
Network Working Group B. Burman
Internet-Draft A. Akram
Updates: 5104 (if approved) Ericsson
Intended status: Standards Track R. Even
Expires: April 30, 2015 Huawei Technologies
 M. Westerlund
 Ericsson
 October 27, 2014

 RTP Stream Pause and Resume
 draft-ietf-avtext-rtp-stream-pause-05

Abstract

 With the increased popularity of real-time multimedia applications,
 it is desirable to provide good control of resource usage, and users
 also demand more control over communication sessions. This document
 describes how a receiver in a multimedia conversation can pause and
 resume incoming data from a sender by sending real-time feedback
 messages when using Real-time Transport Protocol (RTP) for real time
 data transport. This document extends the Codec Control Messages
 (CCM) RTCP feedback package by explicitly allowing and describing
 specific use of existing CCM messages and adding a group of new real-
 time feedback messages used to pause and resume RTP data streams.
 This document updates RFC 5104.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2015.

Burman, et al. Expires April 30, 2015 [Page 1]

Internet-Draft RTP Stream Pause October 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 4
 2. Definitions . 5
 2.1. Abbreviations . 5
 2.2. Terminology . 6
 2.3. Requirements Language 7
 3. Use Cases . 7
 3.1. Point to Point . 7
 3.2. RTP Mixer to Media Sender 8
 3.3. RTP Mixer to Media Sender in Point-to-Multipoint 9
 3.4. Media Receiver to RTP Mixer 10
 3.5. Media Receiver to Media Sender Across RTP Mixer 10
 4. Design Considerations . 11
 4.1. Real-time Nature . 11
 4.2. Message Direction . 11
 4.3. Apply to Individual Sources 12
 4.4. Consensus . 12
 4.5. Message Acknowledgments 12
 4.6. Request Retransmission 13
 4.7. Sequence Numbering 13

Burman, et al. Expires April 30, 2015 [Page 2]

Internet-Draft RTP Stream Pause October 2014

 4.8. Relation to Other Solutions 13
 5. Solution Overview . 14
 5.1. Expressing Capability 15
 5.2. Requesting to Pause 15
 5.3. Media Sender Pausing 16
 5.4. Requesting to Resume 18
 5.5. TMMBR/TMMBN Considerations 19
 6. Participant States . 19
 6.1. Playing State . 20
 6.2. Pausing State . 20
 6.3. Paused State . 21
 6.3.1. RTCP BYE Message 21
 6.3.2. SSRC Time-out . 22
 6.4. Local Paused State 22
 7. Message Format . 23
 8. Message Details . 25
 8.1. PAUSE . 25
 8.2. PAUSED . 26
 8.3. RESUME . 27
 8.4. REFUSED . 28
 8.5. Transmission Rules 28
 9. Signaling . 29
 9.1. Offer-Answer Use . 32
 9.2. Declarative Use . 33
 10. Examples . 33
 10.1. Offer-Answer . 34
 10.2. Point-to-Point Session 35
 10.3. Point-to-Multipoint using Mixer 39
 10.4. Point-to-Multipoint using Translator 41
 11. IANA Considerations . 44
 12. Security Considerations 45
 13. Contributors . 45
 14. Acknowledgements . 45
 15. References . 46
 15.1. Normative References 46
 15.2. Informative References 46
 Appendix A. Changes From Earlier Versions 47
 A.1. Modifications Between Version -04 and -05 47
 A.2. Modifications Between Version -03 and -04 47
 A.3. Modifications Between Version -02 and -03 48
 A.4. Modifications Between Version -01 and -02 48
 A.5. Modifications Between Version -00 and -01 48
 Authors’ Addresses . 49

Burman, et al. Expires April 30, 2015 [Page 3]

Internet-Draft RTP Stream Pause October 2014

1. Introduction

 As real-time communication attracts more people, more applications
 are created; multimedia conversation applications being one example.
 Multimedia conversation further exists in many forms, for example,
 peer-to-peer chat application and multiparty video conferencing
 controlled by central media nodes, such as RTP Mixers.

 Multimedia conferencing may involve many participants; each has its
 own preferences for the communication session, not only at the start
 but also during the session. This document describes several
 scenarios in multimedia communication where a conferencing node or
 participant chooses to temporarily pause an incoming RTP [RFC3550]
 stream and later resume it when needed. The receiver does not need
 to terminate or inactivate the RTP session and start all over again
 by negotiating the session parameters, for example using SIP
 [RFC3261] with SDP Offer/Answer [RFC3264].

 Centralized nodes, like RTP Mixers or MCUs, which either uses logic
 based on voice activity, other measurements, or user input could
 reduce the resources consumed in both the sender and the network by
 temporarily pausing the RTP streams that aren’t required by the RTP
 Mixer. If the number of conference participants are greater than
 what the conference logic has chosen to present simultaneously to
 receiving participants, some participant RTP streams sent to the RTP
 Mixer may not need to be forwarded to any other participant. Those
 RTP streams could then be temporarily paused. This becomes
 especially useful when the media sources are provided in multiple
 encoding versions (Simulcast) [I-D.westerlund-avtcore-rtp-simulcast]
 or with Multi-Session Transmission (MST) of scalable encoding such as
 SVC [RFC6190]. There may be some of the defined encodings or
 combination of scalable layers that are not used or cannot be used
 all of the time, for example due to temporarily limited network or
 processing resources, and a centralized node may choose to pause such
 RTP streams without being requested to do so, but anyway send an
 explicit indication that the stream is paused.

 As the RTP streams required at any given point in time is highly
 dynamic in such scenarios, using the out-of-band signaling channel
 for pausing, and even more importantly resuming, an RTP stream is
 difficult due to the performance requirements. Instead, the pause
 and resume signaling should be in the media plane and go directly
 between the affected nodes. When using RTP [RFC3550] for media
 transport, using Extended RTP Profile for Real-time Transport Control
 Protocol (RTCP)-Based Feedback (RTP/AVPF) [RFC4585] appears
 appropriate. No currently existing RTCP feedback message explicitly
 supports pausing and resuming an incoming RTP stream. As this
 affects the generation of packets and may even allow the encoding

Burman, et al. Expires April 30, 2015 [Page 4]

Internet-Draft RTP Stream Pause October 2014

 process to be paused, the functionality appears to match Codec
 Control Messages in the RTP Audio-Visual Profile with Feedback (AVPF)
 [RFC5104] and it is proposed to define the solution as a Codec
 Control Message (CCM) extension.

 The Temporary Maximum Media Bitrate Request (TMMBR) message of CCM is
 used by video conferencing systems for flow control. It is desirable
 to be able to use that method with a bitrate value of zero for pause,
 whenever possible.

2. Definitions

2.1. Abbreviations

 3GPP: 3rd Generation Partnership Project

 AVPF: Audio-Visual Profile with Feedback (RFC 4585)

 BGW: Border Gateway

 CCM: Codec Control Messages (RFC 5104)

 CNAME: Canonical Name (RTCP SDES)

 CSRC: Contributing Source (RTP)

 FB: Feedback (AVPF)

 FCI: Feedback Control Information (AVPF)

 FIR: Full Intra Refresh (CCM)

 FMT: Feedback Message Type (AVPF)

 LTE: Long-Term Evolution (3GPP)

 MCU: Multipoint Control Unit

 MTU: Maximum Transfer Unit

 PT: Payload Type (RTP)

 RTP: Real-time Transport Protocol (RFC 3550)

 RTCP: RTP Control Protocol (RFC 3550)

 RTCP RR: RTCP Receiver Report

Burman, et al. Expires April 30, 2015 [Page 5]

Internet-Draft RTP Stream Pause October 2014

 SDP: Session Description Protocol (RFC 4566)

 SGW: Signaling Gateway

 SIP: Session Initiation Protocol (RFC 3261)

 SSRC: Synchronization Source (RTP)

 SVC: Scalable Video Coding

 TCP: Transmission Control Protocol (RFC 793)

 TMMBR: Temporary Maximum Media Bitrate Request (CCM)

 TMMBN: Temporary Maximum Media Bitrate Notification (CCM)

 UA: User Agent (SIP)

 UDP: User Datagram Protocol (RFC 768)

2.2. Terminology

 In addition to the following, the definitions from RTP [RFC3550],
 AVPF [RFC4585], CCM [RFC5104], and RTP Taxonomy
 [I-D.ietf-avtext-rtp-grouping-taxonomy] also apply in this document.

 Feedback Messages: CCM [RFC5104] categorized different RTCP feedback
 messages into four types, Request, Command, Indication and
 Notification. This document places the PAUSE and RESUME messages
 into Request category, PAUSED as Indication and REFUSED as
 Notification.

 PAUSE Request from an RTP stream receiver to pause a stream

 RESUME Request from an RTP stream receiver to resume a paused
 stream

 PAUSED Indication from an RTP stream sender that a stream is
 paused

 REFUSED Indication from an RTP stream sender that a PAUSE or
 RESUME request will not be honored

 Mixer: The intermediate RTP node which receives an RTP stream from
 different end points, combines them to make one RTP stream and
 forwards to destinations, in the sense described in Topo-Mixer of
 RTP Topologies [I-D.ietf-avtcore-rtp-topologies-update].

Burman, et al. Expires April 30, 2015 [Page 6]

Internet-Draft RTP Stream Pause October 2014

 Participant: A member which is part of an RTP session, acting as
 receiver, sender or both.

 Paused sender: An RTP stream sender that has stopped its
 transmission, i.e. no other participant receives its RTP
 transmission, either based on having received a PAUSE request,
 defined in this specification, or based on a local decision.

 Pausing receiver: An RTP stream receiver which sends a PAUSE
 request, defined in this specification, to other participant(s).

 Stream: Used as a short term for RTP stream, unless otherwise noted.

 Stream receiver: Short for RTP stream receiver; the RTP entity
 responsible for receiving an RTP stream, usually a Media
 Depacketizer.

 Stream sender: Short for RTP stream sender; the RTP entity
 responsible for creating an RTP stream, usually a Media
 Packetizer.

2.3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Use Cases

 This section discusses the main use cases for RTP stream pause and
 resume.

3.1. Point to Point

 This is the most basic use case with an RTP session containing two
 End Points. Each End Point sends one or more streams.

 +---+ +---+
 | A |<------->| B |
 +---+ +---+

 Figure 1: Point to Point

 The usage of RTP stream pause in this use case is to temporarily halt
 delivery of streams that the sender provides but the receiver does
 not currently use. This can for example be due to minimized
 applications where the video stream is not actually shown on any

Burman, et al. Expires April 30, 2015 [Page 7]

Internet-Draft RTP Stream Pause October 2014

 display, and neither is it used in any other way, such as being
 recorded.

 In this case, since there is only a single receiver of the stream,
 pausing or resuming a stream does not impact anyone else than the
 sender and the single receiver of that stream.

 RTCWEB WG’s use case and requirements document
 [I-D.ietf-rtcweb-use-cases-and-requirements] defines the following
 API requirements in Appendix A, used also by W3C WebRTC WG:

 A8 The Web API must provide means for the web application to mute/
 unmute a stream or stream component(s). When a stream is sent to
 a peer mute status must be preserved in the stream received by the
 peer.

 A9 The Web API must provide means for the web application to cease
 the sending of a stream to a peer.

 This memo provides means to optimize transport usage by stop sending
 muted streams and start sending again when unmuting.

3.2. RTP Mixer to Media Sender

 One of the most commonly used topologies in centralized conferencing
 is based on the RTP Mixer [I-D.ietf-avtcore-rtp-topologies-update].
 The main reason for this is that it provides a very consistent view
 of the RTP session towards each participant. That is accomplished
 through the Mixer originating its’ own streams, identified by SSRC,
 and any RTP streams sent to the participants will be sent using those
 SSRCs. If the Mixer wants to identify the underlying media sources
 for its’ conceptual streams, it can identify them using CSRC. The
 stream the Mixer provides can be an actual mix of multiple media
 sources, but it might also be switching received streams as described
 in Sections 3.6-3.8 of [I-D.ietf-avtcore-rtp-topologies-update].

 +---+ +-----------+ +---+
 | A |<---->| |<---->| B |
 +---+ | | +---+
 | Mixer |
 +---+ | | +---+
 | C |<---->| |<---->| D |
 +---+ +-----------+ +---+

 Figure 2: RTP Mixer in Unicast-only

 Which streams that are delivered to a given receiver, A, can depend
 on several things. It can either be the RTP Mixer’s own logic and

Burman, et al. Expires April 30, 2015 [Page 8]

Internet-Draft RTP Stream Pause October 2014

 measurements such as voice activity on the incoming audio streams.
 It can be that the number of sent media sources exceed what is
 reasonable to present simultaneously at any given receiver. It can
 also be a human controlling the conference that determines how the
 media should be mixed; this would be more common in lecture or
 similar applications where regular listeners may be prevented from
 breaking into the session unless approved by the moderator. The
 streams may also be part of a Simulcast
 [I-D.westerlund-avtcore-rtp-simulcast] or scalable encoded (for
 Multi-Session Transmission) [RFC6190], thus providing multiple
 versions that can be delivered by the RTP stream sender. These
 examples indicate that there are numerous reasons why a particular
 stream would not currently be in use, but must be available for use
 at very short notice if any dynamic event occurs that causes a
 different stream selection to be done in the Mixer.

 Because of this, it would be highly beneficial if the Mixer could
 request to pause a particular stream from being delivered to it. It
 also needs to be able to resume delivery with minimal delay.

 In some cases, especially when the Mixer sends multiple RTP streams
 per receiving client, there may be situations that makes it desirable
 to the Mixer to pause some of its sent RTP streams, even without
 being explicitly asked to do so by the receiving client. Such
 situations can for example be caused by a temporary lack of available
 Mixer network or processing resources. An RTP stream receiver that
 no longer receives an RTP stream could interpret this as an error
 condition and try to take action to re-establish the RTP stream.
 Such action would likely be undesirable if the RTP stream was in fact
 deliberately paused by the Mixer. Undesirable RTP stream receiver
 actions could be avoided if the Mixer is able to explicitly indicate
 that an RTP stream is deliberately paused.

 Just as for point-to-point (Section 3.1), there is only a single
 receiver of the stream, the RTP Mixer, and pausing or resuming a
 stream does not affect anyone else than the sender and single
 receiver of that stream.

3.3. RTP Mixer to Media Sender in Point-to-Multipoint

 This use case is similar to the previous section, however the RTP
 Mixer is involved in three domains that need to be separated; the
 Multicast Network (including participants A and C), participant B,
 and participant D. The difference from above is that A and C share a
 multicast domain, which is depicted below.

Burman, et al. Expires April 30, 2015 [Page 9]

Internet-Draft RTP Stream Pause October 2014

 +-----+
 +---+ / \ +-----------+ +---+
 | A |<---/ \ | |<---->| B |
 +---+ / Multi- \ | | +---+
 + Cast +->| Mixer |
 +---+ \ Network / | | +---+
 | C |<---\ / | |<---->| D |
 +---+ \ / +-----------+ +---+
 +-----+

 Figure 3: RTP Mixer in Point-to-Multipoint

 If the RTP Mixer pauses a stream from A, it will not only pause the
 stream towards itself, but will also stop the stream from arriving to
 C, which C is heavily impacted by, might not approve of, and should
 thus have a say on.

 If the Mixer resumes a paused stream from A, it will be resumed also
 towards C. In this case, if C is not interested it can simply ignore
 the stream and is not impacted as much as above.

 In this use case there are several receivers of a stream and special
 care must be taken as not to pause a stream that is still wanted by
 some receivers.

3.4. Media Receiver to RTP Mixer

 An End Point in Figure 2 could potentially request to pause the
 delivery of a given stream. Possible reasons include the ones in the
 point to point case (Section 3.1) above.

 When the RTP Mixer is only connected to individual unicast paths, the
 use case and any considerations are identical to the point to point
 use case.

 However, when the End Point requesting stream pause is connected to
 the RTP Mixer through a multicast network, such as A or C in
 Figure 3, the use case instead becomes identical to the one in
 Section 3.3, only with reverse direction of the streams and pause/
 resume requests.

3.5. Media Receiver to Media Sender Across RTP Mixer

 An End Point, like A in Figure 2, could potentially request to pause
 the delivery of a given stream, like one of B’s, over any of the
 SSRCs used by the Mixer by sending a pause request for the CSRC
 identifying the stream. However, the authors are of the opinion that
 this is not a suitable solution, for several reasons:

Burman, et al. Expires April 30, 2015 [Page 10]

Internet-Draft RTP Stream Pause October 2014

 1. The Mixer might not include CSRC in it’s stream indications.

 2. An End Point cannot rely on the CSRC to correctly identify the
 stream to be paused when the delivered media is some type of mix.
 A more elaborate stream identification solution is needed to
 support this in the general case.

 3. The End Point cannot determine if a given stream is still needed
 by the RTP Mixer to deliver to another session participant.

 Due to the above reasons, we exclude this use case from further
 consideration.

4. Design Considerations

 This section describes the requirements that this specification needs
 to meet.

4.1. Real-time Nature

 The first section (Section 1) of this specification describes some
 possible reasons why a receiver may pause an RTP sender. Pausing and
 resuming is time-dependent, i.e. a receiver may choose to pause an
 RTP stream for a certain duration, after which the receiver may want
 the sender to resume. This time dependency means that the messages
 related to pause and resume must be transmitted to the sender in
 real-time in order for them to be purposeful. The pause operation is
 arguably not very time critical since it mainly provides a reduction
 of resource usage. Timely handling of the resume operation is
 however likely to directly impact the end-user’s perceived quality
 experience, since it affects the availability of media that the user
 expects to receive more or less instantly. It may also be highly
 desirable for a receiver to quickly learn that an RTP stream is
 intentionally paused on the RTP sender’s own behalf.

4.2. Message Direction

 It is the responsibility of an RTP stream receiver, who wants to
 pause or resume a stream from the sender(s), to transmit PAUSE and
 RESUME messages. An RTP stream sender who likes to pause itself, can
 often simply do it, but sometimes this will adversely affect the
 receiver and an explicit indication that the RTP stream is paused may
 then help. Any indication that an RTP stream is paused is the
 responsibility of the RTP stream sender and may in some cases not
 even be needed by the stream receiver.

Burman, et al. Expires April 30, 2015 [Page 11]

Internet-Draft RTP Stream Pause October 2014

4.3. Apply to Individual Sources

 The PAUSE and RESUME messages apply to single RTP streams identified
 by their SSRC, which means the receiver targets the sender’s SSRC in
 the PAUSE and RESUME requests. If a paused sender starts sending
 with a new SSRC, the receivers will need to send a new PAUSE request
 in order to pause it. PAUSED indications refer to a single one of
 the sender’s own, paused SSRC.

4.4. Consensus

 An RTP stream sender should not pause an SSRC that some receiver
 still wishes to receive. The reason is that in RTP topologies where
 the stream is shared between multiple receivers, a single receiver on
 that shared network, independent of it being multicast, a mesh with
 joint RTP session or a transport Translator based, must not single-
 handedly cause the stream to be paused without letting all other
 receivers to voice their opinions on whether or not the stream should
 be paused. A consequence of this is that a newly joining receiver,
 for example indicated by an RTCP Receiver Report containing both a
 new SSRC and a CNAME that does not already occur in the session,
 firstly needs to learn the existence of paused streams, and secondly
 should be able to resume any paused stream. Any single receiver
 wanting to resume a stream should also cause it to be resumed. An
 important exception to this is when the RTP stream sender is aware of
 conditions that makes it desirable or even necessitates to pause the
 RTP stream on its own behalf, without being explicitly asked to do
 so. Such local consideration in the RTP sender takes precedence over
 RTP receiver wishes to receive the stream.

4.5. Message Acknowledgments

 RTP and RTCP does not guarantee reliable data transmission. It uses
 whatever assurance the lower layer transport protocol can provide.
 However, this is commonly UDP that provides no reliability
 guarantees. Thus it is possible that a PAUSE and/or RESUME message
 transmitted from an RTP End Point does not reach its destination,
 i.e. the targeted RTP stream sender. When PAUSE or RESUME reaches
 the RTP stream sender and are effective, i.e., an active RTP stream
 sender pauses, or a resuming RTP stream sender have media data to
 transmit, it is immediately seen from the arrival or non-arrival of
 RTP packets for that RTP stream. Thus, no explicit acknowledgments
 are required in this case.

 In some cases when a PAUSE or RESUME message reaches the RTP stream
 sender, it will not be able to pause or resume the stream due to some
 local consideration, for example lack of data to transmit. This

Burman, et al. Expires April 30, 2015 [Page 12]

Internet-Draft RTP Stream Pause October 2014

 error condition, a negative acknowledgment, may be needed to avoid
 unnecessary retransmission of requests (Section 4.6).

4.6. Request Retransmission

 When the stream is not affected as expected by a PAUSE or RESUME
 request, the request may have been lost and the sender of the request
 will need to retransmit it. The retransmission should take the round
 trip time into account, and will also need to take the normal RTCP
 bandwidth and timing rules applicable to the RTP session into
 account, when scheduling retransmission of feedback.

 When it comes to resume requests or unsolicited paused indications
 that are more time critical, the best performance may be achieved by
 repeating the message as often as possible until a sufficient number
 have been sent to reach a high probability of message delivery, or at
 an explicit indication that the message was delivered. For resume
 requests, such explicit indication can be delivery of the RTP stream
 being requested to be resumed.

4.7. Sequence Numbering

 A PAUSE request message will need to have a sequence number to
 separate retransmissions from new requests. A retransmission keeps
 the sequence number unchanged, while it is incremented every time a
 new PAUSE request is transmitted that is not a retransmission of a
 previous request.

 Since RESUME always takes precedence over PAUSE and are even allowed
 to avoid pausing a stream, there is a need to keep strict ordering of
 PAUSE and RESUME. Thus, RESUME needs to share sequence number space
 with PAUSE and implicitly references which PAUSE it refers to. For
 the same reasons, the explicit PAUSED indication also needs to share
 sequence number space with PAUSE and RESUME.

4.8. Relation to Other Solutions

 A performance comparison between SIP/SDP and RTCP signaling
 technologies was made and included in draft versions of this
 specification. Using SIP and SDP [RFC4566] to carry pause and resume
 information means that it will need to traverse the entire signaling
 path to reach the signaling destination (either the remote End Point
 or the entity controlling the RTP Mixer), across any signaling
 proxies that potentially also has to process the SDP content to
 determine if they are expected to act on it. The amount of bandwidth
 required for a SIP/SDP-based signaling solution is in the order of at
 least 10 times more than an RTCP-based solution. Especially for UA
 sitting on mobile wireless access, this will risk introducing delays

Burman, et al. Expires April 30, 2015 [Page 13]

Internet-Draft RTP Stream Pause October 2014

 that are too long (Section 4.1) to provide a good user experience,
 and the bandwidth cost may also be considered infeasible compared to
 an RTCP-based solution. RTCP data is sent through the media path,
 which is likely shorter (contains fewer intermediate nodes) than the
 signaling path, may anyway have to traverse a few intermediate nodes.
 The amount of processing and buffering required in intermediate nodes
 to forward those RTCP messages is however believed to be
 significantly less than for intermediate nodes in the signaling path.
 Based on those considerations, RTCP is chosen as signaling protocol
 for the pause and resume functionality.

5. Solution Overview

 The proposed solution implements PAUSE and RESUME functionality based
 on sending AVPF RTCP feedback messages from any RTP session
 participant that wants to pause or resume a stream targeted at the
 stream sender, as identified by the sender SSRC.

 It is proposed to re-use CCM TMMBR and TMMBN [RFC5104] to the extent
 possible, and to define a small set of new RTCP feedback messages
 where new semantics is needed.

 A single Feedback message specification is used to implement the new
 messages. The message consists of a number of Feedback Control
 Information (FCI) blocks, where each block can be a PAUSE request, a
 RESUME request, PAUSED indication, a REFUSED response, or an
 extension to this specification. This structure allows a single
 feedback message to handle pause functionality on a number of
 streams.

 The PAUSED functionality is also defined in such a way that it can be
 used standalone by the RTP stream sender to indicate a local decision
 to pause, and inform any receiver of the fact that halting media
 delivery is deliberate and which RTP packet was the last transmitted.

 Special considerations that apply when using TMMBR/TMMBN for pause
 and resume purposes are described in Section 5.5. This specification
 applies to both the new messages defined in herein as well as their
 TMMBR/TMMBN counterparts, except when explicitly stated otherwise.
 An obvious exception are any reference to the message parameters that
 are only available in the messages defined here. For example, any
 reference to PAUSE in the text below is equally applicable to TMMBR
 0, and any reference to PAUSED is equally applicable to TMMBN 0.
 Therefore and for brevity, TMMBR/TMMBN will not be mentioned in the
 text, unless there is specific reason to do so.

Burman, et al. Expires April 30, 2015 [Page 14]

Internet-Draft RTP Stream Pause October 2014

 This section is intended to be explanatory and therefore
 intentionally contains no mandatory statements. Such statements can
 instead be found in other parts of this specification.

5.1. Expressing Capability

 An End Point can use an extension to CCM SDP signaling to declare
 capability to understand the messages defined in this specification.
 Capability to understand only a subset of messages is possible, to
 support partial implementation, which is specifically believed to be
 feasible for the RTP Mixer to Media Sender use case (Section 3.2).

 For the case when TMMBR/TMMBN are used for pause and resume purposes,
 it is possible to explicitly express joint support for TMMBR and
 TMMBN, but not for TMMBN only.

5.2. Requesting to Pause

 An RTP stream receiver can choose to request PAUSE at any time,
 subject to AVPF timing rules.

 The PAUSE request contains a PauseID, which is incremented by one (in
 modulo arithmetic) with each PAUSE request that is not a re-
 transmission. The PauseID is scoped by and thus a property of the
 targeted RTP stream (SSRC).

 When a non-paused RTP stream sender receives the PAUSE request, it
 continues to send the RTP stream while waiting for some time to allow
 other RTP stream receivers in the same RTP session that saw this
 PAUSE request to disapprove by sending a RESUME (Section 5.4) for the
 same stream and with the same PauseID as in the disapproved PAUSE.
 If such disapproving RESUME arrives at the RTP stream sender during
 the hold-off period before the stream is paused, the pause is not
 performed. In point-to-point configurations, the hold-off period may
 be set to zero. Using a hold-off period of zero is also appropriate
 when using TMMBR 0 and in line with the semantics for that message.

 If the RTP stream sender receives further PAUSE requests with the
 available PauseID while waiting as described above, those additional
 requests are ignored.

 If the PAUSE request is lost before it reaches the RTP stream sender,
 it will be discovered by the RTP stream receiver because it continues
 to receive the RTP stream. It will also not see any PAUSED
 indication (Section 5.3) for the stream. The same condition can be
 caused by the RTP stream sender having received a disapproving RESUME
 from a stream receiver A for a PAUSE request sent by a stream sender
 B, but that the PAUSE sender (B) did not receive the RESUME (from A)

Burman, et al. Expires April 30, 2015 [Page 15]

Internet-Draft RTP Stream Pause October 2014

 and may instead think that the PAUSE was lost. In both cases, a
 PAUSE request can be re-transmitted using the same PauseID. If using
 TMMBR 0 the request MAY be re-transmitted when the requester fails to
 receive a TMMBN 0 confirmation.

 If the pending stream pause is aborted due to a disapproving RESUME,
 the PauseID from the disapproved PAUSE is invalidated by the RESUME
 and any new PAUSE must use an incremented PauseID (in modulo
 arithmetic) to be effective.

 An RTP stream sender receiving a PAUSE not using the available
 PauseID informs the RTP stream receiver sending the ineffective PAUSE
 of this condition by sending a REFUSED response that contains the
 next available PauseID value. This REFUSED also informs the RTP
 stream receiver that it is probably not feasible to send another
 PAUSE for some time, not even with the available PauseID, since there
 are other RTP stream receivers that wish to receive the stream.

 A similar situation where an ineffective PauseID is chosen can appear
 when a new RTP stream receiver joins a session and wants to PAUSE a
 stream, but does not yet know the available PauseID to use. The
 REFUSED response will then provide sufficient information to create a
 valid PAUSE. The required extra signaling round-trip is not
 considered harmful, since it is assumed that pausing a stream is not
 time-critical (Section 4.1).

 There may be local considerations making it impossible or infeasible
 to pause the stream, and the RTP stream sender can then respond with
 a REFUSED. In this case, if the used PauseID would otherwise have
 been effective, REFUSED contains the same PauseID as in the PAUSE
 request, and the PauseID is kept as available. Note that when using
 TMMBR 0 as PAUSE, that request cannot be refused (TMMBN > 0) due to
 the existing restriction in section 4.2.2.2 of [RFC5104] that TMMBN
 shall contain the current bounding set, and the fact that a TMMBR 0
 will always be the most restrictive point in any bounding set.

 If the RTP stream sender receives several identical PAUSE for an RTP
 stream that was already at least once responded with REFUSED and the
 condition causing REFUSED remains, those additional REFUSED should be
 sent with regular RTCP timing. A single REFUSED can respond to
 several identical PAUSE requests.

5.3. Media Sender Pausing

 An RTP stream sender can choose to pause the stream at any time.
 This can either be as a result of receiving a PAUSE, or be based on
 some local sender consideration. When it does, it sends a PAUSED
 indication, containing the available PauseID. Note that PauseID is

Burman, et al. Expires April 30, 2015 [Page 16]

Internet-Draft RTP Stream Pause October 2014

 incremented when sending an unsolicited PAUSED (without having
 received a PAUSE). It also sends the PAUSED indication in the next
 two regular RTCP reports, given that the pause condition is then
 still effective.

 There is no reply to a PAUSED indication; it is simply an explicit
 indication of the fact that an RTP stream is paused. This can be
 helpful for the RTP stream receiver, for example to quickly
 understand that transmission is deliberately and temporarily
 suspended and no specific corrective action is needed.

 The RTP stream sender may want to apply some local consideration to
 exactly when the RTP stream is paused, for example completing some
 media unit or a forward error correction block, before pausing the
 stream.

 The PAUSED indication also contains information about the RTP
 extended highest sequence number when the pause became effective.
 This provides RTP stream receivers with first hand information
 allowing them to know whether they lost any packets just before the
 stream paused or when the stream is resumed again. This allows RTP
 stream receivers to quickly and safely take into account that the
 stream is paused, in for example retransmission or congestion control
 algorithms.

 If the RTP stream sender receives PAUSE requests with the available
 PauseID while the stream is already paused, those requests are
 ignored.

 As long as the stream is being paused, the PAUSED indication MAY be
 sent together with any regular RTCP SR or RR. Including PAUSED in
 this way allows RTP stream receivers joining while the stream is
 paused to quickly know that there is a paused stream, what the last
 sent extended RTP sequence number was, and what the next available
 PauseID is to be able to construct valid PAUSE and RESUME requests at
 a later stage.

 When the RTP stream sender learns that a new End Point has joined the
 RTP session, for example by a new SSRC and a CNAME that was not
 previously seen in the RTP session, it should send PAUSED indications
 for all its paused streams at its earliest opportunity. It should in
 addition continue to include PAUSED indications in at least two
 regular RTCP reports.

Burman, et al. Expires April 30, 2015 [Page 17]

Internet-Draft RTP Stream Pause October 2014

5.4. Requesting to Resume

 An RTP stream receiver can request to resume a stream with a RESUME
 request at any time, subject to AVPF timing rules. The RTP stream
 receiver must include the available PauseID in the RESUME request for
 it to be effective.

 A pausing RTP stream sender that receives a RESUME including the
 correct available PauseID resumes the stream at the earliest
 opportunity. Receiving RESUME requests for a stream that is not
 paused does not require any action and can be ignored.

 There may be local considerations at the RTP stream sender, for
 example that the media device is not ready, making it temporarily
 impossible to resume the stream at that point in time, and the RTP
 stream sender MAY then respond with a REFUSED containing the same
 PauseID as in the RESUME. When receiving such REFUSED with a PauseID
 identical to the one in the sent RESUME, RTP stream receivers SHOULD
 then avoid sending further RESUME requests for some reasonable amount
 of time, to allow the condition to clear.

 If the RTP stream sender receives several identical RESUME for an RTP
 stream that was already at least once responded with REFUSED and the
 condition causing REFUSED remains, those additional REFUSED should be
 sent with regular RTCP timing. A single REFUSED can respond to
 several identical RESUME requests.

 A pausing RTP stream sender can apply local considerations and MAY
 resume a paused RTP stream at any time. If TMMBR 0 was used to pause
 the RTP stream, it cannot be resumed due to local considerations,
 unless the RTP stream is paused only due to local considerations
 (Section 5.3) and thus no RTP stream receiver has requested to pause
 the stream with TMMBR 0.

 When resuming a paused stream, especially for media that makes use of
 temporal redundancy between samples such as video, the temporal
 dependency between samples taken before the pause and at the time
 instant the stream is resumed may not be appropriate to use in the
 encoding. Should such temporal dependency between before and after
 the media was paused be used by the RTP stream sender, it requires
 the RTP stream receiver to have saved the sample from before the
 pause for successful continued decoding when resuming. The use of
 this temporal dependency is left up to the RTP stream sender. If
 temporal dependency is not used when the RTP stream is resumed, the
 first encoded sample after the pause will not contain any temporal
 dependency to samples before the pause (for video it may be a so-
 called intra picture). If temporal dependency to before the pause is
 used by the RTP stream sender when resuming, and if the RTP stream

Burman, et al. Expires April 30, 2015 [Page 18]

Internet-Draft RTP Stream Pause October 2014

 receiver did not save any sample from before the pause, the RTP
 stream receiver can use a FIR request [RFC5104] to explicitly ask for
 a sample without temporal dependency (for video a so-called intra
 picture), even at the same time as sending the RESUME.

5.5. TMMBR/TMMBN Considerations

 As stated above, TMMBR/TMMBN may be used to provide pause and resume
 functionality for the point-to-point case. If the topology is not
 point-to-point, TMMBR/TMMBN cannot safely be used for pause or
 resume.

 This is a brief summary of what functionality is provided when using
 TMMBR/TMMBN:

 TMMBR 0: Corresponds to PAUSE, without the requirement for any hold-
 off period to wait for RESUME before pausing the RTP stream.

 TMMBR >0: Corresponds to RESUME when the RTP stream was previously
 paused with TMMBR 0. Since there is only a single RTP stream
 receiver, there is no need for the RTP stream sender to delay
 resuming the stream until after sending TMMBN >0, or to apply the
 hold-off period specified in [RFC5104] before increasing the
 bitrate from zero. The bitrate value used when resuming after
 pausing with TMMBR 0 is either according to known limitations, or
 based on starting a stream with the configured maximum for the
 stream or session, for example given by b-parameter in SDP.

 TMMBN 0: Corresponds to PAUSED when the RTP stream was paused with
 TMMBR 0, but may, just as PAUSED, also be used unsolicited. An
 unsolicited RTP stream pause based on local sender considerations
 uses the RTP stream’s own SSRC as TMMBR restriction owner in the
 TMMBN message bounding set. Also corresponds to a REFUSED
 indication when a stream is requested to be resumed with TMMBR >0.

 TMMBN >0: Cannot be used as REFUSED indication when a stream is
 requested to be paused with TMMBR 0, for reasons stated in
 Section 5.2.

6. Participant States

 This document introduces three new states for a stream in an RTP
 sender, according to the figure and sub-sections below. Any
 references to PAUSE, PAUSED, RESUME and REFUSED in this section SHALL
 be taken to apply to the extent possible also when TMMBR/TMMBN are
 used (Section 5.5) for this functionality.

Burman, et al. Expires April 30, 2015 [Page 19]

Internet-Draft RTP Stream Pause October 2014

 +--+
 | Received RESUME |
 v |
 +---------+ Received PAUSE +---------+ Hold-off period +--------+
 | Playing |---------------->| Pausing |---------------->| Paused |
 | |<----------------| | | |
 +---------+ Received RESUME +---------+ +--------+
 ^ | | PAUSE decision |
 | | v |
 | | PAUSE decision +---------+ PAUSE decision |
 | +------------------>| Local |<--------------------+
 +-------------------------| Paused |
 RESUME decision +---------+

 Figure 4: RTP Pause States

6.1. Playing State

 This state is not new, but is the normal media sending state from
 [RFC3550]. When entering the state, the PauseID MUST be incremented
 by one in modulo arithmetic. The RTP sequence number for the first
 packet sent after a pause SHALL be incremented by one compared to the
 highest RTP sequence number sent before the pause. The first RTP
 Time Stamp for the first packet sent after a pause SHOULD be set
 according to capture times at the source, meaning the RTP Time Stamp
 difference compared to before the pause reflects the time the RTP
 stream was paused.

6.2. Pausing State

 In this state, the RTP stream sender has received at least one PAUSE
 message for the stream in question. The RTP stream sender SHALL wait
 during a hold-off period for the possible reception of RESUME
 messages for the RTP stream being paused before actually pausing RTP
 stream transmission. The hold-off period to wait SHALL be long
 enough to allow another RTP stream receiver to respond to the PAUSE
 with a RESUME, if it determines that it would not like to see the
 stream paused. This hold-off period is determined by the formula:

 2 * RTT + T_dither_max,

 where RTT is the longest round trip known to the RTP stream sender
 and T_dither_max is defined in section 3.4 of [RFC4585]. The hold-
 off period MAY be set to 0 by some signaling (Section 9) means when
 it can be determined that there is only a single receiver, for
 example in point-to-point or some unicast situations.

Burman, et al. Expires April 30, 2015 [Page 20]

Internet-Draft RTP Stream Pause October 2014

 If the RTP stream sender has set the hold-off period to 0 and
 receives information that it was an incorrect decision and that there
 are in fact several receivers of the stream, for example by RTCP RR,
 it MUST change the hold-off to instead be based on the above formula.

6.3. Paused State

 An RTP stream is in paused state when the sender pauses its
 transmission after receiving at least one PAUSE message and the hold-
 off period has passed without receiving any RESUME message for that
 stream.

 When entering the state, the RTP stream sender SHALL send a PAUSED
 indication to all known RTP stream receivers, and SHALL also repeat
 PAUSED in the next two regular RTCP reports.

 Pausing an RTP stream MUST NOT affect the sending of RTP keepalive
 [RFC6263][RFC5245] applicable to that RTP stream.

 Following sub-sections discusses some potential issues when an RTP
 sender goes into paused state. These conditions are also valid if an
 RTP Translator is used in the communication. When an RTP Mixer
 implementing this specification is involved between the participants
 (which forwards the stream by marking the RTP data with its own
 SSRC), it SHALL be a responsibility of the Mixer to control sending
 PAUSE and RESUME requests to the sender. The below conditions also
 apply to the sender and receiver parts of the RTP Mixer,
 respectively.

6.3.1. RTCP BYE Message

 When a participant leaves the RTP session, it sends an RTCP BYE
 message. In addition to the semantics described in section 6.3.4 and
 6.3.7 of RTP [RFC3550], following two conditions MUST also be
 considered when an RTP participant sends an RTCP BYE message,

 o If a paused sender sends an RTCP BYE message, receivers observing
 this SHALL NOT send further PAUSE or RESUME requests to it.

 o Since a sender pauses its transmission on receiving the PAUSE
 requests from any receiver in a session, the sender MUST keep
 record of which receiver that caused the RTP stream to pause. If
 that receiver sends an RTCP BYE message observed by the sender,
 the sender SHALL resume the RTP stream.

Burman, et al. Expires April 30, 2015 [Page 21]

Internet-Draft RTP Stream Pause October 2014

6.3.2. SSRC Time-out

 Section 6.3.5 in RTP [RFC3550] describes the SSRC time-out of an RTP
 participant. Every RTP participant maintains a sender and receiver
 list in a session. If a participant does not get any RTP or RTCP
 packets from some other participant for the last five RTCP reporting
 intervals it removes that participant from the receiver list. Any
 streams that were paused by that removed participant SHALL be
 resumed.

6.4. Local Paused State

 This state can be entered at any time, based on local decision from
 the RTP stream sender. As for Paused State (Section 6.3), the RTP
 stream sender SHALL send a PAUSED indication to all known RTP stream
 receivers, when entering the state, and repeat it a sufficient number
 of times to reach a high probability that the message is correctly
 delivered, unless the stream was already in paused state
 (Section 6.3).

 Editor’s note: Consider specifying an explicit PAUSED ACK message
 that stops this message retransmission.

 When using TMMBN 0 as PAUSED indication, being in paused state, and
 entering local paused state, the RTP stream sender SHALL send TMMBN 0
 with itself included in the TMMBN bounding set.

 As indicated in Figure 4, this state has higher precedence than
 paused state (Section 6.3) and RESUME messages alone cannot resume a
 paused RTP stream as long as the local decision still applies.

 Pausing an RTP stream MUST NOT affect the sending of RTP keepalive
 [RFC6263][RFC5245] applicable to that RTP stream.

 When leaving the state, the stream state SHALL become Playing,
 regardless whether or not there were any RTP stream receivers that
 sent PAUSE for that stream, effectively clearing the RTP stream
 sender’s memory for that stream. This does however not apply when
 the stream was paused by a TMMBR 0, either before entering or during
 the Local Paused State, in which case leaving Local Paused State just
 removes the RTP sender from the TMMBN bounding set, and a new TMMBN
 with the updated bounding set MUST be sent accordingly. The stream
 state can become Playing only when there is no entry with a bitrate
 value of 0 in the stream’s bounding set.

Burman, et al. Expires April 30, 2015 [Page 22]

Internet-Draft RTP Stream Pause October 2014

7. Message Format

 Section 6 of AVPF [RFC4585] defines three types of low-delay RTCP
 feedback messages, i.e. Transport layer, Payload-specific, and
 Application layer feedback messages. This document defines a new
 Transport layer feedback message, this message is either a PAUSE
 request, a RESUME request, or one of four different types of
 acknowledgments in response to either PAUSE or RESUME requests.

 The Transport layer feedback messages are identified by having the
 RTCP payload type be RTPFB (205) as defined by AVPF [RFC4585]. The
 PAUSE and RESUME messages are identified by Feedback Message Type
 (FMT) value in common packet header for feedback message defined in
 section 6.1 of AVPF [RFC4585]. The PAUSE and RESUME transport
 feedback message is identified by the FMT value = TBA1.

 The Common Packet Format for Feedback Messages defined by AVPF
 [RFC4585] is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=2|P| FMT | PT | Length |
 +-+
 | SSRC of packet sender |
 +-+
 | SSRC of media source |
 +-+
 : Feedback Control Information (FCI) :
 : :

 For the PAUSE and RESUME messages, the following interpretation of
 the packet fields will be:

 FMT: The FMT value identifying the PAUSE and RESUME message: TBA1

 PT: Payload Type = 205 (RTPFB)

 Length: As defined by AVPF, i.e. the length of this packet in 32-bit
 words minus one, including the header and any padding.

 SSRC of packet sender: The SSRC of the RTP session participant
 sending the messages in the FCI. Note, for End Points that have
 multiple SSRCs in an RTP session, any of its SSRCs MAY be used to
 send any of the pause message types.

 SSRC of media source: Not used, SHALL be set to 0. The FCI
 identifies the SSRC the message is targeted for.

Burman, et al. Expires April 30, 2015 [Page 23]

Internet-Draft RTP Stream Pause October 2014

 The Feedback Control Information (FCI) field consist of one or more
 PAUSE, RESUME, PAUSED, REFUSED, or any future extension. These
 messages have the following FCI format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Target SSRC |
 +-+
 | Type | Res | Parameter Len | PauseID |
 +-+
 : Type Specific :
 +-+

 Figure 5: Syntax of FCI Entry in the PAUSE and RESUME message

 The FCI fields have the following definitions:

 Target SSRC (32 bits): For a PAUSE and RESUME messages, this value
 is the SSRC that the request is intended for. For PAUSED, it MUST
 be the SSRC being paused. If pausing is the result of a PAUSE
 request, the value in PAUSED is effectively the same as Target
 SSRC in a related PAUSE request. For REFUSED, it MUST be the
 Target SSRC of the PAUSE or RESUME request that cannot change
 state. A CSRC MUST NOT be used as a target as the interpretation
 of such a request is unclear.

 Type (4 bits): The pause feedback type. The values defined in this
 specification are as follows,

 0: PAUSE request message

 1: RESUME request message

 2: PAUSED indication message

 3: REFUSED indication message

 4-15: Reserved for future use

 Res: (4 bits): Type specific reserved. SHALL be ignored by
 receivers implementing this specification and MUST be set to 0 by
 senders implementing this specification.

 Parameter Len: (8 bits): Length of the Type Specific field in 32-bit
 words. MAY be 0.

Burman, et al. Expires April 30, 2015 [Page 24]

Internet-Draft RTP Stream Pause October 2014

 PauseID (16 bits): Message sequence identification. SHALL be
 incremented by one modulo 2^16 for each new PAUSE message, unless
 the message is re-transmitted. The initial value SHOULD be 0.
 The PauseID is scoped by the Target SSRC, meaning that PAUSE,
 RESUME, and PAUSED messages therefore share the same PauseID space
 for a specific Target SSRC.

 Type Specific: (variable): Defined per pause feedback Type. MAY be
 empty.

8. Message Details

 This section contains detailed explanations of each message defined
 in this specification. All transmissions of request and indications
 are governed by the transmission rules as defined by Section 8.5.

 Any references to PAUSE, PAUSED, RESUME and REFUSED in this section
 SHALL be taken to apply to the extent possible also when TMMBR/TMMBN
 are used (Section 5.5) for this functionality. TMMBR/TMMBN MAY be
 used instead of the messages defined in this specification when the
 effective topology is point-to-point. If either sender or receiver
 learns that the topology is not point-to-point, TMMBR/TMMBN MUST NOT
 be used for pause/resume functionality. If the messages defined in
 this specification are supported in addition to TMMBR/TMMBN, pause/
 resume signaling MUST use messages from this specification. If the
 topology is not point-to-point and the messages defined in this
 specification are not supported, pause/resume functionality with
 TMMBR/TMMBN MUST NOT be used.

8.1. PAUSE

 An RTP stream receiver MAY schedule PAUSE for transmission at any
 time.

 PAUSE has no defined Type Specific parameters and Parameter Len MUST
 be set to 0.

 PauseID SHOULD be the available PauseID, as indicated by PAUSED
 (Section 8.2) or implicitly determined by previously received PAUSE
 or RESUME (Section 8.3) requests. A randomly chosen PauseID MAY be
 used if it was not possible to retrieve PauseID information, in which
 case the PAUSE will either succeed, or the correct PauseID can be
 found in the returned REFUSED (Section 8.4). A PauseID that is
 matching the available PauseID is henceforth also called a valid
 PauseID.

 PauseID needs to be incremented by one, in modulo arithmetic, for
 each PAUSE request that is not a retransmission, compared to what was

Burman, et al. Expires April 30, 2015 [Page 25]

Internet-Draft RTP Stream Pause October 2014

 used in the last PAUSED indication sent by the media sender. This is
 to ensure that the PauseID matches what is the current available
 PauseID at the RTP stream sender. The RTP stream sender increments
 what it considers to be the available PauseID when entering Playing
 State (Section 6.1).

 For the scope of this specification, a PauseID larger than the
 current one is defined as having a value between and including
 (PauseID + 1) MOD 2^16 and (PauseID + 2^14) MOD 2^16, where "MOD" is
 the modulo operator. Similarly, a PauseID smaller than the current
 one is defined as having a value between and including (PauseID -
 2^15) MOD 2^16 and (PauseID - 1) MOD 2^16.

 If an RTP stream receiver that sent a PAUSE with a certain PauseID
 receives a RESUME with the same PauseID, it is RECOMMENDED that it
 refrains from sending further PAUSE requests for some appropriate
 time since the RESUME indicates that there are other receivers that
 still wishes to receive the stream.

 If the targeted RTP stream does not pause, if no PAUSED indication
 with a larger PauseID than the one used in PAUSE, and if no REFUSED
 is received within 2 * RTT + T_dither_max, the PAUSE MAY be scheduled
 for retransmission, using the same PauseID. RTT is the observed
 round-trip to the RTP stream sender and T_dither_max is defined in
 section 3.4 of [RFC4585].

 When an RTP stream sender in Playing State (Section 6.1) receives a
 valid PAUSE, and unless local considerations currently makes it
 impossible to pause the stream, it SHALL enter Pausing State
 (Section 6.2) when reaching an appropriate place to pause in the
 stream, and act accordingly.

 If an RTP stream sender receives a valid PAUSE while in Pausing,
 Paused (Section 6.3) or Local Paused (Section 6.4) States, the
 received PAUSE SHALL be ignored.

8.2. PAUSED

 The PAUSED indication MUST be sent whenever entering Paused State
 (Section 6.3) as a result of receiving a valid PAUSE (Section 8.1)
 request, or when entering Local Paused State (Section 6.4) based on a
 RTP stream sender local decision.

 PauseID MUST contain the available, valid value to be included in a
 subsequent RESUME (Section 8.3).

Burman, et al. Expires April 30, 2015 [Page 26]

Internet-Draft RTP Stream Pause October 2014

 PAUSED SHALL contain a 32 bit parameter with the RTP extended highest
 sequence number valid when the RTP stream was paused. Parameter Len
 MUST be set to 1.

 After having entered Paused or Local Paused State and thus having
 sent PAUSED once, PAUSED MUST also be included in the next two
 regular RTCP reports, given that the pause condition is then still
 effective.

 While remaining in Paused or Local Paused States, PAUSED MAY be
 included in all regular RTCP reports.

 When in Paused or Local Paused States, It is RECOMMENDED to send
 PAUSED at the earliest opportunity and also to include it in the next
 two regular RTCP reports, whenever the RTP stream sender learns that
 there are End Points that did not previously receive the stream, for
 example by RTCP reports with an SSRC and a CNAME that was not
 previously seen in the RTP session.

8.3. RESUME

 An RTP stream receiver MAY schedule RESUME for transmission whenever
 it wishes to resume a paused stream, or to disapprove a stream from
 being paused.

 PauseID SHOULD be the valid PauseID, as indicated by PAUSED
 (Section 8.2) or implicitly determined by previously received PAUSE
 (Section 8.1) or RESUME requests. A randomly chosen PauseID MAY be
 used if it was not possible to retrieve PauseID information, in which
 case the RESUME will either succeed, or the correct PauseID can be
 found in a returned REFUSED (Section 8.4).

 RESUME has no defined Type Specific parameters and Parameter Len MUST
 be set to 0.

 When an RTP stream sender in Pausing (Section 6.2), Paused
 (Section 6.3) or Local Paused State (Section 6.4) receives a valid
 RESUME, and unless local considerations currently makes it impossible
 to resume the stream, it SHALL enter Playing State (Section 6.1) and
 act accordingly. If the RTP stream sender is incapable of honoring
 the RESUME request with a valid PauseID, or receives a RESUME request
 with an invalid PauseID while in Paused or Pausing state, the RTP
 stream sender sends a REFUSED message as specified below.

 If an RTP stream sender in Playing State receives a RESUME containing
 either a valid PauseID or a PauseID that is less than the valid
 PauseID, the received RESUME SHALL be ignored.

Burman, et al. Expires April 30, 2015 [Page 27]

Internet-Draft RTP Stream Pause October 2014

8.4. REFUSED

 REFUSED has no defined Type Specific parameters and Parameter Len
 MUST be set to 0.

 If an RTP stream sender receives a valid PAUSE (Section 8.1) or
 RESUME (Section 8.3) request that cannot be fulfilled by the sender
 due to some local consideration, it SHALL schedule transmission of a
 REFUSED indication containing the valid PauseID from the rejected
 request.

 If an RTP stream sender receives PAUSE or RESUME requests with a non-
 valid PauseID it SHALL schedule a REFUSED response containing the
 available, valid PauseID, except if the RTP stream sender is in
 Playing State and receives a RESUME with a PauseID less than the
 valid one, in which case the RESUME SHALL be ignored.

 If several PAUSE or RESUME that would render identical REFUSED
 responses are received before the scheduled REFUSED is sent,
 duplicate REFUSED MUST NOT be scheduled for transmission. This
 effectively lets a single REFUSED respond to several invalid PAUSE or
 RESUME requests.

 If REFUSED containing a certain PauseID was already sent and yet more
 PAUSE or RESUME messages are received that require additional REFUSED
 with that specific PauseID to be scheduled, and unless the PauseID
 number space has wrapped since REFUSED was last sent with that
 PauseID, further REFUSED messages with that PauseID SHOULD be sent in
 regular RTCP reports.

 An RTP stream receiver that sent a PAUSE or RESUME request and
 receives a REFUSED containing the same PauseID as in the request
 SHOULD refrain from sending an identical request for some appropriate
 time to allow the condition that caused REFUSED to clear.

 An RTP stream receiver that sent a PAUSE or RESUME request and
 receives a REFUSED containing a PauseID different from the request
 MAY schedule another request using the PauseID from the REFUSED
 indication.

8.5. Transmission Rules

 The transmission of any RTCP feedback messages defined in this
 specification MUST follow the normal AVPF defined timing rules and
 depends on the session’s mode of operation.

Burman, et al. Expires April 30, 2015 [Page 28]

Internet-Draft RTP Stream Pause October 2014

 All messages defined in this specification, as well as TMMBR/TMMBN
 used for pause/resume purposes (Section 5.5), MAY use either Regular,
 Early or Immediate timings, taking the following into consideration:

 o PAUSE SHOULD use Early or Immediate timing, except for
 retransmissions that SHOULD use Regular timing.

 o The first transmission of PAUSED for each (non-wrapped) PauseID
 SHOULD be sent with Immediate or Early timing, while subsequent
 PAUSED for that PauseID SHOULD use Regular timing. Unsolicited
 PAUSED (sent when entering Local Paused State (Section 6.4))
 SHOULD always use Immediate or Early timing, until PAUSED for that
 PauseID is considered delivered at least once to all receivers of
 the paused RTP stream, after which it SHOULD use Regular timing.

 Editor’s note: Consider specifying a PAUSED ACK message as
 explicit indication of reception.

 o RESUME SHOULD always use Immediate or Early timing.

 o The first transmission of REFUSED for each (non-wrapped) PauseID
 SHOULD be sent with Immediate or Early timing, while subsequent
 REFUSED for that PauseID SHOULD use Regular timing.

9. Signaling

 The capability of handling messages defined in this specification MAY
 be exchanged at a higher layer such as SDP. This document extends
 the rtcp-fb attribute defined in section 4 of AVPF [RFC4585] to
 include the request for pause and resume. This specification follows
 all the rules defined in AVPF [RFC4585] and CCM [RFC5104] for an
 rtcp-fb attribute relating to payload type in a session description.

 This specification defines a new parameter "pause" to the "ccm"
 feedback value defined in CCM [RFC5104], representing the capability
 to understand the RTCP feedback message and all of the defined FCIs
 of PAUSE, RESUME, PAUSED and REFUSED.

 Note: When TMMBR 0 / TMMBN 0 are used to implement pause and
 resume functionality (with the restrictions described in this
 specification), signaling rtcp-fb attribute with ccm tmmbr
 parameter is sufficient and no further signaling is necessary.
 There is however no guarantee that TMMBR/TMMBN implementations
 pre-dating this specification work exactly as described here when
 used with a bitrate value of 0.

 The "pause" parameter has two optional attributes, "nowait" and
 "config":

Burman, et al. Expires April 30, 2015 [Page 29]

Internet-Draft RTP Stream Pause October 2014

 o "nowait" indicates that the hold-off period defined in Section 6.2
 can be set to 0, reducing the latency before the stream can paused
 after receiving a PAUSE request. This condition occurs when there
 will be only a single receiver per direction in the RTP session,
 for example in point-to-point sessions. It is also possible to
 use in scenarios using unidirectional media. The conditions that
 allow "nowait" to be set also indicate that it would be possible
 to use CCM TMMBR/TMMBN as pause/resume signaling.

 o "config" allows for partial implementation of this specification
 according to the different roles in the use cases section
 (Section 3), and takes a value that describes what sub-set is
 implemented:

 1 Full implementation of this specification. This is the default
 configuration. A missing config attribute MUST be treated
 equivalent to providing a config value of 1.

 2 The implementation intends to send PAUSE and RESUME requests
 for received RTP streams and is thus also capable of receiving
 PAUSED and REFUSED. It does not support receiving PAUSE and
 RESUME requests, but may pause sent RTP streams due to local
 considerations and then intends to send PAUSED for them.

 3 The implementation supports receiving PAUSE and RESUME requests
 targeted for RTP streams it sends. It will send PAUSED and
 REFUSED as needed. The node will not send any PAUSE and RESUME
 requests, but supports and desires receiving PAUSED if received
 RTP streams are paused.

 4 The implementation intends to send PAUSE and RESUME requests
 for received RTP streams and is thus also capable of receiving
 PAUSED and REFUSED. It cannot pause any RTP streams it sends,
 and thus does not support receiving PAUSE and RESUME requests,
 and also does not support sending PAUSED indications.

 5 The implementation supports receiving PAUSE and RESUME requests
 targeted for RTP streams it sends. It will send PAUSED and
 REFUSED as needed. It does not support sending PAUSE and
 RESUME requests to pause received RTP streams, and also does
 not support receiving PAUSED indications.

 6 The implementation supports sent and received RTP streams being
 paused due to local considerations, and thus supports sending
 and receiving PAUSED indications.

 7 The implementation supports and desires to receive PAUSED
 indications for received RTP streams, but does not pause or

Burman, et al. Expires April 30, 2015 [Page 30]

Internet-Draft RTP Stream Pause October 2014

 send PAUSED indications for sent RTP streams. It does not
 support any other messages defined in this specification.

 8 The implementation supports pausing sent RTP streams and
 sending PAUSED indications for them, but does not support
 receiving PAUSED indications for received RTP streams. It does
 not support any other messages defined in this specification.

 When signaling a config value other than 1, an implementation MAY
 ignore non-supported messages on reception, and MAY omit sending non-
 supported messages. The below table summarizes per-message send and
 receive support for the different config attribute values ("X"
 indicating support and "-" indicating non-support):

 +---+-----------------------------+-----------------------------+
 | # | Send | Receive |
 | | PAUSE RESUME PAUSED REFUSED | PAUSE RESUME PAUSED REFUSED |
 +---+-----------------------------+-----------------------------+
 | 1 | X X X X | X X X X |
 | 2 | X X X - | - - X X |
 | 3 | - - X X | X X X - |
 | 4 | X X - - | - - X X |
 | 5 | - - X X | X X - - |
 | 6 | - - X - | - - X - |
 | 7 | - - - - | - - X - |
 | 8 | - - X - | - - - - |
 +---+-----------------------------+-----------------------------+

 Figure 6: Supported messages for different config values

 This is the resulting ABNF [RFC5234], extending existing ABNF in
 section 7.1 of CCM [RFC5104]:

 rtcp-fb-ccm-param =/ SP "pause" [SP pause-attr]
 pause-attr = [pause-config] [SP "nowait"] [SP byte-string]
 pause-config = "config=" pause-config-value
 pause-config-value = %x31-38
 ; byte-string as defined in RFC 4566, for future extensions

 Figure 7: ABNF

 An endpoint implementing this specification and using SDP to signal
 capability SHOULD indicate the new "pause" parameter with ccm
 signaling, but MAY use existing ccm tmmbr signaling [RFC5104] if the
 limitations in functionality as described in this specification
 coming from such usage are considered acceptable. The messages from

Burman, et al. Expires April 30, 2015 [Page 31]

Internet-Draft RTP Stream Pause October 2014

 this specification SHOULD NOT be used towards receivers that did not
 declare capability to receive those messages.

 There MUST NOT be more than one "a=rtcp-fb" line with "pause"
 applicable to a single payload type in the SDP, unless the additional
 line uses "*" as payload type, in which case "*" SHALL be interpreted
 as applicable to all listed payload types that does not have an
 explicit "pause" specification.

9.1. Offer-Answer Use

 An offerer implementing this specification needs to include "pause"
 CCM parameter with suitable configuration attribute ("config") in the
 SDP, according to what messages it intends to send and desires to
 receive in the session.

 In SDP offer/answer, the "config" attribute and its message
 directions are interpreted based on the agent providing the SDP. The
 offerer is described in an offer, and the answerer is described in an
 answer.

 An answerer receiving an offer with a "pause" CCM parameter and a
 config attribute with a certain value, describing a certain
 capability to send and receive messages, MAY change the config
 attribute value in the answer to another configuration. The
 permitted answers are listed in the below table.

 SDP Offer config value | Permitted SDP Answer config values
 -----------------------+-----------------------------------
 1 | 1, 2, 3, 4, 5, 6, 7, 8
 2 | 3, 4, 5, 6, 7, 8
 3 | 2, 4, 5, 6, 7, 8
 4 | 5, 6, 7, 8
 5 | 4, 6, 7, 8
 6 | 6, 7, 8
 7 | 8
 8 | 7

 Figure 8: Config values in Offer/Answer

 An offer or answer omitting the config attribute, MUST be interpreted
 as equivalent to config=1. In all cases the answerer MAY also
 completely remove any "pause" CCM parameter to indicate that it does
 not understand or desire to use any pause functionality for the
 affected payload types.

Burman, et al. Expires April 30, 2015 [Page 32]

Internet-Draft RTP Stream Pause October 2014

 If the offerer believes that itself and the intended answerer are
 likely the only End Points in the RTP session, it MAY include the
 "nowait" sub-parameter on the "pause" line in the offer. If an
 answerer receives the "nowait" sub-parameter on the "pause" line in
 the SDP, and if it has information that the offerer and itself are
 not the only End Points in the RTP session, it MUST NOT include any
 "nowait" sub-parameter on its "pause" line in the SDP answer. The
 answerer MUST NOT add "nowait" on the "pause" line in the answer
 unless it is present on the "pause" line in the offer. If both offer
 and answer contained a "nowait" parameter, then the hold-off period
 is configured to 0 at both offerer and answerer.

9.2. Declarative Use

 In declarative use, the SDP is used to configure the node receiving
 the SDP. This has implications on the interpretation of the SDP
 signaling extensions defined in this specification.

 First, the "config" attribute and its message directions are
 interpreted based on the node receiving the SDP.

 Second, the "nowait" parameter, if included, is followed as
 specified. It is the responsibility of the declarative SDP sender to
 determine if a configured node will participate in a session that
 will be point to point, based on the usage. For example, a
 conference client being configured for an any source multicast
 session using SAP [RFC2974] will not be in a point to point session,
 thus "nowait" cannot be included. An RTSP [RFC2326] client receiving
 a declarative SDP may very well be in a point to point session,
 although it is highly doubtful that an RTSP client would need to
 support this specification, considering the inherent PAUSE support in
 RTSP.

10. Examples

 The following examples shows use of PAUSE and RESUME messages,
 including use of offer-answer:

 1. Offer-Answer

 2. Point-to-Point session

 3. Point-to-Multipoint using Mixer

 4. Point-to-Multipoint using Translator

Burman, et al. Expires April 30, 2015 [Page 33]

Internet-Draft RTP Stream Pause October 2014

10.1. Offer-Answer

 The below figures contains an example how to show support for pausing
 and resuming the streams, as well as indicating whether or not the
 hold-off period can be set to 0.

 v=0
 o=alice 3203093520 3203093520 IN IP4 alice.example.com
 s=Pausing Media
 t=0 0
 c=IN IP4 alice.example.com
 m=audio 49170 RTP/AVPF 98 99
 a=rtpmap:98 G719/48000
 a=rtpmap:99 PCMA/8000
 a=rtcp-fb:* ccm pause nowait

 Figure 9: SDP Offer With Pause and Resume Capability

 The offerer supports all of the messages defined in this
 specification, leaving out the optional config attribute. The
 offerer also believes that it will be the sole receiver of the
 answerer’s stream as well as that the answerer will be the sole
 receiver of the offerer’s stream and thus includes the "nowait" sub-
 parameter for the "pause" parameter.

 This is the SDP answer:

 v=0
 o=bob 293847192 293847192 IN IP4 bob.example.com
 s=-
 t=0 0
 c=IN IP4 bob.example.com
 m=audio 49202 RTP/AVPF 98
 a=rtpmap:98 G719/48000
 a=rtcp-fb:98 ccm pause config=2

 Figure 10: SDP Answer With Pause and Resume Capability

 The answerer will not allow its sent streams to be paused or resumed
 and thus restricts the answer to indicate config=2. It also supports
 pausing its own RTP streams due to local considerations, which is why
 config=2 is chosen rather than config=4. The answerer somehow knows
 that it will not be a point-to-point RTP session and has therefore
 removed "nowait" from the "pause" line, meaning that the offerer must
 use a non-zero hold-off period when being requested to pause the
 stream.

Burman, et al. Expires April 30, 2015 [Page 34]

Internet-Draft RTP Stream Pause October 2014

 When using TMMBR 0 / TMMBN 0 to achieve pause and resume
 functionality, there are no differences in SDP compared to CCM
 [RFC5104] and therefore no such examples are included here.

10.2. Point-to-Point Session

 This is the most basic scenario, which involves two participants,
 each acting as a sender and/or receiver. Any RTP data receiver sends
 PAUSE or RESUME messages to the sender, which pauses or resumes
 transmission accordingly. The hold-off period before pausing a
 stream is 0.

 +---------------+ +---------------+
 | RTP Sender | | RTP Receiver |
 +---------------+ +---------------+
 : t1: RTP data :
 | -------------------------------> |
 | t2: PAUSE(3) |
 | <------------------------------- |
 | < RTP data paused > |
 | t3: PAUSED(3) |
 | -------------------------------> |
 : < Some time passes > :
 | t4: RESUME(3) |
 | <------------------------------- |
 | t5: RTP data |
 | -------------------------------> |
 : < Some time passes > :
 | t6: PAUSE(4) |
 | <------------------------------- |
 | < RTP data paused > |
 : :

 Figure 11: Pause and Resume Operation in Point-to-Point

 Figure 11 shows the basic pause and resume operation in Point-to-
 Point scenario. At time t1, an RTP sender sends data to a receiver.
 At time t2, the RTP receiver requests the sender to pause the stream,
 using PauseID 3 (which it knew since before in this example). The
 sender pauses the data and replies with a PAUSED containing the same
 PauseID. Some time later (at time t4) the receiver requests the
 sender to resume, which resumes its transmission. The next PAUSE,
 sent at time t6, contains an updated PauseID (4).

Burman, et al. Expires April 30, 2015 [Page 35]

Internet-Draft RTP Stream Pause October 2014

 +---------------+ +---------------+
 | RTP Sender | | RTP Receiver |
 +---------------+ +---------------+
 : t1: RTP data :
 | -------------------------------> |
 | t2: TMMBR 0 |
 | <------------------------------- |
 | < RTP data paused > |
 | t3: TMMBN 0 |
 | -------------------------------> |
 : < Some time passes > :
 | t4: TMMBR 150000 |
 | <------------------------------- |
 | t5: RTP data |
 | -------------------------------> |
 : < Some time passes > :
 | t6: TMMBR 0 |
 | <------------------------------- |
 | < RTP data paused > |
 : :

 Figure 12: TMMBR Pause and Resume in Point-to-Point

 Figure 12 describes the same point-to-point scenario as above, but
 using TMMBR/TMMBN signaling.

Burman, et al. Expires April 30, 2015 [Page 36]

Internet-Draft RTP Stream Pause October 2014

 +---------------+ +----------------+
 | RTP Sender A | | RTP Receiver B |
 +---------------+ +----------------+
 : t1: RTP data :
 | -------------------------------> |
 | < RTP data paused > |
 | t2: TMMBN {A:0} |
 | -------------------------------> |
 : < Some time passes > :
 | t3: TMMBR 0 |
 | <------------------------------- |
 | t4: TMMBN {A:0,B:0} |
 | -------------------------------> |
 : < Some time passes > :
 | t5: TMMBN {B:0} |
 | -------------------------------> |
 : < Some time passes > :
 | t6: TMMBR 80000 |
 | <------------------------------- |
 | t7: RTP data |
 | -------------------------------> |
 : :

 Figure 13: Unsolicited PAUSED using TMMBN

 Figure 13 describes the case when an RTP stream sender (A) chooses to
 pause an RTP stream due to local considerations. Both the RTP stream
 sender (A) and the RTP stream receiver (B) use TMMBR/TMMBN signaling
 for pause/resume purposes. A decides to pause the RTP stream at time
 t2 and uses TMMBN 0 to signal PAUSED, including itself in the TMMBN
 bounding set. At time t3, despite the fact that the RTP stream is
 still paused, B decides that it is no longer interested to receive
 the RTP stream and signals PAUSE by sending a TMMBR 0. As a result
 of that, the bounding set now contains both A and B, and A sends out
 a new TMMBN reflecting that. After a while, at time t5, the local
 considerations that caused A to pause the RTP stream no longer apply,
 causing it to remove itself from the bounding set and to send a new
 TMMBN indicating this. At time t6, B decides that it is now
 interested to receive the RTP stream again and signals RESUME by
 sending a TMMBR containing a bitrate value greater than 0, causing A
 to resume sending RTP data.

Burman, et al. Expires April 30, 2015 [Page 37]

Internet-Draft RTP Stream Pause October 2014

 +---------------+ +---------------+
 | RTP Sender | | RTP Receiver |
 +---------------+ +---------------+
 : t1: RTP data :
 | ------------------------------------> |
 | t2: PAUSE(7), lost |
 | <---X-------------- |
 | |
 | t3: RTP data |
 | ------------------------------------> |
 : :
 | <Timeout, still receiving data> |
 | t4: PAUSE(7) |
 | <------------------------------------ |
 | < RTP data paused > |
 | t5: PAUSED(7) |
 | ------------------------------------> |
 : < Some time passes > :
 | t6: RESUME(7), lost |
 | <---X-------------- |
 | t7: RESUME(7) |
 | <------------------------------------ |
 | t8: RTP data |
 | ------------------------------------> |
 | t9: RESUME(7) |
 | <------------------------------------ |
 : :

 Figure 14: Pause and Resume Operation With Messages Lost

 Figure 14 describes what happens if a PAUSE message from an RTP
 stream receiver does not reach the RTP stream sender. After sending
 a PAUSE message, the RTP stream receiver waits for a time-out to
 detect if the RTP stream sender has paused the data transmission or
 has sent PAUSED indication according to the rules discussed in
 Section 6.3. As the PAUSE message is lost on the way (at time t2),
 RTP data continues to reach to the RTP stream receiver. When the
 timer expires, the RTP stream receiver schedules a retransmission of
 the PAUSE message, which is sent at time t4. If the PAUSE message
 now reaches the RTP stream sender, it pauses the RTP stream and
 replies with PAUSED.

 At time t6, the RTP stream receiver wishes to resume the stream again
 and sends a RESUME, which is lost. This does not cause any severe
 effect, since there is no requirement to wait until further RESUME
 are sent and another RESUME are sent already at time t7, which now
 reaches the RTP stream sender that consequently resumes the stream at

Burman, et al. Expires April 30, 2015 [Page 38]

Internet-Draft RTP Stream Pause October 2014

 time t8. The time interval between t6 and t7 can vary, but may for
 example be one RTCP feedback transmission interval as determined by
 the AVPF rules.

 The RTP stream receiver did not realize that the RTP stream was
 resumed in time to stop yet another scheduled RESUME from being sent
 at time t9. This is however harmless since the RESUME PauseID is
 less than the valid one and will be ignored by the RTP stream sender.
 It will also not cause any unwanted resume even if the stream was
 paused based on a PAUSE from some other receiver before receiving the
 RESUME, since the valid PauseID is now larger than the one in the
 stray RESUME and will only cause a REFUSED containing the new valid
 PauseID from the RTP stream sender.

 +---------------+ +---------------+
 | RTP Sender | | RTP Receiver |
 +---------------+ +---------------+
 : t1: RTP data :
 | ------------------------------> |
 | t2: PAUSE(11) |
 | <------------------------------ |
 | |
 | < Can not pause RTP data > |
 | t3: REFUSED(11) |
 | ------------------------------> |
 | |
 | t4: RTP data |
 | ------------------------------> |
 : :

 Figure 15: Pause Request is Refused in Point-to-Point

 In Figure 15, the receiver requests to pause the sender, which
 refuses to pause due to some consideration local to the sender and
 responds with a REFUSED message.

10.3. Point-to-Multipoint using Mixer

 An RTP Mixer is an intermediate node connecting different transport-
 level clouds. The Mixer receives streams from different RTP sources,
 selects or combines them based on the application’s needs and
 forwards the generated stream(s) to the destination. The Mixer
 typically puts its’ own SSRC(s) in RTP data packets instead of the
 original source(s).

 The Mixer keeps track of all the streams delivered to the Mixer and
 how they are currently used. In this example, it selects the video

Burman, et al. Expires April 30, 2015 [Page 39]

Internet-Draft RTP Stream Pause October 2014

 stream to deliver to the receiver R based on the voice activity of
 the RTP stream senders. The video stream will be delivered to R
 using M’s SSRC and with an CSRC indicating the original source.

 Note that PauseID is not of any significance for the example and is
 therefore omitted in the description.

 +-----+ +-----+ +-----+ +-----+
 | R | | M | | S1 | | S2 |
 +-----+ +-----| +-----+ +-----+
 : : t1:RTP(S1) : :
 | t2:RTP(M:S1) |<-----------------| |
 |<-----------------| | |
 | | t3:RTP(S2) | |
 | |<------------------------------------|
 | | t4: PAUSE(S2) | |
 | |------------------------------------>|
 | | | t5: PAUSED(S2) |
 | |<------------------------------------|
 | | | <S2:No RTP to M> |
 | | t6: RESUME(S2) | |
 | |------------------------------------>|
 | | | t7: RTP to M |
 | |<------------------------------------|
 | t8:RTP(M:S2) | | |
 |<-----------------| | |
 | | t9:PAUSE(S1) | |
 | |----------------->| |
 | | t10:PAUSED(S1) | |
 | |<-----------------| |
 | | <S1:No RTP to M> | |
 : : : :

 Figure 16: Pause and Resume Operation for a Voice Activated Mixer

 The session starts at t1 with S1 being the most active speaker and
 thus being selected as the single video stream to be delivered to R
 (t2) using the Mixer SSRC but with S1 as CSRC (indicated after the
 colon in the figure). Then S2 joins the session at t3 and starts
 delivering an RTP stream to the Mixer. As S2 has less voice activity
 then S1, the Mixer decides to pause S2 at t4 by sending S2 a PAUSE
 request. At t5, S2 acknowledges with a PAUSED and at the same
 instant stops delivering RTP to the Mixer. At t6, the user at S2
 starts speaking and becomes the most active speaker and the Mixer
 decides to switch the video stream to S2, and therefore quickly sends
 a RESUME request to S2. At t7, S2 has received the RESUME request
 and acts on it by resuming RTP stream delivery to M. When the RTP

Burman, et al. Expires April 30, 2015 [Page 40]

Internet-Draft RTP Stream Pause October 2014

 stream from t7 arrives at the Mixer, it switches this RTP stream into
 its SSRC (M) at t8 and changes the CSRC to S2. As S1 now becomes
 unused, the Mixer issues a PAUSE request to S1 at t9, which is
 acknowledged at t10 with a PAUSED and the RTP stream from S1 stops
 being delivered.

10.4. Point-to-Multipoint using Translator

 A transport Translator in an RTP session forwards the message from
 one peer to all the others. Unlike Mixer, the Translator does not
 mix the streams or change the SSRC of the messages or RTP media.
 These examples are to show that the messages defined in this
 specification can be safely used also in a transport Translator case.
 The parentheses in the figures contains (Target SSRC, PauseID)
 information for the messages defined in this specification.

 +-------------+ +-------------+ +--------------+
 | Sender(S) | | Translator | | Receiver(R) |
 +-------------+ +-------------| +--------------+
 : t1: RTP(S) : :
 |------------------>| |
 | | t2: RTP (S) |
 | |------------------>|
 | | t3: PAUSE(S,3) |
 | |<------------------|
 | t4:PAUSE(S,3) | |
 |<------------------| |
 : < Sender waiting for possible RESUME> :
 | < RTP data paused > |
 | t5: PAUSED(S,3) | |
 |------------------>| |
 | | t6: PAUSED(S,3) |
 | |------------------>|
 : : :
 | | t7: RESUME(S,3) |
 | |<------------------|
 | t8: RESUME(S,3) | |
 |<------------------| |
 | t9: RTP (S) | |
 |------------------>| |
 | | t10: RTP (S) |
 | |------------------>|
 : : :

 Figure 17: Pause and Resume Operation Between Two Participants Using
 a Translator

Burman, et al. Expires April 30, 2015 [Page 41]

Internet-Draft RTP Stream Pause October 2014

 Figure 17 describes how a Translator can help the receiver in pausing
 and resuming the sender. The sender S sends RTP data to the receiver
 R through Translator, which just forwards the data without modifying
 the SSRCs. The receiver sends a PAUSE request to the sender, which
 in this example knows that there may be more receivers of the stream
 and waits a non-zero hold-off period to see if there is any other
 receiver that wants to receive the data, does not receive any
 disapproving RESUME, hence pauses itself and replies with PAUSED.
 Similarly the receiver resumes the sender by sending RESUME request
 through Translator. Since this describes only a single pause
 operation for a single RTP stream sender, all messages uses a single
 PauseID, in this example 3.

Burman, et al. Expires April 30, 2015 [Page 42]

Internet-Draft RTP Stream Pause October 2014

 +-----+ +-----+ +-----+ +-----+
 | S | | T | | R1 | | R2 |
 +-----+ +-----| +-----+ +-----+
 : t1:RTP(S) : : :
 |----------------->| | |
 | | t2:RTP(S) | |
 | |----------------->------------------>|
 | | t3:PAUSE(S,7) | |
 | |<-----------------| |
 | t4:PAUSE(S,7) | | |
 |<-----------------|------------------------------------>|
 | | | t5:RESUME(S,7) |
 | |<------------------------------------|
 | t6:RESUME(S,7) | | |
 |<-----------------| | |
 | |<RTP stream continues to R1 and R2> |
 | | | t7: PAUSE(S,8) |
 | |<------------------------------------|
 | t8:PAUSE(S,8) | | |
 |<-----------------| | |
 : : : :
 | < Pauses RTP Stream > | | |
 | t9:PAUSED(S,8) | | |
 |----------------->| | |
 | | t10:PAUSED(S,8) | |
 | |----------------->------------------>|
 : : : :
 | | t11:RESUME(S,8) | |
 | |<-----------------| |
 | t12:RESUME(S,8) | | |
 |<-----------------| | |
 | t13:RTP(S) | | |
 |----------------->| | |
 | | t14:RTP(S) | |
 | |----------------->------------------>|
 : : : :

 Figure 18: Pause and Resume Operation Between One Sender and Two
 Receivers Through Translator

 Figure 18 explains the pause and resume operations when a transport
 Translator is involved between a sender and two receivers in an RTP
 session. Each message exchange is represented by the time it
 happens. At time t1, Sender (S) starts sending an RTP stream to the
 Translator, which is forwarded to R1 and R2 through the Translator,
 T. R1 and R2 receives RTP data from Translator at t2. At this

Burman, et al. Expires April 30, 2015 [Page 43]

Internet-Draft RTP Stream Pause October 2014

 point, both R1 and R2 will send RTCP Receiver Reports to S informing
 that they receive S’s stream.

 After some time (at t3), R1 chooses to pause the stream. On
 receiving the PAUSE request from R1 at t4, S knows that there are at
 least one receiver that may still want to receive the data and uses a
 non-zero hold-off period to wait for possible RESUME messages. R2
 did also receive the PAUSE request at time t4 and since it still
 wants to receive the stream, it sends a RESUME for it at time t5,
 which is forwarded to the sender S by the translator T. The sender S
 sees the RESUME at time t6 and continues to send data to T which
 forwards to both R1 and R2. At t7, the receiver R2 chooses to pause
 the stream by sending a PAUSE request with an updated PauseID. The
 sender S still knows that there are more than one receiver (R1 and
 R2) that may want the stream and again waits a non-zero hold-off
 period, after which and not having received any disapproving RESUME,
 it concludes that the stream must be paused. S now stops sending the
 stream and replies with PAUSED to R1 and R2. When any of the
 receivers (R1 or R2) chooses to resume the stream from S, in this
 example R1, it sends a RESUME request to the sender. The RTP sender
 immediately resumes the stream.

 Consider also an RTP session which includes one or more receivers,
 paused sender(s), and a Translator. Further assume that a new
 participant joins the session, which is not aware of the paused
 sender(s). On receiving knowledge about the newly joined
 participant, e.g. any RTP traffic or RTCP report (i.e. either SR or
 RR) from the newly joined participant, the paused sender(s)
 immediately sends PAUSED indications for the paused streams since
 there is now a receiver in the session that did not pause the
 sender(s) and may want to receive the streams. Having this
 information, the newly joined participant has the same possibility as
 any other participant to resume the paused streams.

11. IANA Considerations

 This specification requests the following registrations from IANA:

 1. A new value for media stream pause / resume to be registered with
 IANA in the "FMT Values for RTPFB Payload Types" registry located
 at the time of publication at: http://www.iana.org/assignments/
 rtp-parameters/rtp-parameters.xhtml#rtp-parameters-8

 Value: TBA1

 Name: PAUSE-RESUME

 Long Name: Media Pause / Resume

Burman, et al. Expires April 30, 2015 [Page 44]

Internet-Draft RTP Stream Pause October 2014

 Reference: This RFC

 2. A new value "pause" to be registered with IANA in the "Codec
 Control Messages" registry located at the time of publication at:
 http://www.iana.org/assignments/sdp-parameters/sdp-
 parameters.xhtml#sdp-parameters-19

 Value Name: pause

 Long Name: Media Pause / Resume

 Usable with: ccm

 Reference: This RFC

12. Security Considerations

 This document extends the CCM [RFC5104] and defines new messages,
 i.e. PAUSE and RESUME. The exchange of these new messages MAY have
 some security implications, which need to be addressed by the user.
 Following are some important implications,

 1. Identity spoofing - An attacker can spoof him/herself as an
 authenticated user and can falsely pause or resume any source
 transmission. In order to prevent this type of attack, a strong
 authentication and integrity protection mechanism is needed.

 2. Denial of Service (DoS) - An attacker can falsely pause all
 source streams which MAY result in Denial of Service (DoS). An
 Authentication protocol may prevent this attack.

 3. Man-in-Middle Attack (MiMT) - The pausing and resuming of an RTP
 source is prone to a Man-in-Middle attack. Public key
 authentication may be used to prevent MiMT.

13. Contributors

 Daniel Grondal contributed in the creation and writing of early
 versions of this specification. Christian Groves contributed
 significantly to the SDP config attribute and its use in Offer/
 Answer.

14. Acknowledgements

 Daniel Grondal made valuable contributions during the initial
 versions of this draft. Emil Ivov, Christian Groves and Bernard
 Aboba provided valuable review comments.

Burman, et al. Expires April 30, 2015 [Page 45]

Internet-Draft RTP Stream Pause October 2014

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC4585] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
 "Extended RTP Profile for Real-time Transport Control
 Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585, July
 2006.

 [RFC5104] Wenger, S., Chandra, U., Westerlund, M., and B. Burman,
 "Codec Control Messages in the RTP Audio-Visual Profile
 with Feedback (AVPF)", RFC 5104, February 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245, April
 2010.

 [RFC6263] Marjou, X. and A. Sollaud, "Application Mechanism for
 Keeping Alive the NAT Mappings Associated with RTP / RTP
 Control Protocol (RTCP) Flows", RFC 6263, June 2011.

15.2. Informative References

 [I-D.ietf-avtcore-rtp-topologies-update]
 Westerlund, M. and S. Wenger, "RTP Topologies", draft-
 ietf-avtcore-rtp-topologies-update-04 (work in progress),
 August 2014.

 [I-D.ietf-avtext-rtp-grouping-taxonomy]
 Lennox, J., Gross, K., Nandakumar, S., and G. Salgueiro,
 "A Taxonomy of Grouping Semantics and Mechanisms for Real-
 Time Transport Protocol (RTP) Sources", draft-ietf-avtext-
 rtp-grouping-taxonomy-02 (work in progress), June 2014.

Burman, et al. Expires April 30, 2015 [Page 46]

Internet-Draft RTP Stream Pause October 2014

 [I-D.ietf-rtcweb-use-cases-and-requirements]
 Holmberg, C., Hakansson, S., and G. Eriksson, "Web Real-
 Time Communication Use-cases and Requirements", draft-
 ietf-rtcweb-use-cases-and-requirements-14 (work in
 progress), February 2014.

 [I-D.westerlund-avtcore-rtp-simulcast]
 Westerlund, M. and S. Nandakumar, "Using Simulcast in RTP
 Sessions", draft-westerlund-avtcore-rtp-simulcast-04 (work
 in progress), July 2014.

 [RFC2326] Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time
 Streaming Protocol (RTSP)", RFC 2326, April 1998.

 [RFC2974] Handley, M., Perkins, C., and E. Whelan, "Session
 Announcement Protocol", RFC 2974, October 2000.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264, June
 2002.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC6190] Wenger, S., Wang, Y., Schierl, T., and A. Eleftheriadis,
 "RTP Payload Format for Scalable Video Coding", RFC 6190,
 May 2011.

Appendix A. Changes From Earlier Versions

 NOTE TO RFC EDITOR: Please remove this section prior to publication.

A.1. Modifications Between Version -04 and -05

 o Added text in sections 4.1, 4.6, 6.4 and 8.5 on retransmission and
 timing of unsolicited PAUSED, to improve the message timeliness
 and probability of reception.

A.2. Modifications Between Version -03 and -04

 o Change of Copyright boilerplate

Burman, et al. Expires April 30, 2015 [Page 47]

Internet-Draft RTP Stream Pause October 2014

A.3. Modifications Between Version -02 and -03

 o Changed the section on SDP signaling to be more explicit and clear
 in what is supported, replacing the ’paused’ parameter and the
 ’dir’ attribute with a ’config’ parameter that can take a value,
 and an explicit listing of what each value means.

 o Added a sentence in section on paused state (Section 6.3) that
 pause must not affect RTP keepalive.

 o Replaced REFUSE message name with REFUSED throughout, to better
 indicate that it is not a command but a notification.

 o Added text in a few places, clarifying that PAUSED message may be
 used unsolicited due to RTP sender local considerations, and also
 clarified the interaction between this usage and an RTP stream
 receiver pausing the stream. Also added an example describing
 this case.

 o Clarified that when TMMBN 0 is used as PAUSED message, and when
 sent unsolicited due to RTP sender local considerations, the TMMBN
 message includes the RTP stream sender itself as part of the
 bounding set.

 o Clarified that there is no reply to a PAUSED indication.

 o Improved the IANA section.

 o Editorial improvements.

A.4. Modifications Between Version -01 and -02

 o Replaced most text on relation with other signaling technologies
 in previous section 5 with a single, summarizing paragraph, as
 discussed at IETF 90 in Toronto, and placed it as the last sub-
 section of section 4 (design considerations).

 o Removed unused references.

A.5. Modifications Between Version -00 and -01

 o Corrected text in section 6.5 and 6.2 to indicate that a PAUSE
 signaled via TMMBR 0 cannot be REFUSED using TMMBN > 0

 o Improved alignment with RTP Taxonomy draft, including the change
 of Packet Stream to RTP Stream

 o Editorial improvements

Burman, et al. Expires April 30, 2015 [Page 48]

Internet-Draft RTP Stream Pause October 2014

Authors’ Addresses

 Bo Burman
 Ericsson
 Kistavagen 25
 SE - 164 80 Kista
 Sweden

 Phone: +46107141311
 Email: bo.burman@ericsson.com
 URI: www.ericsson.com

 Azam Akram
 Ericsson
 Farogatan 6
 SE - 164 80 Kista
 Sweden

 Phone: +46107142658
 Email: muhammad.azam.akram@ericsson.com
 URI: www.ericsson.com

 Roni Even
 Huawei Technologies
 Tel Aviv
 Israel

 Email: roni.even@mail01.huawei.com

 Magnus Westerlund
 Ericsson
 Farogatan 6
 SE- 164 80 Kista
 Sweden

 Phone: +46107148287
 Email: magnus.westerlund@ericsson.com

Burman, et al. Expires April 30, 2015 [Page 49]

