
SIPCORE Working Group R. Shekh-Yusef
Internet-Draft Avaya
Intended Status: Standards Track October 10, 2014
Expires: April 13, 2015

 Key-Derivation Authentication Scheme
 draft-yusef-sipcore-key-derivation-00

Abstract

 This document defines a Key-Derivation Authentication Scheme, based
 on the PBKDF2 Key Derivation Function (KDF), that could be used with
 the challenge-response authentication framework used by SIP to
 authenticate the user.

 The scheme allows two parties to establish a mutually authenticated
 communication channel based on a shared password, without ever
 sending the password on the wire.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the

Shekh-Yusef, et. al. Expires April 13, 2015 [Page 1]

Internet-Draft Key-Derivation Auth Scheme October 10, 2014

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1 Introduction . 3
 1.1 Terminology . 3
 2 Operations Overview . 3
 3 The Challenge . 5
 4 The Response . 6
 5 The Confirmation . 7
 6 Security Considerations . 7
 7 IANA Considerations . 7
 8. Acknowledgments . 7
 9 References . 8
 9.1 Normative References 8
 9.2 Informative References 8
 Authors’ Addresses . 8

Shekh-Yusef, et. al. Expires April 13, 2015 [Page 2]

Internet-Draft Key-Derivation Auth Scheme October 10, 2014

1 Introduction

 SIP [RFC3261] uses the Digest Authentication schemes with the general
 framework for access control and authentication, which is used by a
 server to challenge a client request and by a client to provide
 authentication information.

 The challenge-response framework relies on passwords chosen by users
 which usually have low entropy and weak randomness, and as a result
 cannot be used as cryptographic keys.

 While cannot be used directly as cryptographic keys, the passwords
 can still be used to derive cryptographic keys, by using Key
 Derivation Function (KDF).

 This document defines a new scheme, Key-Derivation Authentication
 Scheme, to replace the Digest scheme, that could be used with the
 challenge-response authentication framework used by SIP to
 authenticate the user.

 The Key-Derivation scheme ensures that the password is never sent on
 the wire, and allows for a better secure storage of passwords, as it
 significantly increases the amount of computation needed to derive a
 key from a password in a dictionary attack.

 The Key-Derivation scheme creates a master-key, that is derived from
 the password, which has a much better entropy than the password, to
 calculate a proof-of-possession for the shared password.

1.1 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2 Operations Overview

 When an account is created, the server uses a KDF, a salt, a key
 length, and an iteration count to create a master-key based on the
 user’s password, as defined in [NIST-KD]. The server then stores the
 following information in the database:

 o username
 o iteration count
 o salt
 o master-key

Shekh-Yusef, et. al. Expires April 13, 2015 [Page 3]

Internet-Draft Key-Derivation Auth Scheme October 10, 2014

 The following flow describes at a high-level the flow of messages
 based on the challenge-response framework:

 Client Server
 --
 | |
 | |
 | Initial-Request |
 | username@domain.com |
 |--->|
 | |
 | |
 | o pop = HMAC-SHA256(master-key, digest-string + nonce)
 | |
 | Challenge |
 | kdf, salt, key-size, iteration-count, nonce, pop
 |<---|
 | |
 | |
 o master-key = kdf(password, salt, iteration-count, key-size) |
 o Client verifies the pop sent by the server. |
 o pop = HMAC-SHA256(master-key, digest-string + nonce) |
 | |
 | Response |
 | username@domain.com, nonce, pop |
 |--->|
 | |
 | |
 | o Server verifies the pop sent by the client
 | |
 | Confirmation |
 | [token, expires,...] |
 |<---|
 | |
 | |
 | |

 With the challenge-response framework the initial request from the
 client is sent without providing any credentials.

 When the server receives the initial request from the client, the
 server fetches the master-key associated with the username provided
 in the request. The server then uses the master-key to create a
 proof-of-possession (pop) using an HMAC-Hash function with the
 digest-string and nonce from the challenge.

Shekh-Yusef, et. al. Expires April 13, 2015 [Page 4]

Internet-Draft Key-Derivation Auth Scheme October 10, 2014

 The digest-string, as defined in Section 9 of [RFC4474], is a list of
 SIP headers that must be hashed to create the proof-of-possession
 defined in this document.

 The server then challenges the request and includes the Key-
 Derivation scheme with a kdf, a salt, a key-size, an iteration-count,
 a nonce, and pop.

 To be able to provide credentials to the server the client must
 create the master-key as was done by the server when the account was
 initially created as described above using the parameters provided by
 the server in the challenge. The client will then verify the pop sent
 by the server using its master-key, the digest-string of the incoming
 request, and the nonce provided in the challenge.

 The client then creates a proof-of-possession (pop) using an HMAC-
 Hash function and the master-key using the digest-string from the
 response concatenated with the nonce to be sent to the server. A
 valid response from the client will contain the Key-Derivation
 scheme, a nonce, and the pop parameter.

 When the server receives the response, it verifies the pop, and if
 that is valid, it sends a confirmation.

 At the end of the above process, the client and the server would have
 established a communication channel after completing a mutual
 authentication using the same master-key on both sides.

 Subsequent requests will be able to use the master-key to create pop
 to prove possession of the credentials.

3 The Challenge

 When a server receives a request from a client, and an acceptable
 authorization is not sent, the server challenges the originator to
 provide credentials by rejecting the request and include the Key-
 Derivation scheme.

 The challenge should include the following parameters:

 KDF (REQUIRED)

 A deterministic algorithm used to derive cryptographic keys from a
 shared secret like a password. A good example of such a function
 is HMAC-SHA2-256.

Shekh-Yusef, et. al. Expires April 13, 2015 [Page 5]

Internet-Draft Key-Derivation Auth Scheme October 10, 2014

 Iterations (OPTIONAL)
 The number of iterations that the KDF will be applied on the salt
 and password. The default value for this parameter is 1000.

 Salt (REQUIRED)

 A random value that is used to make sure that the same password
 will always be hashed differently. The salt MUST be generated
 using an approved Random Number Generator.

 Key-Size (REQUIRED)
 The size of the derived key in bits.

 nonce (REQUIRED)
 A server-specified value that should be uniquely generated each
 time a challenge is made.

 pop (REQUIRED)

 The pop is derived from applying the HMAC-SHA256 on digest-string
 and a nonce using the master-key, as follows:

 pop = HMAC-SHA256(master-key, digest-string + nonce)

4 The Response

 The client first creates the master-key based on the parameters
 provided by the server in the challenge.

 The client then uses the master-key to verify the pop sent by the
 server; if that is successful, the client then uses the master-key to
 create a pop for the response to be sent to the server.

 The client is expected to retry the request, passing the nonce and
 pop with the Key-Derivation scheme.

 nonce (REQUIRED)
 A client-specified value that should be uniquely generated each
 time a response is made.

Shekh-Yusef, et. al. Expires April 13, 2015 [Page 6]

Internet-Draft Key-Derivation Auth Scheme October 10, 2014

 pop (REQUIRED)

 The pop is derived from applying the HMAC-SHA256 on digest-string
 and a nonce using the master-key, as follows:

 pop = HMAC-SHA256(master-key, digest-string + nonce)

5 The Confirmation

 The server verifies the proof-of-possession sent by the client. If
 the verification is successful, the server sends a confirmation to
 the client; otherwise, the server declines the request.

6 Security Considerations

 <Security considerations text>

7 IANA Considerations

 <IANA considerations text>

8. Acknowledgments

 <Acknowledgments text>

Shekh-Yusef, et. al. Expires April 13, 2015 [Page 7]

Internet-Draft Key-Derivation Auth Scheme October 10, 2014

9 References

9.1 Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC4474] Peterson, J. and C. Jennings, "Enhancements for
 Authenticated Identity Management in the Session
 Initiation Protocol (SIP)", RFC 4474, August 2006.

 [NIST-KD] "NIST Special Publication 800-132 - Recommendations for
 Password-Based Key Derivations", December 2010.

 http://csrc.nist.gov/publications/nistpubs/800-132/nist-
 sp800-132.pdf

9.2 Informative References

Authors’ Addresses

 Rifaat Shekh-Yusef
 Avaya
 250 Sydney Street
 Belleville, Ontario
 Canada

 Phone: +1-613-967-5267
 Email: rifaat.ietf@gmail.com

Shekh-Yusef, et. al. Expires April 13, 2015 [Page 8]

