JOSE Wor ki ng G oup M Jones

Internet-Draft M crosoft
I ntended status: Standards Track J. Bradl ey
Expires: July 20, 2015 Ping Identity
N. Saki mura

NRI

January 16, 2015

JSON Wb Signature (JW5)
draft-ietf-jose-json-web-signature-41

Abst ract

JSON Wb Signature (JW5) represents content secured with digital

si gnatures or Message Authentication Codes (MACs) using JavaScri pt
bj ect Notation (JSON) based data structures. Cryptographic
algorithms and identifiers for use with this specification are
described in the separate JSON Wb Al gorithns (JWA) specification and
an | ANA registry defined by that specification. Related encryption
capabilities are described in the separate JSON Wb Encryption (JWE)
speci fication.

Status of this Meno

This Internet-Draft is submitted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups nmay also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”
This Internet-Draft will expire on July 20, 2015.

Copyright Notice

Copyright (c) 2015 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the I ETF Trust’s Legal

Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of

Jones, et al. Expires July 20, 2015 [Page 1]

Internet-Draft JSON Wb Signature (JW5)

January 2015

publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as

described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction . e e 5
1.1. Not at i onal Conventi ons 5
2. Terminology . . 6
3. JSON Wb Slgnature (JVED CNerV|eW 7
3. L JWE Conpact Serialization CNerV|ew 8
3. 2. JW5 JSON Serialization Overview . 8
3. 3. Exanpl e JWS . 9
4. JOSE Header . . e e e 10
4.1. Reglstered Fbader Par anet er Nanes . 11
4.1.1. "alg" (A gorithm Header Paraneter 11
4.1.2. "jku" (JW Set URL) Header Paraneter 11
4.1.3. "jwk" (JSON Wb Key) Header Paraneter 11
4.1.4. "kid" (Key |ID) Header Paraneter 12
4.1.5. "x5u" (X. 509 URL) Header Paraneter . . Coe 12
4.1.6. "x50" (X. 509 Certificate Chain) Header Paraneter 12

4.1.7. "x5t" (X. 509 Certificate SHA-1 Thunbprint) Header
Parameter . . . 13

4.1.8. "x5t#S256" (X 509 Cert|f|cate SHA—256 Thunbpr|nt)
Fbader Paraneter 13
4.1.9. "typ" (Type) Header Paraneter . 13
4.1.10. "cty" (Content Type) Header Paraneter 14
4.1.11. "crit" (Critical) Header Paraneter 14
4. 2. Publ i c Header Paraneter Nanes . . 15
4. 3. Private Header Paraneter Nanes 15
5. Produci ng and Consum ng JWss . . . 15
5.1. Message Signature or MAC Conputatlon 15
5.2. Message Signature or MAC Validation . 16
5.3. String Conparison Rules . S 18
6. Key ldentification . . 19
7. Serializations 19
7.1. JW5 Conpact Serlallzatlon . 20
7.2. JWS JSON Serialization . . 20
7.2.1. General JW5 JSON Serlallzatlon Syntax . 20
7.2.2. Flattened JW5 JSON Serialization Syntax 22
8. TLS Requirements . e e e 23
9. | ANA Consi derati ons . G 23

9. 1. JSON Wb Slgnature and Encryptlon Fbader Par anet er s
Regi stry e 24
Jones, et al. Expires July 20, 2015 [Page 2]

Internet-Draft JSON Wb Signature (JW5)

January 2015

9.1.1 Regi stration Tenpl ate 25
9.1.2. Initial Registry Contents 25
9. 2. Medi a Type Registration . 27
9.2.1. Registry Contents 27
10. Security Considerations . . . 28
10.1 Key Entropy and Randonlvalues . 28
10. 2 Key Protection . 29
10. 3 Key Origin Amthentlcatlon . 29
10.4. Cryptographic Agility . e e e e 29
10.5. Differences between Digital Signatures and MACs . 29
10.6 Al gorithm Validation e 30
10.7. Al gorithm Protection 30
10.8 Chosen Pl ai ntext Attacks 31
10.9. Timing Attacks 31
10. 10. Replay Protection . . . 31
10.11. SHA-1 Certificate Thunbpr|nts . 31
10. 12. JSON Security Considerations 32
10. 13. Uni code Conparison Security ConS|derat|ons 32
11. References . 33
11.1. Normative References 33
11.2. Informative References 34
Appendi x A JIWS Exanples .o 36
A 1. Exanpl e JW5 usi ng HVAC SHA—256 36
A 1.1. Encoding . . . 36
A.1.2. Validating . . . 38
A 2. Exanpl e JWS usi ng RSASSA-PKCS—vl 5 SHA- 256 39
A.2.1. Encoding . . Ce e e e 39
A 2.2. Validating . . . 41
A 3. Exanpl e JW5 usi ng ECDSA P—256 SHA—256 . 42
A.3.1. Encoding . e e 42
A.3.2. Validating . . . 44
A 4. Exanpl e JW5 usi ng ECDSA P-521 SHA-512 . 44
A 4.1. Encoding . . e 44
A 4.2. Validating . 46
A 5. Exanpl e Unsecured JVB e e e e e e 46
A. 6. Exanpl e JW5 using General JW5 JSON Serialization 47
A 6.1 JWE Per - Si gnature Protected Headers . 48
A.6.2. JWS Per-Signature Unprotected Headers 48
A.6.3. Conplete JOSE Header Val ues 48
A.6.4. Conplete JW5 JSON Serialization Representat|on 49
A 7. Exanpl e JW5 using Flattened JW5 JSON Serialization . . . 49
Appendi x B. "x5bc" (X. 509 Certificate Chain) Exanple . . . 50
Appendi x C. Notes on inpl enenting base64url encodi ng mnthout
paddi ng . . 52
Appendi x D. Notes on Key Selectlon . e 53
Appendi x E. Negative Test Case for "crit" Header Paraneter . . . 54
Appendi x F Det ached Cont ent . e e 55
Appendi x G Acknow edgenent s 55
Jones, et al. Expires July 20, 2015 [Page 3]

Internet-Draft JSON Wb Signature (JW5) January 2015

Appendi x H. Docurment History b6
Authors’ Addresses ..067

Jones, et al. Expires July 20, 2015 [Page 4]

Internet-Draft JSON Wb Signature (JW5) January 2015

1. Introduction

JSON Wb Signature (JW5) represents content secured with digital
signatures or Message Authentication Codes (MACs) using JavaScri pt
bj ect Notation (JSON) [RFC7159] based data structures. The IJWS
crypt ographi ¢ nechani sns provide integrity protection for an
arbitrary sequence of octets. See Section 10.5 for a discussion on
the differences between Digital Signatures and MACs.

Two closely related serializations for JWss are defined. The JWs
Conpact Serialization is a conpact, URL-safe representation intended
for space constrai ned environnents such as HTTP Aut horization headers
and URI query paraneters. The JW5 JSON Serialization represents JW5s
as JSON objects and enables multiple signatures and/or MACs to be
applied to the sane content. Both share the sanme cryptographic
under pi nni ngs.

Cryptographic algorithnms and identifiers for use with this
specification are described in the separate JSON Wb Al gorithns (JWA)
[JWA] specification and an | ANA registry defined by that
specification. Related encryption capabilities are described in the
separate JSON Wb Encryption (JWE) [JWE] specification.

Nanes defined by this specification are short because a core goal is
for the resulting representations to be conpact.

1.1. Not ati onal Conventi ons

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in Key
words for use in RFCs to Indicate Requirenment Levels [RFC2119]. |If
these words are used wi thout being spelled in uppercase then they are
to be interpreted with their normal natural |anguage neani ngs.

BASE64URL(OCTETS) denotes the base64url encodi ng of OCTETS, per
Section 2.

UTF8(STRI NG denotes the octets of the UTF-8 [RFC3629] representation
of STRING where STRING is a sequence of zero or nore Unicode

[UNI CODE] characters.

ASCI | (STRING denotes the octets of the ASCII [RFC20] representation
of STRING where STRING is a sequence of zero or nore ASCI I
characters.

The concatenation of two values A and B is denoted as A || B.

Jones, et al. Expires July 20, 2015 [Page 5]

Internet-Draft JSON Wb Signature (JW5) January 2015

2. Term nol ogy
These terns are defined by this specification

JSON Wb Signature (JW5)
A data structure representing a digitally signed or MACed nessage.

JOSE Header
JSON obj ect containing the paraneters describing the cryptographic
operations and paraneters enployed. The JOSE Header is conprised
of a set of Header Paraneters.

JWE Payl oad
The sequence of octets to be secured -- a.k.a., the nessage. The
payl oad can contain an arbitrary sequence of octets.

JWE Signature
Digital signature or MAC over the JW5 Protected Header and the JW5
Payl oad.

Header Paraneter
A nane/val ue pair that is nenber of the JOSE Header

JW5 Protected Header
JSON obj ect that contains the Header Paraneters that are integrity
protected by the JWs Signature digital signature or MAC operation
For the JW5 Conmpact Serialization, this conprises the entire JOSE
Header. For the JW5 JSON Serialization, this is one conponent of
t he JOSE Header.

JWE Unprot ected Header
JSON obj ect that contains the Header Paraneters that are not
integrity protected. This can only be present when using the JW5
JSON Seri alization.

Base64ur|l Encodi ng
Base64 encoding using the URL- and fil ename-safe character set
defined in Section 5 of RFC 4648 [RFC4648], with all trailing '=
characters onmitted (as permtted by Section 3.2) and wi thout the
inclusion of any line breaks, white space, or other additiona
characters. Note that the base64url encoding of the enpty octet
sequence is the enpty string. (See Appendix C for notes on
i mpl emrenti ng base64url encodi ng w t hout padding.)

JWE Si gni ng | nput
The input to the digital signature or MAC conputation. Its value
is ASCl | (BASEG4URL(UTF8(JW5 Protected Header)) || "." ||
BASE64URL(JWS Payl oad)) .

Jones, et al. Expires July 20, 2015 [Page 6]

Internet-Draft JSON Wb Signature (JW5) January 2015

JWE Conpact Serialization
A representation of the JW5 as a conpact, URL-safe string.

JWS JSON Serialization
A representation of the JW5 as a JSON object. Unlike the JWS
Conpact Serialization, the JW5 JSON Serialization enables multiple
digital signatures and/or MACs to be applied to the sane content.
This representation is neither optimnized for conpactness nor URL-
saf e.

Unsecured JW5
A JW5 that provides no integrity protection. Unsecured JW5s use
the "al g" val ue "none".

Col I'i si on- Resi st ant Nane
A name in a nanespace that enables nanes to be allocated in a
manner such that they are highly unlikely to collide with other
nanes. Exanples of collision-resistant nanespaces include: Donain
Nanes, Cbject ldentifiers (ODs) as defined in the ITUT X 660 and
X. 670 Recommendation series, and Universally Unique IDentifiers
(UU Ds) [RFC4122]. \When using an adnministratively del egated
nanespace, the definer of a nane needs to take reasonabl e
precautions to ensure they are in control of the portion of the
nanespace they use to define the nane.

StringO URI
A JSON string value, with the additional requirenent that while
arbitrary string val ues MAY be used, any value containing a ":"
character MJST be a URI [RFC3986]. StringOrURlI val ues are
conmpared as case-sensitive strings with no transfornations or
canoni cal i zati ons appli ed.

These terns defined by the JSON Wb Encryption (JVE) [JWVE]
specification are incorporated into this specification: "JSON Wb
Encryption (JWE)", "JWE Conpact Serialization", and "JWE JSON
Serialization".

These terns defined by the Internet Security d ossary, Version 2
[RFC4949] are incorporated into this specification: "Digital
Si gnature" and "Message Aut hentication Code (MAC)".

3. JSON Wb Signature (JW5) Overview
JWE represents digitally signed or MACed content using JSON data
structures and base64url encoding. These JSON data structures NAY

contain white space and/or |ine breaks before or after any JSON
val ues or structural characters, in accordance with Section 2 of RFC

Jones, et al. Expires July 20, 2015 [Page 7]

Internet-Draft JSON Wb Signature (JW5) January 2015

7159 [RFC7159]. A JW5 represents these |ogical values (each of which
is defined in Section 2):

0 JOSE Header
o JWS Payl oad
o JWS Signature

For a JW5, the JOSE Header nenbers are the union of the nenbers of
these val ues (each of which is defined in Section 2):

0 JWS Protected Header
0 JWS Unprotected Header

Thi s docunment defines two serializations for JW5s: a conpact, URL-
safe serialization called the JW5 Conpact Serialization and a JSON
serialization called the JW5 JSON Serialization. |In both
serializations, the JW5 Protected Header, JWS Payl oad, and JW5

Si gnature are base64url encoded, since JSON lacks a way to directly
represent arbitrary octet sequences.

3.1. JWS Conpact Serialization Overview

In the JWS Conpact Serialization, no JW5 Unprotected Header is used.
In this case, the JOSE Header and the JW5 Protected Header are the
sane.

In the JW5 Conpact Serialization, a JW5 is represented as the
concat enati on:

BASE64URL(UTF8(JWS Protected Header)) || '. ||
BASE64URL(JWS Payload) || . ||
BASE64URL(JWS Si gnat ur e)

See Section 7.1 for nore information about the JW5 Conpact
Serialization.

3.2. JW5 JSON Serialization Overvi ew

In the JW5 JSON Serialization, one or both of the JW5 Protected
Header and JW5 Unprotected Header MUST be present. In this case, the
menbers of the JOSE Header are the union of the nenbers of the JWs
Prot ect ed Header and the JW5 Unprotected Header values that are
present.

In the JW5 JSON Serialization, a JWs is represented as a JSON obj ect
containing sone or all of these four nenbers:

Jones, et al. Expires July 20, 2015 [Page 8]

Internet-Draft JSON Wb Signature (JW5) January 2015

"protected", with the val ue BASE64URL(UTF8(JWS Prot ect ed Header))
"header", with the value JW5 Unprotected Header

"payl oad", with the val ue BASE64URL(JW5 Payl oad)

"signature", with the val ue BASE64URL(JWS Si gnat ure)

The three base64url encoded result strings and the JW5 Unprotected
Header val ue are represented as nenbers within a JSON object. The
i nclusion of sone of these values is OPTIONAL. The JW5 JSON
Serialization can also represent nultiple signature and/or MAC

val ues, rather than just one. See Section 7.2 for nore infornmation
about the JWS JSON Serialization.

3.3. Exanple JWS

This section provides an exanple of a JW5. |Its conputation is
described in nore detail in Appendix A 1, including specifying the
exact octet sequences representing the JSON val ues used and the key
val ue used.

The foll owi ng exanpl e JW5 Protected Header declares that the encoded
object is a JSON Wb Token (JWI) [JW] and the JW5 Protected Header
and the JW5 Payl oad are secured using the HVAC SHA- 256 [RFC2104, SHS]
al gorithm

{Iltypll : IIJ\M’II ,
"al g":"HS256"}

Encoding this JW5 Protected Header as BASE64URL(UTF8(JW5 Prot ect ed
Header)) gives this val ue:

eyJOeXAi O JKV1Q LAOKI CIhbGei G JI Uzl 1Ni J9

The UTF-8 representation of follow ng JSON object is used as the JW5
Payl oad. (Note that the payload can be any content, and need not be
a representation of a JSON object.)

{Ili SSII: Ilj Oe",
"exp": 1300819380,
"http://exanple.comis_root":true}

Encoding this JW5 Payl oad as BASE64URL(JWS Payl oad) gives this val ue
(with line breaks for display purposes only):

eyJpc3M O Jgb2Ui LAOKI CJI eHAI § Ez MDA4AMTkz ODAs DQogl mhOdHAGLY 91 eGFt
cGxl Lm\vbS9pc19yb2901 j pOcnVI f Q

Conputing the HVAC of the JW5 Signing Input ASCl | (BASE64URL(UTF8(JW5
Protected Header)) || '.’' || BASE64URL(JWS Payl oad)) with the HVAC

Jones, et al. Expires July 20, 2015 [Page 9]

Internet-Draft JSON Wb Signature (JW5) January 2015

SHA- 256 al gorithm using the key specified in Appendix A 1 and
base64url encoding the result yields this BASE64URL(JWS5 Si ghat ure)
val ue:

dBj f t JeZ4CVP- nB92K27uhbUJULplr WWLgFWFOE] Xk

Concat enati ng these values in the order Header. Payl oad. Signature with
period ('.’') characters between the parts yields this conplete JWS
representation using the JW5 Conpact Serialization (with Iine breaks
for display purposes only):

eyJO0eXAi O JKV1Q LAOKI ClhbGeci G JI Uzl 1N J9

éprcsM O Jgb2U LAOKI CJI eHAI § Ez MDA4AMTkz ODAs DQogl mhOdHAGLY 91 eGFt
cGxl Lm\vbS9pc19yb2901 j pOcnVI f Q

dBj f t JeZ4CVP- nBI2K27uhbUIULplr wWALgFWECE] Xk

See Appendi x A for additional exanples, including exanples using the
JWS JSON Serialization in Sections A6 and A 7.

4., JOSE Header

For a JW5, the nmenbers of the JSON object(s) representing the JOSE
Header describe the digital signature or MAC applied to the JWS
Prot ect ed Header and the JW5 Payl oad and optionally additiona
properties of the JW5. The Header Paraneter names within the JOSE
Header MJST be uni que; JWS parsers MJST either reject JWss with
dupl i cat e Header Paraneter names or use a JSON parser that returns
only the lexically last duplicate nmenber nane, as specified in
Section 15.12 (The JSON Cbject) of ECMAScript 5.1 [ECMAScript].

I npl enentations are required to understand the specific Header

Par anet ers defined by this specification that are designated as "MJST
be understood" and process themin the manner defined in this
specification. Al other Header Paraneters defined by this
specification that are not so designated MJST be ignored when not
understood. Unless listed as a critical Header Parameter, per
Section 4.1.11, all Header Paraneters not defined by this
specificati on MUST be ignored when not understood.

There are three cl asses of Header Parameter names: Regi stered Header

Par amet er nanes, Public Header Paraneter nanes, and Private Header
Par anet er nanes.

Jones, et al. Expires July 20, 2015 [Page 10]

Internet-Draft JSON Wb Signature (JW5) January 2015

4.1. Registered Header Paraneter Nanes

The foll owi ng Header Parameter names for use in JW5s are registered
in the | ANA JSON Wb Signature and Encrypti on Header Paraneters
registry defined in Section 9.1, with neanings as defined bel ow

As indicated by the common registry, JWss and JWEs share a conmon
Header Paraneter space; when a parameter is used by both
specifications, its usage nust be conpati bl e between the

speci fications.

4.1.1. "alg" (A gorithm Header Paraneter

The "al g" (algorithn) Header Paraneter identifies the cryptographic
al gorithmused to secure the JWs. The JW5 Signature value is not
valid if the "alg" value does not represent a supported algorithm or
if there is not a key for use with that algorithmassociated with the
party that digitally signed or MACed the content. "al g" val ues should
either be registered in the | ANA JSON Wb Signature and Encryption
Algorithns registry defined in [JWA] or be a value that contains a
Col l'i sion-Resi stant Name. The "alg" value is a case-sensitive ASClI
string containing a StringOrURl value. This Header Paraneter MJST be
present and MUST be understood and processed by inpl enentations.

A list of defined "alg" values for this use can be found in the | ANA
JSON Wb Signature and Encryption Algorithns registry defined in
[JWA]; the initial contents of this registry are the val ues defined
in Section 3.1 of the JSON Wb Algorithns (JWA) [JWA] specification.

4.1.2. "jku" (JW Set URL) Header Paraneter

The "jku" (JWK Set URL) Header Paraneter is a URI [RFC3986] that
refers to a resource for a set of JSON- encoded public keys, one of
whi ch corresponds to the key used to digitally sign the JW5. The
keys MJST be encoded as a JSON Wb Key Set (JWK Set) [JWK]. The
protocol used to acquire the resource MJIST provide integrity
protection; an HTTP GET request to retrieve the JW Set MJST use TLS
[RFC2818, RFC5246]; the identity of the server MJST be validated, as
per Section 6 of RFC 6125 [RFC6125]. Al so, see Section 8 on TLS
requirenents. Use of this Header Paraneter is OPTI ONAL.

4.1.3. "jwk" (JSON Wb Key) Header Paraneter
The "jwk" (JSON Web Key) Header Paraneter is the public key that
corresponds to the key used to digitally sign the JW5. This key is

represented as a JSON Wb Key [JWK]. Use of this Header Paraneter is
OPTI ONAL.

Jones, et al. Expires July 20, 2015 [Page 11]

Internet-Draft JSON Wb Signature (JW5) January 2015

4.1.4. "kid" (Key |ID) Header Paraneter

The "kid" (key I D) Header Parameter is a hint indicating which key
was used to secure the JWs. This paraneter allows originators to
explicitly signal a change of key to recipients. The structure of
the "kid" value is unspecified. |Its value MIUST be a case-sensitive
string. Use of this Header Paraneter is OPTI ONAL.

Wien used with a JWK, the "kid" value is used to match a JWK "ki d"
par anet er val ue.

4.1.5. "x5u" (X. 509 URL) Header Paraneter

The "x5u" (X 509 URL) Header Paraneter is a URI [RFC3986] that refers
to a resource for the X 509 public key certificate or certificate
chain [RFC5280] corresponding to the key used to digitally sign the
JWB. The identified resource MJUST provide a representation of the
certificate or certificate chain that confornms to RFC 5280 [RFC5280]
in PEM encoded form wth each certificate delimted as specified in
Section 6.1 of RFC 4945 [RFC4945]. The certificate containing the
public key corresponding to the key used to digitally sign the JW5
MUST be the first certificate. This MAY be foll owed by additiona
certificates, with each subsequent certificate being the one used to
certify the previous one. The protocol used to acquire the resource
MUST provide integrity protection; an HTTP CGET request to retrieve
the certificate MIST use TLS [RFC2818, RFC5246]; the identity of the
server MJST be validated, as per Section 6 of RFC 6125 [RFC6125].

Al so, see Section 8 on TLS requirenents. Use of this Header
Paraneter is OPTI ONAL.

4.1.6. "x5c¢" (X. 509 Certificate Chain) Header Paraneter

The "x5c" (X. 509 Certificate Chain) Header Paraneter contains the
X. 509 public key certificate or certificate chain [RFC5280]
corresponding to the key used to digitally sign the JW5. The
certificate or certificate chain is represented as a JSON array of
certificate value strings. Each string in the array is a base64
encoded ([RFC4648] Section 4 -- not base64url encoded) DER

[1 TU. X690. 1994] PKI X certificate value. The certificate containing
the public key corresponding to the key used to digitally sign the
JWS MUST be the first certificate. This MAY be foll owed by
additional certificates, with each subsequent certificate being the
one used to certify the previous one. The recipient MIST validate
the certificate chain according to RFC 5280 [RFC5280] and consi der
the certificate or certificate chain to be invalid if any validation
failure occurs. Use of this Header Paranmeter is OPTI ONAL.

See Appendix B for an exanple "x5c" val ue.

Jones, et al. Expires July 20, 2015 [Page 12]

Internet-Draft JSON Wb Signature (JW5) January 2015

4.1.7. "x5t" (X. 509 Certificate SHA-1 Thunbprint) Header Paraneter

The "x5t" (X 509 Certificate SHA-1 Thunbprint) Header Paraneter is a
base64url encoded SHA-1 thunbprint (a.k.a. digest) of the DER
encodi ng of the X 509 certificate [RFC5280] corresponding to the key
used to digitally sign the JW5. Note that certificate thunbprints
are al so sonetinmes known as certificate fingerprints. Use of this
Header Parameter is OPTI ONAL

4.1.8. "xbt#S256" (X. 509 Certificate SHA-256 Thunbprint) Header
Par amet er

The "x5t#S256" (X. 509 Certificate SHA-256 Thunbprint) Header
Paraneter is a base64url encoded SHA-256 thunbprint (a.k.a. digest)
of the DER encoding of the X 509 certificate [RFC5280] correspondi ng
to the key used to digitally sign the JW5. Note that certificate
thunbprints are al so soneti nes known as certificate fingerprints.
Use of this Header Paranmeter is OPTI ONAL.

4.1.9. "typ" (Type) Header Paraneter

The "typ" (type) Header Paraneter is used by JW5 applications to
declare the M ME Media Type [| ANA. Medi aTypes] of this conplete JW5
This is intended for use by the application when nore than one kind
of object could be present in an application data structure that can
contain a JW5; the application can use this value to disamnbiguate
anong the different kinds of objects that might be present. It wll
typically not be used by applications when the kind of object is

al ready known. This paraneter is ignored by JWS inplenentations; any
processing of this paraneter is perforned by the JW5 application

Use of this Header Paranmeter is OPTI ONAL.

Per RFC 2045 [RFC2045], all nedia type val ues, subtype val ues, and
paraneter nanes are case-insensitive. However, paraneter values are
case-sensitive unless otherw se specified for the specific paraneter.

To keep nessages conpact in comon situations, it is RECOMVENDED t hat
producers onit an "application/" prefix of a nmedia type value in a
"typ" Header Paraneter when no other '/’ appears in the nedia type
value. A recipient using the nedia type value MJST treat it as if
"application/" were prepended to any "typ" value not containing a
"/’. For instance, a "typ" value of "exanple" SHOULD be used to
represent the "application/exanple" media type; whereas, the nedia
type "application/exanpl e; part="1/2"" cannot be shortened to
"exanpl e; part="1/2""

The "typ" value "JOSE" can be used by applications to indicate that
this object is a JW5 or JWE using the JW5 Conpact Serialization or

Jones, et al. Expires July 20, 2015 [Page 13]

Internet-Draft JSON Wb Signature (JW5) January 2015

the JWE Conpact Serialization. The "typ" value "JOSE+JSON' can be
used by applications to indicate that this object is a JW or JWE
using the JW5 JSON Serialization or the JWE JSON Serialization

O her type values can al so be used by applications.

4.1.10. "cty" (Content Type) Header Paraneter

The "cty" (content type) Header Paraneter is used by JW5 applications
to declare the M ME Media Type [| ANA. Medi aTypes] of the secured
content (the payload). This is intended for use by the application
when nore than one kind of object could be present in the IJWS

payl oad; the application can use this value to di sanbi guate anong the
different kinds of objects that night be present. It will typically
not be used by applications when the kind of object is already known.
This parameter is ignored by JW5 inplenmentations; any processing of
this paranmeter is perforned by the JW5 application. Use of this
Header Paraneter is OPTI ONAL

Per RFC 2045 [RFC2045], all nedia type val ues, subtype val ues, and
paraneter nanes are case-insensitive. However, parameter values are
case-sensitive unless otherw se specified for the specific paraneter

To keep nessages conpact in common situations, it is RECOMVENDED t hat
producers onit an "application/" prefix of a nedia type value in a
"cty" Header Paraneter when no other '/’ appears in the nedia type
value. A recipient using the nmedia type value MIST treat it as if
"application/" were prepended to any "cty" value not containing a
"/'. For instance, a "cty" value of "exanple" SHOULD be used to
represent the "application/exanple" nedia type; whereas, the nedia
type "application/exanple; part="1/2"" cannot be shortened to
"exanpl e; part="1/2"".

4.1.11. “"crit" (Critical) Header Paraneter

The "crit" (critical) Header Paraneter indicates that extensions to
the initial RFC versions of [[this specification]] and [JWA] are

bei ng used that MJST be understood and processed. |Its value is an
array listing the Header Paraneter names present in the JOSE Header
that use those extensions. |If any of the |isted extension Header

Par aneters are not understood and supported by the recipient, then
the JWs is invalid. Producers MJUST NOT include Header Paraneter
names defined by the initial RFC versions of [[this specification]]
or [JWA] for use with JW5, duplicate names, or nanmes that do not
occur as Header Paraneter names within the JOSE Header in the "crit"
list. Producers MJST NOT use the enpty list "[]" as the "crit"

val ue. Recipients MAY consider the JWsto be invalid if the critica
list contains any Header Paraneter nanes defined by the initial RFC
versions of [[this specification]] or [JWA] for use with JW5, or

Jones, et al. Expires July 20, 2015 [Page 14]

Internet-Draft JSON Wb Signature (JW5) January 2015

any other constraints on its use are violated. Wen used, this
Header Parameter MJST be integrity protected; therefore, it MJST
occur only within the JW5 Protected Header. Use of this Header
Parameter is OPTIONAL. This Header Paraneter MJST be understood and
processed by inpl enentati ons.

An exanpl e use, along with a hypothetical "exp" (expiration-tine)
field is:

{"al g":"ES256",
"erit":["exp"],
"exp":1363284000

}

4. 2. Publ i ¢ Header Paraneter Nanes

Addi ti onal Header Paraneter nanmes can be defined by those using JW5s.
However, in order to prevent collisions, any new Header Paraneter
name should either be registered in the | ANA JSON Wb Signature and
Encrypti on Header Parameters registry defined in Section 9.1 or be a
Public Nanme: a value that contains a Collision-Resistant Name. In
each case, the definer of the name or value needs to take reasonabl e
precautions to nake sure they are in control of the part of the
nanespace they use to define the Header Paraneter nane.

New Header Paraneters should be introduced sparingly, as they can
result in non-interoperable JWs.

4.3. Private Header Paraneter Nanes
A producer and consuner of a JWS nmay agree to use Header Paraneter
nanes that are Private Nanes: nanes that are not Registered Header
Par amet er nanmes Section 4.1 or Public Header Paraneter nanes
Section 4.2. Unlike Public Header Paraneter nanes, Private Header
Par anet er names are subject to collision and should be used with
cauti on.

5. Produci ng and Consum ng JW5s

5.1. Message Signature or MAC Conputation
To create a JW5, the follow ng steps are performed. The order of the
steps is not significant in cases where there are no dependencies

between the inputs and outputs of the steps.

1. Create the content to be used as the JWS Payl oad.

Jones, et al. Expires July 20, 2015 [Page 15]

Internet-Draft JSON Wb Signature (JW5) January 2015

2. Compute the encoded payl oad val ue BASE64URL(JWS Payl oad) .

3. Create the JSON object(s) containing the desired set of Header
Par anet ers, which together conprise the JOSE Header: the JWS
Prot ect ed Header and/or the JWS Unprotected Header

4. Conpute the encoded header val ue BASE64URL(UTF8(JWS Protected
Header)). |If the JW5 Protected Header is not present (which can
only happen when using the JW5 JSON Serialization and no
"protected" nenber is present), let this value be the enpty
string.

5. Conpute the JW5 Signature in the manner defined for the
particul ar al gorithm being used over the JW5 Signing | nput
ASCl | (BASE64URL(UTF8(JWS Protected Header)) || '." ||
BASE64URL(JWS Payl oad)). The "al g" (algorithn) Header Paraneter
MUST be present in the JOSE Header, with the al gorithm val ue
accurately representing the algorithmused to construct the JW5
Si gnat ur e.

6. Conpute the encoded signature val ue BASE64URL(JWS5 Si gnhature).

7. |If the JW5 JSON Serialization is being used, repeat this process
(steps 3-6) for each digital signature or MAC operation being
per f or med.

8. Create the desired serialized output. The JW5 Conpact
Serialization of this result is BASE64URL(UTF8(JW5 Prot ect ed

Header)) || '.’ || BASE64URL(JWS Payload) || '.' || BASE64URL(JWS
Signature). The JW5 JSON Serialization is described in
Section 7. 2.

5.2. Message Signature or MAC Validation

When validating a JW5, the followi ng steps are perforned. The order
of the steps is not significant in cases where there are no

dependenci es between the inputs and outputs of the steps. |If any of
the listed steps fails, then the signature or MAC cannot be
val i dat ed.

When there are multiple JWS Signature values, it is an application
deci si on which of the JW5 Signature val ues nust successfully validate
for the JW5 to be accepted. In sone cases, all nust successfully
validate or the JW5 will be considered invalid. |In other cases, only
a specific JW5 Signature val ue needs to be successfully validated.
However, in all cases, at |east one JWS Signature val ue MJST
successfully validate or the JWS MJUST be considered invalid.

Jones, et al. Expires July 20, 2015 [Page 16]

Internet-Draft JSON Wb Signature (JW5) January 2015

1. Parse the JW5 representation to extract the serialized val ues
for the conponents of the JW5. \Wen using the JWS Conpact
Serialization, these conponents are the base64url encoded
representations of the JW5 Protected Header, the JW5 Payl oad,
and the JWS Signature, and when using the JWs JSON
Serialization, these conponents al so include the unencoded JW5
Unprot ect ed Header value. Wen using the JW5 Conpact
Serialization, the JW5 Protected Header, the JW5 Payl oad, and
the JW5 Signature are represented as base64url encoded values in
that order, with each val ue being separated fromthe next by a
single period ('.’) character, resulting in exactly two
delinmting period characters being used. The JW5 JSON
Serialization is described in Section 7.2.

2. Base64ur|l decode the encoded representation of the JWS Protected
Header, following the restriction that no |ine breaks, white
space, or other additional characters have been used.

3. Verify that the resulting octet sequence is a UTF-8 encoded
representation of a conpletely valid JSON object conforming to
RFC 7159 [RFC7159]; let the JW5 Protected Header be this JSON
obj ect.

4. I f using the JW5 Conpact Serialization, |et the JOSE Header be
the JW5 Protected Header. O herw se, when using the JW5 JSON
Serialization, let the JOSE Header be the union of the nmenbers
of the correspondi ng JW5 Protected Header and JW5 Unprot ect ed
Header, all of which nust be conpletely valid JSON objects.
During this step, verify that the resulting JOSE Header does not
contain duplicate Header Paranmeter names. When using the JW5
JSON Serialization, this restriction includes that the sane
Header Paranmeter name al so MJUST NOT occur in distinct JSON
obj ect values that together conprise the JOSE Header

5. Verify that the inplenentation understands and can process al
fields that it is required to support, whether required by this
specification, by the al gorithmbeing used, or by the "crit"
Header Paranmeter value, and that the values of those paraneters
are al so understood and support ed.

6. Base64ur|l decode the encoded representation of the JW5 Payl oad,
following the restriction that no |ine breaks, white space, or
other additional characters have been used.

7. Base64ur|l decode the encoded representati on of the JW5

Signature, following the restriction that no line breaks, white
space, or other additional characters have been used.

Jones, et al. Expires July 20, 2015 [Page 17]

Internet-Draft JSON Wb Signature (JW5) January 2015

8. Val i date the JWS Signature agai nst the JWS Signing | nput
ASCl | (BASE64URL(UTF8(JWS Protected Header)) || '." ||
BASE64URL(JWS Payl oad)) in the manner defined for the algorithm
bei ng used, which MJST be accurately represented by the val ue of
the "alg" (algorithn) Header Paraneter, which MJST be present.
See Section 10.6 for security considerations on algorithm
val idation. Record whether the validation succeeded or not.

9. If the JW5 JSON Serialization is being used, repeat this process
(steps 4-8) for each digital signature or MAC val ue contained in
the representation.

10. If none of the validations in step 9 succeeded, then the JWS
MUST be considered invalid. Oherwise, in the JW JSON
Serialization case, return a result to the application
i ndi cating which of the validations succeeded and failed. In
the JW5 Conpact Serialization case, the result can sinply
i ndi cate whether or not the JW5 was successful ly vali dat ed.

Finally, note that it is an application decision which algorithns may
be used in a given context. Even if a JW5 can be successfully
val i dated, unless the algorithm(s) used in the JWs are acceptable to
the application, it SHOULD consider the JW5 to be invalid.

5.3. String Comparison Rul es

Processing a JWS inevitably requires conparing known strings to
menbers and val ues in JSON objects. For exanple, in checking what
the algorithmis, the Unicode string "alg" will be checked agai nst
the menber nanes in the JOSE Header to see if there is a matching
Header Paraneter name. The sanme process is then used to determine if
the value of the "al g" Header Paraneter represents a supported

al gorithm

The JSON rul es for doing nenber nane conparison are described in
Section 8.3 of RFC 7159 [RFC7159]. Since the only string comparison
operations that are perfornmed are equality and inequality, the same
rul es can be used for conparing both nmenber nanes and nenber val ues
agai nst known stri ngs.

These conparison rules MJST be used for all JSON string conparisons
except in cases where the definition of the menber explicitly calls
out that a different conparison rule is to be used for that menber
value. Only the "typ" and "cty" nmenber values defined in this
specification do not use these conparison rules.

Sone applications may include case-insensitive information in a case-
sensitive value, such as including a DNS nane as part of a "kid" (key

Jones, et al. Expires July 20, 2015 [Page 18]

Internet-Draft JSON Wb Signature (JW5) January 2015

ID) value. |In those cases, the application nmay need to define a
convention for the canonical case to use for representing the case-

i nsensitive portions, such as |lowercasing them if nore than one
party m ght need to produce the sane value so that they can be
conmpared. (However if all other parties consune whatever val ue the
producing party enitted verbatimw thout attenpting to conpare it to
an i ndependently produced val ue, then the case used by the producer
will not matter.)

Al so, see the JSON security considerations in Section 10.12 and the
Uni code security considerations in Section 10.13.

6. Key ldentification

It is necessary for the recipient of a JWs to be able to determ ne
the key that was enployed for the digital signature or MAC operation
The key enpl oyed can be identified using the Header Paraneter nethods
described in Section 4.1 or can be identified using nmethods that are
out side the scope of this specification. Specifically, the Header
Paranmeters "jku", "jwk", "kid", "xbu", "x5c", "x5t", and "x5t#S256"
can be used to identify the key used. These Header Paraneters MJST
be integrity protected if the information that they convey is to be
utilized in a trust decision; however, if the only informtion used
in the trust decision is a key, these paraneters need not be
integrity protected, since changing themin a way that causes a
different key to be used will cause the validation to fail

The producer SHOULD include sufficient information in the Header
Paraneters to identify the key used, unless the application uses

anot her nmeans or convention to deternine the key used. Validation of
the signature or MAC fails when the algorithmused requires a key
(which is true of all algorithns except for "none") and the key used
cannot be det erm ned.

The means of exchangi ng any shared symretric keys used is outside the
scope of this specification

Al so, see Appendix D for notes on possible key selection algorithns.

7. Serializations

JWEs use one of two serializations: the JW5 Compact Serialization or
the JW5 JSON Serialization. Applications using this specification
need to specify what serialization and serialization features are
used for that application. For instance, applications nmight specify
that only the JW5 JSON Serialization is used, that only JW5 JSON

Jones, et al. Expires July 20, 2015 [Page 19]

Internet-Draft JSON Wb Signature (JW5) January 2015

Serialization support for a single signature or MAC value is used, or
that support for multiple signatures and/or MAC values is used. JW5
i npl ementations only need to inplenment the features needed for the
applications they are designed to support.

7.1. JW5 Conpact Serialization

The JW5 Conpact Serialization represents digitally signed or MACed
content as a compact, URL-safe string. This string is:

BASE64URL(UTF8(JWS Protected Header)) || '. " ||
BASE64URL(JWS Payload) || '.' ||
BASE64URL(JWS Si gnat ur e)

Only one signature/ MAC i s supported by the JW5 Conpact Serialization
and it provides no syntax to represent a JW5 Unprotected Header
val ue.

7.2. JW5 JSON Serialization

The JW5 JSON Serialization represents digitally signed or MACed
content as a JSON object. This representation is neither optinzed
for conpactness nor URL-safe.

Two closely related syntaxes are defined for the JW5 JSON
Serialization: a fully general syntax, w th which content can be
secured with nore than one digital signature and/or MAC operation
and a flattened syntax, which is optimzed for the single digita
si gnature or MAC case

7.2.1. General JW5 JSON Serialization Syntax

The followi ng menbers are defined for use in top-level JSON objects
used for the fully general JW5 JSON Serialization syntax:

payl oad
The "payl oad" menber MUST be present and contain the val ue
BASE64URL(JW5 Payl oad) .

si gnatures
The "signatures" nmenber val ue MJST be an array of JSON objects.
Each object represents a signature or MAC over the JW5 Payl oad and
the JW5 Protected Header.

The followi ng nenbers are defined for use in the JSON objects that
are elenments of the "signatures" array:

Jones, et al. Expires July 20, 2015 [Page 20]

Internet-Draft JSON Wb Signature (JW5) January 2015

protected
The "protected" nember MJST be present and contain the val ue
BASE64URL(UTF8(JWS Prot ect ed Header)) when the JWS Protected
Header value is non-enpty; otherwise, it MJST be absent. These
Header Paranmeter values are integrity protected.

header
The "header" nmenber MJST be present and contain the value JWS
Unpr ot ect ed Header when the JWS Unprotected Header value is non-
enpty; otherwise, it MJST be absent. This value is represented as
an unencoded JSON object, rather than as a string. These Header
Par anet er val ues are not integrity protected.

si gnature
The "signature" nenber MJST be present and contain the val ue
BASE64URL(JWS Si gnature).

At | east one of the "protected" and "header" nenbers MJST be present
for each signature/ MAC conputation so that an "al g" Header Paraneter
val ue i s conveyed.

Addi tional nenbers can be present in both the JSON objects defined
above; if not understood by inplenentations encountering them they
MUST be i gnored.

The Header Paraneter val ues used when creating or validating

i ndi vi dual signature or MAC val ues are the union of the two sets of
Header Paraneter values that nmay be present: (1) the JW5 Protected
Header represented in the "protected" nenber of the signature/ MAC s
array elenent, and (2) the JWS Unprotected Header in the "header"
menber of the signature/MAC s array elenent. The union of these sets
of Header Paraneters conprises the JOSE Header. The Header Paraneter
nanes in the two | ocations MIST be disjoint.

Each JW5 Signature value is conputed using the paraneters of the
correspondi ng JOSE Header value in the same manner as for the JW5
Conpact Serialization. This has the desirable property that each JW5
Signature value represented in the "signatures" array is identical to
the val ue that woul d have been conmputed for the sane paraneter in the
JWS Conpact Serialization, provided that the JW5 Protected Header

val ue for that signature/ MAC conputation (which represents the
integrity protected Header Paraneter val ues) matches that used in the
JWE Conpact Serialization.

Jones, et al. Expires July 20, 2015 [Page 21]

Internet-Draft JSON Wb Signature (JW5) January 2015

In sunmary, the syntax of a JW5 using the general JW5 JSON
Serialization is as follows:

"payl oad": " <payl oad contents>",

"signatures":|

{"protected":"<integrity-protected header 1 contents>"
"header": <non-integrity-protected header 1 contents>
"signature":"<signature 1 contents>"},

{"protected":"<integrity-protected header N contents>",
"header": <non-integrity-protected header N contents>
"signature":"<signature N contents>"}]

}

See Appendix A 6 for an exanple JWS5 using the general JW5 JSON
Serialization syntax.

7.2.2. Flattened JW5 JSON Serialization Syntax

The flattened JW5 JSON Serialization syntax is based upon the genera
syntax, but flattens it, optimzing it for the single digita

signature/ MAC case. It flattens it by renoving the "signatures”
menber and instead pl aci ng those nenbers defined for use in the
"signatures" array (the "protected", "header", and "signature"

menbers) in the top-level JSON object (at the same |evel as the
"payl oad" menber).

The "signatures" nmenber MUST NOT be present when using this syntax.
O her than this syntax difference, JW5 JSON Serialization objects
using the flattened syntax are processed identically to those using
t he general syntax.

In summary, the syntax of a JW5 using the flattened JW5 JSON
Serialization is as foll ows:

{

"payl oad": "<payl oad content s>"
"protected":"<integrity-protected header contents>"
"header": <non-integrity-protected header contents>
"signature":"<signature contents>"

}

See Appendi x A 7 for an exanple JW5 using the flattened JW5 JSON
Serialization syntax.

Jones, et al. Expires July 20, 2015 [Page 22]

Internet-Draft JSON Wb Signature (JW5) January 2015

8.

TLS Requirenents

| mpl enent ati ons supporting the "jku" and/or "x5u" Header Parameters
MUST support TLS. Wich TLS version(s) ought to be inplenented wll
vary over tinme, and depend on the wi despread depl oynment and known
security vulnerabilities at the tine of inplementation. At the tine
of this witing, TLS version 1.2 [RFC5246] is the nost recent

versi on.

To protect against infornmation disclosure and tanpering,
confidentiality protection MUST be applied using TLS with a

ci phersuite that provides confidentiality and integrity protection
See current publications by the | ETF TLS worki ng group, including RFC
6176 [RFC6176], for guidance on the ciphersuites currently considered
to be appropriate for use. Al so, see Reconmmendations for Secure Use
of TLS and DILS [I-D.ietf-uta-tls-bcp] for recomendati ons on

i mproving the security of software and services using TLS

Whenever TLS is used, the identity of the service provider encoded in
the TLS server certificate MJUST be verified using the procedures
described in Section 6 of RFC 6125 [RFC6125].

| ANA Consi der ati ons

The following registration procedure is used for all the registries
est ablished by this specification.

Val ues are registered on a Specification Required [RFC5226] basis
after a three-week review period on the jose-reg-review@etf.org
mailing list, on the advice of one or nore Designated Experts.
However, to allow for the allocation of values prior to publication
the Designated Expert(s) may approve registration once they are
satisfied that such a specification will be published.

Regi stration requests nust be sent to the jose-reg-review@etf.org
mailing list for review and comment, with an appropriate subject
(e.g., "Request to register header paraneter: exanple").

Wthin the review period, the Designated Expert(s) will either
approve or deny the registration request, communicating this decision
to the review list and | ANA. Denials should include an expl anation
and, if applicable, suggestions as to how to nake the request
successful. Registration requests that are undeternined for a period
| onger than 21 days can be brought to the IESG s attention (using the
iesg@etf.org mailing list) for resolution

Criteria that should be applied by the Designated Expert(s) includes

Jones, et al. Expires July 20, 2015 [Page 23]

Internet-Draft JSON Wb Signature (JW5) January 2015

9.

1.

det ermi ni ng whet her the proposed registration duplicates existing
functionality, determining whether it is likely to be of genera
applicability or whether it is useful only for a single application
and whether the registration description is clear.

| ANA nust only accept registry updates fromthe Designated Expert(s)
and should direct all requests for registration to the review mailing
list.

It is suggested that nultiple Designated Experts be appointed who are
able to represent the perspectives of different applications using
this specification, in order to enable broadly-informed revi ew of
registration decisions. |In cases where a registration decision could
be perceived as creating a conflict of interest for a particular
Expert, that Expert should defer to the judgnent of the other

Expert (s).

[[Note to the RFC Editor and | ANA: Pearl Liang of | CANN had
requested that the draft supply the foll ow ng proposed registry
description information. It is to be used for all registries
est ablished by this specification.

0 Protocol Category: JSON Object Signing and Encryption (JOSE)
0 Registry Location: http://ww.iana.org/assignnments/jose
0 Webpage Title: (sanme as the protocol category)

0 Registry Nane: (sane as the section title, but excluding the word
"Registry", for exanple "JSON Wb Signature and Encryption Header
Par anet er s")

1]
JSON Wb Signature and Encryption Header Paraneters Registry

Thi s specification establishes the | ANA JSON Wb Si gnature and
Encrypti on Header Paraneters registry for Header Parameter nanes.

The registry records the Header Paraneter nanme and a reference to the
specification that defines it. The same Header Paraneter name can be
registered nmultiple tinmes, provided that the paraneter usage is
conmpati bl e between the specifications. Different registrations of
the sane Header Paraneter name will typically use different Header
Par amet er Usage Location(s) val ues.

Jones, et al. Expires July 20, 2015 [Page 24]

Internet-Draft JSON Wb Signature (JW5) January 2015

9.

9.

1.

1.

1. Registration Tenplate

Header Paraneter Nane:
The nane requested (e.g., "kid"). Because a core goal of this
specification is for the resulting representations to be conpact,
it is RECOWENDED that the name be short -- not to exceed 8
characters without a conmpelling reason to do so. This nanme is
case-sensitive. Nanmes may not match other registered nanes in a
case-insensitive manner unless the Designated Expert(s) state that
there is a conpelling reason to allow an exception in this
particul ar case.

Header Parameter Description:
Brief description of the Header Paraneter (e.g., "Key ID").

Header Paraneter Usage Location(s):
The Header Paraneter usage |ocations, which should be one or nore
of the values "JWs" or "JWE'

Change Controller:
For Standards Track RFCs, state "IESG'. For others, give the nane
of the responsible party. Oher details (e.g., postal address,
emai | address, hone page URI) nay al so be incl uded.

Speci fi cation Docunent(s):
Ref erence to the docunent(s) that specify the paraneter,
preferably including URI (s) that can be used to retrieve copi es of
the docunent(s). An indication of the relevant sections may al so
be included but is not required.

2. Initial Registry Contents

This specification registers the Header Paraneter nanmes defined in
Section 4.1 in this registry.

0 Header Paraneter Nane: "al g"

0 Header Paraneter Description: Al gorithm

0 Header Paraneter Usage Location(s): JW5

0 Change Controller: IESG

o Specification Docunent(s): Section 4.1.1 of [[this docunent]]
0 Header Paraneter Nane: "jku"

0 Header Paraneter Description: JW Set URL

0 Header Paraneter Usage Location(s): JW5

0 Change Controller: |IESG

o Specification Docunent(s): Section 4.1.2 of [[this docunent]]

Jones, et al. Expires July 20, 2015 [Page 25]

Internet-Draft JSON Wb Signature (JW5) January 2015

Oo0Oo0oo0oo Oo0Oo0oo0oo Oo0Oo0oo0oo Oo0Oo0oo0oo Oo0Oo0oo0oo Oo0Oo0oo0oo Oo0Oo0oo0oo

O O0OO0Oo

Jones,

Header
Header
Header
Change
Speci fi

Header
Header
Header
Change
Speci fi

Header
Header
Header
Change
Speci fi

Header
Header
Header
Change
Speci fi

Header
Header
Header
Change
Speci fi

Header
Header
Header
Change
Speci fi

Header
Header
Header
Change
Speci fi

Header
Header
Header
Change

et al.

Par amet er Name: "jwk"

Par anmet er Description: JSON Wb Key

Par anet er Usage Location(s): JW5

Controller: |ESG

cation docunent(s): Section 4.1.3 of [[this docunent]]

Par anet er Nane: "kid"

Par amet er Description: Key ID

Par anet er Usage Location(s): JW5

Controller: |ESG

cation Docunent(s): Section 4.1.4 of [[this docunent]]

Par anet er Name: "x5u"

Par anmet er Description: X 509 URL

Par anet er Usage Location(s): JW5

Controller: |ESG

cation Docunent(s): Section 4.1.5 of [[this docunent]]

Par anet er Name: "x5c"

Par amet er Description: X. 509 Certificate Chain

Par anet er Usage Location(s): JW5

Controller: |ESG

cation Docunent(s): Section 4.1.6 of [[this docunent]]

Par anet er Name: "x5t"

Par armet er Description: X 509 Certificate SHA-1 Thunbpri nt
Par anet er Usage Location(s): JW5

Controller: |ESG

cation Docunent(s): Section 4.1.7 of [[this docunent]]

Par anet er Nanme: "x5t#S256"

Par amet er Description: X. 509 Certificate SHA-256 Thunbpri nt
Par anet er Usage Location(s): JW5

Controller: |ESG

cation Docunent(s): Section 4.1.8 of [[this docunent]]

Par amet er Name: "typ"

Par anmet er Description: Type

Par anet er Usage Location(s): JW5

Controller: |ESG

cation Docunent(s): Section 4.1.9 of [[this docunent]]

Par amet er Name: "cty"

Par amet er Description: Content Type
Par anet er Usage Location(s): JW5
Control ler: |ESG

Expires July 20, 2015 [Page 26]

Internet-Draft JSON Wb Signature (JW5) January 2015

9.

9.

2

2

o Specification Docunment(s): Section 4.1.10 of [[this document]]

0 Header Paraneter Nane: "crit"

0 Header Paraneter Description: Critica

0 Header Paraneter Usage Location(s): JW5

o Change Controller: |IESG

o Specification Docunment(s): Section 4.1.11 of [[this document]]
Medi a Type Registration

1. Registry Contents

This specification registers the "application/jose" Media Type

[RFC2046] in the MME Media Types registry [1ANA Medi aTypes] in the
manner described in RFC 6838 [RFC6838], which can be used to indicate
that the content is a JW5 or JVE using the JW5 Conpact Serialization
or the JWE Conpact Serialization and the "application/jose+json”
Media Type in the MME Media Types registry, which can be used to
indicate that the content is a JW5 or JVWE using the JW5 JSON
Serialization or the JWE JSON Serialization.

Type nane: application

Subt ype nane: jose

Requi red paraneters: n/a

Optional paraneters: n/a

Encodi ng consi derations: 8bit; application/jose values are encoded

as a series of base64url encoded val ues (sone of which rmay be the

enpty string) each separated fromthe next by a single period

(".") character.

0 Security considerations: See the Security Considerations section
of [[this document]]

0 Interoperability considerations: n/a

0 Published specification: [[this docunment]]

o Applications that use this nedia type: OpenlD Connect, Mzilla
Persona, Sal esforce, Google, Android, Wndows Azure, Xbox One
Amazon Web Services, and nunmerous others that use JW's

o Fragnment identifier considerations: n/a

Addi tional information: Magic nunber(s): n/a, File extension(s):

n/a, Macintosh file type code(s): n/a

Person & enmail address to contact for further information: M chael

B. Jones, nbj @ri crosoft.com

I nt ended usage: COWVMON

Restrictions on usage: none

Aut hor: M chael B. Jones, nbj @ri crosoft.com

Change Controller: |ESG

Provi sional registration? No

OO0Oo0o0oo

o

o

OO0Oo0oo0oo

Jones, et al. Expires July 20, 2015 [Page 27]

Internet-Draft JSON Wb Signature (JW5) January 2015

o Type name: application

0 Subtype name: jose+json

0 Required paraneters: n/a

0 Optional paraneters: n/a

o0 Encoding considerations: 8bit; application/jose+json values are
represented as a JSON Object; UTF-8 encodi ng SHOULD be enpl oyed
for the JSON object.

0 Security considerations: See the Security Considerations section
of [[this document]]

0 Interoperability considerations: n/a

0 Published specification: [[this docunent]]

0 Applications that use this nedia type: TBD

o Fragnment identifier considerations: n/a

0 Additional information: Magic nunber(s): n/a, File extension(s):
n/a, Macintosh file type code(s): n/a

0 Person & enmil address to contact for further information: M chael
B. Jones, nbj @ri crosoft.com

0 |Intended usage: COVWON

0 Restrictions on usage: none

0 Author: Mchael B. Jones, nbj @i crosoft.com

0 Change Controller: IESG

o0 Provisional registration? No

10. Security Considerations

Al'l of the security issues that are pertinent to any cryptographic
application nust be addressed by JW5/ JWE JWK agents. Anong these
i ssues are protecting the user’s asynmetric private and symetric
secret keys and enpl oyi ng counterneasures to various attacks.

Al'l the security considerations in XM. DSIG 2.0

[WBC. NOTE- xm dsi g- core2-20130411], also apply to this specification
other than those that are XM. specific. Likew se, nmany of the best
practices docunented in XM. Signature Best Practices

[WBC. NOTE- xmi dsi g- best practi ces-20130411] al so apply to this
specification, other than those that are XM specific.

10.1. Key Entropy and Random Val ues

Keys are only as strong as the anmount of entropy used to generate
them A mininmumof 128 bits of entropy should be used for all keys,
and dependi ng upon the application context, nmore may be required.

| mpl enent ati ons nmust randomly generate public/private key pairs,
message aut hentication (MAC) keys, and paddi ng val ues. The use of

i nadequat e pseudo-random nunber generators (PRNGs) to generate
cryptographic keys can result in little or no security. An attacker

Jones, et al. Expires July 20, 2015 [Page 28]

Internet-Draft JSON Wb Signature (JW5) January 2015

may find it much easier to reproduce the PRNG environnment that
produced the keys, searching the resulting small set of
possibilities, rather than brute force searching the whol e key space.
The generation of quality random nunbers is difficult. RFC 4086

[RFC4086] offers inportant guidance in this area

10. 2. Key Protection

| mpl enent ati ons nust protect the signer’s private key. Conprom se of
the signer’s private key pernits an attacker to nmasquerade as the
si gner.

I mpl ement ati ons nust protect the message authentication (MAC) key.
Conpromi se of the MAC key may result in undetectable nodification of
the aut henticated content.

10.3. Key Oigin Authentication

The key managenent techni que enpl oyed to obtain public keys nust
aut henticate the origin of the key; otherwise, it is unknown what
party signed the nessage

Li kewi se, the key nanagenent techni que enployed to distribute MAC
keys nust provide data origin authentication; otherw se, the contents
are delivered with integrity froman unknown source.

10.4. Cryptographic Agility

See Section 8.1 of [JWA] for security considerations on cryptographic
agility.

10.5. Differences between Digital Signatures and MACs

While MACs and digital signatures can both be used for integrity
checking, there are sone significant differences between the security
properties that each of them provides. These need to be taken into
consi derati on when desi gning protocols and sel ecting the algorithns
to be used in protocols.

Bot h signatures and MACs provide for integrity checking -- verifying
that the nmessage has not been nodified since the integrity val ue was
conputed. However, MACs provide for origination identification only
under specific circunmstances. It can normally be assumed that a
private key used for a signature is only in the hands of a single
entity (although perhaps a distributed entity, in the case of
replicated servers); however, a MAC key needs to be in the hands of
all the entities that use it for integrity conputation and checki ng.
Validation of a MAC only provides corroboration that the nessage was

Jones, et al. Expires July 20, 2015 [Page 29]

Internet-Draft JSON Wb Signature (JW5) January 2015

10.

10.

generated by one of the parties that knows the symretric MAC key.
This means that origination can only be determined if a MAC key is
known only to two entities and the recipient knows that it did not
create the nessage. MAC validation cannot be used to prove
origination to a third party.

6. Algorithm Validation

The digital signature representations for sonme al gorithns include

i nformati on about the algorithmused inside the signature value. For
i nstance, signatures produced with RSASSA- PKCS-vl 5 [RFC3447] encode
the hash function used and nmany libraries actually use the hash

al gorithm specified inside the signature when validating the
signature. Wen using such libraries, as part of the algorithm

val i dati on performed, inplenentations MJST ensure that the algorithm
i nformati on encoded in the signature corresponds to that specified
with the "al g" Header Paraneter. |If this is not done, an attacker
could claimto have used a strong hash algorithmwhile actually using
a weak one represented in the signature val ue.

7. AgorithmProtection

In sone usages of JW5, there is a risk of algorithm substitution
attacks, in which an attacker can use an existing digital signature
value with a different signature algorithmto nmake it appear that a
si gner has signed sonething that it has not. These attacks have been
di scussed in detail in the context of CM5 [RFC6211]. This risk

ari ses when all of the followi ng are true:

o Verifiers of a signature support multiple algorithns.

o Gven an existing signature, an attacker can find anot her payl oad
that produces the sanme signature value with a different algorithm

0 The payload crafted by the attacker is valid in the application
cont ext .

There are several ways for an application to nitigate algorithm
substitution attacks:

o0 Use only digital signature algorithns that are not vulnerable to
substitution attacks. Substitution attacks are only feasible if
an attacker can conpute pre-images for a hash function accepted by
the recipient. Al JWA-defined signature algorithns use SHA-2
hashes, for which there are no known pre-imge attacks, as of the
time of this witing.

Jones, et al. Expires July 20, 2015 [Page 30]

Internet-Draft JSON Wb Signature (JW5) January 2015

0 Require that the "al g" Header Paranmeter be carried in the
protected header. (This is always the case when using the JW5
Conpact Serialization and is the approach taken by CM5 [RFC6211].)

0 Include a field containing the algorithmin the application
payl oad, and require that it be matched with the "al g* Header
Paraneter during verification. (This is the approach taken by
PKI X [RFC5280] .)

10. 8. Chosen Pl ai ntext Attacks

Creators of JWBs should not allow third parties to insert arbitrary
content into the message without adding entropy not controlled by the
third party.

10.9. Timing Attacks

When cryptographic algorithnms are inplenmented in such a way that
successful operations take a different anpunt of tine than
unsuccessful operations, attackers may be able to use the time
difference to obtain information about the keys enployed. Therefore,
such timng differences nust be avoi ded.

10.10. Replay Protection

While not directly in scope for this specification, note that
applications using JWs (or JWE) objects can thwart replay attacks by
i ncluding a uni que nessage identifier as integrity protected content
in the JW5 (or JWE) nessage and having the recipient verify that the
message has not been previously received or acted upon

10.11. SHA-1 Certificate Thunbprints

A SHA-1 hash is used when conputing "x5t" (X 509 Certificate SHA-1
Thunbprint) values, for conpatibility reasons. Should an effective
means of producing SHA-1 hash collisions be devel oped, and should an
attacker wish to interfere with the use of a known certificate on a
gi ven system this could be acconplished by creating another
certificate whose SHA-1 hash value is the same and adding it to the
certificate store used by the intended victim A prerequisite to
this attack succeeding is the attacker having wite access to the
intended victims certificate store.

Al ternatively, the "xbt#S256" (X. 509 Certificate SHA-256 Thunbprint)
Header Parameter could be used instead of "x5t". However, at the
time of this witing, no devel opnent platformis known to support
SHA- 256 certificate thunbprints.

Jones, et al. Expires July 20, 2015 [Page 31]

Internet-Draft JSON Wb Signature (JW5) January 2015

10.

10.

12. JSON Security Considerations

Strict JSON [RFC7159] validation is a security requirenent. |If

mal formed JSON is received, then the intent of the producer is

i mpossible to reliably discern. Anbiguous and potentially
exploitable situations could arise if the JSON parser used does not
reject mal formed JSON syntax. In particular, any JSON i nputs not
conformng to the JSON-text syntax defined in RFC 7159 input MJIST be
rejected in their entirety by JSON parsers.

Section 4 of the JSON Data | nterchange Format specification [RFC7159]
states "The nanes within an object SHOULD be uni que", whereas this
specification states that "Header Paraneter names within this object
MUST be uni que; JW5 parsers MIST either reject JWss with duplicate
Header Parameter names or use a JSON parser that returns only the

I exically last duplicate nenber nane, as specified in Section 15.12
(The JSON Object) of ECMAScript 5.1 [ECMAScript]". Thus, this
specification requires that the Section 4 "SHOULD' be treated as a
"MUST" by producers and that it be either treated as a "MJST" or in
the manner specified in ECMAScript 5.1 by consumers. Anbi guous and
potentially exploitable situations could arise if the JSON parser
used does not enforce the uniqueness of nmenber nanmes or returns an
unpredi ct abl e val ue for duplicate nenber nanes.

Sone JSON parsers night not reject input that contains extra
significant characters after a valid input. For instance, the input
"{"tag":"val ue"} ABCD' contains a valid JSON-text object foll owed by
the extra characters "ABCD'. |Inplenentations MJST consi der JWSs
containing such input to be invalid.

13. Uni code Conparison Security Considerations

Header Parameter names and al gorithm nanes are Uni code strings. For
security reasons, the representations of these nanmes nust be conpared
verbatimafter perform ng any escape processing (as per Section 8.3
of RFC 7159 [RFC7159]). This neans, for instance, that these JSON
strings nmust conpare as being equal ("sig", "\u0073ig"), whereas
these nust all compare as being not equal to the first set or to each
other ("SIG', "Sig", "si\u0047").

JSON strings can contain characters outside the Unicode Basic
Multilingual Plane. For instance, the G clef character (U+1D11E) may
be represented in a JSON string as "\uD834\uDD1E"'. ldeally, JW5

i mpl ement ati ons SHOULD ensure that characters outside the Basic
Multilingual Plane are preserved and conpared correctly;
alternatively, if this is not possible due to these characters
exercising limtations present in the underlying JSON i npl enmentation
then input containing them MJUST be rejected.

Jones, et al. Expires July 20, 2015 [Page 32]

Internet-Draft JSON Wb Signature (JW5) January 2015

11. Ref er ences
11. 1. Nor mati ve Ref erences

[ECMASCri pt]
Ecma International, "ECMAScript Language Specification,
5.1 Edition", ECMA 262, June 2011.

[1 ANA. Medi aTypes]
I nternet Assigned Nunmbers Authority (1ANA), "M ME Medi a
Types"”, 2005.

[1 TU. X690. 1994]
I nternational Tel ecomunications Union, "Informtion
Technol ogy - ASN. 1 encoding rul es: Specification of Basic
Encodi ng Rul es (BER), Canoni cal Encodi ng Rul es (CER) and
Di stingui shed Encoding Rules (DER)", |ITU T Recomrendati on
X. 690, 1994.

[JwA] Jones, M, "JSON Wb Al gorithns (JWA)",
draft-ietf-jose-json-web-algorithnms (work in progress),
January 2015.

[IVK] Jones, M, "JSON Wb Key (JWK)",
draft-ietf-jose-json-web-key (work in progress),
January 2015.

[RFC20] Cerf, V., "ASCII format for Network Interchange", RFC 20,
Cct ober 1969.

[RFC2045] Freed, N. and N. Borenstein, "Miltipurpose Internet Mail
Extensions (M ME) Part One: Format of I|Internet Message
Bodi es”, RFC 2045, Novenber 1996.

[RFC2046] Freed, N. and N. Borenstein, "Miltipurpose Internet Mil
Extensions (M ME) Part Two: Media Types", RFC 2046,
Novenber 1996.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Levels", BCP 14, RFC 2119, March 1997.

[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of |SO
10646", STD 63, RFC 3629, Novenber 2003.

[RFC3986] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Generic Syntax", STD 66,

Jones, et al. Expires July 20, 2015 [Page 33]

Internet-Draft JSON Wb Signature (JW5) January 2015

RFC 3986, January 2005.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, Cctober 2006.

[RFC4945] Korver, B., "The Internet IP Security PKI Profile of
| KEv1/ | SAKMP, | KEv2, and PKI X", RFC 4945, August 2007.

[RFC4949] Shirey, R, "Internet Security G ossary, Version 2",
RFC 4949, August 2007.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R, and W Polk, "Internet X 509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, May 2008.

[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domai n-Based Application Service ldentity
within Internet Public Key Infrastructure Using X 509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", RFC 6125, March 2011.

[RFC6176] Turner, S. and T. Polk, "Prohibiting Secure Sockets Layer
(SSL) Version 2.0", RFC 6176, March 2011.

[RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
I nterchange Format", RFC 7159, March 2014.

[UNI CODE] The Uni code Consortium "The Uni code Standard", 1991-,
<http://ww. uni code. or g/ versi ons/ | at est/ >.

11.2. Informative References

[CanvasApp]
Facebook, "Canvas Applications", 2010.

[I-Dietf-uta-tls-bcp]
Sheffer, Y., Holz, R, and P. Saint-Andre,
"Reconmmendations for Secure Use of TLS and DTLS",
draft-ietf-uta-tls-bcp-08 (work in progress),
Decenber 2014.

[JSS] Bradley, J. and N. Sakinmura (editor), "JSON Sinple Sign",
Sept enber 2010.

Jones, et al. Expires July 20, 2015 [Page 34]

Internet-Draft JSON Wb Signature (JW5) January 2015

[IVE] Jones, M and J. Hildebrand, "JSON Web Encryption (JVE)",
draft-ietf-jose-json-web-encryption (work in progress),
January 2015.

[JwWr] Jones, M, Bradley, J., and N. Sakimura, "JSON Wb Token
(JWn ", draft-ietf-oauth-json-web-token (work in
progress), January 2015.

[Magi cSi gnat ur es]
Panzer (editor), J., Laurie, B., and D. Bal fanz, "Magic
Si gnatures", January 2011.

[RFC2104] Krawczyk, H., Bellare, M, and R Canetti, "HWVAC Keyed-
Hashi ng for Message Authentication", RFC 2104,
February 1997.

[RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
St andards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, February 2003.

[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomess
Requirenments for Security", BCP 106, RFC 4086, June 2005.

[RFC4122] Leach, P., Mealling, M, and R Salz, "A Universally
Uni que I Dentifier (UUI D) URN Nanespace", RFC 4122,
July 2005.

[RFC5226] Narten, T. and H Alvestrand, "Quidelines for Witing an
I ANA Consi derations Section in RFCs", BCP 26, RFC 5226,
May 2008.

[RFC6211] Schaad, J., "Cryptographic Message Syntax (CMS) Al gorithm
Identifier Protection Attribute”, RFC 6211, April 2011.

[RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
Speci fications and Regi stration Procedures", BCP 13,
RFC 6838, January 2013.

[SHS] National Institute of Standards and Technol ogy, "Secure
Hash Standard (SHS)", FIPS PUB 180-4, March 2012.

[WBC. NOTE- xmi dsi g- best practi ces-20130411]
H rsch, F. and P. Datta, "XM. Signature Best Practices",
Wrld Wde Web Consortium Note NOTE-xm dsi g- bestpractices-
20130411, April 2013, <http://ww.w3. org/ TR/ 2013/
NOTE- xml dsi g- best practi ces-20130411/ >.

[WBC. NOTE- xml dsi g- core2-20130411]

Jones, et al. Expires July 20, 2015 [Page 35]

Internet-Draft JSON Wb Signature (JW5) January 2015

Eastl ake, D., Reagle, J., Solo, D., Hrsch, F., Roessler
T., Yiu, K, Datta, P., and S. Cantor, "XM. Signature
Syntax and Processing Version 2.0", Wrld Wde Wb
Consortium Note NOTE-xm dsi g-core2-20130411, April 2013,
<http://ww. w3. or g/ TR/ 2013/ NOTE- xm dsi g- cor e2- 20130411/ >.

Appendi x A. JWS Exanpl es

This section provides several exanples of JWSs. Wiile the first
three exanples all represent JSON Wb Tokens (JWs) [JWI], the
payl oad can be any octet sequence, as shown in Appendi x A 4.

A 1. Exanple JW5 usi ng HVAC SHA- 256
A.1.1. Encoding

The foll owi ng exanpl e JW5 Protected Header declares that the data
structure is a JSON Wb Token (JW) [JWI] and the JWS Signing | nput
is secured using the HVAC SHA- 256 al gorithm

{"typr:"Iwr,
"al g":"HS256"}

To renmove potential anbiguities in the representation of the JSON

obj ect above, the actual octet sequence representing UTF8(JW5
Protected Header) used in this exanple is also included below. (Note
that anbiguities can arise due to differing platformrepresentations
of line breaks (CRLF versus LF), differing spacing at the beginning
and ends of lines, whether the last line has a ternminating |ine break
or not, and other causes. In the representation used in this
exanple, the first line has no leading or trailing spaces, a CRLF
line break (13, 10) occurs between the first and second lines, the
second |ine has one |eading space (32) and no trailing spaces, and
the last Iine does not have a termnating line break.) The octets
representing UTF8(JW5 Protected Header) in this exanple (using JSON
array notation) are:

[123, 34, 116, 121, 112, 34, 58, 34, 74, 87, 84, 34, 44, 13, 10, 32
34, 97, 108, 103, 34, 58, 34, 72, 83, 50, 53, 54, 34, 125]

Encoding this JW5 Protected Header as BASE64URL(UTF8(JWS Protected
Header)) gives this val ue:

eyJ0eXAi O JKV1Q LAOKI CJhbCci O JI Uzl 1Ni J9

The JW5 Payl oad used in this exanple is the octets of the UTF-8
representation of the JSON object below. (Note that the payl oad can

Jones, et al. Expires July 20, 2015 [Page 36]

Internet-Draft JSON Wb Signature (JW5) January 2015

be any base64url encoded octet sequence, and need not be a base64url
encoded JSON obj ect.)

{"iss":"]oe",
"exp":1300819380,
"http://exanple.confis_root":true}

The follow ng octet sequence, which is the UTF-8 representation used
in this exanple for the JSON object above, is the JW5 Payl oad:

[123, 34, 105, 115, 115, 34, 58, 34, 106, 111, 101, 34, 44, 13, 10,
32, 34, 101, 120, 112, 34, 58, 49, 51, 48, 48, 56, 49, 57, 51, 56
48, 44, 13, 10, 32, 34, 104, 116, 116, 112, 58, 47, 47, 101, 120, 97
109, 112, 108, 101, 46, 99, 111, 109, 47, 105, 115, 95, 114, 111,
111, 116, 34, 58, 116, 114, 117, 101, 125]

Encoding this JW5 Protected Header as BASE64URL(UTF8(JW5 Protected
Header)) gives this value (with Iine breaks for display purposes
only):

eyJpc3M Q Jgb2Ui LAOKI CJI eHAI O EzMDA4MTkz ODAs DQogl mhOdHAGLY 91 eGFt
cGxl Lm\vbS9pc19yb2901 j pOcnVI f Q

Conbi ni ng these as BASE64URL(UTF8(JW5 Protected Header)) || '." ||
BASE64URL(JW5 Payl oad) gives this string (with line breaks for
di spl ay purposes only):

eyJ0eXAi O JKV1Q LAOKI ClhbGeci G JI Uzl INi J9

éprcSM O Jgb2Ui LAOKI CJI eHAI § EzMDA4AMIkz ODAs DQogl mhOdHAGLY 91 e G-t
cGxl Lnm\vbS9pc19yb290I j pOcnV f Q

The resulting JW5 Signing Input value, which is the ASCII
representation of above string, is the follow ng octet sequence
(using JSON array notation):

[101, 121, 74, 48, 101, 88, 65, 105, 79, 105, 74, 75, 86, 49, 81,
105, 76, 65, 48, 75, 73, 67, 74, 104, 98, 71, 99, 105, 79, 105, 74,
73, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51,
77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67
74, 108, 101, 72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84,
107, 122, 79, 68, 65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100,
72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76
109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73,
106, 112, 48, 99, 110, 86, 108, 102, 81]

HVACs are generated using keys. This exanple uses the symetric key
represented in JSON Wb Key [JWK] forrmat below (with |ine breaks

Jones, et al. Expires July 20, 2015 [Page 37]

Internet-Draft JSON Wb Signature (JW5) January 2015

within values for display purposes only):

{"kty":"oct",
"k": " AyMLSysPpbyDf gZl d3unj 1qzKObwWMkoqQ- Est JQLr _T- 1qS0gZH75
aKt MN3Yj 0i PS4hcgUuTwj AzZr 1Z9CAow'
}

Runni ng t he HMAC SHA- 256 al gorithmon the JW5 Signing Input with this
key yields this JW5 Signature octet sequence:

[116, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173,
187, 186, 22, 212, 37, 77, 105, 214, 191, 240, 91, 88, 5, 88, 83,
132, 141, 121]

Encoding this JW5 Signature as BASE64URL(JWS Signature) gives this
val ue:

dBj f t JeZ4CVP- nB92K27uhbUJULplr WWLgFWFOE] Xk

Concat enating these values in the order Header. Payl oad. Signature with
period ('.’) characters between the parts yields this conplete JW
representation using the JW5 Conpact Serialization (with Iine breaks
for display purposes only):

eyJOeXAi O JKV1Q LAOKI CIhbGei G JI Uzl 1Ni J9

éprc3M QO Jgb2Ui LAOKI CJI eHAI O EzMDA4MTkz ODAs DQogl mhOdHAGLY 91 eGFt
cGxl Lm\vbS9pc19yb2901 j pOcnVI f Q

dBj f t JeZ4CVP- nBI2K27uhbUIULplr wWALgFWEOE] Xk
A.1.2. Validating

Since the "al g" Header Paraneter is "HS256", we validate the HVAC
SHA- 256 val ue contained in the JW5 Signature.

To validate the HVAC val ue, we repeat the previous process of using
the correct key and the JW5 Signing Input (which is the initia
substring of the JWS Compact Serialization representation up unti

but not including the second period character) as input to the HVAC
SHA- 256 function and then taking the output and determining if it

mat ches the JWS Signature (which is base64url decoded fromthe val ue
encoded in the JW5 representation). |If it matches exactly, the HVAC
has been val i dat ed.

Jones, et al. Expires July 20, 2015 [Page 38]

Internet-Draft JSON Wb Signature (JW5) January 2015

A. 2. Exanple JW5 usi ng RSASSA- PKCS-v1 5 SHA- 256
A.2.1. Encoding

The JW5 Protected Header in this exanple is different fromthe
previous exanple in two ways: First, because a different algorithmis
bei ng used, the "alg" value is different. Second, for illustration
pur poses only, the optional "typ" paraneter is not used. (This
difference is not related to the algorithmenployed.) The JW5

Prot ected Header used is:

{"al g":"RS256"}

The octets representing UTF8(JWS Protected Header) in this exanple
(using JSON array notation) are:

[123, 34, 97, 108, 103, 34, 58, 34, 82, 83, 50, 53, 54, 34, 125]

Encoding this JW5 Protected Header as BASE64URL(UTF8(JW5 Protect ed
Header)) gives this val ue:

eyJhbCGeci O JSUzI 1N J9

The JW5 Payl oad used in this exanple, which follows, is the same as
in the previous exanple. Since the BASE64URL(JWS Payl oad) value will
therefore be the sane, its conputation is not repeated here.

{"iss":"]oe",
"exp":1300819380,
"http://exanple.confis_root":true}

Conbi ni ng these as BASE64URL(UTF8(JW5 Protected Header)) || . " ||
BASE64URL(JWS Payl oad) gives this string (with Iine breaks for
di spl ay purposes only):

eyJhbCGeci O JSUzI 1N J9

éprcsM O Jgb2U LAOKI CJI eHAI § Ez MDA4AMTkz ODAs DQogl mhOdHAGLY 91 eGFt
cGxl Lm\vbS9pc19yb2901 j pOcnVI f Q

The resulting JW5 Signing Input value, which is the ASCII
representation of above string, is the foll owing octet sequence:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 122, 73,
49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105,
74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72
65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68,
65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76

Jones, et al. Expires July 20, 2015 [Page 39]

Internet-Draft JSON Wb Signature (JW5) January 2015

121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118,
98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48,
99, 110, 86, 108, 102, 81]

This exanpl e uses the RSA key represented in JSON Wb Key [JVK]
format below (with [ine breaks within values for display purposes

only):

{"kty":"RSA",

“n":"of gWCuLj ybRI zoOt ZWJj Ni uSf b4p4f Akd_wWlcyQoTbj i 9kOI 8W26nPddx
Hnf HQp- Vaw- 4gPCJr ¢ S2mJ PMEZ P1Pt 0Bnmid4Q L- yRT- SFd2| ZS- pCgNVs
D1W YpRPEWOW G6b32690r 2] Z47soMZo9wGzj b_70OMgOLOL- bSf 63k paSH
SXndS5z5r exMibBYUsLA9e- KXBdQOS- UTo7WIBEMa2R2CapHg665xsnt dV
MIBQY4uDZI xvb3qCo5ZwKh9kHALT6_| 51 hl JH7aCGhyx XFv UK- DAWNmbudF8
NAco9_h9i a@\j 8g2et hFkM_s91kzk2PAcDTWghb54h4FRWuXpoQ'

"e": " AQAB",

"d": " EqQ5xpGnING vDf | JsRABXHx1hdR1k6Ul we2JZD50Lp Xy WPEAe P88V LNCO7
j 1 A7_GBsLKMyvT TeXZx9SE- 7YwVol 2NXCoAJed6sui 3951 W GO pW 100
Bk TGoVENn2bKVRUCgu- G BVaYLU6f 31 9kJf FNS3EOQbVdxzubSu3Mkqgzj kn
439X0M V51gf pRLI 9JYanr C4D4qAdGcopV_0ZHHzQ Bj udU2Qv Xt 4ehNYT
CBr 6 XCLQUShb1j uUOLZdi YoFaFQT5TwW8bGUl _x_j Tj 3ccPDVZFD9pl uhLh
BOneuf uBi B4cS98| 2SR_RQy GABeW nczTOQU91p1DhOVRuCopzn@',

"p":"4BZEEQ | pnVdVEZNCqS7baC4cr dOpgnRH_51 B3j wdbexGn6QLvnEt f dUdi
Yr qBdss 1l 58B@BKhooKeQra9ABOHwW Py5PJATINPY8cn70ouZ2KKDecmPG
BY5t 7yLc1Q@ QbxHdwMAVhvKn- nXgqhJTBgl Pgt | dC- KDV5z- y2XDwGJc"

"q": " uQPEf gmvt j LOUyyx88&ZFF1f QunH3- 7cepKnt H4pxht CoHqpWhIr8 YAn¥xa
ewHgHAj LYsplZSe7zFYH 7C6ul 7Tj eLQeZD_YwD66t 62wDnpe_H B- TnBA
-nj bgl f 1 sRLt Xl nDzQkv5dTl t RI11BKBBypeeF6689rj cJl DEzORWIc"

"dp": " BwKf V3AKQ5 MFZDFZCnW wzl - CCo83WZvnLQWCTeDv8uzl uRSnni711 3Q
CLdhr gE2e9YkxvuxdBf pT_PI 7Yz- FOKnulR6HsJeDC n12Sk3vmAkt V2zb
34MCdy 7cpdTh_YVr 7t ss2u6vneTwr A86r Zt uSMor 1C1LXsmvkxHQAdYo0"

"dqg":"h_96- nK1R 7gl hsunB1dZxj TnYynPbZpHzi Zj eeHc XYs XaaMwk A ODsWa
71 9xXDoRwbKgB719r r m 20Kr 6N3Do9UW0aj aHF- NKInwgj Mi2wlcj z3_- ky
NI XAr 2v4| KhGNpmvbi | gOS1VZn0Z68n6_pbLBSp3nssTdl qvdOt | i THU",

"qi " "1 Yd7DHOhr WxkwPQs RVRt Ogr j ber f vt QJi pd- Dl cxyVuuMdsQL.dgj Vk2o
y26FOENpScGLg2MowX7f hd_QIQRBydy5cY7YI Bi 87w931 KLEdf nbJt oOPLU
W1 Tr JReOgolcq9Sbsx YawBgf p_gh6A5603k2- ZQWKOJKSHULFku@BU"

}

The RSA private key is then passed to the RSA signing function, which
al so takes the hash type, SHA-256, and the JW5 Signing |nput as
inputs. The result of the digital signhature is an octet sequence,

whi ch represents a big endian integer. |In this exanple, it is:

[112, 46, 33, 137, 67, 232, 143, 209, 30, 181, 216, 45, 191, 120, 69,
243, 65, 6, 174, 27, 129, 255, 247, 115, 17, 22, 173, 209, 113, 125,

131, 101, 109, 66, 10, 253, 60, 150, 238, 221, 115, 162, 102, 62, 81,
102, 104, 123, 0, 11, 135, 34, 110, 1, 135, 237, 16, 115, 249, 69,

Jones, et al. Expires July 20, 2015 [Page 40]

Internet-Draft JSON Wb Signature (JW5) January 2015

229, 130, 173, 252, 239, 22, 216, 90, 121, 142, 232, 198, 109, 219,
61, 184, 151, 91, 23, 208, 148, 2, 190, 237, 213, 217, 217, 112, 7,
16, 141, 178, 129, 96, 213, 248, 4, 12, 167, 68, 87, 98, 184, 31

190, 127, 249, 217, 46, 10, 231, 111, 36, 242, 91, 51, 187, 230, 244,
74, 230, 30, 177, 4, 10, 203, 32, 4, 77, 62, 249, 18, 142, 212, 1,
48, 121, 91, 212, 189, 59, 65, 238, 202, 208, 102, 171, 101, 25, 129,
253, 228, 141, 247, 127, 55, 45, 195, 139, 159, 175, 221, 59, 239,
177, 139, 93, 163, 204, 60, 46, 176, 47, 158, 58, 65, 214, 18, 202
173, 21, 145, 18, 115, 160, 95, 35, 185, 232, 56, 250, 175, 132, 157
105, 132, 41, 239, 90, 30, 136, 121, 130, 54, 195, 212, 14, 96, 69,
34, 165, 68, 200, 242, 122, 122, 45, 184, 6, 99, 209, 108, 247, 202
234, 86, 222, 64, 92, 178, 33, 90, 69, 178, 194, 85, 102, 181, 90,
193, 167, 72, 160, 112, 223, 200, 163, 42, 70, 149, 67, 208, 25, 238,
251, 71]

Encodi ng the signature as BASE64URL(JWS Si gnature) produces this
value (with line breaks for display purposes only):

cC4hi UPoj 9Eet dgt v3hF80EG huB__dzERat 0XF9g2Vt Qgr 9PJbu3XG Zj 5RZmh7
AAUHI miBh- 0Qc_| F5YKt _ BV Fp5j uj Gbds9uJdbFICUAr 7t 1dnZcAcQ bKBYNX4
BAynRFdi uB- - f _nZLgr nby TyWe O75vRK5h6XxBAr LI ARNPvKkSj t QBVH b1L07Qe7K
0Gar ZRnB_eSN9383LcOLn6_dO- - xi 12j zDwusC- eCkHWEsqt FZESc6Bf | 7noOPqv
hJ1phCnvWh6l eYl 2wOQOYEUI pUTI 8np6LbgGY9Fs98r qVt SAXLI hwkWw Vit Vr B
pO0i gcN_| oypd UPQGe77Rw

Concat enating these values in the order Header. Payl oad. Signature with
period ('.’) characters between the parts yields this conplete JW
representation using the JW5 Conpact Serialization (with Iine breaks
for display purposes only):

eyJhbCGeci O JSUzI 1N J9

éprc3M QO Jgb2Ui LAOKI CJI eHAI O EzMDA4MTkz ODAs DQogl mhOdHAGLY 91 eGFt
cGxl Lm\vbS9pc19yb2901 j pOcnVI f Q

cC4hi UPoj 9Eet dgt vShFB0EG huB__ dzERat 0XF9g2Vt Qgr 9PJbu3XQ Zj 5RZnmh7
AAuH miBh- 0Qc_| FE5YKt _OBW2Fp5j uj Gods9uJdbFOCUAr 7t 1dnZcAcQ bKBYNX4
BAynRFdi uB- -f _nZLgr nby TyWe O75vRK5h6XxBAr LI ARNPVKSj t QBVH b1L07Qe7K
0Gar ZRnB_eSN9383LcOLn6_dO- - xi 12j zDwusC- eCkHWEsqt FZESc6Bf | 7noOPqv
hJ1phCnvWh6l eYl 2wOQOYEUI pUTI 8np6LbgGY9Fs98r gVt SAXLI hWkWw Vit Vr B
p0i gcN_| oypd UPQGe77Rw

A.2.2. Validating

Since the "al g" Header Paraneter is "RS256", we validate the RSASSA-
PKCS-v1 5 SHA-256 digital signature contained in the JWs Signature.

Validating the JW5 Signature is a bit different fromthe previous

Jones, et al. Expires July 20, 2015 [Page 41]

Internet-Draft JSON Wb Signature (JW5) January 2015

exanple. W pass the public key (n, e), the JWs Signature (which is
base64ur|l decoded fromthe value encoded in the JW5 representation),
and the JW5 Signing Input (which is the initial substring of the JW5
Conpact Serialization representation up until but not including the
second period character) to an RSASSA- PKCS-v1 5 signature verifier
that has been configured to use the SHA-256 hash function

A. 3. Exanple JWB using ECDSA P-256 SHA-256
A.3.1. Encoding
The JW5 Protected Header for this exanple differs fromthe previous

exanpl e because a different algorithmis being used. The JW5
Prot ect ed Header used is:

{"al g":"ES256"}

The octets representing UTF8(JWS Protected Header) in this exanple
(using JSON array notation) are:

[123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 50, 53, 54, 34, 125]

Encoding this JW5 Protected Header as BASE64URL(UTF8(JW5 Protected
Header)) gives this val ue:

eyJhbCci O JFUzI 1N J9
The JW5 Payl oad used in this exanple, which follows, is the sane as
in the previous exanples. Since the BASE64URL(JWs Payl oad) val ue
will therefore be the sane, its conputation is not repeated here.

{"iss":"joe",

"exp": 1300819380,

"http://exanple.confis_root":true}
Conbi ni ng these as BASE64URL(UTF8(JW5 Protected Header)) || '." ||
BASE64URL(JW5 Payl oad) gives this string (with line breaks for
di spl ay purposes only):

eyJhbCci O JFUzI 1N J9

éprcSM O Jgb2Ui LAOKI CJI eHAI § EzMDA4AMIkz ODAs DQogl mhOdHAGLY 9l e G-t
cGxl Lnm\vbS9pc19yb290I j pOcnV f Q

The resulting JW5 Signing Input value, which is the ASCII
representation of above string, is the foll owing octet sequence:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 73,

Jones, et al. Expires July 20, 2015 [Page 42]

Internet-Draft JSON Wb Signature (JW5) January 2015

49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105,
74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72
65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68,
65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76

121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118,
98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48,
99, 110, 86, 108, 102, 81]

This exanple uses the elliptic curve key represented in JSON Wb Key
[JWK] format bel ow

{"kty":"EC",
"crv":"P-256",
"x":"f83003D2xF1Bg8vub9t LelgHVEV76e8Tus9uPHvRVEU",
"y":"x_FEZRU9NMBGBHLN t ue659LNpXWspCy St i kYj KI W 5a0"
"d":"j ps@inGQL- YBI f f HL136cspYG6- 0i Y7X1f CE9- E9LI ™

}

The ECDSA private part d is then passed to an ECDSA signhing function,
whi ch al so takes the curve type, P-256, the hash type, SHA-256, and
the JW5 Signing Input as inputs. The result of the digital signature
is the EC point (R, S), where Rand S are unsigned integers. In this
exanple, the R and S val ues, given as octet sequences representing
bi g endian integers are:

[S, B +

| Result | Value |

| Name | I

S NIy e T ... +
R [14, 209, 33, 83, 121, 99, 108, 72, 60, 47, 127, 21, 88,

I I I
| | 7, 212, 2, 163, 178, 40, 3, 58, 249, 124, 126, 23, 129, |
| | 154, 195, 22, 158, 166, 101] |
S | [197, 10, 7, 211, 140, 60, 112, 229, 216, 241, 45, 175, |
| | 8, 74, 84, 128, 166, 101, 144, 197, 242, 147, 80, 154, |
| | 143, 63, 127, 138, 131, 163, 84, 213] |

The JW5 Signature is the value R || S. Encoding the signature as
BASE64URL(JW5 Si gnature) produces this value (with line breaks for
di spl ay purposes only):

Dt EhU3I j bEg8L38VWAF UAGOy KAVB- Xx- F4GawxaepnXFCgf Tj Dxwsdj xLasl Sl SA
pMAQXF KTUJqPP3- Kg6NULQ

Concat enating these values in the order Header. Payl oad. Signature with
period ('.') characters between the parts yields this conplete JW
representation using the JW5 Conpact Serialization (with Iine breaks
for display purposes only):

Jones, et al. Expires July 20, 2015 [Page 43]

Internet-Draft JSON Wb Signature (JW5) January 2015

eyJhbGei G JFUzI 1Ni J9

éprc3M QO Jgb2Ui LAOKI CJI eHAI O EzMDA4MIkz ODAs DQogl mhOdHAGBLY 91 eGFt
cGxl Lm\vbS9pc19yb2901 j pOcnVI f Q

ﬁ:EhUSIjbEg8L38VMAfUchyKANB—Xx—F4GamuaeanFCngjEMdeijaSISISA
pmMAQXf KTUJgPP3- Kg6NU1Q

A.3.2. Validating

Since the "al g" Header Paraneter is "ES256", we validate the ECDSA
P- 256 SHA-256 digital signature contained in the JW5 Signature.

Validating the JW5 Signature is a bit different fromthe previous
exanples. W need to split the 64 nenber octet sequence of the JWS
Signature (which is base64url decoded fromthe val ue encoded in the
JWE representation) into two 32 octet sequences, the first
representing R and the second S. We then pass the public key (x, y),
the signature (R, S), and the JW5 Signing Input (which is the initia
substring of the JWS Conpact Serialization representation up unti

but not including the second period character) to an ECDSA signature
verifier that has been configured to use the P-256 curve with the
SHA- 256 hash function

A 4. Exanple JW5 using ECDSA P-521 SHA-512
A . 4.1. Encoding
The JW5 Protected Header for this exanple differs fromthe previous
exanpl e because different ECDSA curves and hash functions are used.
The JWS5 Protected Header used is:
{"al g":"ES512"}

The octets representing UTF8(JWS Protected Header) in this exanple
(using JSON array notation) are:

[123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 53, 49, 50, 34, 125]

Encoding this JW5 Protected Header as BASE64URL(UTF8(JW5 Prot ect ed
Header)) gives this val ue:

eyJhbCeci G JFUzUxM J9

The JWS5 Payl oad used in this exanple, is the ASCII string "Payl oad”
The representation of this string is the octet sequence:

[80, 97, 121, 108, 111, 97, 100]

Jones, et al. Expires July 20, 2015 [Page 44]

Internet-Draft JSON Wb Signature (JW5) January 2015

Encoding this JW5 Payl oad as BASE64URL(JWS Payl oad) gives this val ue:
UGF5b&hZA

Conbi ni ng these as BASE64URL(UTF8(JW5 Protected Header)) || "." ||
BASE64URL(JWS Payl oad) gives this string

eyJhbCci O JFUzUxM J9. UGF5bGBhZA

The resulting JW5 Signing Input value, which is the ASCII
representation of above string, is the foll owing octet sequence:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 85,
120, 77, 105, 74, 57, 46, 85, 71, 70, 53, 98, 71, 57, 104, 90, 65]

This exanple uses the elliptic curve key represented in JSON Wb Key
[JWK] format below (with line breaks within values for display
pur poses only):

{"kty":"EC",
"crv":"pP-521",
"x": " AekpB@ST8a8Vcef VOTN 353vSr DCLLIXnPKkO6WT] xrrj cBpXp5EONYG_
Nj FZ60OvLFV1j Sf S9t sz4qUxcW eqwQak" ,
"y": " ADSTRA43Z1DSNX_RvclLl 87¢dL071 6j QryBXMoxVg_| 2Th- x3S1Wbhj DI
y79aj LAKkdOAZMaZmh9ubnf 63e3kyM 2",
"d": " AY5pb7A0UFi B3RELSD64f TLOSV_j azdF7f LYyuTw8l OF Rn\W6Y6r Ur PA
xer EzgdRhaj nuOf er BOd53vMBnEL5j 2C"
}

The ECDSA private part d is then passed to an ECDSA signhing function,
whi ch al so takes the curve type, P-521, the hash type, SHA-512, and
the JW5 Signing Input as inputs. The result of the digital signature
is the EC point (R, S), where Rand S are unsigned integers. In this
exanple, the R and S values, given as octet sequences representing
big endian integers are:

oo T T +

| Result | Value |

| Name | |

Hom e e oo - o mm o e me oo oo +
R [1, 220, 12, 129, 231, 171, 194, 209, 232, 135, 233,

I
117, 247, 105, 122, 210, 26, 125, 192, 1, 217, 21, 82, |
91, 45, 240, 255, 83, 19, 34, 239, 71, 48, 157, 147, [
152, 105, 18, 53, 108, 163, 214, 68, 231, 62, 153, 150, |
106, 194, 164, 246, 72, 143, 138, 24, 50, 129, 223, 133,

206, 209, 172, 63, 237, 119, 109] [

Jones, et al. Expires July 20, 2015 [Page 45]

Internet-Draft JSON Wb Signature (JW5) January 2015

| S | [0, 111, 6, 105, 44, 5, 41, 208, 128, 61, 152, 40, 92, [
[| 61, 152, 4, 150, 66, 60, 69, 247, 196, 170, 81, 193, [
[| 199, 78, 59, 194, 169, 16, 124, 9, 143, 42, 142, 131, [
[| 48, 206, 238, 34, 175, 83, 203, 220, 159, 3, 107, 155, [
| | 22, 27, 73, 111, 68, 68, 21, 238, 144, 229, 232, 148, |
[| 188, 222, 59, 242, 103] [
IR T T N N ... +
The JW5 Signature is the value R || S. Encoding the signature as

BASE64URL(JWS Si gnature) produces this value (with line breaks for
di spl ay purposes only):

AdwMyeer wt Hoh- | 1921 60hpOWAHZFVJIbLf D_UxM 70cwnZOYaR!I 1bKPWRCC- nZZq
wgT2S! - KGDKB34XC0aw_7Xdt AGBGaSwFKdCAPZgoXD2YBJ ZCPEX3x KpRwe d C0BKp
EHWJj yqQyzDO7i KvUBvVCnwNr mk Yo SWBERBXuk OXol LzeO Jn

Concat enating these values in the order Header. Payl oad. Si gnature with
period ('.’) characters between the parts yields this conplete JW5
representation using the JW5 Conpact Serialization (with Iine breaks
for display purposes only):

eyJhbGei G JFUzUXM J9
UGF5bGOhZA
AdwMgeer wt Hoh- | 1921 60hpOWAHZFVIbLE D_UxM 70cwnZOYaR! 1bKPVRCE - nZZq
W T2S! - KGDKB34X(Daw_7Xdt AGSGaSWEKdCAPZgoXD2 YBI ZCPEX3x KpRwe d O0BKp
EHWJj yqQgzDO7i KvU8vCnwhi mK YbSV@ERBXuk OXol LzeO Jn

A 4.2. Validating

Since the "al g" Header Paraneter is "ES512", we validate the ECDSA
P-521 SHA-512 digital signature contained in the JWs Signature.

Validating this JW5 Signature is very simlar to the previous
exanple. W need to split the 132 nenber octet sequence of the IJWS
Signhature into two 66 octet sequences, the first representing R and
the second S. W then pass the public key (x, y), the signature (R
S), and the JW5 Signing Input to an ECDSA signature verifier that has
been configured to use the P-521 curve with the SHA-512 hash

functi on.

A. 5. Exanple Unsecured JW5

The foll owi ng exanpl e JW5 Protected Header declares that the encoded
obj ect is an Unsecured JW5:

{"al g":"none"}

Jones, et al. Expires July 20, 2015 [Page 46]

Internet-Draft JSON Wb Signature (JW5) January 2015

Encoding this JW5 Protected Header as BASE64URL(UTF8(JW5 Prot ect ed
Header)) gives this val ue:

eyJhbCei G Jub25I | n0O

The JW5 Payl oad used in this exanple, which follows, is the same as
in the previous exanples. Since the BASE64URL(JWS Payl oad) val ue
will therefore be the sane, its conputation is not repeated here.

{"iss":"]oe",
"exp":1300819380,
"http://exanple.confis_root":true}

The JW5 Signhature is the enpty octet string and BASE64URL(JWS
Signature) is the enpty string.

Concat enating these values in the order Header. Payl oad. Si gnature with
period ('.’) characters between the parts yields this conplete JW5
representation using the JW5 Conpact Serialization (with Iine breaks
for display purposes only):

eyJhbCei G Jub25I | n0O

éprcSM O Jgb2Ui LAOKI CJI eHAI § EzMDA4AMIkz ODAs DQogl mhOdHAGLY 9l e G-t
cGxl Lnm\vbS9pc19yb290I j pOcnV f Q

A. 6. Exanple JW5 using General JW5 JSON Serialization

This section contains an exanpl e using the general JW5 JSON
Serialization syntax. This exanple denonstrates the capability for
conveying multiple digital signatures and/or MACs for the same

payl oad.

The JW5 Payl oad used in this exanple is the sanme as that used in the
exanpl es in Appendix A 2 and Appendix A.3 (with line breaks for
di spl ay purposes only):

eyJpc3M Q Jgb2Ui LAOKI CJI eHAI O Ez MDA4MTkz ODAs DQogl mhOdHAGLY 91 eGFt
cGxl Lm\vbS9pc19yb2901 j pOcnVI f Q

Two digital signatures are used in this exanple: the first using
RSASSA- PKCS-v1_5 SHA-256 and the second using ECDSA P-256 SHA-256.
For the first, the JW5 Protected Header and key are the same as in
Appendi x A 2, resulting in the same JW5 Signature val ue; therefore,
its conputation is not repeated here. For the second, the JWS

Prot ected Header and key are the sane as in Appendix A 3, resulting
in the same JWS Signature value; therefore, its conputation is not

Jones, et al. Expires July 20, 2015 [Page 47]

Internet-Draft JSON Wb Signature (JW5) January 2015

repeat ed here.
A.6.1. JWS Per-Signature Protected Headers
The JW5 Protected Header val ue used for the first signature is:
{"al g":"RS256"}

Encoding this JW5 Protected Header as BASE64URL(UTF8(JW5 Protect ed
Header)) gives this val ue:

eyJhbCGeci O JSUzI 1N J9
The JW5 Protected Header val ue used for the second signature is:
{"al g":"ES256"}

Encoding this JW5 Protected Header as BASE64URL(UTF8(JW5 Protected
Header)) gives this val ue:

eyJhbCGeci O JFUzI 1Ni J9
A.6.2. JWS Per-Signature Unprotected Headers

Key | D values are supplied for both keys using per-signature Header
Paranmeters. The two values used to represent these Key IDs are:

{"kid":"2010-12-29"}
and
{"kid":"e9bc097a-ce51-4036- 9562- d2ade882db0d" }
A.6.3. Conplete JOSE Header Val ues
Conbi ning the protected and unprotected header val ues supplied, the
JOSE Header values used for the first and second signatures

respectively are:

{"al g": " RS256",
"kid":"2010- 12- 29"}

and

{"al g":"ES256",
"kid":"e9bc097a- ce51- 4036- 9562- d2ade882db0d" }

Jones, et al. Expires July 20, 2015 [Page 48]

Internet-Draft JSON Wb Signature (JW5) January 2015

A.6.4. Conplete JW5 JSON Serialization Representation

The conplete JW5 JSON Serialization for these values is as foll ows
(with line breaks within values for display purposes only):

{
"payl oad":
"eyJpc3M O Jgb2Ui LAOKI CJI eHAI § Ez MDA4MTkz ODAs DQogl mhOdHA6LY 9l eGF
t c&xl Lm\vbS9pc19yb290I j pOcnVI f Q'
"signatures":|
{"protected":"eyJhbGeci O JSUzIl 1N J9",

"header":
{"kid":"2010-12- 29"},
"signature":

" cC4hi UPoj 9Eet dgt v3hF80EG huB__dzERat 0XF9g2Vt Qgr 9PJbu3XQ Zj 5RZ
mh7AAuUH mdBh- 0Qc_| F5YKt _OBW2Fp5j uj Gbds9uJdbFICUAr 7t 1dnZcAcQ b
KBYNX4BAynRFdi uB- - f _nZLgr nby TyW O75vRK5h6XBAr LI ARNPVKSj t QBVH
b1L07Qe7K0OGar ZRnB_eSN9383LcOLn6_dO - xi 12j zDwusC- eOkHVESqt FZES
c6Bf | 7noOPqvhJ1phCnv\Wh6l eYl 2wOQOYEUI pUTI 8np6LbgGY9Fs98r qVt 5AX
LI hvkWww Vit Vr BpOi gcN_| oypd UPQGe77RW'},

{"protected":"eyJhbCGeci O JFUzI 1N J9",

"header":
{"kid":"e9bc097a-ce51- 4036- 9562- d2ade882dh0d" },
"si gnature":

" Dt EhU3I j bEg8L38VWAF UAGOy KAMB- Xx- F4GawxaepmXFCgf Tj Dxwsdj xLasl S
| SApMAQX KTUJqPP3- Kg6NULQ' }]

A 7. Exanmple JW5 using Flattened JW5 JSON Serialization
This section contains an exanple using the flattened JW5 JSON
Serialization syntax. This exanple denonstrates the capability for
conveying a single digital signature or MACin a flattened JSON

structure.

The values in this exanple are the sane as those in the second
signature of the previous exanple in Appendix A 6.

The conplete JW5 JSON Serialization for these values is as foll ows
(with line breaks within values for display purposes only):

Jones, et al. Expires July 20, 2015 [Page 49]

Internet-Draft JSON Wb Signature (JW5) January 2015

"payl oad":
"eyJpc3M O Jgb2Ui LAOKI CJI eHAI § Ez MDA4MTkz ODAs DQogl mhOdHA6LY 9l eGF
t cG&xl Ln\vbS9pc19yb290I j pOcnVI f Q',
"protected":"eyJhbGei O JFUzI 1Ni J9",

"header":
{"kid":"e9bc097a- ce51-4036- 9562- d2ade882db0d"},
"signature":

" Dt EhU3I j bEg8L38VWAF UAGOy KANVB- Xx- FAGawxaepnXFCgf Tj Dxwsdj xLasl S
| SApPMAQX KTUJ qPP3- Kg6NULQ'

Appendi x B. "x5c" (X. 509 Certificate Chain) Exanple

The JSON array below is an exanple of a certificate chain that could
be used as the value of an "x5c" (X 509 Certificate Chain) Header
Paraneter, per Section 4.1.6 (with line breaks within values for

di spl ay purposes only):

["M | E3] CCABagAwW BAgl CAWEWDQYJKoZI hvc NAQEFBQAWYz EL MAk GAL1UEBhMCVWM
x| TAf BgNVBA0o TGFRoZSBHby BEYWRKk e SBHc B 1c Onwg SWbj Lj ExMC8 GALUECX MoR2
8gRGFkZHkg@xhc3MgM BDZXJ0aWzZpY2F0aWul EF1dGhvem 0eTAeFwWOWN] EXM
TYWMTUOMz daFwOy Nj Ex MTYWMTUOMz daM HKMQs wCQYDVQQGEW] VUz EQVA4 GAL UE
CBMHQXJI penmdu YTETMBEGAL UEBXx MKU2Nv dHRz ZGFs ZTEaMBg GA1UECh MRR29EYWR
keS5j b20s! El uYy4xMz AxBgNVBAs TKmhOdHAGLY9j ZXJ0aWZpY2F0ZXMuZ29k YW
RkeS5j b20vcmvwb3Npd @y e TEWMCAGALUEAX MR28gRGFk ZHkgU2Vj dXJI | ENI ¢
nRpZm j YXRpb24gQXV0a&y aXR5 MREWDWYDVQRFEWgWINz k20T 4Nz CCASI wDQYJ
KoZIl hvc NAQEBBQADgg EPADCCAQuCggEBAMY 1RWhCZM7 DI 161 +4WQFap mEBWITt
wY6vj 3D3HKr j IMBNS5Dr t PDA] hl 6z MBS2sof DPZVUBJ 7f ndOLJR4Ah3mUpf j WoqV
Tr 9veyCdQmVZW 7/ v+W bXnv QAj YwqDL1CBMBnPwWT270Dyqu9SoW n2r 4ar V3al
GoqGMu75RpRSgAV SMeYddi 5Kej u+GZt Cpyz 8/ x4f KL40o/ KIw GoepHBp+YI Lpyo
7RIl bnr 2EKRTc DCVwswr WCs 9CHRK8r 5Rs L+HOEWnWGU 1 NcWir xcx+AuP7g2BNgW
JCJj POg8l h8BJ6qf 92/ dFj pf MFDni NoWLf ho3/ Rb2c RGad DAW hQUoz +EDU8 CAw
EAAaCCATI wgg EUMBOGALUdDgQUBBT9r GEyk2x FluLuhV+auud2my Moz Af BgNVH
SMEGDAVWYBTSx LDSKdRVEXGz Yes9of 7dqG U4z ASBgNVHRVBAF 8ECDAGAQH AgEA
VDMGCCs GAQUFBWEBBCcwWJI TA] Bggr BgEFBQcwAYYXaHROcDovL29j c3AuZ29k YR
keS5j b20wRg YDVROf BDBWPTA70oDngN4Y1aHROcDovL2N ¢cnRpZm j YXRI cy5nb2
RhZGR5LmMvbS9y ZXBvc2l 0b3J5L2dkcmBvdC5) ¢ mwwSwYDVROgBEQMY BABgRVH
SAAMDgWING Y1 KwYBBQUHAg EWKmMhOdHABLY 9] ZXJ0aWZpY2F0ZXMuZ29k YWRK e S5j
b20vcnvwb3Npd @y e TAOBg NVH@B BAF 8 EBAMCAQYWDQYJKoZI hve NAQEFBQADggE
BANKGWOy 9+aG2Z+5m061 GOgRQ hVyr EpOl VPLN8t ESe8HkGsz2Zbwl Fal Ez AFPI
Uyl XvIxwgoJKS@kbTJSMUA2f CENZvD117esyf xVggwe Sel aha86ykRvOe5GPLL
5CkKSkB2XI sKd83ASe8T+500y GPWLPk9(nt 0hCqU7 S+8MkZCOY7I hyVIEnf zuz9
pO0i RFEUOQ Zv2kW RaJBydTXRE4+uXR21lal TVSzGh6OLmawGhl d/ dQ8vxRMDs x
uxN89t xJIx90 x UUAI KEngHUUHgDTMBgLAE! r Rhj ZkAzWhb3du6/ KFUJhegwNTr Z
Ej Yx8WhM25sgVj QuH0aBs XBTW/U+4=",

"M | E+zCCBGSgAW BAgl CAQOWDQYJKoZI hvc NAQEFBQAWgbsx JDAIi BgNVBACTGLZ

Jones, et al. Expires July 20, 2015 [Page 50]

Internet-Draft JSON Wb Signature (JW5) January 2015

hb@ DzXJ0l FZhbd kYXRpb24gTmv0d29yaz EXMBUGALUEChMOVnFsaUN cn(sl E
| uYy4xNTAzBgNVBASTLFZhbd DZXJ0I ENs YXNz I DI gU@saWNs1 FZhbd k' YXRpb
24gQXV0a@y aXR5 MsEwHWYDVQRDEXhodHRWO 8vd3d3LnzZhbd j ZXJOLnm\vbS8x
| DAeBgkghki GOWOBCQEVEEW uZnmpAdnFsaWNl cnQuY29t MB4XDTAOMDYy OTE3MDY
y MFOXDTI| OMDYy OTE3 MDYy MFowYz EL MAk GALUEBhMCVWMK | TAf BgNVBAOTGFR0ZS
BHby BEYWRke SBHcmB1c Ong SWbj Lj ExMC8GALUECX MoR28gRGFkZHkg@xhc3MgM
i BDZXJ0aWZpY2F0aVul EF1dGhvcm 0e TCCASAWDQYJKoZIl hve NAQEBBQADggEN
ADCCAQyCggEBAN6d1+pXGEMhWHV XX0i G6r 7d/ +TvZxz0ZW zV3CGgXne77Zt J6XC
APVYYYwhv2vLMID9/ Al Q VBDYs oHUWHU9S3/ Hd8MreKsaA7Ugay 9qK7HFi H7 Eux
6wwdhFJ2+gN1j 3hybX2C32qRe3H3I 2TqYXP2Wrkt sqbl 2i / oj gC95/ 5Y0V4evLO
t Xi Eql TLdi Or 18SPaAl BQ 2XKVI OARFR6j YABOXUG cm bYsUf b18aQr 4CUWN
ri Myavx4A6!l Nf 4DD+qgt a/ KFApMoZFv6yy@ecw3ud72a9nmyv0LEHZ61 VDd2gWWEZ
Eewo+Yi hf ukEHULj PEX44dMX4/ 7Vpk! +EdOgXG68CAQQ ggHhM | B3TAdBgNVHQ
4EFgQUOSs SWOpHUTBFxs2HL PaH+3ahql1OMagdl GA1UdI wSByj CBx 6 GBwaSBvj CBu
zEKMCI GALUEBXxMhVFsaUNl cnQyVnFsaVWRhdd vbi BOZXR3b3Jr MRewFQYDVQK
EWsWYWk pQ2Vy dOwg SWhj Lj EXLMDMGALUECK Ms VirFsaUNI cnQy@xhec3MgM BQb2x
pY3kgVnFsaWrhdd vbi BBdXRob3JpdHkx| TAf BgNVBAMIGGhOdHAGLY93d3cudm
FsaWN cnQuY29t LzEgMB4GCSqGSI b3DQEJARYRaWSmbOB2YWkpY2VydC5j b22CA
QEWDWYDVROTAQH BAUWAWEB/ z AzBggr Bg EFBQc BAQONMCUW wY!l KwYBBQUHVAGG
F2hOdHAGLY 9v Y3NwWLndv ZGFk ZHk u' Y29t MEQGATL Ud HwQ@ MDs wCa A30 DWGVRhOdHA
6Ly9j] ZXJ0aWZpY2F0ZXMuZ29k YWRk e S5) b20vcmvnwb3Npd@yeS9yb290LmiNybD
BL BgNVHSAERDBCVEAGBFUd I AAWODA2Bggr BgEFBQc CARYgaHROc DovL2N cnRpZ
M j YXR cy5nb2RhZGR5LmMvbS9y ZXBvc 2l 0b3J5MA4GALUd DWEB/ wWQEAW BBj AN
Bgkghki GOWOBAQUFAAOBgQCLIQPmMHS bg/ gQad@ pE9XxXUhUaJwL6e4+Pr xeNYi Y+
SnleocSxl 0YGyeR+sBj UZSEAONBs Us5i BOQQeyAf Jg594RA0YC5j cdnpl DQLt gM
QLARzLr Uc+cb53S8wGd9D0Vnsf SxCaFl gl | 6hR81 NMyjzW Rn453HWKr ugp++85j

09VZw==",

"M | C5z2CCAl ACAQEWDQYJKoZI hvc NAQEFBQAWgbsxJDAI BgNVBACTGLZhbG DZXJ
0l FZhbd kYXRpb24gTnmv0d29yaz EXMBUGALUEChMOVTFsaUN cnQsl El uYy4xNT
AzBgNVBASTLFZhbd DzXJO0I ENsYXNz| DI gu@&@saW\sl FZhbd kYXRpb24gQXV0a
Ry aXR5 MSEWMWYDVQRDEXhodHRWO 8vd3d3LnZhbd j ZXJOLn\vbS8x| DAeBgkq
hki GOWOBCQEVEEW uZmDAdmFsaVWNl cnQuY29t MBAXDTk5MDYy Nj AMMTk LNFoXDTE
5MDYy Ny AmMIk 1NFowgbsxJDAIi BgNVBAcTGLZhbd DZXJ0I FZhbG kYXRpb24gTm
V0d29yaz EXMBUGALTUEChMOVFsaUN cnCs| El uYy4xNTAzBgNVBASTLFZhbQd DZ
XJ0I ENsYXNz I DI gUu&@saWN51 FZhbd k' YXRpb24gQXV0a Gy aXR5 MSEwHWYDVQQD
ExhodHRWO 8vd3d3Lnzhbd@ j ZXJ0LmNvbS8x| DAeBgkghki GOWOBCQEVEW uZnd
AdnFsaVWN cnQuY29t M G MAOGCSqGS| b3 DQEBAQUAAAGNADCBI QKBgQDOOnHK5a
vI WZIV16vYdA757t n2VUdZZUc OBVXc6592PFxTXdMazzj svUGI7SVCCSRr O 6zf
N1SLUz mLNZOW npZdRIEy Ok TRx Qb7 XBhVQ7/ nHk01x C+YDgk RoKW k22Z/ M VXwb
P7Rf ZHVD47QSv4dk+NoS/ zcnwbNDu+97bi 5p9w DAQABMAOGCSqGSI b3DQEBBQU
AAAGBAD: / UV UISZSW 40BIL+KXI PgeCgf Yr x+j Fzug6El LLGACOTh20WH+heQ
Clu+nmNr OHZDz Tul YEZoDJJKPTEj | bVUj POUNV+MMD5M M M sg2azSi GvbbUWM
j 4@ sxsodyamEwCW PQuZ6l cg5Kt z885hZo+L7t dEy8V@Vi HOPd" |

Jones, et al. Expires July 20, 2015 [Page 51]

Internet-Draft JSON Wb Signature (JW5) January 2015

Appendi x C. Notes on inplenenting base64url encodi ng without padding
Thi s appendi x describes how to inplenment base64url encodi ng and
decodi ng functions wi thout paddi ng based upon standard base64
encodi ng and decodi ng functions that do use paddi ng.

To be concrete, exanple C# code inplenenting these functions is shown
below. Sinilar code could be used in other |anguages.

static string base64url encode(byte [] arg)

{
string s = Convert.ToBase64String(arg); // Regul ar base64 encoder
s =s.5plit("=")[0]; // Renove any trailing '=s
s = s.Replace(’+, '-"); I/ 62nd char of encoding
s = s.Replace(’/’, *_'); I/l 63rd char of encoding
return s;
}
static byte [] base64url decode(string arg)
{
string s = arg;
s = s.Replace(’'-", "+); [/ 62nd char of encoding
s = s.Replace(’_', '/’); /Il 63rd char of encoding
switch (s.Length %4) // Pad with trailing '="s
{
case 0: break; // No pad chars in this case
case 2: s += "=="; break; // Two pad chars
case 3: s += "="; break; // One pad char
default: throw new System Excepti on(
"I'll egal base64url string!");
return Convert. FronBase64String(s); // Standard base64 decoder
}
As per the exanpl e code above, the nunber of '= padding characters

that needs to be added to the end of a base64url encoded string

wi t hout padding to turn it into one with padding is a deterninistic
function of the length of the encoded string. Specifically, if the
length nod 4 is 0, no padding is added; if the length nod 4 is 2, two
'=' padding characters are added; if the length nod 4 is 3, one '=
paddi ng character is added; if the length nod 4 is 1, the input is

mal f or med.

An exanpl e correspondence between unencoded and encoded val ues
follows. The octet sequence bel ow encodes into the string bel ow,
whi ch when decoded, reproduces the octet sequence.

3 236 255 224 193

A-z_AME

Jones, et al. Expires July 20, 2015 [Page 52]

Internet-Draft JSON Wb Signature (JW5) January 2015

Appendi x D. Notes on Key Sel ection

Thi s appendi x describes a set of possible algorithns for selecting
the key to be used to validate the digital signature or MAC of a JWs
or for selecting the key to be used to decrypt a JWE. This guidance
describes a famly of possible algorithns, rather than a single

al gorithm because in different contexts, not all the sources of keys
will be used, they can be tried in different orders, and sometines
not all the collected keys will be tried; hence, different algorithns
will be used in different application contexts.

The steps bel ow are described for illustration purposes only;
specific applications can and are likely to use different algorithns
or performsonme of the steps in different orders. Specific
applications will frequently have a much sinpler method of
determning the keys to use, as there may be one or two key sel ection
met hods that are profiled for the application’s use. This appendi X
suppl enents the normative information on key |location in Section 6.

These al gorithns include the followi ng steps. Note that the steps
can be performed in any order and do not need to be treated as
distinct. For exanple, keys can be tried as soon as they are found,
rather than collecting all the keys before trying any.

1. Collect the set of potentially applicable keys. Sources of keys
may i ncl ude:

* Keys supplied by the application protocol being used.

* Keys referenced by the "jku" (JW Set URL) Header Paraneter.

* The key provided by the "jwk" (JSON Web Key) Header Paraneter.
* The key referenced by the "x5u" (X 509 URL) Header Paraneter.

* The key provided by the "x5c" (X 509 Certificate Chain) Header
Par anet er .

* Other applicable keys available to the application

The order for collecting and trying keys fromdifferent key
sources is typically application dependent. For exanple,
frequently all keys froma one set of locations, such as |oca
caches, will be tried before collecting and trying keys from
ot her | ocations.

2. Filter the set of collected keys. For instance, sone
applications will use only keys referenced by "kid" (key ID) or

Jones, et al. Expires July 20, 2015 [Page 53]

Internet-Draft JSON Wb Signature (JW5) January 2015

"x5t" (X. 509 certificate SHA-1 thunmbprint) parameters. |If the
application uses the "alg" (algorithm, "use" (public key use),
or "key _ops" (key operations) paraneters, keys with keys with

i nappropriate values of those paraneters woul d be excl uded.
Additionally, keys nmight be filtered to include or exclude keys
with certain other nmenber values in an application specific
manner. For sone applications, no filtering will be applied.

3. Oder the set of collected keys. For instance, keys referenced
by "kid" (Key ID) or "x5t" (X.509 Certificate SHA-1 Thunbprint)
paraneters might be tried before keys with neither of these
val ues. Likewi se, keys with certain nenber val ues m ght be
ordered before keys with other menber values. For sone
applications, no ordering will be applied.

4. Make trust decisions about the keys. Signatures nade with keys
not neeting the application’s trust criteria would not be
accepted. Such criteria night include, but is not limted to the
source of the key, whether the TLS certificate validates for keys
retrieved fromURLs, whether a key in an X 509 certificate is
backed by a valid certificate chain, and other information known
by the application

5. Attenpt signature or MAC validation for a JW5 or decryption of a
JWE with some or all of the collected and possibly filtered
and/ or ordered keys. A linmt on the nunber of keys to be tried
m ght be applied. This process will normally term nate foll ow ng
a successful validation or decryption.

Note that it is reasonable for some applications to perform signature
or MAC validation prior to naking a trust decision about a key, since
keys for which the validation fails need no trust decision

Appendi x E. Negative Test Case for "crit" Header Paraneter

Conforming inplementations nust reject input containing critica

ext ensi ons that are not understood or cannot be processed. The

foll owing JW5 nust be rejected by all inplenmentations, because it
uses an extension Header Paraneter nane
"http://exanple.invalid/ UNDEFI NED' that they do not understand. Any
other similar input, in which the use of the val ue

"http://exanpl e.invalid/ UNDEFI NED" is substituted for any other
Header Paraneter name not understood by the inplenentation, nust also
be rejected.

Jones, et al. Expires July 20, 2015 [Page 54]

Internet-Draft JSON Wb Signature (JW5) January 2015

The JW5 Protected Header value for this JW5 is:

{"al g":"none",
"crit":["http://exanple.invalid/ UNDEFI NED'],
"http://exanple.invalid/ UNDEFI NED": true

}

The conplete JWS that nust be rejected is as follows (with Iine
breaks for display purposes only):

eyJhbGei G Jub25! | i WNGi Ai Y3JpdCl 6V JodHRWO 8vZXhhbXBsZS5j b20vVUSERU
ZJTKVEI | 0sDQogl mhOdHAGLY9I eGFt cGxl Lnm\vbS9VTKRFRkI ORUQ OnRy dWUNCNO.
RKFJTA.

Appendi x F. Detached Content

In sone contexts, it is useful integrity protect content that is not
itself contained in a JW5. One way to do this is create a JW5 in the
normal fashion using a representation of the content as the payl oad,
but then delete the payl oad representation fromthe JW5 and send
this nodified object to the recipient, rather than the JW5. Wen
usi ng the JW5 Conpact Serialization, the deletion is acconplished by
replacing the second field (which contai ns BASE64URL(JWS Payl oad))
value with the enpty string; when using the JW5 JSON Serialization
the deletion is acconplished by deleting the "payl oad" nember. This
met hod assunes that the recipient can reconstruct the exact payl oad
used in the JW5. To use the nodified object, the recipient
reconstructs the JWS by re-inserting the payl oad representation into
the nodified object, and uses the resulting JW5s5 in the usual nanner.
Note that this method needs no support fromJWS libraries, as
applications can use this nmethod by nodifying the inputs and outputs
of standard JWS libraries.

Appendi x G Acknow edgenent s

Solutions for signing JSON content were previously explored by Mgic
Si gnat ures [Magi cSignatures], JSON Sinple Sign [JSS], and Canvas
Applications [CanvasApp], all of which influenced this draft.

Thanks to Axel Nennker for his early inplenentation and feedback on
the JW5 and JWE specifications.

This specification is the work of the JOSE Worki ng G oup, which

i ncl udes dozens of active and dedicated participants. |n particular
the follow ng individuals contributed ideas, feedback, and wording
that influenced this specification

Jones, et al. Expires July 20, 2015 [Page 55]

Internet-Draft JSON Wb Signature (JW5) January 2015

Dirk Bal fanz, Richard Barnes, Brian Canpbell, Alissa Cooper, Breno de
Medeiros, Stephen Farrell, Dick Hardt, Joe Hildebrand, Jeff Hodges,
Russ Housl ey, Ednmund Jay, Tero Kivinen, Yaron Y. CGoland, Ben Laurie,
Ted Lenon, Janes Manger, Matt M|l er, Kathleen NMriarty, Tony
Nadal i n, Hi deki Nara, Axel Nennker, John Panzer, Ray Pol k, Emmanuel
Raviart, Eric Rescorla, Pete Resnick, Jim Schaad, Paul Tarjan, Hannes
Tschof eni g, and Sean Tur ner.
Ji m Schaad and Karen O Donoghue chaired the JOSE working group and
Sean Turner, Stephen Farrell, and Kathleen Mriarty served as
Security area directors during the creation of this specification.
Appendi x H Document Hi story
[[to be renoved by the RFC Editor before publication as an RFC]]
-41
0 Changed nore instances of "reject"” to "consider to be invalid".

o Sinplified the wording of a Message Signature or MAC Conputation
st ep.

-40
o Cdarified the definitions of UTF8(STRING and ASCI | (STRI NG .

0 Stated that line breaks are for display purposes only in places
where this disclainmer was needed and mi ssing.

-39
0 Updated the reference to draft-ietf-uta-tls-bcp.
-38

0 Replaced uses of the phrases "JW5 object” and "JWE object” with
"JWS' and "JWE".

o0 Added nenber nanes to the JW5 JSON Seri alization Overvi ew.
0 Applied other mnor editorial inprovenents.
-37

0 Updated the TLS requirenents | anguage to only require
i mpl ementations to support TLS when they support features using

Jones, et al. Expires July 20, 2015 [Page 56]

Internet-Draft JSON Wb Signature (JW5) January 2015

TLS.

0 Updated the | anguage about integrity protecting Header Parameters
when used in a trust decision.

0 Restricted algorithmnanes to using only ASCI| characters.

0 \When describing actions taken as a result of validation failures,
changed statenents about rejecting the JW5 to statenents about
considering the JWs to be invalid.

0 Added the CRT paraneter values to exanple RSA private key
representations.

0 Updated the exanple I ANA registration request subject line.

o Defined a flattened JW5 JSON Seri alization syntax, which is
optinmized for the single digital signature or MAC case.

o Cdarified where white space and |ine breaks may occur in JSON
obj ects by referencing Section 2 of RFC 7159.

o0 Specified that registration reviews occur on the
jose-reg-review@etf.org mailing list.

-35

0 Addressed AppsDir reviews by Ray Pol k.

0 Used real values for exanples in the | ANA Registration Tenpl ate.
-34

0 Addressed | ESG review comments by Ali ssa Cooper, Pete Resnick
Ri chard Barnes, Ted Lenon, and Stephen Farrell.

0 Addressed Gen-ART review conments by Russ Housl ey.
0 Referenced RFC 4945 for PEM certificate delimter syntax.
-33

0 Noted that certificate thunbprints are al so sonetimes known as
certificate fingerprints.

Jones, et al. Expires July 20, 2015 [Page 57]

Internet-Draft JSON Wb Signature (JW5) January 2015

-31

-30

-29

-28

Jones,

Added an informative reference to draft-ietf-uta-tls-bcp for
recomendati ons on inproving the security of software and services
usi ng TLS

Changed the registration review period to three weeks.

Acknowl edged additional contributors.

Addr essed Gen- ART revi ew comments by Russ Housl ey.

Addr essed secdir review comments by Tero Kivinen, Stephen Kent,
and Scott Kelly.

Repl aced the term Pl ai ntext JW5 with Unsecured JWS.

Rewor ded t he | anguage about JWS inpl enentations ignoring the "typ"
and "cty" paraneters, explicitly saying that their processing is
perfornmed by JW5 applications.

Added addi tional guidance on ciphersuites currently considered to
be appropriate for use, including a reference to a recent update
by the TLS worki ng group.

Added subsection headings within the Overview section for the two
serializations.

Added references and cleaned up the reference syntax in a few
pl aces.

Applied minor wordi ng changes to the Security Considerations
section and nmade other local editorial inprovenents.

Repl aced the terns JW5 Header, JWE Header, and JWI Header with a
singl e JOSE Header termdefined in the JWS specification. This
al so enabl ed a single Header Paraneter definition to be used and
reduced ot her areas of duplication between specifications.

et al. Expires July 20, 2015 [Page 58]

Intern

-27

-25
(0]
-24
[0}
-23

(0]

Jones,

et-Draft JSON Wb Signature (JW5) January 2015

Revi sed the introduction to the Security Considerations section

Al so introduced additional subsection headings for security
considerations itenms and al so noved a security consideration item
here fromthe JWA draft.

Added text about when applications typically would and woul d not
use "typ" and "cty" header paranmeters

Added t he "x5t#S256" (X. 509 Certificate SHA-256 Thunbprint) header
par aneter.

Stated that any JSON i nputs not conforming to the JSON-text syntax
defined in RFC 7159 input MJST be rejected in their entirety.

Sinplified the TLS requirenents.

Ref erenced Section 6 of RFC 6125 for TLS server certificate
identity validation.

Descri bed potential sources of ambiguity in representing the JSON
objects used in the exanples. The octets of the actual UTF-8
representations of the JSON objects used in the exanples are
included to renove these anbiguities.

Added a smal |l anount of additional explanatory text to the
signature validation exanples to aid inplenenters.

Not ed that octet sequences are depicted using JSON array notation

Updat ed references, including to WBC specifications.

No changes were made, other than to the version nunber and date.

Updated the JSON reference to RFC 7159.

Clarified that the base64url encoding includes no |ine breaks,
white space, or other additional characters

et al. Expires July 20, 2015 [Page 59]

Internet-Draft JSON Wb Signature (JW5) January 2015

-22

0 Corrected RFC 2119 term nol ogy usage.

0 Replaced references to draft-ietf-json-rfc4627bis with RFC 7158.
-21

0 Applied review comments to the appendi x "Notes on Key Sel ection”,
addr essi ng i ssue #93.

0 Changed sone references frombeing normative to informative
addr essi ng i ssue #90.

0 Applied review comments to the JSON Serialization section
addressing i ssue #121

-20

0 Made term nol ogy definitions nore consistent, addressing issue
#165.

0 Restructured the JSON Serialization section to call out the
paraneters used in hanging lists, addressing issue #121

0 Described key filtering and refined other aspects of the text in
the appendi x "Notes on Key Sel ection", addressing issue #93.

0 Replaced references to RFC 4627 with draft-ietf-json-rfc4627bis,
addr essi ng i ssue #90.

-19

0 Added the appendi x "Notes on Validation Key Sel ection", addressing
i ssue #93.

0 Reordered the key sel ection paraneters.

-18

0 Updated the mandatory-to-inplenent (Mrl) |anguage to say that
applications using this specification need to specify what
serialization and serialization features are used for that

application, addressing issue #119.

0 Changes to address editorial and m nor issues #25, #89, #97, #110,
#114, #115, #116, #117, #120, and #184.

Jones, et al. Expires July 20, 2015 [Page 60]

Internet-Draft JSON Wb Signature (JW5) January 2015

0 Added and used Header Paraneter Description registry field.
-17

o0 Refined the "typ" and "cty" definitions to always be M ME Medi a
Types, with the omi ssion of "application/" prefixes recomended
for brevity, addressing issue #50.

0 Updated the mandatory-to-inplenment (M) |anguage to say that
gener al - purpose i npl enentati ons nust inplenment the single
si gnature/ MAC val ue case for both serializations whereas special -
pur pose inplenmentations can inplenent just one serialization if
that nmeets the needs of the use cases the inplenmentation is
designed for, addressing issue #119.

o Explicitly named all the | ogical conponents of a JW5 and defi ned
the processing rules and serializations in terns of those
components, addressing issues #60, #61, and #62

0 Replaced verbose repetitive phases such as "base64url encode the
octets of the UTF-8 representation of X' with mathematica
not ati on such as "BASE64URL(UTF8(X))".

o Terns used in multiple docunents are now defined in one place and
i ncorporated by reference. Sone lightly used or obvious terns
were al so removed. This addresses issue #58.

-16

0 Changes to address editorial and mnor issues #50, #98, #99, #102
#104, #106, #107, #111, and #112

-15

o Carified that it is an application decision which signatures,
MACs, or plaintext values nust successfully validate for the JW5
to be accepted, addressing issue #35.

0 Corrected editorial error in "ES512" exanpl e.

0 Changes to address editorial and mnor issues #34, #96, #100,
#101, #104, #105, and #106

-14
0 Stated that the "signature" paraneter is to be omtted in the JWs

JSON Serialization when its value would be enpty (which is only
the case for a Plaintext JW5).

Jones, et al. Expires July 20, 2015 [Page 61]

Internet-Draft JSON Wb Signature (JW5) January 2015

-13

(0]

Made all header paraneter val ues be per-signature/ MAC, addressing
i ssue #24.

-12

0

-11

Jones,

Clarified that the "typ" and "cty" header paraneters are used in
an application-specific manner and have no effect upon the JW5
processi ng.

Repl aced the M ME types "application/jws+json" and
"application/jws" with "application/jose+json" and
"application/jose".

Stated that recipients MIST either reject JWss with duplicate
Header Paranmeter Names or use a JSON parser that returns only the
I exically last duplicate nmenber nane.

Added a Serializations section with parallel treatnent of the JW5
Conpact Serialization and the JW5 JSON Serialization and al so
nmoved the former | nplenentation Considerations content there.

Added Key ldentification section.

For the JW5 JSON Serialization, enable header paraneter values to
be specified in any of three paraneters: the "protected" nenber
that is integrity protected and shared anong all recipients, the
"unprotected" nenmber that is not integrity protected and shared
anong all recipients, and the "header" menber that is not
integrity protected and specific to a particular recipient. (This
does not affect the JW5 Conpact Serialization, in which all header
paraneter values are in a single integrity protected JWE Header
val ue.)

Renmoved suggested conpact serialization for nultiple digita
si gnatures and/or MACs.

Changed the M ME type nane "application/jws-js" to
"application/jws+json", addressing issue #22

Ti ght ened the description of the "crit" (critical) header
par amet er .

Added a negative test case for the "crit" header paraneter

et al. Expires July 20, 2015 [Page 62]

Internet-Draft JSON Wb Signature (JW5) January 2015

-10

0 Added an appendi x suggesting a possi bl e conpact serialization for
JWBs with multiple digital signatures and/or MACs.

-09

0 Added JWS JSON Serialization, as specified by
draft-jones-jose-jws-json-serialization-04.

0 Registered "application/jws-js" MM type and "JW5-JS" typ header
par anet er val ue.

o Defined that the default action for header paranmeters that are not
understood is to ignore themunless specifically designated as
"MUST be understood" or included in the new "crit" (critical)
header paraneter list. This addressed issue #6.

0 Changed term"JW5 Secured Input" to "JWS Signing | nput".

0 Changed fromusing the term"byte" to "octet” when referring to 8
bit val ues.

0 Changed nenber nanme from"recipients" to "signatures" in the JWS
JSON Serialization.

0 Added conplete val ues using the JW5 Conpact Serialization for al
exanpl es.

-08

0 Applied editorial inprovenments suggested by Jeff Hodges and Hannes
Tschofenig. Many of these sinplified the term nol ogy used.

0o Carified statenents of the form"This header paraneter is
OPTI ONAL" to "Use of this header paranmeter is OPTI ONAL".

0 Added a Header Paraneter Usage Location(s) field to the | ANA JSON
Web Signature and Encryption Header Paraneters registry.

0 Added seriesinfo information to Internet Draft references.
-07
o Updated references.

-06

Jones, et al. Expires July 20, 2015 [Page 63]

Internet-Draft JSON Wb Signature (JW5) January 2015

0 Changed "x5c" (X.509 Certificate Chain) representation from being
a single string to being an array of strings, each containing a
singl e base64 encoded DER certificate value, representing el enents
of the certificate chain.

o Applied changes nade by the RFC Editor to RFC 6749’ s registry
| anguage to this specification

-05
0 Added statenent that "StringOrUR values are conpared as case-
sensitive strings with no transformati ons or canonicalizations

appl i ed".

0 Indented artwork elements to better distinguish themfromthe body
text.

- 04

0 Conpleted JSON Security Considerations section, including
consi derations about rejecting input with duplicate menber nanes.

0 Conpleted security considerations on the use of a SHA-1 hash when
computing "x5t" (x.509 certificate thunbprint) val ues.

0 Refer to the registries as the primary sources of defined val ues
and then secondarily reference the sections defining the initial
contents of the registries.

o Normatively reference XML DSIG 2.0 for its security
consi derati ons.

0 Added this | anguage to Registration Tenplates: "This nanme is case
sensitive. Nanes that match other registered nanes in a case
i nsensitive manner SHOULD NOT be accepted."”

0 Reference draft-jones-jose-jws-json-serialization instead of
draft-jones-json-web-signature-json-serialization

0 Described additional open issues.

o Applied editorial suggestions.

-03

0 Added the "cty" (content type) header paraneter for declaring type

i nformati on about the secured content, as opposed to the "typ"
(type) header paraneter, which declares type information about

Jones, et al. Expires July 20, 2015 [Page 64]

Internet-Draft JSON Wb Signature (JW5) January 2015

this object.
0 Added "Col lision Resistant Nanespace" to the termn nol ogy section
o0 Reference | TU. X690. 1994 for DER encodi ng.

0 Added an exampl e JW5 using ECDSA P-521 SHA-512. This has
particular illustrative value because of the use of the 521 bit
integers in the key and signature values. This is also an exanple
in which the payload is not a base64url encoded JSON obj ect.

0 Added an exanpl e "x5c" val ue.

o0 No longer say "the UTF-8 representation of the JW5 Secured | nput
(which is the same as the ASCI| representation)”. Just call it
"the ASCI| representation of the JW5 Secured I nput”.

0 Added Registration Tenplate sections for defined registries.

0 Added Registry Contents sections to popul ate registry val ues.

0 Changed nane of the JSON Web Signature and Encryption "typ" Val ues
registry to be the JSON Wb Si gnature and Encryption Type Val ues
registry, since it is used for nore than just values of the "typ"
par aneter.

0 Moved registries JSON Wb Signature and Encryption Header
Par aneters and JSON Wb Signature and Encryption Type Values to
the JW5 specification

o Numerous editorial inprovenments.

-02

o Carified that it is an error when a "kid" value is included and
no mat chi ng key is found.

0 Renoved assunption that "kid" (key ID) can only refer to an
asymetric key.

o Carified that JWss with duplicate Header Paranmeter Names MJUST be
rej ected.

o Carified the relationship between "typ" header paraneter val ues
and M ME types.

0 Registered application/jws MM type and "JWS" typ header
par anet er val ue.

Jones, et al. Expires July 20, 2015 [Page 65]

Internet-Draft JSON Wb Signature (JW5) January 2015

o Sinplified JWK terminology to get replace the "JW Key Object" and
"JWK Contai ner Qbject" terms with sinmply "JSON Wb Key (JWK)" and
"JSON Wb Key Set (JWK Set)" and to elimnate potential confusion
bet ween single keys and sets of keys. As part of this change, the
Header Parameter Name for a public key val ue was changed from
"jpk" (JSON Public Key) to "jwk" (JSON Wb Key).

0 Added suggestion on defining additional header parameters such as
"x5t #S256" in the future for certificate thunbprints using hash
al gorithms ot her than SHA-1.

0 Specify RFC 2818 server identity validation, rather than RFC 6125
(paralleling the sanme decision in the QAuth specs).

0 Ceneralized | anguage to refer to Message Authentication Codes
(MACs) rather than Hash-based Message Aut hentication Codes (HVACs)
unless in a context specific to HVAC al gorithns.

0 Reformatted to give each header paraneter its own section headi ng.

-01

o0 Moved definition of Plaintext JWss (using "alg":"none") here from
the JWI specification since this functionality is likely to be

useful in nore contexts that just for JWs.

0 Added "jpk" and "x5c" header parameters for including JW public
keys and X. 509 certificate chains directly in the header

o Carified that this specification is defining the JW Conpact
Serialization. Referenced the new JW5-JS spec, which defines the
JW5 JSON Serialization.

0 Added text "New header paraneters should be introduced sparingly
since an inplenentation that does not understand a paraneter MJST
reject the JWs".

o Carified that the order of the creation and validation steps is
not significant in cases where there are no dependenci es between
the inputs and outputs of the steps.

0 Changed "no canonicalization is performed" to "no canonicalization
need be perfornmed".

o Corrected the Magic Signatures reference.

0 WMade other editorial inprovenents suggested by JOSE working group
parti ci pants.

Jones, et al. Expires July 20, 2015 [Page 66]

Internet-Draft JSON Wb Signature (JW5) January 2015

-00

0 Created the initial |IETF draft based upon
draft-jones-json-web-signature-04 with no normative changes.

0 Changed term nology to no longer call both digital signatures and
HVACs "si gnat ures"
Aut hors’ Addresses

M chael B. Jones
M crosof t

Emai | : nbj @i crosoft. com

URI : http://self-issued.info/
John Bradl ey

Ping Identity

Enmail: ve7jtb@e7jtbh. com

URI : http://ww.thread-safe.conm
Nat Saki nmura

Nonmura Research Institute

Enmai | : n-sakinura@ri.co.jp
URI : http://nat.saki nura. org/

Jones, et al. Expires July 20, 2015 [Page 67]

