 28
 15. References . 29
 15.1. Normative References 29
 15.2. Informative References 29
 Appendix A. Changes from previous drafts (to be removed by the
 RFC Editor) . 30
 Authors’ Addresses . 31

1. Introduction

 This document details an experimental test designed to allow a TCP
 sender to identify when a receiver is misbehaving or is non-
 compliant. It uses the standard wire protocol and protocol semantics
 of basic TCP [RFC0793] without modification. The hope is that if the
 experiment proves successful then we will be able to obsolete the
 experimental TCP nonce [RFC3540], hence freeing up valuable
 codepoints in both the IPv4 header and the TCP header.

 When any network resource (e.g. a link) becomes congested, the
 congestion control protocol [RFC5681] within TCP/IP expects all
 receivers to correctly feed back congestion information and it
 expects each sender to respond by backing off its rate in response to
 this information. This relies on the voluntary compliance of all
 senders and all receivers.

 Over recent years the Internet has become increasingly adversarial.
 Self-interested or malicious parties may produce non-compliant
 protocol implementations if it is to their advantage, or to the
 disadvantage of their chosen victims. Enforcing congestion control
 when trust can not be taken for granted is extremely hard within the
 current Internet architecture. This specification deals with one
 specific case: where a TCP sender is TCP compliant and wants to
 ensure its receivers are compliant as well.

 Simple attacks have been published showing that TCP receivers can
 manipulate feedback to fool TCP senders into massively exceeding the
 compliant rate [Savage]. Such receivers might want to make senders
 unwittingly launch a denial of service attack on other flows sharing
 part of the path between them [Sherwood]. But a more likely
 motivation is simple self-interest---a receiver can improve its own

Moncaster, et al. [Page 3]

 TCP Test Against Receiver Cheating July 2014

 download speed with the sender acting as an unwitting accomplice.
 [Savage] quotes results that show this attack can reduce the time
 taken to download an HTTP file over a real network by half, even with
 a relatively cautious optimistic acknowledgemnt strategy.

 There is currently no evidence that any TCP implementations are
 exploiting any of the attacks mentioned above. However this may be
 simply because there is no widely available test to identify such
 attacks. This document describes a test process that can identify
 such non-compliance by receivers should it start to become an issue.
 The aim of the authors is to provide a test that is safe to implement
 and that can be recommended by the IETF. The test can be deployed as
 a separate test suite, or in existing senders, but this document does
 not mandate that it should be implemented by senders.

 The measures in this specification are intended for senders that can
 be trusted to behave. This scheme can not prevent misbehaving
 senders from causing congestion collapse of the Internet. However
 the very existence of a test scheme such as this should act as a
 disincentive against non-compliant receivers.

 Senders do not have to be motivated solely by "the common good" to
 deploy these changes. It is directly in their own interest for
 senders serving multiple receivers (e.g. large file servers and
 certain file-sharing peers) to detect non-compliant receivers. A
 large server relies in part on network congestion feedback to
 efficiently apportion its own resources between receivers. If such a
 large server devotes an excessive fraction of its own resources to
 non-compliant receivers, it may well hit its own resource limits and
 have to starve other half-connections even if their network path has
 spare capacity.

 The proposed tests do not require the receiver to have deployed any
 new or optional protocol features, as any misbehaving receiver could
 simply circumvent the test by claiming it did not support the
 optional feature. Instead, the sender emulates network re-ordering
 and then network loss to test that the receiver reacts as it should
 according to the basic TCP protocol. It is important that the level
 of emulated re-ordering that such a test introduces should not
 adversely impact compliant receivers.

 This document specifies a two-stage test in which the sender
 deliberately re-orders some data segments so as to check if the
 destination correctly acknowledges out-of-order segments. The first
 stage test introduces a small reordering which will have a related
 very minor performance hit. It is not a conclusive test of
 compliance. However, failing it strongly suggests the receiver is
 non-compliant. This raises sufficient suspicion to warrant the more

Moncaster, et al. [Page 4]

 TCP Test Against Receiver Cheating July 2014

 intrusive but conclusive second stage if this non-compliance is going
 to be sanctioned. The second stage proves beyond doubt whether the
 receiver is non-compliant but it also requires significant re-
 ordering, which harms performance. Therefore it should not be used
 unless a receiver is already strongly suspected of non-compliance
 (through failing the first stage).

 The technique is designed to work with all known variants of TCP,
 with or without ECN [RFC3168], with or without SACK [RFC2018], and so
 on. The technique is probably transferable to derivatives of TCP,
 such as SCTP [RFC2960], but separate specifications will be required
 for such related transports. The requirements for a robust solution
 in Section 4 serve as guidelines for these separate specifications.

2. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. The Problems

 TCP is widely used as the end-to-end transport in the Internet. TCP
 utilises a number of mechanisms to avoid congestion [RFC5681] in
 order to avoid the congestion collapses that plagued the Internet in
 the mid 1980s. These mechanisms all rely on knowing that data has
 been received (through acknowledgments of that data) and knowing when
 congestion has happened (either through knowing that a segment was
 lost in flight or through being notified of an Explicit Congestion
 Notification (ECN) [RFC3168]). TCP also uses a flow control
 mechanism to control the rate at which data is sent [RFC0813]. Both
 the flow control and congestion avoidance mechanisms utilise a
 transmission window that limits the number of unacknowledged segments
 that are allowed to be sent at any given time. In order to work out
 the size of the transmission window, TCP monitors the average round
 trip time (RTT) for each flow and the number of unacknowledged
 segments still in flight.

 A strategising receiver can take advantage of the congestion and flow
 control mechanisms to increase its data throughput. The three known
 ways in which it can do this are: optimistic acknowledgements,
 concealing segment losses and dividing acknowledgements into smaller
 parts. The first two are examined in more detail below and details
 of the third can be found in [Savage].

Moncaster, et al. [Page 5]

 TCP Test Against Receiver Cheating July 2014

3.1. Concealing Lost Segments

 TCP is designed to view a lost segment as an indication of congestion
 on the channel. This is because TCP makes the reasonable assumption
 that packets are most likely to be lost through deliberately being
 dropped by a congested node rather than through transmission losses
 or errors.

 In order to avoid congestion collapse [RFC3714], whichever TCP
 connection detects the congestion (through detecting that a packet
 has been dropped or marked) is expected to respond to it either by
 reducing its congestion window to 1 segment after a timeout or by
 halving it on receipt of three duplicate acks (the precise rules are
 set out in [RFC5681]).

 For applications where missing data is not an issue, it is in the
 interest of a receiver to maximise the data rate it gets from the
 sender. If it conceals lost segments by falsely generating
 acknowledgements for them it will not suffer a reduction in data
 rate. There are a number of ways to make an application loss-
 insensitive. Some applications such as streaming media are
 inherently insensitive anyway, as a loss will just be seen as a
 transient error. TCP is widely used to transmit media files, either
 audio or video, which are relatively insensitive to data loss
 (depending on the encoding used). Also senders may be serving data
 containing redundant parity to allow the application to recreate lost
 data. A misbehaving receiver can also exploit application layer
 protocols such as the partial GET in HTTP 1.1 [RFC2616] to recover
 missing data over a secondary connection.

Moncaster, et al. [Page 6]

 TCP Test Against Receiver Cheating July 2014

 |---.__ Drop | |---.__ Drop | | |
 |---.__‘---#200 | |---.__‘---#200 |
 | ‘---.__ | | ‘---.__ |
 | ‘---.__ | | ‘---.__ |
 | _,‘300->| | _,‘300->|
 | __,---’ | | __,---’ |
 | _,---’ | | _,---’ |
 |<-100 | |<-300 |
 |---.__ | |---.__ |
 |---.__‘---.__ | |---.__‘---.__ |
 | ‘---.__‘---.__ | |---.__‘---.__‘---.__ |
 | ‘---.__‘400->| ,-|---.__‘---.__‘---.__‘400->|
 | _,‘500->| | | ‘---.__‘---._,‘500->|
 | __,---’ | |R| __˜---.__‘600->|
 | _,---’ | - |T| _,---’ _,‘700->|
 |<-100 | | |T|<-500 __,---’ |
 |---.__ | | | | _,---’ |
 ,-|---.__‘---.__ | | ‘-|<-700 |
 | | ‘---.__‘---.__ | |<-.
 | | ‘---._,‘600->| | \
 |N| __,---’_,‘700->| - +----------------------+
 |E| _,---’__,---’ | | receives segment 700 |
 |W|<-100_,---’ | | much sooner |
 | |<-100_ | +----------------------+
R	---.__‘---.__
T	‘---.__‘---.__
T	‘---._,‘200->
	__,---’ ‘300->
	_,---’
 ‘-|<-700 |

 Figure 1: Concealing lost segments

3.2. Optimistic Acknowledgements

 Optimistic acknowledgements were identified as a possible attack in
 [Savage]. If a receiver is downloading a file from a server, it is
 probably in its interest to acquire as high a bandwidth as possible
 for this. One way of increasing the bandwidth is to encourage the
 sender to believe the round trip time is shorter than it actually is.
 This means the sender will open up its transmission window faster and
 thus will send data faster. Of course any lost segments will also be
 concealed during this attack.

 The receiver can achieve this by sending acknowledgements for data it
 hasn’t actually received yet. As long as the acknowledgement is for
 a packet that has already been transmitted, the sender will assume
 the RTT has become shorter. This will cause it to increase its

Moncaster, et al. [Page 7]

 TCP Test Against Receiver Cheating July 2014

 transmission window more rapidly and thus send more data. Optimistic
 acknowledgements are particularly damaging since they can also be
 used to significantly amplify the effect of a denial of service (DoS)
 attack on a network. This form of attack is explained in more detail
 in [Sherwood].

 |---.__ | |---.__ |
 | ‘---.__ | | ‘---.__ |
 | ‘---.__ | | ‘---.__ |
 | _,‘100->| | _,‘100->|
 | __,---’ | | __,---’ |
 | _,---’ | | _,---’ |
 |<-100 | |<-100 |
 |---.__ | |---.__ |
 ,-|---.__‘---.__ | ,-|---.__‘---.__ |
	‘---.__‘---.__		R	‘---.__‘---.__
R	‘---.__‘200->		T	‘---._,‘200->
T	_,‘300->		T	__,---’ ‘300->
T	__,---’			_,---’
	_,---’	‘-	<-300	
 ‘-|<-300 | |---.__ |
 |---.__ | |---.__‘---.__ |
 |---.__‘---.__ | |---.__‘---.__‘---.__ |
 |---.__‘---.__‘---.__ | |---.__‘---.__‘---._,‘400->|
 |---.__‘---.__‘---.__‘400->| | ‘---.__‘---._,‘500->|
 | ‘---.__‘---._,‘500->| | _,---’__˜---.__‘600->|
 | __˜---.__‘600->| |<-500_,---’ ‘700->|
 | _,---’ _,‘700->| |<-700 |
 |<-500 __,---’ |
 | _,---’ |
 |<-700 |

 The flow on the left acknowledges data only once it is received. The
 flow on the right acknowledges data before it is received and
 consequently the apparent RTT is reduced.

 Figure 2: Optimistic acknowledgements

 In 2005 US-CERT (the United States Computer Emergency Readiness Team)
 issued a vulnerability notice [VU102014] specifically addressed to 80
 major network equipment manufacturers and vendors who could be
 affected if someone maliciously exploited optimistic acknowledgements
 to cause a denial of service. This highlights the potential severity
 of such an attack were one to be launched. It should be noted
 however that the primary motivation for using optimistic
 acknowledgement is likely to be the performance gain it gives rather
 than the possible negative impact on the network. Application
 writers may well produce "Download Accelerators" that use optimistic

Moncaster, et al. [Page 8]

 TCP Test Against Receiver Cheating July 2014

 acknowledgements to achieve the performance increase rather than the
 current parallel connection approach most use. Users of such
 software would be effectively innocent parties to the potential harm
 that such a non-compliant TCP could cause.

4. Requirements for a robust solution

 Since the above problems come about through the inherent behaviour of
 the TCP protocol, there is no gain in introducing a new protocol as
 misbehaving receivers can claim to only support the old protocol.
 The best approach is to provide a mechanism within the existing
 protocol to test whether a receiver is compliant. The following
 requirements should be met by any such test in TCP and are likely to
 be applicable for similar tests in other transport protocols:

 1. The compliance test must not adversely affect the existing
 congestion control and avoidance algorithms since one of the
 primary aims of any compliance test is to reinforce the integrity
 of congestion control.

 2. Any test should utilise existing features of the TCP protocol.
 If it can be implemented without altering the existing protocol
 then implementation and deployment are easier.

 3. The receiver should not play an active role in the process. It
 is much more secure to have a check for compliance that only
 requires the receiver to behave as it should anyway.

 4. It should not require the use of any negotiable TCP options.
 Since the use of such options is by definition optional, any
 misbehaving receiver could just choose not to use the appropriate
 option.

 5. If this is a periodic test, the receiver must not be aware that
 it is being tested for compliance. If a misbehaving receiver can
 tell that it is being tested (by identifying the pattern of
 testing) it can choose to respond compliantly only whilst it is
 being tested. If the test is always performed this clearly
 doesn’t apply.

 6. If the sender actively sanctions any non-compliance it
 identifies, it should be certain of the receiver’s non-compliance
 before taking action against it. Any false positives might lead
 to inefficient use of network resources and could damage end-user
 confidence in the network.

 7. The testing should not significantly reduce the performance of an
 innocent receiver.

Moncaster, et al. [Page 9]

 TCP Test Against Receiver Cheating July 2014

5. Existing Proposals

5.1. Randomly Skipped Segments

 [Sherwood] suggests a simple approach to test a receiver’s
 compliance. The test involves randomly dropping segments at the
 sender before they are transmitted. All TCP "flavours" require that
 a receiver should generate duplicate acknowledgements for all
 subsequent segments until a missing segment is received. This system
 requires that SACK be enabled so the sender can reliably tell that
 the duplicate acknowledgements are generated by the segment that is
 meant to be missing and are not concealing other congestion. Once
 the first duplicate acknowledgement arrives, the missing segment can
 then be "re-transmitted". Because this loss has been deliberately
 introduced, the sender doesn’t treat it as a sign of congestion. If
 a receiver sends an acknowledgement for a segment that was sent after
 the gap, it proves it is misbehaving or that its TCP is completely
 non-compliant. It can then be sanctioned. As soon as the first
 duplicate acknowledgement is received the missing segment is "re-
 transmitted". This will introduce a 1 RTT delay for some segments
 which could adversely affect some low-latency applications.

 This scheme does work perfectly well in principle and does allow the
 sender to clearly identify misbehaviour. However it fails to meet
 requirement 4 in Section 4 above since it requires SACK to be used.
 If SACK were not used then it would fail to meet requirement 1 as it
 would be impossible to differentiate between the loss introduced on
 purpose and any additional loss introduced by the network.

 It might be possible to incentivise the use of SACK by receivers by
 stating that senders are entitled to discriminate against receivers
 that don’t support it. Given that SACK is now widely implemented
 across the Internet this might be a feasible, but controversial,
 deployment strategy. However the solution in Section 6 builds on
 Sherwood’s scheme but avoids the need for SACK.

5.2. The ECN nonce

 The authors of the ECN scheme [RFC3168] identified the failure to
 echo ECN marks as a potential attack on ECN. The ECN nonce was
 proposed as a possible solution to this in the experimental
 [RFC3540]. It uses a 1 bit nonce in every IP header. The nonce
 works by randomly setting the ECN field to ECT(0) or ECT(1). The
 sender then maintains the least significant bit of the sum of this
 value and stores the expected sum for each segment boundary. At the
 receiver end, the same cumulative 1-bit sum is calculated and is
 echoed back in the NS (nonce sum) flag added to the TCP header. If a
 packet has been congestion marked then it loses the information of

Moncaster, et al. [Page 10]

 TCP Test Against Receiver Cheating July 2014

 which ECT codepoint it was carrying. A receiver wishing to conceal
 the ECN mark will have to guess whether to increment NS or not. Once
 congestion has been echoed back and the source has started a
 congestion response the nonce sum in the TCP header is not checked.
 Once congestion recovery is over the source resets its NS to that of
 the destination and starts checking again.

 On the face of it this solution also fully covers the two problems
 identified in Section 3. If a receiver conceals a lost segment it
 has to guess what mark was there and, over several guesses, is very
 likely to be found out. If a receiver tries to use optimistic
 acknowledgements it has to guess what nonce was set on all the
 packets it acknowledges but hasn’t received yet. However there are
 some key weaknesses to this system. Firstly, it assumes that ECN
 will be widely deployed (not currently true). Secondly, it relies on
 the receiver honestly declaring support for both ECN and the ECN
 nonce - a strategising receiver can simply declare it is neither ECN
 nor ECN nonce capable and thus avoid the nonce. Thirdly, the
 mechanism is suspended during any congestion response. Comparing it
 against the requirements in Section 4 above, it is clear that the ECN
 nonce fails to meet requirements 3 and 4 and arguably fails to meet
 requirement 2 as [RFC3540] is experimental. The authors do state
 that any sender that implements the ECN nonce is entitled to
 discriminate against any receiver that doesn’t support it. Given
 there are currently no implementations of the ECN nonce,
 discriminating against the overwhelming majority of receivers that
 don’t support it is not a feasible deployment strategy.

5.3. A transport layer nonce

 One possible solution to the above issues is a multi-bit transport
 layer nonce. Two versions of this are proposed in [Savage]. The
 first is the so called "Singular Nonce" where each segment is
 assigned a unique random number. This value is then echoed back to
 the receiver with the ack for that segment. The second version is
 the "Cumulative Nonce" where the nonce is set as before, but the
 cumulative sum of all nonces is echoed back. Whilst such a system is
 robust and allows a sender to correctly identify a misbehaving
 receiver, it has the key drawback that it requires either the
 creation of a new TCP option to carry the nonce and nonce reply or it
 requires the TCP header to be extended to include both these fields.

 This proposal clearly breaches several of the requirements listed in
 Section 4. It breaches requirement 2 in that it needs a completely
 new TCP option or a change to the TCP header. It breaches
 requirement 3 because it needs the receiver to actively echo the
 nonce (as does the ECN nonce scheme) and if it uses a TCP option it

Moncaster, et al. [Page 11]

 TCP Test Against Receiver Cheating July 2014

 breaches requirement 4. On the face of it there is no obvious route
 by which this sort of system can be widely implemented.

6. The Test for Receiver Non-compliance

6.1. Solution Overview

 The ideal solution to the above problems should fully meet the
 requirements set out in Section 4. The most important of these is
 that the solution should leverage existing TCP behaviours rather than
 mandating new behaviours and options. The proposed solution utilises
 TCP’s receiver behaviour on detecting missing data. To test a
 receiver the sender delays a segment during transmission by D
 segments. There is a trade off because increasing D increases the
 probability of detecting non-compliance but also increases the
 probability of masking a congestion event during the test. The
 completely safe strategy for the sender would be to reduce its rate
 pessimistically as if there were congestion during the test however
 this will impact the performance of its receivers, thus breaching
 requirement 7. To overcome this dilemma, the test consists of two
 stages. In the first stage, the sender uses small displacements
 without the pessimistic congestion response to determine which
 receivers appear to be non-compliant. The sender can then prove the
 non-compliance of these receivers by subjecting them to a
 deterministic test. This test uses a longer displacement but given
 the receiver is already under suspicion, it can risk harming
 performance by pessimistically reducing its rate as if the segment it
 held back was really lost by the network. The tests can either be
 implemented as part of a test suite or as a stand-alone modification
 to the TCP sender implementation. References to the TCP sender in
 the rest of this document should be taken to include either type of
 implementation.

6.2. Probabilistic Testing

 The first requirement for a sender is to decide when to test a
 receiver. This document doesn’t specify when the test should be
 performed but the following guidance may be helpful. The simplest
 option is for a sender to perform the test at frequent random
 intervals for all its half-connections. There are also some
 heuristic triggers that might indicate the need for a test. Firstly,
 if a sender is itself too busy, it would be sensible for it to test
 all its receivers. Secondly, if the sender has many half-connections
 that are within a RTT of a congestion response, it would be sensible
 to test all the half-connections that aren’t in a congestion
 response. Thirdly, the sender could aim to test all its half-
 connections at least once. Finally it is to be expected that there
 is a certain degree of existing segment reordering and thus a sender

Moncaster, et al. [Page 12]

 TCP Test Against Receiver Cheating July 2014

 should be suspicious of any receiver that isn’t generating as many
 duplicate acknowledgements as other receivers. [Piratla] explores
 how prevalent reordering might be in the Internet though it is
 unclear whether the figures given are more widely applicable.

 Like the skipped segment solution in Section 5.1, the proposed
 solution depends on the strict requirement that all TCP receivers
 have to send a duplicate acknowledgement as soon as they receive an
 out-of-order segment. This acknowledges that some data has been
 received, however the acknowledgement is for the last in order
 segment that was received (hence duplicating an acknowledgment
 already made). SACK extends this behaviour to allow the sender to
 infer exactly which segments are missing. This leads to a simple
 statement: if a receiver is behaving compliantly it must respond to
 an out-of-order packet by generating a duplicate acknowledgement.

 Following from the above statement, a sender can test the compliance
 of a given receiver by simply delaying transmission of a segment by
 several places. A compliant receiver will respond to this by
 generating a number of duplicate acknowledgements. The sender would
 strongly suspect a receiver of non-compliance if it received no
 duplicate acknowledgements as a result of the test. A misbehaving
 receiver can only conceal its actions by waiting until the delayed
 segment arrives and then generating an appropriate stream of
 duplicate acknowledgements to appear to be honest. This removes any
 benefits it may be gaining from cheating because it will
 significantly increase the RTT observed by the sender.

6.2.1. Performing the Probabilistic Test

 The actual mechanism for conducting the test is extremely simple.
 Having decided to conduct a test the sender selects a segment, N. It
 then chooses a displacement, D (in segments) for this segment where
 strictly 2 < D < K - 2 where K is the current window size. In
 practice only low values of D should be chosen to conceal the test
 among the background reordering and limit the chance of masking
 congestion. D SHOULD be 6 or less for an initial test. D MUST be
 greater than 2 to allow for the standard fast retransmit threshold of
 3 duplicate acknowledgements. If K is less than 5, the sender should
 arguably not perform any compliance testing. This is because when
 the window is so small then non-compliance is not such a significnat
 issue. The exception to this might be when this test is being used
 for testing new implementations. To conduct the probabilistic test,
 instead of transmitting segment N, it transmits N+1, N+2, etc. as
 shown in the figure below. Once it has transmitted N+D it can
 transmit segment N. The sender needs to record the sequence number,
 N as well as the displacement, D.

Moncaster, et al. [Page 13]

 TCP Test Against Receiver Cheating July 2014

 According to data in [Piratla], as many as 15% of segments in the
 Internet arrive out of order though this claim may not be accurate.
 Whatever the actual degree of re-ordering, receivers always expect
 occasional losses of packets which they cannot distinguish from re-
 ordering without waiting for the re-ordered packet to arrive.
 Consequently a misbehaving receiver is unsure how to react to any
 out-of-order packets it receives. It should be noted that the
 natural reordering may reduce the displacement deliberately
 introduced by the test so the sender should conduct the test more
 than once.

 |--.._ |
 |--.._‘--.._ |
 |--.._‘--.._‘--.._ | +----------------------------+
 |--.._‘--.._‘--.._‘--.._ | | This figure shows how a |
 |--.._‘--.._‘--.._‘--.._‘N-1->| | compliant receiver reacts |
 |--.._‘--.._‘--.._‘--.._‘N+1->| | to a probabilistic test |
 |--.._‘--.._‘--.._‘-=.._‘N+2->| | with D=4. It sends 4 dup. |
 | ‘--.._‘-=.._‘-=.._‘N+3->| | acknowledgements back to |
 | _,--’_-=.._‘-=.._‘N+4->| | the sender before sending |
 |<-N-1’_,--’__,--’:-=.._‘-N-->| | an acknowledgement for N+4 |
 |<-N-1’_,--’__,--’__,--’‘N+5->| +----------------------------+
 |<-N-1’_,--’__,--’__,--’__,--’|
 |<-N-1’_,--’__,--’__,--’ |
 |<-N-1’_,--’__,--’ |
 |<-N+4’_,--’ |
 |<-N+5’

 Figure 3: A receiver reacting honestly to a probabilistic test

 During testing, loss of segment L in the range from N+1 to N+D
 inclusive will be temporarily masked by the duplicate
 acknowledgements from the intentional gap that was introduced. In
 this case the sender’s congestion response will be delayed by at most
 the offset D. If there is an actual loss during the test then, once
 the receiver receives segment N, it will generate an acknowledgement
 for L-1. This will lie between N and N+D. Thus it is reasonable to
 treat receipt of any acknowledgement between N and N+D inclusive as
 an indication of congestion and react accordingly. This will also
 discourage the receiver from sending optimistic acknowledgements in
 case these prove to lie in the middle of a testing sequence, in which
 case it will trigger a congestion response by the sender. It also
 means a dishonest receiver has to wait for a full K segments after
 any genuine lost segment to be sure it isn’t a test as it will
 otherwise trigger a congestion response. Delaying by that long will
 quickly increase the RTT estimate and will soon reduce the
 transmission rate by as much as if the receiver had reacted honestly
 to the congestion.

Moncaster, et al. [Page 14]

 TCP Test Against Receiver Cheating July 2014

 As an additional safety measure, if the sender is performing slow
 start when it decides to test the receiver, it should change to
 congestion avoidance. The reason for this is in case there is any
 congestion that is concealed during the test. If there is
 congestion, and the sender’s window is still increasing
 exponentially, this might significantly exacerbate the situation.
 This does mean that any receiver being tested during this period will
 suffer reduced throughput, but such testing should only be triggered
 by the sender being overloaded.

6.2.2. Assessing the Probabilistic Test

 This approach to testing receiver compliance appears to meet all the
 requirements set out in Section 4. The most attractive feature is
 that it enforces equivalence with compliant behaviour. That is to
 say, a receiver can either honestly report the missing packets or it
 can suffer a reduced throughput by delaying segments and increasing
 the RTT. The only significant drawback is that during a test it
 introduces some delay to the reporting of actual congestion. Given
 that TCP only reacts once to congestion in each RTT the delay doesn’t
 significantly adversely affect the overall response to severe
 congestion.

 Some receivers may choose to misbehave despite this. These can be
 quickly identified by looking at their acknowledgements. A receiver
 that never sends duplicate acknowledgements in response to being
 tested is likely to be misbehaving. Equally, a receiver that delays
 transmission of the duplicate acknowledgements until it is sure it is
 being tested will leave an obvious pattern of acknowledgements that
 the sender can identify. Because a receiver is unlikely to be able
 to differentiate this test from actual re-ordering events, the
 receiver will be forced to behave in the same fashion for any re-
 ordered packet even in the absence of a test, making it continually
 appear to have longer RTT.

6.2.3. RTT Measurement Considerations

 Clearly, if the sender has re-ordered segment N, it cannot use it to
 take an accurate RTT measurement. However it is desirable to ensure
 that, during a test, the sender still measures the RTT of the flow.
 One of the key aspects of this test is that the only way for an
 actually dishonest receiver to cheat the test is to delay sending
 acknowledgements until it is certain a test is happening. If
 accurate RTTs can be measured during a test, this delay will cause a
 dishonest receiver to suffer an increase in RTT and thus a reduction
 in data throughput.

Moncaster, et al. [Page 15]

 TCP Test Against Receiver Cheating July 2014

 Measurement of the RTT usually depends on receiving an
 acknowledgement for a segment and measuring the delay between when
 the segment was sent and when the acknowledgement arrives. The TCP
 timestamp option is often used to provide accurate RTT measurement
 but again, this is not going to function correctly during the test
 phase. During a test therefore, the RTT has to be estimated using
 the arrival of duplicate acknowledgements. Figure 4 shows how one
 can measure the RTT in this way, and also demonstrates how this will
 increase if a dishonest sender chooses to cheat. However it is not
 sufficient simply to measure a single RTT during the test.

Moncaster, et al. [Page 16]

 TCP Test Against Receiver Cheating July 2014

 |‘--._ |
 ,--|‘--._‘--._ | +----------------------------+
C	‘--._‘--._‘--._		Segment N is delayed by 3
h	‘--._‘--._‘--._‘--._		segments. This triggers 3
e	‘--._‘--._‘--._‘--._‘-N-1->		duplicate acknowledgements
c	‘--._‘--._‘--._‘-N+1->	+----------------------------+	
k	‘--._‘--._‘=N+2->		
	‘-=._‘=N+3->	+----------------------------+	
R	_,--’_,- ‘=-N=->		The RTT can be measured by
T	_,--’_,--’_,--’_,-’ ,		timing the gap between N+1
T	<-N-1’_,--’_,--’_,--’_,--’		being sent and the 1st
 ‘--|<-N-1’_,--’_,--’_,--’ | | duplicate acknowledgement |
 |<-N-1’_,--’_,--’ | | being received. |
 |<-N-1’_,--’ | +----------------------------+
 |<-N+3’ |
 | |

 |‘--._ |
 ,--|‘--._‘--._ | +----------------------------+
R	‘--._‘--._‘--._		Segment N is delayed by 3
T	‘--._‘--._‘--._‘--._		segments. The sender has
T	‘--._‘--._‘--._‘--._‘-N-1->		decided to cheat so it has
	‘--._‘--._‘--._‘-N+1->		to wait until it gets sent
g	‘--._‘--._‘=N+2->		segment N.
r	‘-=.‘-N+3->	+----------------------------+	
e	_,--’ ‘--N-->		
a	_,--’ ,	+----------------------------+	
t	<-N-1’ _,--’,		Once N arrives it has to
e		_,--’_,--’,	
r	GAP _,--’_,--’_,--’,		acknowledgements so it
		,--’,--’_,--’	
 ‘--|<-N-1’_,--’_,--’ | | will increase the RTT that |
 |<-N-1’_,--’ | | the sender is measuring. |
 |<-N+3’ | +----------------------------+
 | |

 Figure 4: Measuring the RTT during a test

6.2.4. Negative Impacts of the Test

 It is important to be aware that keeping track of out-of-order data
 segments uses some memory resources at the receiver. Clearly this
 test introduces additional re-ordering to the network and
 consequently will lead to receivers using additional resources. In
 order to mitigate against this, any sender that implements the test

Moncaster, et al. [Page 17]

 TCP Test Against Receiver Cheating July 2014

 should only conduct the test at relatively long intervals (of the
 order of several RTTs).

6.2.5. Protocol Details for the Probabilistic Test

 o Any TCP sender MAY use the probabilistic test periodically and
 randomly to check the compliance of its receivers. In particular,
 it would be advantageous for any sender that is heavily loaded to
 identify if it is being taken advantage of by non-compliant
 receivers.

 o The decision to test MUST be randomised and MAY be based on: the
 current load on the sender; whether the receiver is undergoing a
 congestion response; whether the receiver appears to have
 different flow characteristics to the others; when the receiver
 was last tested. The interval between tests SHOULD be relatively
 long (order of several RTTs).

 o To perform the test, the sender selects a segment N. The
 transmission of this segment will be delayed by D places. D MUST
 lie between 2 and K-2 exclusively where K is the current size of
 the transmit window. D SHOULD lie between 3 and 6 inclusively
 except in those circumstances when a receiver has failed to
 respond as expected to an earlier test but the sender chooses not
 to proceed to the deterministic test. D MUST be generated pseudo-
 randomly and unpredictably. The actual delay SHOULD be such that
 the receiver can’t distinguish the test segment from the
 background traffic. If there are less than D segments worth of
 data in the send buffer then the test SHOULD be omitted.

 o If K < 5, the sender SHOULD NOT conduct a compliance test.

 o The sequence number N of the delayed segment MUST be recorded by
 the sender as must the amount of delay D.

 o The senders enters the test phase when it transmits segment N+1
 instead of N.

 o The sender MUST NOT use segment N to measure the RTT of the flow.
 This is because it won’t get a true acknowledgement for this
 segment.

 o The sender SHOULD use segment N+1 to measure the RTT using the
 first duplicate acknowledgement it receives to calculate the RTT.
 This is to ensure that a dishonest receiver will suffer from an
 increased RTT estimate. The sender SHOULD continue checking the
 RTT throughout the test period.

Moncaster, et al. [Page 18]

 TCP Test Against Receiver Cheating July 2014

 o If the sender receives any duplicate acknowledgements during the
 test phase it MUST check to see if they were generated by the
 delayed segment (i.e. the acknowledged sequence number must be
 that of the preceding segment). If they are generated to report
 the missing segment N the sender SHOULD NOT react as if they are
 an indication of congestion.

 o If the sender receives an acknowledgement for a segment with a
 sequence number between N and N+D inclusively it MUST treat this
 as an indication of congestion and react appropriately.

 o A sender stops being in the test phase when either it receives the
 acknowledgement for segment N+D or when it has received at least D
 duplicate acknowledgments, whichever happens sooner.

 o If a sender in the test phase receives D or more duplicate
 acknowledgements, then it MUST retransmit segment N and react as
 if there is congestion as specified in [RFC5681]. This is to
 allow for the possibility that segment N may be lost.

 o If the sender is in the slow start phase it MUST move to
 congestion avoidance as soon as it begins a test. It MAY choose
 to return to slow start once the test is completed.

 o If a sender is in the test phase and receives no duplicate
 acknowledgements from the receiver it MUST treat this as
 suspicious and SHOULD perform the more rigorous deterministic test
 set out in Section 6.3.3.

 o If a sender is in the test phase and the next segment to be
 transmitted has either the FIN or RST bits set, then it must
 immediately stop the test, and transmit segment N before
 transmitting the FIN or RST segment.

 o A sender MAY choose to monitor the pattern of acknowledgements
 generated by a receiver. A dishonest receiver is likely to send a
 distinctive pattern of duplicate acknowledgments during the test
 phase. As they are unable to detect whether it is a test or not
 they are also forced to behave the same in the presence of any
 segment reordering caused by the network.

6.3. Deterministic Testing

 If after one or more probabilistic tests the sender deems that a
 receiver is acting suspiciously, the sender can perform a
 deterministic test similar to the skipped segment scheme in
 Section 5.1 above.

Moncaster, et al. [Page 19]

 TCP Test Against Receiver Cheating July 2014

6.3.1. Performing the Deterministic Test

 In order to perform the deterministic test the sender again needs to
 choose a segment, M to use for testing. This time the sender holds
 back the segment until the receiver indicates that it is missing.
 Once the receiver sends a duplicate acknowledgement for segment M-1
 then the sender transmits segment M. In the meantime data
 transmission should proceed as usual. If SACK is not in use, this
 test clearly increases the delay in reporting of genuine segment
 losses by up to a RTT. This is because it is only once segment M
 reaches the receiver that it will be able to acknowledge the later
 loss. Therefore, unless SACK is in use, the sender MUST
 pessimistically perform a congestion response following the arrival
 of 3 duplicate acknowledgements for segment M-1 as mandated in
 [RFC5681].

6.3.2. Assessing the Deterministic Test

 A dishonest receiver that is concealing segment losses will establish
 that this isn’t a probabilistic test once the missing segment fails
 to arrive within the space of 1 congestion window. In order to
 conceal the loss the receiver will simply carry on acknowledging all
 subsequent data. The sender can therefore state that if it receives
 an acknowledgement for a segment with a sequence number greater than
 M before it has actually sent segment M then the receiver must either
 be cheating or is very non-compliant.

 It is important to be aware that a third party who is able to
 correctly guess the initial sequence number of a connection might be
 able to masquerade as a receiver and send acknowledgements on their
 behalf to make them appear non-compliant or even dishonest. Such an
 attack can be identified because an honest receiver will also be
 generating a stream of duplicate acknowledgements until such time as
 it receives the missing segment.

6.3.3. Protocol Details for the Deterministic Test

 o If a sender has reason to suspect that a receiver is reacting in a
 non-compliant manner to the probabilistic test it SHOULD perform
 the more thorough deterministic test.

 o To perform the deterministic test the sender MUST select a segment
 M at random. The sender MUST store this segment in the buffer of
 unacknowledged data without sending it and MUST record the
 sequence number.

 o If SACK is not being used, the receiver MUST pessimistically
 perform a congestion response following the arrival of the first 3

Moncaster, et al. [Page 20]

 TCP Test Against Receiver Cheating July 2014

 duplicate acknowledgments for segment M-1 as mandated in
 [RFC5681].

 o If the receiver sends an acknowledgement for a segment that was
 sent after segment M should have been sent, but before segment M
 is actually sent, then the receiver has proved its non-compliance.
 The only possible exception to this is if the receiver is also
 sending a correct stream of duplicate acknowledgements as this
 implies that a third party is interfering with the connection.

 o As soon as the first duplicate acknowledgement for segment M-1
 arrives, segment M MUST be transmitted. The effective delay, D,
 of segment M MUST be calculated and stored.

 o If a sender is in the test phase and the next segment to be
 transmitted has either the FIN or RST bits set, then it must
 immediately stop the test, and transmit segment N before
 transmitting the FIN or RST segment.

 o Any subsequent acknowledgement for a segment between M and M+D
 MUST be treated as an indication of congestion and responded to
 appropriately as specified in [RFC5681].

6.4. Responding to Non-Compliance

 Having identified that a receiver is actually being dishonest, the
 appropriate response is to terminate the connection with that
 receiver. If a sender is under severe attack it might also choose to
 ignore all subsequent requests to connect by that receiver. However
 this is a risky strategy as it might give an increased incentive to
 launch an attack against someone by making them appear to be behaving
 dishonestly. It is also risky in the current network where many
 users might share quite a small bank of IP addresses assigned
 dynamically to them by their ISP’s DHCP server. A safer alternative
 to blacklisting a given IP address might be to simply test future
 connections more rigorously.

6.5. Possible Interactions With Other TCP Features

 In order to be safe to deploy, this test must not cause any
 unforeseen interactions with other existing TCP features. This
 section looks at some of the possible interactions that might happen
 and seeks to show that they are not harmful.

Moncaster, et al. [Page 21]

 TCP Test Against Receiver Cheating July 2014

6.5.1. TCP Secure

 [RFC5961] is a WG Internet Draft that provides a solution to some
 security issues around the injection of spoofed TCP packets into a
 TCP connection. The mitigations to these attacks revolve round
 limiting the acceptable sequence numbers for RST and SYN segments.
 In order to ensure there is no unforeseen interaction between TCP
 Secure and this test the test protocol has been specified such that
 the test will be aborted if a RST segment is sent.

6.5.2. Nagle Algorithm

 The Nagle algorithm [RFC0896] allows a TCP sender to buffer data
 waiting to be sent until such time as it receives an acknowledgement
 for the previous segment. This means that there is only ever one
 segment in flight and as such this test should not be performed when
 the Nagle algorithm is being used.

6.5.3. Delayed Acknowledgements

 [RFC5681] allows for the generation of delayed acknowledgements for
 data segments. However the tests in this document rely on triggering
 the generation of duplicate acknowledgements. These must be
 generated for every out of order packet that is received and should
 be generated immediately the packet is received. Consequently these
 mechanisms have no effect on the tests set out in this document.

6.5.4. Best Effort Transport Service

 The Best Effort Transport Service (BETS) is one operating mode of the
 Space Communications Protocol Standards (SCPS) [SCPS]. SCPS is a set
 of communications protocols optimised for extremely high bandwidth-
 delay product links such as those that exist in space. SCPS-TP (SCPS
 - Tranpsort Protocol) is based on TCP and is an official TCP option
 (number 20). The BETS option within SCPS-TP is designed to provide a
 semi-reliable transport between endpoints. As such it doesn’t
 necessarily ACK data in the same manner as TCP and thus, if this
 option has been negotiated on a link the tests described above should
 not be used.

6.6. Possible Issues with the Tests

 Earlier in this document we asserted that these tests don’t change
 the TCP protocol. We make this assertion for two reasons. Firstly
 the protocol can be implemented as a shim that sits between the TCP
 and IP layers. Secondly the network and receiver are unable to
 differentiate between a sender that implements these tests and a
 sender where the IP layer re-orders packets before transmission.

Moncaster, et al. [Page 22]

 TCP Test Against Receiver Cheating July 2014

 However the tests might have some impact on the debugging of a TCP
 implementation. It will also have an impact on debugging traces as
 it creates additional reordering. The authors feel that these
 effects are sufficiently minor to be safely ignored. If an author of
 a new TCP implementation wishes to be certain that they won’t be
 affected by the tests during debugging they simply need to ensure
 that the sender they are connecting to is not undertaking the tests.

 A potentially more problematic consequence is the slight increase in
 packet reordering that this test might introduce. However the degree
 of reordering introduced in the probabilistic test is strictly
 limited. This should have minimal impact on the network as a whole
 although this assertion would benefit from testing by the wider
 Internet Community.

 The final potential problem is that this test relies on the flows
 being long-running. However this may not be a real issue since for a
 short running flow none of the attacks described in Section 3 would
 give the receiver any advantage in a short flow.

7. Comparison of the Different Solutions

 The following table shows how all the approaches described in this
 document compare against the requirements set out in Section 4.

Moncaster, et al. [Page 23]

 TCP Test Against Receiver Cheating July 2014

 +----------------+------+------+--------+---------+---------+
 | Requirement | Rand | ECN |Transp. | Stage 1 | Stage 2 |
 | | skip |nonce | nonce | test | test |
 | | segs | | | | |
 +----------------+------+------+--------+---------+---------+
 | Congestion | | | | | |
 | Control | Yes | Yes | Yes | Yes | Yes |
 | unaffected | | | | | |
 +----------------+------+------+--------+---------+---------+
 | Utilise | | | | | |
 | existing | Yes | No** | No | Yes | Yes |
 | features | | | | | |
 +----------------+------+------+--------+---------+---------+
 | Receiver | Yes | No | No | Yes | Yes |
 | passive role | | | | | |
 +----------------+------+------+--------+---------+---------+
 | No negotiable |Yes * | No | No | Yes | Yes |
 | TCP options | | | | | |
 +----------------+------+------+--------+---------+---------+
 | Receiver | Yes | N/A | N/A | Yes | Yes |
 | unaware | | | | | |
 +----------------+------+------+--------+---------+---------+
 | Certain of | Yes | Yes | Yes | strong | Yes |
 | non-compliance | | | |suspicion| |
 +----------------+------+------+--------+---------+---------+
 | Innocent rcvr. | | | | | |
 | not adversely | No | Yes | Yes | Yes | No |
 | affected | | | | | |
 +----------------+------+------+--------+---------+---------+
 * Safer when SACK is used
 ** Currently Experimental RFC with no known available implementation

 Comparing different solutions against the requirements

 The table highlights that the three existing schemes looked at in
 detail in Section 5 all fail on at least two of these requirements.
 Whilst this doesn’t necessarily make them bad solutions it does mean
 that they are harder to deploy than the new tests presented in this
 document. These new tests do have potential issues (see
 Section 6.6). However, as the table shows, they are minor compared
 to the problems the nonce-based schemes face, particularly the need
 for cooperation from the receiver and the use of additional
 codepoints in the IPv4 and TCP headers.

Moncaster, et al. [Page 24]

 TCP Test Against Receiver Cheating July 2014

8. Alternative Uses of the Test

 Thus far, the two stage test process described in this document has
 been examined in terms of being a test for compliance by a receiver
 to the TCP protocol, specifically in terms of the protocol’s reaction
 to segment reordering. The probabilistic test however could also be
 used for other test purposes. For instance the test can be used to
 confirm that a receiver has correctly implemented TCP SACK. Because
 the sender knows exactly which segments have been reordered, it can
 confirm that the gaps in the data as reported by SACK are indeed
 correct. The test could also be incorporated as part of a test suite
 to test the overall compliance of new TCP implementations.

9. Evaluating the Experiment

 As stated in the introduction, this is an experimental protocol. The
 main aim of the experiment is to prove that the two tests described
 in Section 6 provide a robust and safe test for receiver non-
 compliance. The second aim is to show that the experimental ECN
 Nonce is no longer needed as these tests provide a more robust
 defence against receiver non-compliance.

9.1. Criteria for Success

 The criteria for a successful experiment are very simple.

 o Do the tests accurately identify misbehaving receivers?

 o Are the tests as described in Section 6.2 and Section 6.3 safe?
 By this we mean is the impact of the test such that it causes no
 harm to other flows and only minimal harm to honest receivers?

9.2. Duration of the Experiment

 We believe that the experiment should be proved one way or another
 within a one year period (subject to volunteers agreeing to help with
 the evaluation). At the end of the experiment if it is shown to be
 successful we will go back to the IESG to ask for this test to be
 moved to standards track. At that point, it would be possible to
 obsolete the experimental ECN Nonce [RFC3540] and recover the
 codepoints assigned to it.

9.3. Arguments for Obsoleting the ECN Nonce

 We believe the tests presented in this document provide significantly
 greater protection against misbehaving TCP receivers than that
 provided by the ECN Nonce[RFC3540].

Moncaster, et al. [Page 25]

 TCP Test Against Receiver Cheating July 2014

 1. The ECN Nonce is acting to block the wider use of the two ECT
 codepoints defined in ECN [RFC3168]. Currently these have to be
 treated as having identical meanings except in specific
 controlled circumstances as mandated in [RFC4774] (PCN [RFC6660]
 is an example of such a use). The authors are aware of a number
 of research projects to reduce queuing latency or to speed up
 slow-start that depend on the availability of the ECT(1)
 codepoint. If the codepoint were freed up, these projects would
 gain traction and those with promise could be brought to the
 IETF. Furthermore the nonce is also holding back a flag in the
 TCP header (the Nonce Sum or NS flag).

 2. The ECN Nonce is an experimental standard intended to allow a
 sender to test whether ECN CE markings (or losses) are being
 suppressed by the receiver (or anywhere else in the feedback
 loop, such as another network or a middlebox). In the 11 years
 since it was presented there has been no evidence of any
 deployment. To the best of our knowledge only two
 implementations have ever existed. One was that of the original
 authors and the other was written to test an alternative use of
 the nonce [Spurious]. Furthermore the nonce would now be nearly
 impossible to deploy retrospectively, because to catch a
 misbehaving receiver it relies on the receiver volunteering
 feedback information to incriminate itself. A receiver that has
 been modified to misbehave can simply claim that it does not
 support nonce feedback, which will seem unremarkable given so
 many other hosts do not support it either.

 3. As explained in Section 7, the ECN Nonce is only a limited
 solution to the security implications of failing to provide
 accurate congestion feedback. However some authors may not
 realise its limitations and may choose to argue that its
 existence offers them sufficient protection from misbehaving
 receivers.

10. IANA Considerations

 This memo includes no request to IANA.

11. Security Considerations

 The two tests described in this document provide a solution to two of
 the significant security problems that were outlined in [Savage].
 Both these attacks could potentially cause major congestion of
 senders own resources (by making them transmit at too high a rate)
 and could lead to network congestion collapse through subverting the
 correct reporting of congestion or by amplifying any DoS attack
 [Sherwood]. The proposed solution cannot alone prevent misbehaving

Moncaster, et al. [Page 26]

 TCP Test Against Receiver Cheating July 2014

 senders from causing congestion collapse of the Internet. However,
 the more widely it is deployed by trustworthy senders, the more these
 particular attacks would be mitigated through ensuring accurate
 reporting of segment losses. The more senders that deploy these
 measures, the less likely it is that a misbehaving receiver will be
 able to find a sender to fool into causing congestion collapse.

 It should be noted that if a third party is able to correctly guess
 the initial sequence number of a connection, they might be able to
 masquerade as a receiver and send acknowledgements on their behalf to
 make them appear dishonest during a deterministic test.

 Due to the wording of [RFC5681] a receiver wishing to establish
 whether a probabilistic test is happening can keep their
 acknowledgement clock running (thus maintaining transmission rate) by
 generating pairs of duplicate acknowledgements for segments it
 received prior to the gap in the data stream caused by the test.
 This would allow a receiver to subsequently send any additional
 duplicate acknowledgements that would be necessary to make it appear
 honest. Such behaviour by a receiver would be readily apparent by
 examining the pattern of the acknowledgements. Should receivers
 prove able to exploit this to their advantage, there might be a need
 to change some of the musts and shoulds laid out in Section 6.2.5.

 [Savage] also identified a further attack involving splitting
 acknowledgements into smaller parts. TCP is designed such that
 increases in the congestion window are driven by the arrival of a
 valid acknowledgement. It doesn’t matter if this acknowledgement
 covers all of a transmitted segment or not. This means a receiver
 that divides all its acknowledgements into two will cause the
 congestion window to open at twice the rate it would do otherwise.
 The tests described above can’t protect against that attack. However
 there is a straightforward solution to this - every time the sender
 transmits a new segment it increments a counter; every acknowledgment
 it receives decrements that counter; if the counter reaches zero, the
 sender won’t increase its congestion window in response to a new
 acknowledgement arriving. To comply with this document, senders MUST
 implement a solution to this problem.

12. Conclusions

 The issue of mutual trust between TCP senders and receivers is a
 significant one in the current Internet. This document has
 introduced a mechanism by which senders can verify that their
 receivers are compliant with the current TCP protocol. The whole
 process is robust, lightweight, elegant and efficient. The
 probabilistic test might delay a congestion notification by a
 fraction of a RTT, however this is compensated for by the protocol

Moncaster, et al. [Page 27]

 TCP Test Against Receiver Cheating July 2014

 reacting more rapidly to any such indication. The deterministic test
 carries a greater risk of delaying congestion notification and
 consequently the protocol mandates that a congestion response should
 happen whilst performing the test. The two tests combine to provide
 a mechanism to allow the sender to judge the compliance of a receiver
 in a manner that both encourages compliant behaviour and proves non-
 compliance in a robust manner. The most attractive feature of this
 scheme is that it requires no active participation by the receiver as
 it utilises the standard behaviour of TCP in the presence of missing
 data. The only changes required are at the sender.

 As mentioned in the introduction, the tests described in this
 document aren’t intended to become a necessary feature for compliant
 TCP stacks. Rather, the intention is to provide a safe testing
 mechanism that a sender could choose to implement were it to decide
 there is a need. If optimistic acknowledgements do start to become
 widely exploited the authors of this draft feel it would be valuable
 to have an IETF-approved test that can be used to identify non-
 compliant receivers. In the mean-time these tests can be used for a
 number of alternative purposes such as testing that a new receiver
 stack is indeed compliant with the protocol and testing if a receiver
 has correctly implemented SACK.

 In the longer term it would be hoped that the TCP protocol could be
 modified to make it robust against such non-compliant behaviour,
 possibly through the incorporation of a cumulative transport layer
 nonce as described in Section 5.3.

13. Acknowledgements

 The authors would like to acknowledge the assistance and comments
 they received from contributors to the TCPM mailing list. In
 particular we would like to thank Mark Allman, Caitlin Bestler, Lars
 Eggert, Gorry Fairhurst, John Heffner, Alfred Hoenes, David Mallone,
 Gavin McCullagh, Anantha Ramaiah, Rob Sherwood, Joe Touch and Michael
 Welzl.

 Bob Briscoe was part-funded by the European Community under its
 Seventh Framework Programme through the Reducing Internet Transport
 Latency (RITE) project (ICT-317700). The views expressed here are
 solely those of the authors.

14. Comments Solicited

 Comments and questions are encouraged and very welcome. They can be
 addressed to the IETF TCP Maintenance and Minor Extensions working
 group mailing list <tcpm@ietf.org>, and/or to the authors.

Moncaster, et al. [Page 28]

 TCP Test Against Receiver Cheating July 2014

15. References

15.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC0813] Clark, D., "Window and Acknowledgement Strategy in TCP",
 RFC 813, July 1982.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC5961] Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP’s
 Robustness to Blind In-Window Attacks", RFC 5961, August
 2010.

15.2. Informative References

 [Piratla] Piratla, N., Jayasumana, A., and T. Banka, "On reorder
 density and its application to characterization of packet
 reordering", IEEE Conference on Local Computer Networks
 2005, 2005.

 [RFC0896] Nagle, J., "Congestion control in IP/TCP internetworks",
 RFC 896, January 1984.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
 Zhang, L., and V. Paxson, "Stream Control Transmission
 Protocol", RFC 2960, October 2000.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP", RFC
 3168, September 2001.

Moncaster, et al. [Page 29]

 TCP Test Against Receiver Cheating July 2014

 [RFC3540] Spring, N., Wetherall, D., and D. Ely, "Robust Explicit
 Congestion Notification (ECN) Signaling with Nonces", RFC
 3540, June 2003.

 [RFC3714] Floyd, S. and J. Kempf, "IAB Concerns Regarding Congestion
 Control for Voice Traffic in the Internet", RFC 3714,
 March 2004.

 [RFC4774] Floyd, S., "Specifying Alternate Semantics for the
 Explicit Congestion Notification (ECN) Field", BCP 124,
 RFC 4774, November 2006.

 [RFC6660] Briscoe, B., Moncaster, T., and M. Menth, "Encoding Three
 Pre-Congestion Notification (PCN) States in the IP Header
 Using a Single Diffserv Codepoint (DSCP)", RFC 6660, July
 2012.

 [SCPS] Consultative Committee for Space Data Systems, "Space
 Control Protocol Specification - Transport Protocol",
 CCSDS Recommended Standard CCSDS 714.0-B-2, 2006.

 [Savage] Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,
 "TCP congestion control with a misbehaving receiver", ACM
 SIGCOMM Computer Communications Review Vol.29/5, 1999.

 [Sherwood]
 Sherwood, R., Bhattacharjee, B., and R. Braud,
 "Misbehaving TCP receivers can cause Internet-wide
 congestion collapse", Proceedings of the 12th ACM
 conference on Computer and communications security 2005,
 2005.

 [Spurious]
 Welzl, M., "Using the ecn nonce to detect spurious loss
 events in TCP", IEEE Global Telecommunications Conference
 2008, 2008.

 [VU102014]
 US Cert, "Optimistic TCP acknowledgements can cause denial
 of service", Vulnerablility Note 102014, 2005.

Appendix A. Changes from previous drafts (to be removed by the RFC
 Editor)

 From -02 to -03:

 Draft revived after 6 year hiatus. Status changed to
 experimental. The primary am of the experiment is to show that

Moncaster, et al. [Page 30]

 TCP Test Against Receiver Cheating July 2014

 these tests correctly and safely identify misconfigured or
 misbehaving TCP receivers. The secondary aim is to demonstrate
 that the ECN Nonce is not needed and hence show that that
 experiment has failed. Minor changes made to tighten the text.

 From -01 to -02:

 A number of changes made following an extensive review from Alfred
 Hoenes. These were largely to better comply with the stated aims
 of the previous version but also included some tidying up of the
 protocol details and a new section on a possible unwanted
 interaction.

 From -00 to -01:

 Draft rewritten to emphasise testing for non-compliance. Some
 changes to protocol to remove possible unwanted interactions with
 other TCP variants. Sections added on comparison of solutions and
 alternative uses of test.

Authors’ Addresses

 Toby Moncaster (editor)
 University of Cambridge
 Computer Laboratory
 J.J. Thomson Avenue
 Cambridge CB3 0FD
 UK

 Phone: +44 1223 763654
 Email: toby.moncaster@cl.cam.ac.uk

 Bob Briscoe
 BT
 B54/77, Adastral Park
 Martlesham Heath
 Ipswich IP5 3RE
 UK

 Phone: +44 1473 645196
 Email: bob.briscoe@bt.com

Moncaster, et al. [Page 31]

 TCP Test Against Receiver Cheating July 2014

 Arnaud Jacquet
 BT
 B54/70, Adastral Park
 Martlesham Heath
 Ipswich IP5 3RE
 UK

 Phone: +44 1473 647284
 Email: arnaud.jacquet@bt.com

Moncaster, et al. [Page 32]

