
TCP Maintenance and Minor Extensions (tcpm) P. Hurtig
Internet-Draft A. Brunstrom
Intended status: Experimental Karlstad University
Expires: May 8, 2016 A. Petlund
 Simula Research Laboratory AS
 M. Welzl
 University of Oslo
 November 5, 2015

 TCP and SCTP RTO Restart
 draft-ietf-tcpm-rtorestart-10

Abstract

 This document describes a modified sender-side algorithm for managing
 the TCP and SCTP retransmission timers that provides faster loss
 recovery when there is a small amount of outstanding data for a
 connection. The modification, RTO Restart (RTOR), allows the
 transport to restart its retransmission timer using a smaller timeout
 duration, so that the effective RTO becomes more aggressive in
 situations where fast retransmit cannot be used. This enables faster
 loss detection and recovery for connections that are short-lived or
 application-limited.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 8, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Hurtig, et al. Expires May 8, 2016 [Page 1]

Internet-Draft TCP and SCTP RTO Restart November 2015

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 TCP and SCTP use two almost identical mechanisms to detect and
 recover from data loss, specified in [RFC6298][RFC5681] (for TCP) and
 [RFC4960] (for SCTP). First, if transmitted data is not acknowledged
 within a certain amount of time, a retransmission timeout (RTO)
 occurs, and the data is retransmitted. While the RTO is based on
 measured round-trip times (RTTs) between the sender and receiver, it
 also has a conservative lower bound of 1 second to ensure that
 delayed data are not mistaken as lost. Second, when a sender
 receives duplicate acknowledgments, or similar information via
 selective acknowledgments, the fast retransmit algorithm suspects
 data loss and can trigger a retransmission. Duplicate (and
 selective) acknowledgments are generated by a receiver when data
 arrives out-of-order. As both data loss and data reordering cause
 out-of-order arrival, fast retransmit waits for three out-of-order
 notifications before considering the corresponding data as lost. In
 some situations, however, the amount of outstanding data is not
 enough to trigger three such acknowledgments, and the sender must
 rely on lengthy RTOs for loss recovery.

 The amount of outstanding data can be small for several reasons:

 (1) The connection is limited by the congestion control when the
 path has a low total capacity (bandwidth-delay product) or the
 connection’s share of the capacity is small. It is also limited
 by the congestion control in the first few RTTs of a connection
 or after an RTO when the available capacity is probed using
 slow-start.

 (2) The connection is limited by the receiver’s available buffer
 space.

 (3) The connection is limited by the application if the available
 capacity of the path is not fully utilized (e.g. interactive
 applications), or at the end of a transfer.

Hurtig, et al. Expires May 8, 2016 [Page 2]

Internet-Draft TCP and SCTP RTO Restart November 2015

 While the reasons listed above are valid for any flow, the third
 reason is most common for applications that transmit short flows, or
 use a bursty transmission pattern. A typical example of applications
 that produce short flows are web-based applications. [RJ10] shows
 that 70% of all web objects, found at the top 500 sites, are too
 small for fast retransmit to work. [FDT13] shows that about 77% of
 all retransmissions sent by a major web service are sent after RTO
 expiry. Applications with bursty transmission patterns often send
 data in response to actions, or as a reaction to real life events.
 Typical examples of such applications are stock trading systems,
 remote computer operations, online games, and web-based applications
 using persistent connections. What is special about this class of
 applications is that they often are time-dependant, and extra latency
 can reduce the application service level [P09].

 The RTO Restart (RTOR) mechanism described in this document makes the
 effective RTO slightly more aggressive when the amount of outstanding
 data is too small for fast retransmit to work, in an attempt to
 enable faster loss recovery while being robust to reordering. While
 RTOR still conforms to the requirement for when a segment can be
 retransmitted, specified in [RFC6298] (for TCP) and [RFC4960] (for
 SCTP) it could increase the risk of spurious timeouts. To determine
 whether this modification is safe to deploy and enable by default,
 further experimentation is required. Section 5 discusses experiments
 still needed, including evaluations in environments where the risk of
 spurious retransmissions are increased e.g. mobile networks with
 highly varying RTTs.

 The remainder of this document describes RTOR and its implementation
 for TCP only, to make the document easier to read. However, the RTOR
 algorithm described in Section 4 is applicable also for SCTP.
 Furthermore, Section 7 details the SCTP socket API needed to control
 RTOR.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This document introduces the following variables:

 The number of previously unsent segments (prevunsnt): The number of
 segments that a sender has queued for transmission, but has not yet
 sent.

Hurtig, et al. Expires May 8, 2016 [Page 3]

Internet-Draft TCP and SCTP RTO Restart November 2015

 RTO Restart threshold (rrthresh): RTOR is enabled whenever the sum of
 the number of outstanding and previously unsent segments (prevunsnt)
 is below this threshold.

3. RTO Overview and Rationale for RTOR

 The RTO management algorithm described in [RFC6298] recommends that
 the retransmission timer is restarted when an acknowledgment (ACK)
 that acknowledges new data is received and there is still outstanding
 data. The restart is conducted to guarantee that unacknowledged
 segments will be retransmitted after approximately RTO seconds. The
 standardized RTO timer management is illustrated in Figure 1 where a
 TCP sender transmits three segments to a receiver. The arrival of
 the first and second segment triggers a delayed ACK (delACK)
 [RFC1122], which restarts the RTO timer at the sender. The RTO is
 restarted approximately one RTT after the transmission of the third
 segment. Thus, if the third segment is lost, as indicated in
 Figure 1, the effective loss detection time become "RTO + RTT"
 seconds. In some situations, the effective loss detection time
 becomes even longer. Consider a scenario where only two segments are
 outstanding. If the second segment is lost, the time to expire the
 delACK timer will also be included in the effective loss detection
 time.

 Sender Receiver
 ...
 DATA [SEG 1] ----------------------> (ack delayed)
 DATA [SEG 2] ----------------------> (send ack)
 DATA [SEG 3] ----X /-------- ACK
 (restart RTO) <----------/
 ...
 (RTO expiry)
 DATA [SEG 3] ---------------------->

 Figure 1: RTO restart example

 For bulk traffic the current approach is beneficial -- it is
 described in [EL04] to act as a "safety margin" that compensates for
 some of the problems that the authors have identified with the
 standard RTO calculation. Notably, the authors of [EL04] also state
 that "this safety margin does not exist for highly interactive
 applications where often only a single packet is in flight". In
 general, however, as long as enough segments arrive at a receiver to
 enable fast retransmit, RTO-based loss recovery should be avoided.
 RTOs should only be used as a last resort, as they drastically lower
 the congestion window compared to fast retransmit.

Hurtig, et al. Expires May 8, 2016 [Page 4]

Internet-Draft TCP and SCTP RTO Restart November 2015

 Although fast retransmit is preferrable there are situations where
 timeouts are appropriate, or the only choice. For example, if the
 network is severely congested and no segments arrive RTO-based
 recovery should be used. In this situation, the time to recover from
 the loss(es) will not be the performance bottleneck. However, for
 connections that do not utilize enough capacity to enable fast
 retransmit, RTO-based loss detection is the only choice and the time
 required for this can become a performance bottleneck.

4. RTOR Algorithm

 To enable faster loss recovery for connections that are unable to use
 fast retransmit, RTOR can be used. This section specifies the
 modifications required to use RTOR. By resetting the timer to "RTO -
 T_earliest", where T_earliest is the time elapsed since the earliest
 outstanding segment was transmitted, retransmissions will always
 occur after exactly RTO seconds.

 This document specifies an OPTIONAL sender-only modification to TCP
 and SCTP which updates step 5.3 in Section 5 of [RFC6298] (and a
 similar update in Section 6.3.2 of [RFC4960] for SCTP). A sender
 that implements this method MUST follow the algorithm below:

 When an ACK is received that acknowledges new data:

 (1) Set T_earliest = 0.

 (2) If the sum of the number of outstanding and previously unsent
 segments (prevunsnt) is less than an RTOR threshold
 (rrthresh), set T_earliest to the time elapsed since the
 earliest outstanding segment was sent.

 (3) Restart the retransmission timer so that it will expire after
 (for the current value of RTO):

 (a) RTO - T_earliest, if RTO - T_earliest > 0.

 (b) RTO, otherwise.

 The RECOMMENDED value of rrthresh is four, as this value will ensure
 that RTOR is only used when fast retransmit cannot be triggered.
 With this update, TCP implementations MUST track the time elapsed
 since the transmission of the earliest outstanding segment
 (T_earliest). As RTOR is only used when the amount of outstanding
 and previously unsent data is less than rrthresh segments, TCP
 implementations also need to track whether the amount of outstanding
 and previously unsent data is more, equal, or less than rrthresh
 segments. Although some packet-based TCP implementations (e.g.

Hurtig, et al. Expires May 8, 2016 [Page 5]

Internet-Draft TCP and SCTP RTO Restart November 2015

 Linux TCP) already track both the transmission times of all segments
 and also the number of outstanding segments, not all implementations
 do. Section 5.3 describes how to implement segment tracking for a
 general TCP implementation. To use RTOR, the calculated expiration
 time MUST be positive (step 3(a) in the list above); this is required
 to ensure that RTOR does not trigger retransmissions prematurely when
 previously retransmitted segments are acknowledged.

5. Discussion

 Although RTOR conforms to the requirement in [RFC6298] that segments
 must not be retransmitted earlier than RTO seconds after their
 original transmission, RTOR makes the effective RTO more aggressive.
 In this section, we discuss the applicability and the issues related
 to RTOR.

5.1. Applicability

 The currently standardized algorithm has been shown to add at least
 one RTT to the loss recovery process in TCP [LS00] and SCTP
 [HB11][PBP09]. For applications that have strict timing requirements
 (e.g. interactive web) rather than throughput requirements, using
 RTOR could be beneficial because the RTT and also the delACK timer of
 receivers are often large components of the effective loss recovery
 time. Measurements in [HB11] have shown that the total transfer time
 of a lost segment (including the original transmission time and the
 loss recovery time) can be reduced by 35% using RTOR. These results
 match those presented in [PGH06][PBP09], where RTOR is shown to
 significantly reduce retransmission latency.

 There are also traffic types that do not benefit from RTOR. One
 example of such traffic is bulk transmission. The reason why bulk
 traffic does not benefit from RTOR is that such traffic flows mostly
 have four or more segments outstanding, allowing loss recovery by
 fast retransmit. However, there is no harm in using RTOR for such
 traffic as the algorithm only is active when the amount of
 outstanding and unsent segments are less than rrthresh (default 4).

 Given that RTOR is a mostly conservative algorithm, it is suitable
 for experimentation as a system-wide default for TCP traffic.

5.2. Spurious Timeouts

 RTOR can in some situations reduce the loss detection time and
 thereby increase the risk of spurious timeouts. In theory, the
 retransmission timer has a lower bound of 1 second [RFC6298], which
 limits the risk of having spurious timeouts. However, in practice
 most implementations use a significantly lower value. Initial

Hurtig, et al. Expires May 8, 2016 [Page 6]

Internet-Draft TCP and SCTP RTO Restart November 2015

 measurements show slight increases in the number of spurious timeouts
 when such lower values are used [RHB15]. However, further
 experiments, in different environments and with different types of
 traffic, are encouraged to quantify such increases more reliably.

 Does a slightly increased risk matter? Generally, spurious timeouts
 have a negative effect on the network as segments are transmitted
 needlessly. However, recent experiments do not show a significant
 increase in network load for a number of realistic scenarios [RHB15].
 Another problem with spurious retransmissions is related to the
 performance of TCP/SCTP, as the congestion window is reduced to one
 segment when timeouts occur [RFC5681]. This could be a potential
 problem for applications transmitting multiple bursts of data within
 a single flow, e.g. web-based HTTP/1.1 and HTTP/2.0 applications.
 However, results from recent experiments involving persistent web
 traffic [RHB15] revealed a net gain of using RTOR. Other types of
 flows, e.g. long-lived bulk flows, are not affected as the algorithm
 is only applied when the amount of outstanding and unsent segments is
 less than rrthresh. Furthermore, short-lived and application-limited
 flows are typically not affected as they are too short to experience
 the effect of congestion control or have a transmission rate that is
 quickly attainable.

 While a slight increase in spurious timeouts has been observed using
 RTOR, it is not clear whether the effects of this increase mandate
 any future algorithmic changes or not -- especially since most modern
 operating systems already include mechanisms to detect
 [RFC3522][RFC3708][RFC5682] and resolve [RFC4015] possible problems
 with spurious retransmissions. Further experimentation is needed to
 determine this and thereby move this specification from experimental
 to the standards track. For instance, RTOR has not been evaluated in
 the context of mobile networks. Mobile networks often incur highly
 variable RTTs (delay spikes), due to e.g. handovers, and would
 therefore be a useful scenario for further experimentation.

5.3. Tracking Outstanding and Previously Unsent Segments

 The method of tracking outstanding and previously unsent segments
 will probably differ depending on the actual TCP implementation. For
 packet-based TCP implementations, tracking outstanding segments is
 often straightforward and can be implemented using a simple counter.
 For byte-based TCP stacks it is a more complex task. Section 3.2 of
 [RFC5827] outlines a general method of tracking the number of
 outstanding segments. The same method can be used for RTOR. The
 implementation will have to track segment boundaries to form an
 understanding as to how many actual segments have been transmitted,
 but not acknowledged. This can be done by the sender tracking the
 boundaries of the rrthresh segments on the right side of the current

Hurtig, et al. Expires May 8, 2016 [Page 7]

Internet-Draft TCP and SCTP RTO Restart November 2015

 window (which involves tracking rrthresh + 1 sequence numbers in
 TCP). This could be done by keeping a circular list of the segment
 boundaries, for instance. Cumulative ACKs that do not fall within
 this region indicate that at least rrthresh segments are outstanding,
 and therefore RTOR is not enabled. When the outstanding window
 becomes small enough that RTOR can be invoked, a full understanding
 of the number of outstanding segments will be available from the
 rrthresh + 1 sequence numbers retained. (Note: the implicit sequence
 number consumed by the TCP FIN bit can also be included in the
 tracking of segment boundaries.)

 Tracking the number of previously unsent segments depends on the
 segmentation strategy used by the TCP implementation, not whether it
 is packet-based or byte-based. In the case segments are formed
 directly on socket writes, the process of determining the number of
 previously unsent segments should be trivial. In the case that
 unsent data can be segmented (or re-segmented) as long as it still is
 unsent, a straightforward strategy could be to divide the amount of
 unsent data (in bytes) with the SMSS to obtain an estimate. In some
 cases, such an estimation could be too simplistic, depending on the
 segmentation strategy of the TCP implementation. However, this
 estimation is not critical to RTOR. The tracking of prevunsnt is
 only made to optimize a corner case in which RTOR was unnecessarily
 disabled. Implementations can use a simplified method by setting
 prevunsnt to rrthresh whenever previously unsent data is available,
 and set prevunsnt to zero when no new data is available. This will
 disable RTOR in the presence of unsent data and only use the number
 of outstanding segments to enable/disable RTOR.

6. Related Work

 There are several proposals that address the problem of not having
 enough ACKs for loss recovery. In what follows, we explain why the
 mechanism described here is complementary to these approaches:

 The limited transmit mechanism [RFC3042] allows a TCP sender to
 transmit a previously unsent segment for each of the first two
 dupACKs. By transmitting new segments, the sender attempts to
 generate additional dupACKs to enable fast retransmit. However,
 limited transmit does not help if no previously unsent data is ready
 for transmission. [RFC5827] specifies an early retransmit algorithm
 to enable fast loss recovery in such situations. By dynamically
 lowering the number of dupACKs needed for fast retransmit
 (dupthresh), based on the number of outstanding segments, a smaller
 number of dupACKs is needed to trigger a retransmission. In some
 situations, however, the algorithm is of no use or might not work
 properly. First, if a single segment is outstanding, and lost, it is
 impossible to use early retransmit. Second, if ACKs are lost, early

Hurtig, et al. Expires May 8, 2016 [Page 8]

Internet-Draft TCP and SCTP RTO Restart November 2015

 retransmit cannot help. Third, if the network path reorders
 segments, the algorithm might cause more spurious retransmissions
 than fast retransmit. The recommended value of RTOR’s rrthresh
 variable is based on the dupthresh, but is possible to adapt to allow
 tighter integration with other experimental algorithms such as early
 retransmit.

 Tail Loss Probe [TLP] is a proposal to send up to two "probe
 segments" when a timer fires which is set to a value smaller than the
 RTO. A "probe segment" is a new segment if new data is available,
 else a retransmission. The intention is to compensate for sluggish
 RTO behavior in situations where the RTO greatly exceeds the RTT,
 which, according to measurements reported in [TLP], is not uncommon.
 Furthermore, TLP also tries to circumvent the congestion window reset
 to one segment by instead enabling fast recovery. The Probe timeout
 (PTO) is normally two RTTs, and a spurious PTO is less risky than a
 spurious RTO because it would not have the same negative effects
 (clearing the scoreboard and restarting with slow-start). TLP is a
 more advanced mechanism than RTOR, requiring e.g. SACK to work, and
 is often able to reduce loss recovery times more. However, it also
 increases the amount of spurious retransmissions noticeably, as
 compared to RTOR [RHB15].

 TLP is applicable in situations where RTOR does not apply, and it
 could overrule (yielding a similar general behavior, but with a lower
 timeout) RTOR in cases where the number of outstanding segments is
 smaller than four and no new segments are available for transmission.
 The PTO has the same inherent problem of restarting the timer on an
 incoming ACK, and could be combined with a strategy similar to RTOR’s
 to offer more consistent timeouts.

7. SCTP Socket API Considerations

 This section describes how the socket API for SCTP defined in
 [RFC6458] is extended to control the usage of RTO restart for SCTP.

 Please note that this section is informational only.

7.1. Data Types

 This section uses data types from [IEEE.1003-1G.1997]: uintN_t means
 an unsigned integer of exactly N bits (e.g., uint16_t). This is the
 same as in [RFC6458].

Hurtig, et al. Expires May 8, 2016 [Page 9]

Internet-Draft TCP and SCTP RTO Restart November 2015

7.2. Socket Option for Controlling the RTO Restart Support
 (SCTP_RTO_RESTART)

 This socket option allows the enabling or disabling of RTO Restart
 for SCTP associations.

 Whether RTO Restart is enabled or not per default is implementation
 specific.

 This socket option uses IPPROTO_SCTP as its level and
 SCTP_RTO_RESTART as its name. It can be used with getsockopt() and
 setsockopt(). The socket option value uses the following structure
 defined in [RFC6458]:

 struct sctp_assoc_value {
 sctp_assoc_t assoc_id;
 uint32_t assoc_value;
 };

 assoc_id: This parameter is ignored for one-to-one style sockets.
 For one-to-many style sockets, this parameter indicates upon which
 association the user is performing an action. The special
 sctp_assoc_t SCTP_{FUTURE|CURRENT|ALL}_ASSOC can also be used in
 assoc_id for setsockopt(). For getsockopt(), the special value
 SCTP_FUTURE_ASSOC can be used in assoc_id, but it is an error to
 use SCTP_{CURRENT|ALL}_ASSOC in assoc_id.

 assoc_value: A non-zero value encodes the enabling of RTO restart
 whereas a value of 0 encodes the disabling of RTO restart.

 sctp_opt_info() needs to be extended to support SCTP_RTO_RESTART.

8. IANA Considerations

 This memo includes no request to IANA.

9. Security Considerations

 This document specifies an experimental sender-only modification to
 TCP and SCTP. The modification introduces a change in how to set the
 retransmission timer’s value when restarted. Therefore, the security
 considerations found in [RFC6298] apply to this document. No
 additional security problems have been identified with RTO Restart at
 this time.

Hurtig, et al. Expires May 8, 2016 [Page 10]

Internet-Draft TCP and SCTP RTO Restart November 2015

10. Acknowledgements

 The authors wish to thank Michael Tuexen for contributing the SCTP
 Socket API considerations and Godred Fairhurst, Yuchung Cheng, Mark
 Allman, Anantha Ramaiah, Richard Scheffenegger, Nicolas Kuhn,
 Alexander Zimmermann, and Michael Scharf for commenting on the draft
 and the ideas behind it.

 All the authors are supported by RITE (http://riteproject.eu/), a
 research project (ICT-317700) funded by the European Community under
 its Seventh Framework Program. The views expressed here are those of
 the author(s) only. The European Commission is not liable for any
 use that may be made of the information in this document.

11. Changes from Previous Versions

 RFC-Editor note: please remove this section prior to publication.

11.1. Changed from draft-ietf-...-09 to -10

 o Changed wording in abstract, from "delay" to "timeout duration".

11.2. Changed from draft-ietf-...-08 to -09

 o Clarified, in the abstract, that the modified restart causes a
 smaller retransmission delay in total.

 o Clarified, in the introduction, that the fast retransmit algorithm
 may cause retransmissions upon receiving duplicate
 acknowledgments, not that it unconditionally does so.

 o Changed wording from "to proposed standard" to "to the standards
 track".

 o Changed algorithm description so that a TCP sender MUST track the
 time elapsed since the transmission of the earliest outstanding
 segment. This was not explicitly stated in previous versions of
 the draft.

11.3. Changes from draft-ietf-...-07 to -08

 o Clarified, at multiple places in the document, that the
 modification only causes the effective RTO to be more aggressive,
 not the actual RTO.

 o Removed information in the introduction that was too detailed,
 i.e., material that is hard to understand without knowing details
 of the algorithm.

Hurtig, et al. Expires May 8, 2016 [Page 11]

Internet-Draft TCP and SCTP RTO Restart November 2015

 o Changed the name of Section 3 to more correctly capture the actual
 contents of the section.

 o Re-arranged the text in Section 3 to have a more logical
 structure.

 o Moved text from the algorithm description (Section 4) to the
 introduction of the discussion section (Section 5). The text was
 discussing the possible effects of the algorithm more than
 describing the actual algorithm.

 o Clarified why the RECOMMENDED value of rrthresh is four.

 o Reworked the introduction to be suitable for both TCP and SCTP.

11.4. Changes from draft-ietf-...-06 to -07

 o Clarified, at multiple places in the document, that the
 modification is sender-only.

 o Added an explanation (in the introduction) to why the mechanism is
 experimental and what experiments are missing.

 o Added a sentence in Section 4 to clarify that the section is the
 one describing the actual modification.

11.5. Changes from draft-ietf-...-05 to -06

 o Added socket API considerations, after discussing the draft in
 tsvwg.

11.6. Changes from draft-ietf-...-04 to -05

 o Introduced variable to track the number of previously unsent
 segments.

 o Clarified many concepts, e.g. extended the description on how to
 track outstanding and previously unsent segments.

 o Added a reference to initial measurements on the effects of using
 RTOR.

 o Improved wording throughout the document.

Hurtig, et al. Expires May 8, 2016 [Page 12]

Internet-Draft TCP and SCTP RTO Restart November 2015

11.7. Changes from draft-ietf-...-03 to -04

 o Changed the algorithm to allow RTOR when there is unsent data
 available, but the cwnd does not allow transmission.

 o Changed the algorithm to not trigger if RTOR <= 0.

 o Made minor adjustments throughout the document to adjust for the
 algorithmic change.

 o Improved the wording throughout the document.

11.8. Changes from draft-ietf-...-02 to -03

 o Updated the document to use "RTOR" instead of "RTO Restart" when
 refering to the modified algorithm.

 o Moved document terminology to a section of its own.

 o Introduced the rrthresh variable in the terminology section.

 o Added a section to generalize the tracking of outstanding
 segments.

 o Updated the algorithm to work when the number of outstanding
 segments is less than four and one segment is ready for
 transmission, by restarting the timer when new data has been sent.

 o Clarified the relationship between fast retransmit and RTOR.

 o Improved the wording throughout the document.

11.9. Changes from draft-ietf-...-01 to -02

 o Changed the algorithm description in Section 3 to use formal RFC
 2119 language.

 o Changed last paragraph of Section 3 to clarify why the RTO restart
 algorithm is active when less than four segments are outstanding.

 o Added two paragraphs in Section 4.1 to clarify why the algorithm
 can be turned on for all TCP traffic without having any negative
 effects on traffic patterns that do not benefit from a modified
 timer restart.

 o Improved the wording throughout the document.

 o Replaced and updated some references.

Hurtig, et al. Expires May 8, 2016 [Page 13]

Internet-Draft TCP and SCTP RTO Restart November 2015

11.10. Changes from draft-ietf-...-00 to -01

 o Improved the wording throughout the document.

 o Removed the possibility for a connection limited by the receiver’s
 advertised window to use RTO restart, decreasing the risk of
 spurious retransmission timeouts.

 o Added a section that discusses the applicability of and problems
 related to the RTO restart mechanism.

 o Updated the text describing the relationship to TLP to reflect
 updates made in this draft.

 o Added acknowledgments.

12. References

12.1. Normative References

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <http://www.rfc-editor.org/info/rfc1122>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3042] Allman, M., Balakrishnan, H., and S. Floyd, "Enhancing
 TCP’s Loss Recovery Using Limited Transmit", RFC 3042,
 DOI 10.17487/RFC3042, January 2001,
 <http://www.rfc-editor.org/info/rfc3042>.

 [RFC3522] Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm
 for TCP", RFC 3522, DOI 10.17487/RFC3522, April 2003,
 <http://www.rfc-editor.org/info/rfc3522>.

 [RFC3708] Blanton, E. and M. Allman, "Using TCP Duplicate Selective
 Acknowledgement (DSACKs) and Stream Control Transmission
 Protocol (SCTP) Duplicate Transmission Sequence Numbers
 (TSNs) to Detect Spurious Retransmissions", RFC 3708,
 DOI 10.17487/RFC3708, February 2004,
 <http://www.rfc-editor.org/info/rfc3708>.

Hurtig, et al. Expires May 8, 2016 [Page 14]

Internet-Draft TCP and SCTP RTO Restart November 2015

 [RFC4015] Ludwig, R. and A. Gurtov, "The Eifel Response Algorithm
 for TCP", RFC 4015, DOI 10.17487/RFC4015, February 2005,
 <http://www.rfc-editor.org/info/rfc4015>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, DOI 10.17487/RFC4960, September 2007,
 <http://www.rfc-editor.org/info/rfc4960>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <http://www.rfc-editor.org/info/rfc5681>.

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP", RFC 5682,
 DOI 10.17487/RFC5682, September 2009,
 <http://www.rfc-editor.org/info/rfc5682>.

 [RFC5827] Allman, M., Avrachenkov, K., Ayesta, U., Blanton, J., and
 P. Hurtig, "Early Retransmit for TCP and Stream Control
 Transmission Protocol (SCTP)", RFC 5827,
 DOI 10.17487/RFC5827, May 2010,
 <http://www.rfc-editor.org/info/rfc5827>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP’s Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <http://www.rfc-editor.org/info/rfc6298>.

12.2. Informative References

 [EL04] Ekstroem, H. and R. Ludwig, "The Peak-Hopper: A New End-
 to-End Retransmission Timer for Reliable Unicast
 Transport", IEEE INFOCOM 2004, March 2004.

 [FDT13] Flach, T., Dukkipati, N., Terzis, A., Raghavan, B.,
 Cardwell, N., Cheng, Y., Jain, A., Hao, S., Katz-Bassett,
 E., and R. Govindan, "Reducing Web Latency: the Virtue of
 Gentle Aggression", Proc. ACM SIGCOMM Conf., August 2013.

 [HB11] Hurtig, P. and A. Brunstrom, "SCTP: designed for timely
 message delivery?", Springer Telecommunication Systems 47
 (3-4), August 2011.

 [IEEE.1003-1G.1997]
 Institute of Electrical and Electronics Engineers,
 "Protocol Independent Interfaces", IEEE Standard 1003.1G,
 March 1997.

Hurtig, et al. Expires May 8, 2016 [Page 15]

Internet-Draft TCP and SCTP RTO Restart November 2015

 [LS00] Ludwig, R. and K. Sklower, "The Eifel retransmission
 timer", ACM SIGCOMM Comput. Commun. Rev., 30(3), July
 2000.

 [P09] Petlund, A., "Improving latency for interactive, thin-
 stream applications over reliable transport", Unipub PhD
 Thesis, Oct 2009.

 [PBP09] Petlund, A., Beskow, P., Pedersen, J., Paaby, E., Griwodz,
 C., and P. Halvorsen, "Improving SCTP Retransmission
 Delays for Time-Dependent Thin Streams",
 Springer Multimedia Tools and Applications, 45(1-3), 2009.

 [PGH06] Pedersen, J., Griwodz, C., and P. Halvorsen,
 "Considerations of SCTP Retransmission Delays for Thin
 Streams", IEEE LCN 2006, November 2006.

 [RFC6458] Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
 Yasevich, "Sockets API Extensions for the Stream Control
 Transmission Protocol (SCTP)", RFC 6458,
 DOI 10.17487/RFC6458, December 2011,
 <http://www.rfc-editor.org/info/rfc6458>.

 [RHB15] Rajiullah, M., Hurtig, P., Brunstrom, A., Petlund, A., and
 M. Welzl, "An Evaluation of Tail Loss Recovery Mechanisms
 for TCP", ACM SIGCOMM CCR 45 (1), January 2015.

 [RJ10] Ramachandran, S., "Web metrics: Size and number of
 resources", Google http://code.google.com/speed/articles/
 web-metrics.html, May 2010.

 [TLP] Dukkipati, N., Cardwell, N., Cheng, Y., and M. Mathis,
 "TCP Loss Probe (TLP): An Algorithm for Fast Recovery of
 Tail Losses", Internet-draft draft-dukkipati-tcpm-tcp-
 loss-probe-01.txt, February 2013.

Authors’ Addresses

 Per Hurtig
 Karlstad University
 Universitetsgatan 2
 Karlstad 651 88
 Sweden

 Phone: +46 54 700 23 35
 Email: per.hurtig@kau.se

Hurtig, et al. Expires May 8, 2016 [Page 16]

Internet-Draft TCP and SCTP RTO Restart November 2015

 Anna Brunstrom
 Karlstad University
 Universitetsgatan 2
 Karlstad 651 88
 Sweden

 Phone: +46 54 700 17 95
 Email: anna.brunstrom@kau.se

 Andreas Petlund
 Simula Research Laboratory AS
 P.O. Box 134
 Lysaker 1325
 Norway

 Phone: +47 67 82 82 00
 Email: apetlund@simula.no

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 85 24 20
 Email: michawe@ifi.uio.no

Hurtig, et al. Expires May 8, 2016 [Page 17]

