
SIPCORE Working Group R. Shekh-Yusef, Ed.
INTERNET-DRAFT Avaya
Intended Status: Standards Track V. Pascual
Expires: April 17, 2015 Quobis
 October 14, 2014

 The Session Initiation Protocol (SIP) OAuth
 draft-yusef-sipcore-sip-oauth-01

Abstract

 This document defines an authorization framework for SIP that is
 based on the OAuth 2.0 framework, and adds a simple identity layer on
 top of that, based on the OpenID Connect Core 1.0, to enable Clients
 to verify the identity of the End-User based on the authentication
 performed by an Authorization Server, as well as to obtain basic
 profile information about the End-User.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Shekh-Yusef Expires April 17, 2015 [Page 1]

INTERNET DRAFT SIP OAuth October 14, 2014

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1 Introduction . 3
 1.1 Terminology . 3
 1.2 Definitions . 4
 1.3 Roles . 4
 1.4 ID Token . 5
 2 Benefits . 5
 2.1 Challenges . 5
 2.2 Single Sign-On . 5
 2.3 Level of Service . 5
 2.4 3rd Party Authorization 6
 3 Authorization Code Grant type 6
 3.1 Enterprise SSO Use Case 6
 3.2 Justifications . 6
 3.2 Operations Overview . 7
 3.3 Registration . 9
 3.4 Authorization . 10
 3.5 Acquiring ID Token . 11
 3.6 Token Refresh . 12
 3.7 Authenticated Requests 12
 3.8 Services . 12
 4 Resource Owner Password Credentials Grant type 13
 4.1 SIP SSO . 13
 4.2 Operations Overview . 13
 4.3 Registration and Acquiring Tokens 15
 4.4 Discarding Credentials 16
 4.5 Token Refresh . 16
 4.6 Authenticated Requests 16
 4.7 Examples . 17
 5 Client Credentials Grant 18
 5.1 Registration . 18
 5.2 Authorization . 19
 6 Outbound . 20
 6.1 Authorization Code Grant type 20
 6.2 Resource Owner Password Credentials Grant type 20

Shekh-Yusef Expires April 17, 2015 [Page 2]

INTERNET DRAFT SIP OAuth October 14, 2014

 6.3 Client Credentials Grant type 20
 7 Security Considerations . 21
 8 IANA Considerations . 21
 9 Acknowledgments . 21
 10 References . 21
 10.1 Normative References 21
 10.2 Informative References 21
 Authors’ Addresses . 22

1 Introduction

 The SIP protocol [RFC3261] uses the framework used by the HTTP
 protocol for authenticating users, which is a simple challenge-
 response authentication mechanism that allows a server to challenge a
 client request and allows a client to provide authentication
 information in response to that challenge.

 The SIP protocol does not have an authorization framework to allow
 the system to control access to various services provided by the
 system.

 OAuth 2.0 [RFC6749] defines a token based authorization framework to
 allow clients to access resources on behalf of their user. It also
 defines four types of authorization grants, which the client uses to
 request the access token.

 The OpenID Connect 1.0 [OPENID] specifications defines a simple
 identity layer on top of the OAuth 2.0 protocol, which enables
 Clients to verify the identity of the End-User based on the
 authentication performed by an Authorization Server, as well as to
 obtain basic profile information about the End-User.

 This document defines an authorization framework for SIP that is
 based on the OAuth 2.0 framework, and adds the identity layer on top
 of that, based on the OpenID Connect Core 1.0 specification.

1.1 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Shekh-Yusef Expires April 17, 2015 [Page 3]

INTERNET DRAFT SIP OAuth October 14, 2014

1.2 Definitions

 Types of SIP services:
 o Basic SIP Services: make/receive call, transfer, call forward,
 etc.
 o Advanced SIP Services: services provided by SIP application
 servers, e.g. Voice Mail, Conference Services, Video Services,
 Presence, IM, ...

 Single Sign-On (SSO)
 SSO is a property that allows the user to be authenticated once
 and as a result have access to multiple services in the system.

 Authentication
 The process of verifying the identity of a user trying to get
 access to some network services.

 Authorization
 The process of controlling a user access to network services and
 the level of service provided to the user.

1.3 Roles

 resource owner
 An entity capable of granting access to a protected resource. When
 the resource owner is a person, it is referred to as an end-user.

 resource server
 The server hosting the protected resources, capable of accepting
 and responding to protected resource requests using access tokens.

 OAuth 2.0 client
 An application making protected resource requests on behalf of the
 resource owner and with its authorization. The term "client" does
 not imply any particular implementation characteristics (e.g.,
 whether the application executes on a server, a desktop, or other
 devices).

 SIP client
 An application making requests to access SIP services on behalf of
 the end-user.

 authorization server
 The server issuing access tokens to the OAuth 2.0 client after
 successfully authenticating the resource owner and obtaining
 authorization, or the server issuing ID tokens to the SIP client
 after successfully authenticating the end-user.

Shekh-Yusef Expires April 17, 2015 [Page 4]

INTERNET DRAFT SIP OAuth October 14, 2014

 proof-of-possession (pop)
 A hash used by one party to prove to another party that it is in
 possession of some shared credentials, without sending the
 credentials on the wire.

1.4 ID Token

 RFC6749 defines two types of tokens: access token and refresh token.
 This document defines a new token: ID Token as defined in [OPEN-ID].

 ID tokens are credentials used by the SIP client to access SIP
 services on behalf of the end-user.

 An ID token is a string representing an authorization issued to the
 SIP client. The string is usually opaque to the SIP client. Tokens
 represent specific scopes and durations of access, granted by the SIP
 system, and enforced by the SIP proxy, SIP application servers, and
 the authorization server.

2 Benefits

 This section describes the benefit of this authorization framework:

2.1 Challenges

 With the existing mechanism, the proxy and application servers might
 need to challenge many of the requests sent by a client, which adds
 traffic that could be avoided with this authorization mechanism.

2.2 Single Sign-On

 Single Sign-On is a property that allows the user to be authenticated
 once and as a result have access to multiple services in the system.

 This authorization mechanism would enable Single Sign-On, as the user
 will be authenticated once and as a result given a token and a
 refresh token to allow the user access to various services based on
 the token scope.

2.3 Level of Service

 This authorization mechanism allows the application server to control
 the level of service provided to the user based on the token scope.

Shekh-Yusef Expires April 17, 2015 [Page 5]

INTERNET DRAFT SIP OAuth October 14, 2014

2.4 3rd Party Authorization

 This authorization mechanism allows the user to be authenticated and
 obtain tokens using some 3rd Party Authorization mechanism and still
 get services from the system.

3 Authorization Code Grant type

3.1 Enterprise SSO Use Case

 An enterprise is interested in providing its users with an SSO
 capability to the corporate various services. The enterprise has an
 authorization server for controlling the user access to their network
 and would like to extend that existing authorization server to
 control the user access to the various services provided by their SIP
 network.

 The user is expected to provide his corporate credentials to login to
 the corporate network and get different types of services, regardless
 of the protocol used to provide the service, and without the need to
 create different accounts for these different types of services.

3.2 Justifications

 There are 3 reasons that justify the use of the authorization code
 grant type:

 1. Minimize the potential for exposing the token.

 2. Enable the proof-of-possession mechanism.

 3. Re-use of existing authorization server that already supports this
 grant type.

Shekh-Yusef Expires April 17, 2015 [Page 6]

INTERNET DRAFT SIP OAuth October 14, 2014

3.2 Operations Overview

 The following figure provides a high level view of flow of messages
 for the Authorization Code Grant type:

 User Proxy Authorization
 Agent Server

 | | |
 | F1 REGISTER | |
 |------------------------------>| |
 | F2 401 | |
 |<------------------------------| |
 | | |
 | F3 GET /authorize?response_type=code&... |
 |-->|
 | | F4 401 |
 |<--|
 | | |
 | | |
 o master-key = HMAC-SHA256(HA1, realm + nonce) |
 | | |
 | F5 GET /authorize?response_type=code&... with credentials |
 |-->|
 | | |
 | | |
 | o master-key=HMAC-SHA256(HA1, realm + nonce)
 | | |
 | | F6 200 [code] |
 |<--|
 | | |
 | | |
 | | |
 | F7 REGISTER code, pop | |
 |------------------------------>| |
 | | F8 POST /id-token [code] |
 | |------------------------------>|
 | | F9 200 OK [id-token, |
 | | refresh token, |
 | | master-key] |
 | |<------------------------------|
 | F10 200 OK | |
 |<------------------------------| |
 | | |
 | | |
 :
 :

Shekh-Yusef Expires April 17, 2015 [Page 7]

INTERNET DRAFT SIP OAuth October 14, 2014

 Subsequent Requests

 | | |
 o pop = HMAC-SHA256(master-key, digest-string) |
 | | |
 | F11 INVITE pop | |
 |------------------------------>| |
 | | |
 | | |
 | o The proxy verifies the pop. |
 | | |
 | F12 180 Ringing | |
 |<------------------------------| |
 | | |
 :
 :

 Token Refresh

 | | |
 | | F13 POST /id-token |
 | | [grant_type=refresh_token& |
 | | refresh_token=<ref_token> |
 | |------------------------------>|
 | | F14 200 OK [id-token, |
 | | refresh_token] |
 | |<------------------------------|
 | | |

 During registration, if the UA is in possession of a valid ID Token,
 the UA could use the token to register with the proxy; otherwise, the
 UA initially sends a REGISTER request (F1) without providing any
 credentials.

 The proxy challenges the UA by responding with 401 (F2) that includes
 the address of the Authorization Server.

[[OPEN ISSUE]]

How should the UA be redirected to the Authorization Server:
1. New SIP parameter?
2. Extend the Bearer scheme?
3. Define a new Scheme?

Shekh-Yusef Expires April 17, 2015 [Page 8]

INTERNET DRAFT SIP OAuth October 14, 2014

 The UA will then contact the Authorization Server without providing
 any credentials in the first request (F3). The Authorization Server
 challenges the request using the Digest scheme (F4), and the client
 retries the request (F5) and provide the user’s credentials.

 The Authorization Server verifies the request from the client; if the
 verification is successful, the Authorization Server responds with
 200 OK (F6) includes a code in the body part.

 The UA then retries the request (F7) and include the code in the body
 of the request. The proxy then contacts the Authorization Server and
 exchanges the code for a token (F8 & F9).

3.3 Registration

 The UA initiates the process by sending a REGISTER request (F1) to
 the proxy. The proxy will redirect the UA to the Authorization Server
 by responding with 401 (F2) that include the address of the
 Authorization Server in the form of an HTTP URI.

 The UA will then follow the authorization steps defined in section
 3.4. At the end of the authorization process the UA will have a code
 that it will use to complete the registration process.

 The UA will send a new REGISTER request (F7) and include the code in
 the body of the request with the following parameters:

 grant_type (REQUIRED)

 Value MUST be set to "authorization_code".

 code (REQUIRED)

 The authorization code received from the authorization server.

 The proxy will then use the code to get a token from the
 Authorization Server as defined in section 3.5. If the proxy is able
 to obtain the token, the proxy will respond with 200 OK (F10) to the
 UA to complete the registration process.

Shekh-Yusef Expires April 17, 2015 [Page 9]

INTERNET DRAFT SIP OAuth October 14, 2014

3.4 Authorization

 The UA constructs the initial request (F3) without providing any user
 credentials, but with the following URI parameters in the query
 component:

 response_type (REQUIRED)

 Value MUST be set to "code".

 user_id (REQUIRED)

 The user’s address-of-record (AOR).

 scope (OPTIONAL)

 The scope of the access request as described by Section x.x.

 state (RECOMMENDED)

 The value of this parameter is a nonce created by the client to
 prevent replay attack. The nonce is a uniquely generated value for
 each request. This parameter might not be included with the
 initial request that does not include credentials (F3).

 The Authorization Server uses the user’s AOR specified in the user_id
 parameter to verify that the user has an account in the system, and
 then challenges the request by responding with 401 (F4) with Digest
 scheme.

 The UA will generate a master-key that is based on an HMAC-Hash
 algorithm, e.g. HMAC-SHA256, that takes an input the user’s HA1 and
 the concatenation of realm and nonce received in the challenge from
 the server.

 The UA will then send a new authorization request (F5), but this time
 include the credentials requested by the server. The UA will use the
 same parameters values used in the initial authorization request with
 the exception of the state parameter which will get a new nonce
 value.

Shekh-Yusef Expires April 17, 2015 [Page 10]

INTERNET DRAFT SIP OAuth October 14, 2014

 When the server receives the request with the credentials (F5), the
 server will verify the digest provided by the UA; if that is
 successful, the server will respond with 302 (F6) and include a code
 in the body of the response with the following parameters:

 grant_type (REQUIRED)

 Value MUST be set to "authorization_code".

 code (REQUIRED)

 The authorization code received from the authorization server.

 The server then generates a master-key that is based on an HMAC-Hash
 algorithm, e.g. HMAC-SHA256, that takes an input the user’s HA1, and
 the concatenation of realm and nonce sent in the challenge (F4) to
 the client.

3.5 Acquiring ID Token

 The proxy receives the REGISTER request (F7) that includes a body
 with a code obtained during authorization (section 3.4). The proxy
 will then contact the Authorization Server to exchange the code with
 an ID Token.

 The proxy sends a POST request (F8) to the Authorization Server and
 include the following parameters in the body:

 grant_type (REQUIRED)

 Value MUST be set to "authorization_code".

 code (REQUIRED)

 The authorization code received from the authorization server.

 If the request is valid and authorized, the authorization server
 responds with a 200 OK (F9) to complete the registration process,
 with id_token, token_refresh, and the master-key in the body.

Shekh-Yusef Expires April 17, 2015 [Page 11]

INTERNET DRAFT SIP OAuth October 14, 2014

3.6 Token Refresh

 The proxy makes a refresh request to the token by sending a refresh
 POST request (F13) that includes a body with the grant_type and the
 refresh_token.

 For example:

 grant_type=refresh_token&refresh_token=<refresh_token>

 If the proxy fails to refresh the token, then it MUST challenge the
 next request from the UA, and as a result the UA MUST go through the
 authorization process defined in section 3.4 to obtain new tokens.

3.7 Authenticated Requests

 When the UA wants to send any request to the proxy, it MUST include
 the Authorization header and use the Bearer scheme to carry the
 proof-of-possession of the master-key.

 The pop is calculated using the master-key as follows:

 pop = HMAC-SHA256(master-key, digest-string)

 The following is an example of an Authorization header with Bearer
 scheme:

 Authorization: Bearer pop=<pop>

 See rfc4474, section 9, for the SIP headers to hash to create digest-
 string.

[[OPEN ISSUE]] The Bearer scheme is used to deliver tokens without
providing any proof of possession. We probably need to use different
scheme later on.

3.8 Services

 When the UA tries to access a service on behalf of a user, e.g. Voice
 Mail Service, the proxy forwards the request to the server providing
 the service and MUST include an Authorization header with the Bearer
 scheme that carries the token needed to get service, as follows:

 Authorization: Bearer token=<token>

Shekh-Yusef Expires April 17, 2015 [Page 12]

INTERNET DRAFT SIP OAuth October 14, 2014

4 Resource Owner Password Credentials Grant type

4.1 SIP SSO

 An enterprise is interested in providing its users with an SSO
 capability to the corporate various SIP services.

 The enterprise wants to control the services provided to their SIP
 users and the level of service provided to the user by their SIP
 application servers without the need to create different accounts for
 these services.

 The enterprise wants to utilize an existing authentication mechanism
 provided by SIP, but would like to be able to control who gets access
 to what service and when.

 The user is expected to use his SIP credentials to login to the SIP
 network and get access to the basic services, and to get access to
 the services provided by the various SIP application servers without
 being challenged to provide credentials for each type of service.

4.2 Operations Overview

 The following figure provides a high level view of flow of messages
 for the Resource Owner Password Credentials Grant type:

 UA Proxy
 --
 | |
 | F1 REGISTER |
 |--->|
 | |
 | F2 401 WWW-Authenticate: Digest |
 |<---|
 | |
 | |
 o master-key = HMAC-SHA256(HA1, realm + nonce) |
 | |
 | F3 REGISTER with Authorization |
 |--->|
 | |
 | |
 | o master-key = HMAC-SHA256(HA1, realm + nonce)
 | |
 | F4 200 OK [token, expires, ...] |
 |<---|

Shekh-Yusef Expires April 17, 2015 [Page 13]

INTERNET DRAFT SIP OAuth October 14, 2014

 | |
 | |
 o pop = HMAC-SHA256(master-key, token + digest-string) |
 | |
 | F5 INVITE token, pop |
 |--->|
 | |
 | o The server verifies the pop.
 | |
 | F6 180 Ringing |
 |<---|
 | |

 During registration the UA initially sends a REGISTER request (F1)
 without providing any credentials.

 The proxy then challenges the UA by responding with 401 (F2) that
 includes the Digest scheme in the www-authenticate header.

 The UA will generate a master-key that is based on an HMAC-Hash
 algorithm, e.g. HMAC-SHA256, that takes an input the user’s HA1 and
 the concatenation of realm and nonce received in the challenge from
 the server. The UA will continue to use the existing operation of
 handling the Digest challenge and then sends a new REGISTER request
 (F3) with the credentials to the server.

 When the server receives the request with the credentials (F3), the
 server will verify the digest provided by the UA; if that is
 successful, the server will accept the registration (F4) and include
 the details of the token in the response.

 The server then generates a master-key that is based on an HMAC-Hash
 algorithm, e.g. HMAC-SHA256, that takes an input the user’s HA1, and
 the concatenation of realm and nonce sent in the challenge to the
 client.

 At the end of the above process the UA would have registered with the
 proxy and both the UA and the proxy would have created the same
 master-key without sending the master-key on the wire.

 Later when the UA wants to send a request to the proxy it MUST always
 include the token and SHOULD include the pop as defined in section
 4.6.

Shekh-Yusef Expires April 17, 2015 [Page 14]

INTERNET DRAFT SIP OAuth October 14, 2014

4.3 Registration and Acquiring Tokens

 The UA MUST request the access token during the registration process
 with the proxy, by including a body with the grant_type as
 "password". Initially, the UA sends a REGISTER request without
 providing any credentials.

 The proxy MUST then challenge the UA by responding with 401 with the
 Digest scheme in the WWW-Authenticate header.

 When the UA gets challenged by the proxy to provide its credentials,
 the UA MUST include its credentials in the new REGISTER request in
 the authorization header as it is done with the existing mechanism,
 and MUST include a body with the grant_type as "password".

 In addition, the UA MUST generate a master-key as follows:

 master-key = HMAC-SHA256(HA1, realm + nonce)

 o HA1 - this is the user’s H(A1) as defined in [DIGEST].

 o realm - this is the realm that is returned by the server in the
 response to the initial request from the UA.

 o nonce - this is the nonce that is returned by the server in the
 response to the initial request from the UA.

 When the server receives the request with the credentials, the server
 will verify the digest provided by the UA; if that is successful, the
 server will accept the registration and include the details of the
 token in the response.

[[OPEN ISSUE]]

How should the tokens be transported to the UA? in the body of the 200
OK? or a SIP header?

 The server then generates a master-key following the same procedure
 followed by the client.

 As a result of this procedure both the UA and the server would have
 created the same master-key without sending the master-key on the
 wire.

Shekh-Yusef Expires April 17, 2015 [Page 15]

INTERNET DRAFT SIP OAuth October 14, 2014

4.4 Discarding Credentials

 After successfully receiving the access and refresh tokens from the
 proxy, the UA SHOULD discard the user credentials.

4.5 Token Refresh

 The UA makes a refresh request to the token by sending a refresh
 REGISTER request that includes the authorization header and a body
 with the grant_type, the refresh_token, and the proof-of-possession
 of the master-key.

 For example:

 grant_type=refresh_token&refresh_token=<refresh_token>&pop=<pop>

4.6 Authenticated Requests

 When the UA wants to send any request to the proxy, it MUST include
 the Authorization header and use the Bearer scheme to carry the
 access token, and the proof-of-possession of the master-key. For
 example:

 Authorization: Bearer token=<token>, pop=<pop>

 See rfc4474, section 9, for the SIP headers to hash to create the
 value for the proof.

[[OPEN ISSUE]]

The Bearer scheme is used to deliver tokens without providing any proof
of possession. We probably need to use different scheme later on.

Shekh-Yusef Expires April 17, 2015 [Page 16]

INTERNET DRAFT SIP OAuth October 14, 2014

4.7 Examples

 REGISTER sip:registrar.biloxi.com SIP/2.0
 Via: SIP/2.0/TCP bobspc.biloxi.com:5060;branch=z9hG4bKnashds7
 Max-Forwards: 70
 To: Bob <sip:bob@biloxi.com>
 From: Bob <sip:bob@biloxi.com>;tag=456248
 Call-ID: 843817637684230@998sdasdh09
 CSeq: 1826 REGISTER
 Contact: <sip:bob@192.0.2.4>
 Expires: 7200
 Content-Length: 19

 grant_type=password&pop=<pop>

 SIP/2.0 200 OK
 Via: SIP/2.0/TCP bobspc.biloxi.com:5060;branch=z9hG4bKnashds7
 ;received=192.0.2.4
 To: Bob <sip:bob@biloxi.com>;tag=2493k59kd
 From: Bob <sip:bob@biloxi.com>;tag=456248
 Call-ID: 843817637684230@998sdasdh09
 CSeq: 1826 REGISTER
 Contact: <sip:bob@192.0.2.4>
 Expires: 7200
 Content-Length: 0

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"example",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 "example_parameter":"example_value"
 }

Shekh-Yusef Expires April 17, 2015 [Page 17]

INTERNET DRAFT SIP OAuth October 14, 2014

5 Client Credentials Grant

 The following flow assumes that the UA is able to get a token using
 some out-of-band mechanism, and the UA wants to use the token to
 register, subscribe, and get service.

 The flow uses a combination of the following from RFC6749:

 o Client Credentials Grant defined in section 4.4
 o Extensions Grants defined in section 4.5.

 User Proxy Authorization
 Agent Server

 | | |
 | REGISTER username@domain.com, token |
 |------------------------------>| |
 | | |
 | | POST /authorize |
 | | [grant_type = <some-urn] |
 | | token=<some-token>] |
 | |------------------------------>|
 | | |
 | | 200 OK |
 | | [validity, services] |
 | |------------------------------>|
 | | |
 | 200 OK | |
 |<------------------------------| |
 | | |
 | | |

5.1 Registration

 The UA is in possession of a token that was obtained through some
 out-of-band mechanism.

 The UA sends a REGISTER request and include the token in the
 Authorization header using the Bearer scheme as defined in RFC6750.

 If the proxy is able to verify the token, the proxy accepts the
 registration request and responds with 200 OK.

Shekh-Yusef Expires April 17, 2015 [Page 18]

INTERNET DRAFT SIP OAuth October 14, 2014

5.2 Authorization

 When the proxy receives the REGISTER request with the token, the
 proxy will try to first validate the token before responding to the
 UA request.

 The proxy sends a POST request and include the following parameters
 in the body of the request:

 grant_type (REQUIRED)

 Some well defined URN.

 username (REQUIRED)

 The resource owner username.

 access_token (REQUIRED)

 The token received from the UA.

 scope (OPTIONAL)

 The scope of the token.

 If the authorization server is able to validate and authorize the
 request, it will respond with 200 OK with a body that contains the
 following parameters:

 access_token, token_type, expires, refresh_token, scope

Shekh-Yusef Expires April 17, 2015 [Page 19]

INTERNET DRAFT SIP OAuth October 14, 2014

6 Outbound

 RFC5626 defines a mechanism that allows a UA to simultaneously
 connect and establish registration with multiple outbound proxies to
 get service.

 This section describes that impact of outbound on this authorization
 mechanism.

6.1 Authorization Code Grant type

 During initial registration with the primary proxy, the UA is able to
 get an authorization code that it will use to register with the
 primary proxy. Assuming the authorization server is shared between
 the various outbound proxies, the UA will be able to use the same
 authorization code to register with the secondary proxies and as a
 result each one of the secondary proxies will get the master-key
 associated with the user to be used for the calculation of the proof-
 of-possession.

6.2 Resource Owner Password Credentials Grant type

 During registration the proxy challenges the UA, and both the proxy
 and the UA create a master-key based on HA1, realm, and nonce. Since
 the nonce is not shared between the various proxies, it is not
 possible for the outbound proxies to use the same master-key; as a
 result, the UA is expected to maintain a master-key and token per
 outbound proxy.

6.3 Client Credentials Grant type

 Since the tokens are obtained using some out-of-band mechanism, and
 the authorization server is shared between the outbound proxies, the
 UA should be able to register and get service from any one of the
 outbound proxies.

Shekh-Yusef Expires April 17, 2015 [Page 20]

INTERNET DRAFT SIP OAuth October 14, 2014

7 Security Considerations

 <Security considerations text>

8 IANA Considerations

 <IANA considerations text>

9 Acknowledgments

 <Acknowledgments text>

10 References

10.1 Normative References

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869, May 2010.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
 6749, October 2012.

 [OPENID] Sakimura, N., J. Bradley, J., Jones, M., de Medeiros,
 B.,Mortimore, C., "OpenID Connect Core 1.0", February,
 2014 http://openid.net/specs/openid-connect-
 core-1_0.html

 [DIGEST] Shekh-Yusef, R., Ahrens, D., and Bremer, S., "HTTP Digest
 Access Authentication", Work in Progress, January 2014.

 https://datatracker.ietf.org/doc/draft-ietf-httpauth-
 digest/

10.2 Informative References

Shekh-Yusef Expires April 17, 2015 [Page 21]

INTERNET DRAFT SIP OAuth October 14, 2014

Authors’ Addresses

 Rifaat Shekh-Yusef (Editor)
 Avaya
 250 Sydney Street
 Belleville, Ontario
 Canada

 Phone: +1-613-967-5267
 Email: rifaat.ietf@gmail.com

 Victor Pascual
 Quobis
 Spain

 Email: victor.pascual@quobis.com

Shekh-Yusef Expires April 17, 2015 [Page 22]

