
Network Working Group S. Leonard
Internet-Draft Penango, Inc.
Intended Status: Informational December 28, 2014
Expires: July 1, 2015

 text/markdown Use Cases
 draft-seantek-text-markdown-use-cases-01

Abstract

 This document elaborates upon the text/markdown media type for use
 with Markdown, a family of plain text formatting syntaxes that
 optionally can be converted to formal markup languages such as HTML.
 Background information, local storage strategies, and additional
 syntax registrations are supplied.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

 1. Dive Into Markdown . 2

Leonard Exp. July 1, 2015 [Page 1]

Internet-Draft text/markdown Use Cases December 2014

 1.1. On Formats . 3
 1.2. Markdown Design Philosophy 4
 1.3. Uses of Markdown . 5
 1.4. Uses of Labeling Markdown Content as text/markdown 5
 2. Strategies for Preserving Media Type and Parameters 6
 2.1. Map to Filename and Attributes 7
 2.2. Store Headers in Adjacent File 7
 2.3. "Arm" Content with MIME Headers 8
 2.4. Create a Local Batch Script 8
 2.5. Process the Markdown 8
 2.6. Rely on Context . 8
 2.7. Specific Strategies . 9
 2.7.1. Subversion . 9
 2.7.2. Git . 9
 3. Registration Templates for Common Markdown Syntaxes 10
 3.1. MultiMarkdown . 10
 3.2. GitHub Flavored Markdown 10
 3.3. Pandoc . 11
 3.4. Fountain (Fountain.io) 13
 3.5. CommonMark . 14
 3.6. kramdown-rfc2629 (Markdown for RFCs) 14
 3.7. rfc7328 (Pandoc2rfc) 15
 3.8. PHP Markdown Extra . 15
 4. Examples for Common Markdown Syntaxes 16
 4.1. MultiMarkdown . 16
 4.2. GitHub Flavored Markdown 16
 4.3. Pandoc . 16
 4.4. Fountain (Fountain.io) 16
 4.5. CommonMark . 16
 4.6. kramdown-rfc2629 (Markdown for RFCs) 16
 4.7. rfc7328 (Pandoc2rfc) 16
 5. IANA Considerations . 16
 6. Security Considerations . 16
 7. References . 16
 7.1. Normative References 16
 7.2. Informative References 17
 Author’s Address . 18

1. Dive Into Markdown

 This document serves as an informational companion to [MDMTREG], the
 text/markdown media type registration. It should be considered
 jointly with [MDMTREG].

 "Sometimes the truth of a thing is not so much in the
 think of it, but in the feel of it." --Stanley Kubrick

Leonard Exp. July 1, 2015 [Page 2]

Internet-Draft text/markdown Use Cases December 2014

1.1. On Formats

 In computer systems, textual data is stored and processed using a
 continuum of techniques. On the one end is plain text: a linear
 sequence of characters in some character set (code), possibly
 interrupted by line breaks, page breaks, or other control characters.
 Plain text provides /some/ fixed facilities for formatting
 instructions, namely codes in the character set that have meanings
 other than "represent this character on the output medium"; however,
 these facilities are not particularly extensible. Compare with
 [RFC6838] Section 4.2.1. Applications may neuter the effects of these
 special characters by prohibiting them or by ignoring their dictated
 meanings, as is the case with how modern applications treat most
 control characters in US-ASCII. On this end, any text reader or
 editor that interprets the character set can be used to see or
 manipulate the text. If some characters are corrupted, the corruption
 is unlikely to affect the ability of a computer system to process the
 text (even if the human meaning is changed).

 On the other end is binary format: a sequence of instructions
 intended for some computer application to interpret and act upon.
 Binary formats are flexible in that they can store non-textual data
 efficiently (perhaps storing no text at all, or only storing certain
 kinds of text for very specialized purposes). Binary formats require
 an application to be coded specifically to handle the format; no
 partial interoperability is possible. Furthermore, if even one byte
 or bit are corrupted in a binary format, it may prevent an
 application from processing any of the data correctly.

 Between these two extremes lies formatted text, i.e., text that
 includes non-textual information coded in a particular way, that
 affects the interpretation of the text by computer programs.
 Formatted text is distinct from plain text and binary format in that
 the non-textual information is encoded into textual characters, which
 are assigned specialized meanings /not/ defined by the character set.
 With a regular text editor and a standard keyboard (or other standard
 input mechanism), a user can enter these textual characters to
 express the non-textual meanings. For example, a character like "<"
 no longer means "LESS-THAN SIGN"; it means the start of a tag or
 element that affects the document in some way.

 On the formal end of the spectrum is markup, a family of languages
 for annotating a document in such a way that the annotations are
 syntactically distinguishable from the text. Markup languages are
 (reasonably) well-specified and tend to follow (mostly) standardized
 syntax rules. Examples of markup languages include SGML, HTML, XML,
 and LaTeX. Standardized rules lead to interoperability between markup
 processors, but a skill requirement for new (human) users of the

Leonard Exp. July 1, 2015 [Page 3]

Internet-Draft text/markdown Use Cases December 2014

 language that they learn these rules in order to do useful work. This
 imposition makes markup less accessible for non-technical users
 (i.e., users who are unwilling or unable to invest in the requisite
 skill development).

 informal /---------formatted text----------\ formal
 <------v-------------v-------------v-----------------------v---->
 plain text informal markup formal markup binary format
 (Markdown) (HTML, XML, etc.)

 Figure 1: Degrees of Formality in Data Storage Formats for Text

 On the informal end of the spectrum are lightweight markup languages.
 In comparison with formal markup like XML, lightweight markup uses
 simple syntax, and is designed to be easy for humans to enter with
 basic text editors. Markdown, the subject of this document, is an
 /informal/ plain text formatting syntax that is intentionally
 targeted at non-technical users (i.e., users upon whom little to no
 skill development is imposed) using unspecialized tools (i.e., text
 boxes). Jeff Atwood once described these informal markup languages as
 "humane" [HUMANE].

1.2. Markdown Design Philosophy

 Markdown specifically is a family of syntaxes that are based on the
 original work of John Gruber with substantial contributions from
 Aaron Swartz, released in 2004 [MARKDOWN]. Since its release a number
 of web or web-facing applications have incorporated Markdown into
 their text entry systems, frequently with custom extensions. Fed up
 with the complexity and security pitfalls of formal markup languages
 (e.g., HTML5) and proprietary binary formats (e.g., commercial word
 processing software), yet unwilling to be confined to the
 restrictions of plain text, many users have turned to Markdown for
 document processing. Whole toolchains now exist to support Markdown
 for online and offline projects.

 Informality is a bedrock premise of Gruber’s design. Gruber created
 Markdown after disastrous experiences with strict XML and XHTML
 processing of syndicated feeds. In Mark Pilgrim’s "thought
 experiment", several websites went down because one site included
 invalid XHTML in a blog post, which was automatically copied via
 trackbacks across other sites [DIN2MD]. These scenarios led Gruber to
 believe that clients (e.g., web browsers) SHOULD try to make sense of
 data that they receive, rather than rejecting data simply because it
 fails to adhere to strict, unforgiving standards. (In [DIN2MD],
 Gruber compared Postel’s Law [RFC0793] with the XML standard, which
 says: "Once a fatal error is detected [...] the processor MUST NOT
 continue normal processing" [XML1.0-5].) As a result, there is no

Leonard Exp. July 1, 2015 [Page 4]

Internet-Draft text/markdown Use Cases December 2014

 such thing as "invalid" Markdown; there is no standard demanding
 adherence to the Markdown syntax; there is no governing body that
 guides or impedes its development. If the Markdown syntax does not
 result in the "right" output (defined as output that the author
 wants, not output that adheres to some dictated system of rules),
 Gruber’s view is that the author either should keep on experimenting,
 or should change the processor to address the author’s particular
 needs (see [MARKDOWN] Readme and [MD102b8] perldoc; see also
 [CATPICS]).

1.3. Uses of Markdown

 Since its introduction in 2004, Markdown has enjoyed remarkable
 success. Markdown works for users for three key reasons. First, the
 markup instructions (in text) look similar to the markup that they
 represent; therefore the cognitive burden to learn the syntax is low.
 Second, the primary arbiter of the syntax’s success is *running
 code*. The tool that converts the Markdown to a presentable format,
 and not a series of formal pronouncements by a standards body, is the
 basis for whether syntactic elements matter. Third, Markdown has
 become something of an Internet meme [INETMEME], in that Markdown
 gets received, reinterpreted, and reworked as additional communities
 encounter it. There are communities that are using Markdown for
 scholarly writing [CITE], for screenplays [FOUNTAIN], for
 mathematical formulae [CITE], and even for music annotation [CITE].
 Clearly, a screenwriter has no use for specialized Markdown syntax
 for mathematicians; likewise, mathematicians do not need to identify
 characters or props in common ways. The overall gist is that all of
 these communities can take the common elements of Markdown (which are
 rooted in the common elements of HTML circa 2004) and build on them
 in ways that best fit their needs.

1.4. Uses of Labeling Markdown Content as text/markdown

 The primary purpose of an Internet media type is to label "content"
 on the Internet, as distinct from "files". Content is any computer-
 readable format that can be represented as a primary sequence of
 octets, along with type-specific metadata (parameters) and type-
 agnostic metadata (protocol dependent). From this description, it is
 apparent that appending ".markdown" to the end of a filename is not a
 sufficient means to identify Markdown. Filenames are properties of
 files in file systems, but Markdown frequently exists in databases or
 content management systems (CMSes) where the file metaphor does not
 apply. One CMS [RAILFROG] uses media types to select appropriate
 processing, so a media type is necessary for the safe and
 interoperable use of Markdown.

 Unlike complete HTML documents, [MDSYNTAX] provides no means to

Leonard Exp. July 1, 2015 [Page 5]

Internet-Draft text/markdown Use Cases December 2014

 include metadata into the content stream. Several derivative flavors
 have invented metadata incorporation schemes (e.g., [MULTIMD]), but
 these schemes only address specific use cases. In general, the
 metadata must be supplied via supplementary means in an encapsulating
 protocol, format, or convention. The relationship between the content
 and the metadata is not directly addressed here or in [MDMTREG];
 however, by identifying Markdown with a media type, Markdown content
 can participate as a first-class citizen with a wide spectrum of
 metadata schemes.

 Finally, registering a media type through the IETF process is not
 trivial. Markdown can no longer be considered a "vendor"-specific
 innovation, but the registration requirements even in the vendor tree
 have proven to be overly burdensome for most Markdown implementers.
 Moreover, registering hundreds of Markdown variants with distinct
 media types would impede interoperability: virtually all Markdown
 content can be processed by virtually any Markdown processor, with
 varying degrees of success. The goal of [MDMTREG] is to reduce all of
 these burdens by having one media type that accommodates diversity
 and eases registration.

2. Strategies for Preserving Media Type and Parameters

 The purpose of this document and [MDMTREG] is to promote
 interoperability between different Markdown-related systems,
 preserving the author’s intent. While [MARKDOWN] was designed by
 Gruber in 2004 as a simple way to write blog posts and comments, as
 of 2014 Markdown and its derivatives are rapidly becoming the formats
 of record for many communities and use cases. While an individual
 member of (or software tool for) a community can probably look at
 some "Markdown" and declare its meaning intuitively obvious, software
 systems in different communities (or different times) need help.
 [MDSYNTAX] does not have a signaling mechanism like <!DOCTYPE>, so
 tagging Markdown internally is simply out of the question. Once tags
 or metadata are introduced, the content is no longer "just" Markdown.

 Some commentators have suggested that an in-band signaling mechanism,
 such as in Markdown link definitions at the top of the content, could
 be used to signal the variant. Unfortunately this signaling mechanism
 is incompatible with other Markdown variants (e.g., [PANDOC]) that
 expect their own kinds of metadata at the top of the file. Markdown
 content is just a stream of text; the semantics of that text can only
 be furnished by context.

 The media type and variant parameter in [MDMTREG] furnish this
 missing context, while allowing for additional extensibility. This
 section covers strategies for how an application might preserve
 metadata when it leaves the domain of IETF protocols.

Leonard Exp. July 1, 2015 [Page 6]

Internet-Draft text/markdown Use Cases December 2014

 [MDMTREG] (draft-05) only defines two parameters: the charset
 parameter (required for all text/* media types) and the variant
 parameter. Character set interoperability is well-studied territory
 [NB: CITE?] and so is not further covered here. The variant parameter
 provides a simple identifier--nothing less or more. Variants are
 allowed to define additional parameters when sent with the
 text/markdown media type; the variant can also introduce control
 information into the textual content stream (such as via a metadata
 block). Neither [MDMTREG] nor this specification recommend any
 particular approach. However, the philosophy behind [MDMTREG] is to
 preserve formats rather than create new ones, since supporting
 existing toolchains is more realistic than creating novel ones that
 lack traction in the Markdown community.

2.1. Map to Filename and Attributes

 This strategy is to map the media type, variant, and parameters to
 "attributes" or "forks" in the local convention. Firstly, Markdown
 content saved to a file should have an appropriate file extension
 ending in .md or .markdown, which serves to disambiguate it from
 other kinds of files. The character repertoire of variant identifiers
 in [MDMTREG] is designed to be compatible with most filename
 conventions. Therefore, a recommended strategy is to record the
 variant identifier as the prefix to the file extension. For example,
 for [PANDOC] content, a file could be named
 "example.pandoc.markdown".

 Many filesystems are case-sensitive or case-preserving; however, file
 extensions tend to be all-lowercase. This document takes no position
 on whether variant identifiers should be case-preserved or all-
 lowercase when Markdown content is written to a file. However, when
 the variant identifier is read to influence operational behavior, it
 needs to be compared case-insensitively.

 Many modern filesystems support "extended attributes", "alternate
 data streams", or "resource forks". Some version control systems
 support named properties. If the variant defines additional
 parameters, these parameters should be stored in these resources,
 where the parameter name includes the name of the resource, and the
 parameter value is the value of the resource (data in the resource),
 preferably UTF-8 encoded (unless the parameter definition explicitly
 defines a different encoding or repertoire). The variant identifier
 itself should be stored in a resource with a name including the term
 "variant".

2.2. Store Headers in Adjacent File

 This strategy is to save the Markdown content in a first file, and to

Leonard Exp. July 1, 2015 [Page 7]

Internet-Draft text/markdown Use Cases December 2014

 save the metadata (specifically the Content-Type: header) in a second
 file with a filename that is rationally related to the first
 filename. For example, if the first file is named "readme.markdown",
 the second file could be named "readme.markdown.headers". (If stored
 in a database, the analogy would be to store the metadata in a second
 table with a field that is a key to the first table.) This header
 file has the media type "message/global-headers" [RFC6533] (".u8hdr"
 suggestion notwithstanding).

2.3. "Arm" Content with MIME Headers

 This strategy is to save the Markdown content along with its headers
 in a file, "arming" the content by prepending the MIME headers
 (specifically the Content-Type: header). It should be appreciated
 that the file is no longer a "Markdown file"; rather, it is an
 Internet Message Format file (e.g., [RFC5322]) with a Markdown
 content part. Therefore, the file should have an Internet message
 extension (e.g., ".eml", ".msg", or ".u8msg"), not a Markdown
 extension (e.g., ".md" or ".markdown").

2.4. Create a Local Batch Script

 This strategy is to translate the processing instructions inferred
 from the Content-Type and other parameters (e.g., Content-
 Disposition) into a sequence of commands in the local convention,
 storing those commands in a batch script. For example, when a MIME-
 aware client stores some Markdown to disk, the client can save a
 Makefile in the same directory with commands that are appropriate
 (and safe) for the local system.

2.5. Process the Markdown

 This strategy is to process the Markdown into the formal markup,
 which eliminates ambiguities. Once the Markdown is processed into
 (for example) valid XHTML, an application can save a file as
 "doc.xhtml" with no further loss of metadata. While unambiguous, this
 process may not be reversible.

2.6. Rely on Context

 This last strategy is to use or create context to determine how to
 interpret the Markdown. For example, Markdown content that is of the
 Fountain.io type [FOUNTAIN] could be saved with the filename
 "script.fountain" instead of "script.markdown". Alternatively,
 scripts could be stored in a "/screenplays" directory while other
 kinds of Markdown could be stored elsewhere. For reasons that should
 be intuitively obvious, this method is the most error-prone.
 "Context" can be easily lost over time, and the trend of passing

Leonard Exp. July 1, 2015 [Page 8]

Internet-Draft text/markdown Use Cases December 2014

 Markdown between systems--taking them *out* of context--is
 increasing.

2.7. Specific Strategies

2.7.1. Subversion

 This subsection covers a preservation strategy in Subversion [SVN], a
 common client-server version control system.

 Subversion supports named properties. The "svn:mime-type" property
 duplicates the entire Content-Type header, so parameters SHOULD be
 stored there. The filename SHOULD be consistent with this Content-
 Type header, i.e., the extension SHOULD be the variant identifier
 plus ".markdown".

 [[TODO: Versions of Subversion after [[1.x]] treat svn:mime-type as
 UTF-8 encoded, rather than US-ASCII. (See [RFC6532].) Therefore, the
 encoding of [RFC2231] will not be necessary in the vast majority of
 cases in newer versions. However, both for backwards compatibility
 and for support for non-Unicode character sets, [RFC2231] still needs
 to be supported.]]

 [[TODO: Where to store Content-Disposition?]]

2.7.2. Git

 This subsection covers a preservation strategy in Git [GIT], a common
 distributed version control system.

 Versions of Git as of the time of this writing do not support
 arbitrary metadata storage; however, third-party projects add this
 support.

 If Git is used without a metadata storage service, then a reasonable
 strategy is to include the variant identifier in the filename. The
 encoding of the file should be transcoded to UTF-8. For other
 properties, a header file should be recorded alongside the Markdown
 file in accordance with Section 2.2. The contents of the header file
 should be consistent with the rest of this paragraph, i.e., the
 charset parameter should be "UTF-8" and the variant parameter should
 match the identifier in the filename.

 If a metadata storage service is used with Git, then use a convention
 that is most analogous to the service. For example, the "metastore"
 project emulates extended attributes (xattrs) of a POSIX-like system,
 so whatever "xattr" methodology is developed would be usable with
 metastore and Git.

Leonard Exp. July 1, 2015 [Page 9]

Internet-Draft text/markdown Use Cases December 2014

3. Registration Templates for Common Markdown Syntaxes

 The purpose of this section is to register certain syntaxes in the
 Markdown Syntaxes Registry [MDMTREG] because they illustrate
 particularly interesting use cases or are broadly applicable to the
 Internet community; thus, these syntaxes would benefit from the level
 of review associated with publication as IETF documents.

3.1. MultiMarkdown

 Identifier: MultiMarkdown

 Name: MultiMarkdown

 Description:
 MultiMarkdown (MMD) is a superset of "Original". It adds multiple
 syntax features (tables, footnotes, and citations, to name a few),
 and is intended to output to various formats. Additionally, it builds
 in "smart" typography for various languages (proper left- and right-
 sided quotes, for example).

 Additional Parameters:
 options: String with zero or more of the following WSP-delimited
 tokens:

 "memoir" / "beamer"
 "full" / "snippet"
 "process-html"
 "random-footnote-identifiers"
 "accept"
 "reject"
 "nosmart"
 "nonotes"
 "nolabels"
 "nomask"

 The meanings of these tokens are defined in the
 MultiMarkdown documentation.

 References:
 <http://fletcher.github.io/MultiMarkdown-4/syntax>

 Contact Information:
 (individual) Fletcher T. Penney <fletcher@fletcherpenney.net>
 <http://fletcherpenney.net/multimarkdown/>

3.2. GitHub Flavored Markdown

Leonard Exp. July 1, 2015 [Page 10]

Internet-Draft text/markdown Use Cases December 2014

 Identifier: GFM

 Name: GitHub Flavored Markdown

 Description:
 "Original" with the following differences:
 1. Multiple underscores in words
 2. URL (URI) autolinking
 3. Strikethrough
 4. Fenced code blocks
 5. Syntax highlighting
 6. Tables (- for rows; | for columns; : for alignment)
 7. Only some HTML allowed; sanitization is integral
 to the format

 References:
 <https://help.github.com/articles/github-flavored-markdown/>
 <https://github.com/github/markup/tree/master#html-sanitization>

 Contact Information:
 (corporate) GitHub, Inc. <https://github.com/contact>
 [[Vicent Marti <vicent@github.com>??]]

3.3. Pandoc

 Identifier: pandoc

 Name: Pandoc

 Description:
 Markdown is designed to be easy to write and to read: the content
 should be publishable as-is, as plain text, without looking like it
 has been marked up with tags or formatting instructions. Yet whereas
 "Original" has HTML generation in mind, pandoc is designed for
 multiple output formats. Thus, while pandoc allows the embedding of
 raw HTML, it discourages it, and provides other, non-HTMLish ways of
 representing important document elements like definition lists,
 tables, mathematics, and footnotes.

 Additional Parameters:
 extensions: String with an optional starting syntax token, followed
 by a "+" and "-" delimited list of extension tokens. "+"
 preceding an extension token turns the extension on; "-"
 turns the extension off. The starting syntax tokens are
 "markdown", "markdown_strict", "markdown_phpextra", and
 "markdown_github". If no starting syntax token is given,
 "markdown" is assumed. The extension tokens include:

Leonard Exp. July 1, 2015 [Page 11]

Internet-Draft text/markdown Use Cases December 2014

 [[Stuff to turn off:]]

 escaped_line_breaks
 blank_before_header
 header_attributes
 auto_identifiers
 implicit_header_references
 blank_before_blockquote
 fenced_code_blocks
 fenced_code_attributes
 line_blocks
 fancy_lists
 startnum
 definition_lists
 example_lists
 table_captions
 simple_tables
 multiline_tables
 grid_tables
 pipe_tables
 pandoc_title_block
 yaml_metadata_block
 all_symbols_escapable
 intraword_underscores
 strikeout
 superscript
 subscript
 inline_code_attributes
 tex_math_dollars
 raw_html
 markdown_in_html_blocks
 native_divs
 native_spans
 raw_tex
 latex_macros
 implicit_figures
 footnotes
 inline_notes
 citations

 [[New stuff:]]

 lists_without_preceding_blankline
 hard_line_breaks
 ignore_line_breaks
 tex_math_single_backslash
 tex_match_double_backslash
 markdown_attribute

Leonard Exp. July 1, 2015 [Page 12]

Internet-Draft text/markdown Use Cases December 2014

 mmd_title_block
 abbreviations
 autolink_bare_uris
 ascii_identifiers
 link_attributes
 mmd_header_identifiers
 compact_definition_lists

 Fragment Identifiers:
 Pandoc defines fragment identifiers using the <id> in the
 {#<id> .class ...} production (PHP Markdown Extra attribute block).
 This syntax works for Header Identifiers and Code Block Identifiers.

 References:
 <http://johnmacfarlane.net/pandoc/README.html#pandocs-markdown>

 Contact Information:
 (individual) Prof. John MacFarlane <jgm@berkeley.edu>
 <http://johnmacfarlane.net/>

3.4. Fountain (Fountain.io)

 Identifier: Fountain

 Name: Fountain

 Description:
 Fountain is a simple markup syntax for writing, editing and sharing
 screenplays in plain, human-readable text. Fountain allows you to
 work on your screenplay anywhere, on any computer or tablet, using
 any software that edits text files.

 Fragment Identifiers:
 See <http://fountain.io/syntax#section-titlepage> and
 <http://fountain.io/syntax#section-sections>. In the following
 fragment identifiers, the <key> and <sec*> productions MUST have "/"
 characters percent-encoded.

 #/ Title Page (acts as metadata).
 #/<key> Title Page; <key> is the key string.
 #<sec1> *("/" <secn>)
 Section or subsection. The <sec1>..<secn>
 productions are the text of the Section line,
 with whitespace trimmed from both ends.
 Sub-sections (sections with multiple # at
 at the beginning of the line in the source)
 are addressed hierarchically by preceding
 the sub-section with higher-order

Leonard Exp. July 1, 2015 [Page 13]

Internet-Draft text/markdown Use Cases December 2014

 sections. If the section hierarchy "skips",
 e.g., # to ###, use a blank section name,
 e.g., #Section/ACT%20I//PATIO%20SCENE.

 References:
 <http://fountain.io/syntax>

 Contact Information:
 (individual) Stu Maschwitz <http://prolost.com/>
 (individual) John August <http://johnaugust.com/>

3.5. CommonMark

 Identifier: CommonMark

 Name: CommonMark

 Description:
 CommonMark is a standard, unambiguous syntax specification for
 Markdown, along with a suite of comprehensive tests to validate
 Markdown implementations against this specification. The maintainers
 believe that CommonMark is necessary, even essential, for the future
 of Markdown.

 Compared to "Original", CommonMark is much longer and in a few
 instances contradicts "Original" based on seasoned experience.
 Although CommonMark specifically does not mandate any particular
 encoding for the input content, CommonMark draws in more of Unicode,
 UTF-8, and HTML (including HTML5) than "Original".

 This registration always refers to the latest version or an
 unspecified version (receiver’s choice). Version 0.13 of the
 CommonMark specification was released 2014-12-10.

 References:
 <http://spec.commonmark.org/>

 Contact Information:
 (individual) John MacFarlane <jgm@berkeley.edu>
 (individual) David Greenspan <david@meteor.com>
 (individual) Vicent Marti <vicent@github.com>
 (individual) Neil Williams <neil@reddit.com>
 (individual) Benjamin Dumke-von der Ehe <ben@stackexchange.com>
 (individual) Jeff Atwood <jatwood@codinghorror.com>

3.6. kramdown-rfc2629 (Markdown for RFCs)

 Identifier: kramdown-rfc2629

Leonard Exp. July 1, 2015 [Page 14]

Internet-Draft text/markdown Use Cases December 2014

 Name: Markdown for RFCs

 Description:
 kramdown is a markdown parser by Thomas Leitner, which has a number
 of backends for generating HTML, Latex, and Markdown again. kramdown-
 rfc2629 is an additional backend to that: It allows the generation of
 XML2RFC XML markup (also known as RFC 2629 compliant markup).

 References:
 <https://github.com/cabo/kramdown-rfc2629>

 Contact Information:
 (individual) Carsten Bormann <cabo@tzi.org>

3.7. rfc7328 (Pandoc2rfc)

 Identifier: rfc7328

 Name: Pandoc2rfc

 Description:
 Pandoc2rfc allows authors to write in "pandoc" that is then
 transformed to XML and given to xml2rfc. The conversions are, in a
 way, amusing, as we start off with (almost) plain text, use elaborate
 XML, and end up with plain text again.

 References:
 RFC 7328
 <https://github.com/miekg/pandoc2rfc>

 Contact Information:
 (individual) R. (Miek) Gieben <miek@google.com>

3.8. PHP Markdown Extra

 Identifier: Extra

 Name: Markdown Extra

 Description:
 Markdown Extra is an extension to PHP Markdown implementing some
 features currently not available with the plain Markdown syntax.
 Markdown Extra is available as a separate parser class in PHP
 Markdown Lib. Other implementations include Maruku (Ruby) and Python
 Markdown. Markdown Extra is supported in several content management
 systems, including Drupal, TYPO3, and MediaWiki.

Leonard Exp. July 1, 2015 [Page 15]

Internet-Draft text/markdown Use Cases December 2014

 Fragment Identifiers:
 Markdown Extra defines fragment identifiers using the <id> in the
 {#<id> .class ...} production (attribute block). This syntax works
 for headers, fenced code blocks, links, and images.

 References:
 <https://michelf.ca/projects/php-markdown/extra/>

 Contact Information:
 (individual) Michel Fortin <michel.fortin@michelf.ca>

4. Examples for Common Markdown Syntaxes

 This section provides examples of the variants registered in Appendix
 C.

4.1. MultiMarkdown

4.2. GitHub Flavored Markdown

4.3. Pandoc

4.4. Fountain (Fountain.io)

4.5. CommonMark

4.6. kramdown-rfc2629 (Markdown for RFCs)

4.7. rfc7328 (Pandoc2rfc)

 [[TODO: complete.]]

5. IANA Considerations

 IANA is asked to register the syntaxes specified in Section 3 in the
 Markdown Variants Registry.

6. Security Considerations

 See the respective syntax descriptions and output media type
 registrations for their respective security considerations.

7. References

7.1. Normative References

 [MARKDOWN] Gruber, J., "Daring Fireball: Markdown", December 2004,
 <http://daringfireball.net/projects/markdown/>.

Leonard Exp. July 1, 2015 [Page 16]

Internet-Draft text/markdown Use Cases December 2014

 [MDSYNTAX] Gruber, J., "Daring Fireball: Markdown Syntax
 Documentation", December 2004,
 <http://daringfireball.net/projects/markdown/syntax>.

 [MDMTREG] Leonard, S., "The text/markdown Media Type", draft-ietf-
 appsawg-text-markdown-03 (work in progress), October 2014.

 [RFC5147] Wilde, E. and M. Duerst, "URI Fragment Identifiers for the
 text/plain Media Type", RFC 5147, April 2008.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 October 2008.

7.2. Informative References

 [HUMANE] Atwood, J., "Is HTML a Humane Markup Language?", May 2008,
 <http://blog.codinghorror.com/is-html-a-humane-markup-
 language/>.

 [DIN2MD] Gruber, J., "Dive Into Markdown", March 2004,
 <http://daringfireball.net/2004/03/dive_into_markdown>.

 [MD102b8] Gruber, J., "[ANN] Markdown.pl 1.0.2b8", May 2007,
 <http://six.pairlist.net/pipermail/markdown-discuss/2007-
 May/000615.html>, <http://daringfireball.net/projects/
 downloads/Markdown_1.0.2b8.tbz>.

 [CATPICS] Gruber, J. and M. Arment, "The Talk Show: Ep. 88: ’Cat
 Pictures’ (Side 1)", July 2014,
 <http://daringfireball.net/thetalkshow/2014/07/19/ep-088>.

 [INETMEME] Solon, O., "Richard Dawkins on the internet’s hijacking of
 the word ’meme’", June 2013,
 <http://www.wired.co.uk/news/archive/2013-06/20/richard-
 dawkins-memes>, <http://www.webcitation.org/6HzDGE9Go>.

 [MULTIMD] Penney, F., "MultiMarkdown", April 2014,
 <http://fletcherpenney.net/multimarkdown/>.

 [PANDOC] MacFarlane, J., "Pandoc", 2014,
 <http://johnmacfarlane.net/pandoc/>.

 [RAILFROG] Railfrog Team, "Railfrog", April 2009,
 <http://railfrog.com/>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

Leonard Exp. July 1, 2015 [Page 17]

Internet-Draft text/markdown Use Cases December 2014

 [RFC2231] Freed, N. and K. Moore, "MIME Parameter Value and Encoded
 Word Extensions: Character Sets, Languages, and
 Continuations", RFC 2231, November 1997.

 [RFC4263] Lilly, B., "Media Subtype Registration for Media Type
 text/troff", RFC 4263, January 2006.

 [RFC6533] Hansen, T., Ed., Newman, C. and A. Melnikov,
 "Internationalized Delivery Status and Disposition
 Notifications", RFC 6533, February 2012.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13, RFC
 6838, January 2013.

 [XML1.0-5] Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126#dt-fatal>.

 [FOUNTAIN] Maschwitz, S. and J. August, "Fountain | A markup language
 for screenwriting.", 2014, <http://fountain.io/>.

 [FTSYNTAX] Maschwitz, S. and J. August, "Syntax - Fountain | A markup
 language for screenwriting.", 1.1, March 2014,
 <http://fountain.io/syntax>.

 [SVN] Apache Subversion, December 2014,
 <https://subversion.apache.org/>.

 [GIT] Git, December 2014, <http://git-scm.com/>.

Author’s Address

 Sean Leonard
 Penango, Inc.
 5900 Wilshire Boulevard
 21st Floor
 Los Angeles, CA 90036
 USA

 EMail: dev+ietf@seantek.com
 URI: http://www.penango.com/

Leonard Exp. July 1, 2015 [Page 18]

