| NTERNET- DRAFT T. Herbert
I ntended Status: |nformational Facebook

February 29, 2016

Renot e checksum of fl oad for encapsul ation
draft-herbert-renotecsunoffl oad- 02

Abst ract

Thi s docunment describes renote checksum of fl oad for encapsul ation

whi ch is a nechani smthat provides checksum of fl oad of encapsul at ed
packets using rudimentary offl oad capabilities found in nost Network
Interface Card (NI C) devices. The outer header checksume.g. that in
UDP or CRE) is enabled in packets and, with some additional neta
information, a receiver is able to deduce the checksumto be set for
an inner encapsul ated packet. Effectively this offloads the

comput ation of the inner checksum Enabling the outer checksumin
encapsul ati on has the additional advantage that it covers nore of the
packet than the inner checksumi ncluding the encapsul ati on headers.

Status of this Meno

This Internet-Draft is submtted to |ETF in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may al so distribute working docunents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

The list of current Internet-Drafts can be accessed at
http://ww.ietf.org/lid-abstracts. htni

The list of Internet-Draft Shadow Directories can be accessed at
http://ww.ietf.org/shadow. htm

Copyright and License Notice

Her ber t Expi res Septenber 1, 2016 [Page 1]

| NTERNET DRAFT Renot e Checksum O f | oad

February 29, 2016

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. All rights reserved.

Thi s docunent

Provisions Relating to | ETF Docunents

(http://trustee.ietf.org/license-info)
publication of this docunent.
careful ly,
to this document.

is subject to BCP 78 and the | ETF Trust’'s Lega

in effect on the date of

Pl ease revi ew these docunents

as they describe your rights and restrictions with respect
Code Conponents extracted fromthis docunment nust

include Sinplified BSD License text as described in Section 4.e of

the Trust Legal

described in the Sinplified BSD License.

Tabl e of Contents

1

2
2

W W ww

Introduction . .
2 Checksum of f1 oad background

PWNRONNWNNNNR

The I nternet checksum

Transmt checksum of f| oad

2.1 Generic transmt offl oad

2.2 Local checksum of fl oad . .
2.3 Protocol specific transnit offload
Recei ve checksum of f| oad

3.1 CHECKSUM COWPLETE . .

3. 2 CHECKSUM UNNECESSARY .

Renot e checksum of f| oad

Option fornat

Transmit operation .

Recei ver operation .

Interaction with TCP segnentatlon offload

4 Securlty Consi der ati ons
| ANA Consi derations .
6 References

5

6
6

1
2

Nor mat i ve References
I nformati ve References

Aut hors’ Addresses

Her bert

Expi res Septenber 1, 2016

Provi sions and are provided without warranty as

CQOOVWOWOVWOVWOWOO~NOOTOOOOOUITOABARMWWW

B

[Page 2]

| NTERNET DRAFT Renot e Checksum O f | oad February 29, 2016

1

I nt roducti on

Checksum offload is a capability of NICs where the checksum
calculation for a transport |ayer packet (TCP, UDP, etc.) is
perfornmed by a device on behalf of the host stack. Checksum of fl oad
is applicable to both transnmit and receive, where on transnit the
device wites the conputed checksuminto the packet, and on receive
the device provides the conmputed checksum of the packet or an

i ndi cation that specific transport checksuns were validated. This
feature saves CPU cycles in the host and has becone ubiquitous in
nodern NI Cs.

A host may both source transport packets and encapsul ate them for
transit over an underlying network. In this case checksumoffload is
still desirable, but now nust be done on an encapsul ated packet. Many
depl oyed NICs are only capabl e of providing checksum of fload for
sinmple TCP or UDP packets. Such NI Cs typically use protocol specific
mechani sms where they nust parse headers in order to perform checksum
cal cul ations. Updating these NICs to perform checksum of fl oad for
encapsul ati on requires new parsing logic which is likely infeasible
or at cost prohibitive.

In this specification we describe an alternative that uses

rudi nentary NI C offl oad features to support offl oadi ng checksum

cal cul ation of encapsul ated packets. In this design, the outer
checksumis enabled on transnmit, and nmeta information indicating the
| ocation of the checksumfield being offloaded and its starting point
for conputation are sent with a packet. On receipt, after the outer
checksumis verified, the receiver sets the of fl oaded checksumfield
per the conputed packet checksum and the neta data.

2 Checksum of f| oad backgr ound

In this section we provide sonme background into checksum of fl oad
operati on.

2.1 The Internet checksum

The Internet checksum [RFCO791] is used by several Internet protocols
including | P [RFC1122], TCP [RFC0793], UDP [RFCO768] and GRE

[RFC2784]. Efficient checksumcalculation is critical to good
performance [RFC1071], and the mathenatical properties are useful in
increnmental ly updating checksuns [RFC1624]. An early approach to

i mpl ementi ng checksum of fl oad in hardware is described in [RFC1936].

TCP and UDP checksuns cover a pseudo header which is conposed of the
source and destination addresses of the corresponding | P packet,
upper |ayer packet length, and protocol. The checksum pseudo header

Her ber t Expi res Septenber 1, 2016 [Page 3]

| NTERNET DRAFT Renot e Checksum O f | oad February 29, 2016

is defined in [RFCO768] and [RFC0793] for IPv4, and in [RFC2460] for
| Pv6.

2.2 Transmt checksum of f| oad

In transmt checksum of fl oad, a host network stack defers the
calculation and setting of a transport checksumin the packet to the
device. A device may provide checksum offl oad only for specific
protocols, or may provide a generic interface. In either case,
support for only one of fl oaded checksum per packet is typical

When using transmt checksum of fl oad, a host stack nmust initialize
the checksumfield in the packet. This is done by setting to zero
(GRE) or to the bitw se not of the pseudo header (UDP or TCP). The
devi ce proceeds by conputing the packet checksumfromthe start of
the transport header through to the end of the packet. The bitw se
not of the resulting value is witten in the checksumfield of the
transport packet.

2.2.1 CGeneric transmt offload

A device can provide a generic interface for transmt checksum

of fl oad. Checksum offload is enabled by setting two fields in the
transmt descriptor for a packet: start offset and checksum of f set.
The start offset indicates the byte in the packet where the checksum
cal cul ation should start. The checksum of fset indicates the offset in
t he packet where the checksumvalue is to be witten.

The generic interface is protocol agnostic, however only supports one
of fl oaded checksum per packet. Wiile it is conceivable that a NIC
coul d provide offload for nore checksuns by defining nore than one
checksum start/offset pair in the transnit descriptor, a nore genera
and efficient solution is Local Checksum O fl oad.

2.2.2 Local checksum of fl oad

Local Checksum Offload [LCO (or LCO is a technique for efficiently
computing the outer checksum of an encapsul at ed dat agram when the

i nner checksumis due to be offl oaded. The ones-conpl enent sum of a
correctly checksunmed TCP or UDP packet is equal to the sumof the
pseudo header, since everything el se gets 'cancelled out’ by the
checksum field. This property holds since the sum was conpl enent ed
before being witten to the checksumfield. Mre generally, this
holds in any case where the Internet one’ s conpl enent checksumis
used, and thus any checksumthat generic transmt offload supports.
That is, if we have set up transmt checksumoffload with a
start/offset pair, we know that after the device has filled in that
checksum t he one’s conpl enent sum from checksum start to the end of

Her ber t Expi res Septenber 1, 2016 [Page 4]

| NTERNET DRAFT Renot e Checksum O f | oad February 29, 2016

the packet will be equal to whatever value is set in the checksum
field beforehand. This property allows conputing the outer checksum
wi t hout considering at the payl oad per the algorithm

1) Conpute the checksum fromthe outer packet’'s checksum start
offset to the inner packet’'s checksum start offset.

2) Add the bit-wise not of the pseudo header checksum for the
i nner packet.

3) The result is the checksumfromthe outer packet’'s start offset
to the end of the packet. Taking into account the pseudo header
for the outer checksumall ows the outer checksumfield to be
set without offload processing.

Step 1) requires that sone checksumcal culation is perfornmed on the
host stack, however this is only done over sone portion of packet
headers which is typically rmuch snaller than the payl oad of the
packet .

LCO can be used for nested encapsul ations; in this case, the outer
encapsul ation layer will sumover both its own header and the
"mddl e header. Thus, if the device has the capability to offl oad
an inner checksumin encapsul ati on, any nunber of outer checksuns can
be efficiently calculated using this technique.

2.2.3 Protocol specific transmt offload

Sone devi ces support transmt checksumoffload for very specific
protocol s. For instance, many |egacy devices can only perform
checksum of fl oad for UDP/I P and TCP/ I P packets. These devi ces parse
transmtted packets in order to determ ne the checksumstart and
checksum of fset. They nmay al so ignore the value in the checksumfield
by setting it to zero for checksum conputation and conputing the
checksum of the pseudo header thensel ves.

Protocol specific transmit offload is linmited to the protocols a
devi ce supports. To support checksum of fl oad of an encapsul at ed
packet, a device nust be a able to parse the encapsul ation | ayer in
order to |locate the inner packet.

2.3 Recei ve checksum of f| oad

Upon receiving a packet, a device may perform a checksum cal cul ati on
over the packet or part of the packet depending on the protocol. A
result of this calculation is returned in the meta data of the
recei ve descriptor for the packet. The host stack can apply the
result in verifying checksuns as it processes the packet. The intent

Her ber t Expi res Septenber 1, 2016 [Page 5]

| NTERNET DRAFT Renot e Checksum O f | oad February 29, 2016

is that the offload will obviate the need for the networking stack to
performits own checksum cal cul ati on over the packet.

There are two basic nethods of receive checksum of f| oad:
CHECKSUM COVPLETE and CHECKSUM UNNECESSARY.

2. 3.1 CHECKSUM COWPLETE

A device may cal cul ate the checksum of a whol e packet (layer 2

payl oad) and return the resultant value to the host stack. The host
stack can subsequently use this value to validate checksuns in the
packet. As the packet is parsed through various |ayers, the
cal cul ated checksumis updated to correspond to each | ayer (subtract
out checksum for preceding bytes for a given header).

CHECKSUM COVPLETE i s protocol agnostic and does not require any
protocol awareness in the device. It works for any encapsul ati on and
supports an arbitrary nunber of checksuns in the packet.

2. 3. 2 CHECKSUM_UNNECESSARY

A device may explicitly validate a checksumin a packet and return a
flag in the receive descriptor that a transport checksum has been
verified (host perform ng checksum conputation is unnecessary). Sone
devi ces may be capabl e of validating nore than one checksumin the
packet, in which case the device returns a count of the nunber
verified. Typically, only a positive signal is returned, if the
device was unable to validate a checksumit does not return any
informati on and the host will generally performits own checksum
computation. |If a device returns a count of validations, this nust
refer to consecutive checksuns that are present and validated in a
packet (checksuns cannot be skipped).

CHECKSUM UNNECESSARY is protocol specific, for instance in the case
of UDP or TCP a device needs to consider the pseudo header in
checksum val i dation. To support checksum of fl oad of an encapsul at ed
packet, a device nust be able to parse the encapsul ation |ayer in
order to locate the inner packet.

3.0 Renote checksum of f| oad
Thi s section describes the renote checksum of fl oad mechanism This is
primarily useful w th UDP based encapsul ati on where the UDP checksum
is enabled (not set to zero on transnit). The same techni que coul d be
applied to GRE encapsul ati on where the GRE checksumis enabl ed.

3.1 Option fornmat

Her ber t Expi res Septenber 1, 2016 [Page 6]

| NTERNET DRAFT Renot e Checksum O f | oad February 29, 2016

Renot e checksum of fl oad requires the sending of optional data with an
encapsul ated packet. This data is a pair of checksumstart and
checksum of fset val ues. More than one offl oaded checksum coul d be
supported if nultiple pairs are sent.

The |l ogical data format for renpte checksum offload is:

0 1 2 3
01234567890123456789012345678901
B T i S S i S T h T i S S S S e
| Checksum st art | Checksum of f set |
B E e r e s i s i o T T s S S S S 2

0 Checksum start: starting offset for checksum conputation
relative to the start of the encapsul ated packet. This is
typically the offset of a transport header (e.g. UDP or TCP)

0 Checksum offset: O fset relative to the start of the
encapsul at ed packet where the derived checksumvalue is to be
witten. This typically is the offset of the checksumfield in
the transport header (e.g. UDP or TCP).

Support for renote checksum offload with specific encapsul ation
protocols is outside the scope of this docunent, however any
encapsul ati on format that supports sone reasonable form of optiona
meta data should be amenable. In Generic UDP Encapsul ation [GUE] this
woul d entail defining an optional field, in Geneve [GENEVE] a TLV
woul d be defined, for NSH [NSH the neta data can either be in a
service header or within a TLV. In any scenario, what the offsets in
the meta data are relative to nmust be unanbi guous.

3.2 Transnit operation
The typical actions to set renote checksumoffl oad on transmt are:

1) Transport |ayer creates a packet and indicates in interna
packet neta data that checksumis to be offloaded to the NIC
(normal transport |ayer processing for checksum offl oad). The
checksumfield is populated with the bitw se not of the
checksum of the pseudo header or zero as appropriate.

2) Encapsul ation layer adds its headers to the packet including
the offload nmeta data. The start offset and checksum of fset are
set accordingly.

3) Encapsul ation | ayer arranges for checksum offl oad of the outer
header checksum (e.g. UDP).

Her ber t Expi res Septenber 1, 2016 [Page 7]

| NTERNET DRAFT Renot e Checksum O f | oad February 29, 2016

4) Packet is sent to the NIC. The NIC will performtransmt
checksum of fl oad and set the checksumfield in the outer
header. The inner header and rest of the packet are transnmitted
wi t hout nodification.

3.3 Receiver operation

The typical actions a host receiver does to support renote checksum
of fl oad are:

1) Receive packet and validate outer checksum foll ow ng nornal
processing (e.g. validate non-zero UDP checksunj.

2) Deduce full checksumfor the IP packet. This is directly
provided if device returns the packet checksumin
CHECKSUM COWVPLETE. |f the device returned CHECKSUM UNNECESSARY
then the conpl ete checksumcan be trivially derived as either
zero (GRE) or the bitwi se not of the outer pseudo header (UDP).

3) Fromthe packet checksum subtract the checksum conputed from
the start of the packet (outer |IP header) to the offset in the
packet indicted by checksumstart in the neta data. The result
is the deduced checksumto set in the checksumfield of the
encapsul ated transport packet.

I n pseudo code

csum initialized to checksum conputed fromstart (outer IP
header) to the end of the packet

start _of packet: address of start of packet

encap_payl oad_offset: relative to start_of _packet

csumstart: value fromneta data

checksum(start, len): function to conmpute checksum from start
address for len bytes

csum - = checksum(start_of packet, encap_payl oad of fset +
csum start)

4) Wite the resultant checksum value into the packet at the
of fset provided by checksumoffset in the neta data.

In pseudo code
csum of fset: offset of checksumfield

*(start_of packet + encap_payl oad offset +
csum of fset) = csum

Her ber t Expi res Septenber 1, 2016 [Page 8]

| NTERNET DRAFT Renot e Checksum O f | oad February 29, 2016

5)

Checksumis verified at the transport |ayer using normnal
processing. This should not require any checksum conputation
over the packet since the conpl ete checksum has al ready been
provi ded.

3.4 Interaction with TCP segnentation offl oad

Renot e checksum of fl oad may be usefu

(TSO

with TCP Segnentation O fl oad
in order to avoid host checksum cal cul ati ons at the receiver

This can be inplemented on a transnmitter as foll ows:

1)

2)

3)

Host stack prepares a |large segnent for transmn ssion including
addi ng of encapsul ati on headers and the renote checksum option

which refers to the encapsul ated transport checksumin the
| arge segnent.

TSO is perfornmed by the device taking encapsulation into
account. The outer checksumis conputed and witten for each
packet. The inner checksumis not conputed, and the
encapsul ati on header (including checksum meta data) is
replicated for each packet.

At the receiver renote checksum of fl oad processing occurs as
normal for each packet.

4 Security Considerations

Renot e checksum of fl oad shoul d not inpact protocol security.

5 1 ANA Consi derations

There are no | ANA considerations in this specification. The renote
checksum of fl oad neta data may require an option nunber or type in
specific encapsulation formats that support it.

6 References

6.1 Nornmtive References

[RFCO791] Postel, J., "Internet Protocol", STD 5, RFC 791, Septenber

1981.

[RFC1122] Braden, R, Ed., "Requirenents for Internet Hosts -

Conmruni cati on Layers", STD 3, RFC 1122, Cctober 1989.

[RFCO793] Postel, J., "Transnission Control Protocol"”, STD 7, RFC

Her bert

793, Septenber 1981

Expi res Septenber 1, 2016 [Page 9]

| NTERNET DRAFT Renot e Checksum O f | oad February 29, 2016

[RFCO768]

[RFC2784]

[RFC2460]

Postel, J., "User Datagram Protocol", STD 6, RFC 768,
August 1980.

Farinacci, D., Li, T., Hanks, S., Myer, D., and P. Traina,
"Generic Routing Encapsulation (GRE)", RFC 2784, March
2000.

Deering, S. and R Hi nden, "Internet Protocol, Version 6
(I'Pv6) Specification", RFC 2460, Decenber 1998.

6.2 Informative References

[RFC1071]

[RFC1624]

[RFC1936]

[GUE]

[GENEVE]

[NSH]

[LCC]

Braden, R, Borman, D., and C. Partridge, "Conputing the
I nternet checksunt, RFC1071, Septenber 1988.

Ri j singhani, A, Ed., "Conputation of the Internet Checksum
via Increnmental Update", RFC1624, May 1994.

Touch, J. and B. Parham "Inplenenting the |nternet
Checksum i n Hardware", RFC1936, April 1996

Herbert, T., Yong, L, and Zia, O, "Generic UDP
Encapsul ation". draft-ietf-nvo3-gue-02

G oss, J. and Gango, |., "Geneve: Generic Network
Virtualization Encapsul ati on", draft-ietf-nvo3-geneve-01,
January 1, 2016

Quinn, P. and El zur, U, "Network Service Header", draft-
ietf-sfc-nsh-02.txt, January 19, 2016

Cree, E. Checksum O floads in the Linux Networking Stack
Li nux docunent ati on
Docunent at i on/ net wor ki ng/ checksum of f | oads. t xt

Aut hors’ Addr esses

Tom Her bert

Facebook

1 Hacker Wy
Menl o Park, CA

us

EMui | : tom@herbert!| and. com

Her bert

Expi res Septenber 1, 2016 [Page 10]

