
TCP Maintenance and Minor Extensions (TCPM) WG I. Rhee
Internet-Draft NCSU
Intended status: Experimental L. Xu
Expires: October 18, 2015 UNL
 S. Ha
 NCSU
 A. Zimmermann
 L. Eggert
 R. Scheffenegger
 NetApp
 April 16, 2015

 CUBIC for Fast Long-Distance Networks
 draft-zimmermann-tcpm-cubic-01

Abstract

 CUBIC is an extension to the current TCP standards. The protocol
 differs from the current TCP standards only in the congestion window
 adjustment function in the sender side. In particular, it uses a
 cubic function instead of a linear window increase of the current TCP
 standards to improve scalability and stability under fast and long
 distance networks. BIC-TCP, a predecessor of CUBIC, has been a
 default TCP adopted by Linux since year 2005 and has already been
 deployed globally and in use for several years by the Internet
 community at large. CUBIC is using a similar window growth function
 as BIC-TCP and is designed to be less aggressive and fairer to TCP in
 bandwidth usage than BIC-TCP while maintaining the strengths of BIC-
 TCP such as stability, window scalability and RTT fairness. Through
 extensive testing in various Internet scenarios, we believe that
 CUBIC is safe for deployment and testing in the global Internet. The
 intent of this document is to provide the protocol specification of
 CUBIC for a third party implementation and solicit the community
 feedback through experimentation on the performance of CUBIC. We
 expect this document to be eventually published as an experimental
 RFC.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

Rhee, et al. Expires October 18, 2015 [Page 1]

Internet-Draft CUBIC April 2015

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 18, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Conventions . 5
 3. CUBIC Congestion Control 5
 3.1. Window growth function 5
 3.2. TCP-friendly region 6
 3.3. Concave region . 6
 3.4. Convex region . 7
 3.5. Multiplicative decrease 7
 3.6. Fast convergence . 7
 4. Discussion . 8
 4.1. Fairness to standard TCP 8
 4.2. Using Spare Capacity 10
 4.3. Difficult Environments 10
 4.4. Investigating a Range of Environments 11
 4.5. Protection against Congestion Collapse 11
 4.6. Fairness within the Alternative Congestion Control
 Algorithm. . 11
 4.7. Performance with Misbehaving Nodes and Outside Attackers 11
 4.8. Responses to Sudden or Transient Events 11
 4.9. Incremental Deployment 11
 5. Security Considerations 11
 6. IANA Considerations . 11
 7. Acknowledgements . 12
 8. References . 12

Rhee, et al. Expires October 18, 2015 [Page 2]

Internet-Draft CUBIC April 2015

 8.1. Normative References 12
 8.2. Informative References 12
 Authors’ Addresses . 13

1. Introduction

 The low utilization problem of TCP in fast long-distance networks is
 well documented in [K03][RFC3649]. This problem arises from a slow
 increase of congestion window following a congestion event in a
 network with a large bandwidth delay product (BDP). Our experience
 [HKLRX06] indicates that this problem is frequently observed even in
 the range of congestion window sizes over several hundreds of packets
 (each packet is sized around 1000 bytes) especially under a network
 path with over 100ms round-trip times (RTTs). This problem is
 equally applicable to all Reno style TCP standards and their
 variants, including TCP-RENO [RFC5681], TCP-NewReno [RFC6582], TCP-
 SACK [RFC2018], SCTP [RFC4960], TFRC [RFC5348] that use the same
 linear increase function for window growth, which we refer to
 collectively as Standard TCP below.

 CUBIC [HRX08] is a modification to the congestion control mechanism
 of Standard TCP, in particular, to the window increase function of
 Standard TCP senders, to remedy this problem. It uses a cubic
 increase function in terms of the elapsed time from the last
 congestion event. While most alternative algorithms to Standard TCP
 uses a convex increase function where after a loss event, the window
 increment is always increasing, CUBIC uses both the concave and
 convex profiles of a cubic function for window increase. After a
 window reduction following a loss event, it registers the window size
 where it got the loss event as W_max and performs a multiplicative
 decrease of congestion window and the regular fast recovery and
 retransmit of Standard TCP. After it enters into congestion
 avoidance from fast recovery, it starts to increase the window using
 the concave profile of the cubic function. The cubic function is set
 to have its plateau at W_max so the concave growth continues until
 the window size becomes W_max. After that, the cubic function turns
 into a convex profile and the convex window growth begins. This
 style of window adjustment (concave and then convex) improves
 protocol and network stability while maintaining high network
 utilization [CEHRX07]. This is because the window size remains
 almost constant, forming a plateau around W_max where network
 utilization is deemed highest and under steady state, most window
 size samples of CUBIC are close to W_max, thus promoting high network
 utilization and protocol stability. Note that protocols with convex
 increase functions have the maximum increments around W_max and
 introduces a large number of packet bursts around the saturation
 point of the network, likely causing frequent global loss
 synchronizations.

Rhee, et al. Expires October 18, 2015 [Page 3]

Internet-Draft CUBIC April 2015

 Another notable feature of CUBIC is that its window increase rate is
 mostly independent of RTT, and follows a (cubic) function of the
 elapsed time since the last loss event. This feature promotes per-
 flow fairness to Standard TCP as well as RTT-fairness. Note that
 Standard TCP performs well under short RTT and small bandwidth (or
 small BDP) networks. Only in a large long RTT and large bandwidth
 (or large BDP) networks, it has the scalability problem. An
 alternative protocol to Standard TCP designed to be friendly to
 Standard TCP at a per-flow basis must operate must increase its
 window much less aggressively in small BDP networks than in large BDP
 networks. In CUBIC, its window growth rate is slowest around the
 inflection point of the cubic function and this function does not
 depend on RTT. In a smaller BDP network where Standard TCP flows are
 working well, the absolute amount of the window decrease at a loss
 event is always smaller because of the multiplicative decrease.
 Therefore, in CUBIC, the starting window size after a loss event from
 which the window starts to increase, is smaller in a smaller BDP
 network, thus falling nearer to the plateau of the cubic function
 where the growth rate is slowest. By setting appropriate values of
 the cubic function parameters, CUBIC sets its growth rate always no
 faster than Standard TCP around its inflection point. When the cubic
 function grows slower than the window of Standard TCP, CUBIC simply
 follows the window size of Standard TCP to ensure fairness to
 Standard TCP in a small BDP network. We call this region where CUBIC
 behaves like Standard TCP, the TCP-friendly region.

 CUBIC maintains the same window growth rate independent of RTTs
 outside of the TCP-friendly region, and flows with different RTTs
 have the similar window sizes under steady state when they operate
 outside the TCP-friendly region. This ensures CUBIC flows with
 different RTTs to have their bandwidth shares linearly proportional
 to the inverse of their RTT ratio (the longer RTT, the smaller the
 share). This behavior is the same as that of Standard TCP under high
 statistical multiplexing environments where packet losses are
 independent of individual flow rates. However, under low statistical
 multiplexing environments, the bandwidth share ratio of Standard TCP
 flows with different RTTs is squarely proportional to the inverse of
 their RTT ratio [XHR04]. CUBIC always ensures the linear ratio
 independent of the levels of statistical multiplexing. This is an
 improvement over Standard TCP. While there is no consensus on a
 particular bandwidth share ratios of different RTT flows, we believe
 that under wired Internet, use of the linear share notion seems more
 reasonable than equal share or a higher order shares. HTCP [LS08]
 currently uses the equal share.

 CUBIC sets the multiplicative window decrease factor to 0.2 while
 Standard TCP uses 0.5. While this improves the scalability of the
 protocol, a side effect of this decision is slower convergence

Rhee, et al. Expires October 18, 2015 [Page 4]

Internet-Draft CUBIC April 2015

 especially under low statistical multiplexing environments. This
 design choice is following the observation that the author of HSTCP
 [RFC3649] has made along with other researchers (e.g., [GV02]): the
 current Internet becomes more asynchronous with less frequent loss
 synchronizations with high statistical multiplexing. Under this
 environment, even strict MIMD can converge. CUBIC flows with the
 same RTT always converge to the same share of bandwidth independent
 of statistical multiplexing, thus achieving intra-protocol fairness.
 We also find that under the environments with sufficient statistical
 multiplexing, the convergence speed of CUBIC flows is reasonable.

 In the ensuing sections, we provide the exact specification of CUBIC
 and discuss the safety features of CUBIC following the guidelines
 specified in [RFC5033].

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. CUBIC Congestion Control

3.1. Window growth function

 CUBIC maintains the acknowledgment (ACK) clocking of Standard TCP by
 increasing congestion window only at the reception of ACK. The
 protocol does not make any change to the fast recovery and retransmit
 of TCP-NewReno [RFC6582] and TCP-SACK [RFC2018]. During congestion
 avoidance after fast recovery, CUBIC changes the window update
 algorithm of Standard TCP. Suppose that W_max is the window size
 before the window is reduced in the last fast retransmit and
 recovery.

 The window growth function of CUBIC uses the following function:

 W(t) = C*(t-K)^3 + W_max (Eq. 1)

 where C is a constant fixed to determine the aggressiveness of window
 growth in high BDP networks, t is the elapsed time from the last
 window reduction,and K is the time period that the above function
 takes to increase W to W_max when there is no further loss event and
 is calculated by using the following equation:

 K = cubic_root(W_max*beta/C) (Eq. 2)

 where beta is the multiplication decrease factor. We discuss how we
 set C in the next Section in more details.

Rhee, et al. Expires October 18, 2015 [Page 5]

Internet-Draft CUBIC April 2015

 Upon receiving an ACK during congestion avoidance, CUBIC computes the
 window growth rate during the next RTT period using Eq. 1. It sets
 W(t+RTT) as the candidate target value of congestion window. Suppose
 that the current window size is cwnd. Depending on the value of
 cwnd, CUBIC runs in three different modes. First, if cwnd is less
 than the window size that Standard TCP would reach at time t after
 the last loss event, then CUBIC is in the TCP friendly region (we
 describe below how to determine this window size of Standard TCP in
 term of time t). Otherwise, if cwnd is less than W_max, then CUBIC
 is the concave region, and if cwnd is larger than W_max, CUBIC is in
 the convex region. Below, we describe the exact actions taken by
 CUBIC in each region.

3.2. TCP-friendly region

 When receiving an ACK in congestion avoidance, we first check whether
 the protocol is in the TCP region or not. This is done as follows.
 We can analyze the window size of Standard TCP in terms of the
 elapsed time t. Using a simple analysis in [FHP00], we can analyze
 the average window size of additive increase and multiplicative
 decrease (AIMD) with an additive factor alpha and a multiplicative
 factor beta to be the following function:

 (alpha/2 * (2-beta)/beta * 1/p)^0.5 (Eq. 3)

 By the same analysis, the average window size of Standard TCP with
 alpha 1 and beta 0.5 is (3/2 *1/p)^0.5. Thus, for Eq. 3 to be the
 same as that of Standard TCP, alpha must be equal to 3*beta/(2-beta).
 As Standard TCP increases its window by alpha per RTT, we can get the
 window size of Standard TCP in terms of the elapsed time t as
 follows:

 W_tcp(t) = W_max*(1-beta) + 3*beta/(2-beta)* t/RTT (Eq. 4)

 If cwnd is less than W_tcp(t), then the protocol is in the TCP
 friendly region and cwnd SHOULD be set to W_tcp(t) at each reception
 of ACK.

3.3. Concave region

 When receiving an ACK in congestion avoidance, if the protocol is not
 in the TCP-friendly region and cwnd is less than W_max, then the
 protocol is in the concave region. In this region, cwnd MUST be
 incremented by (W(t+RTT) - cwnd)/cwnd.

Rhee, et al. Expires October 18, 2015 [Page 6]

Internet-Draft CUBIC April 2015

3.4. Convex region

 When the window size of CUBIC is larger than W_max, it passes the
 plateau of the cubic function after which CUBIC follows the convex
 profile of the cubic function. Since cwnd is larger than the
 previous saturation point W_max, this indicates that the network
 conditions might have been perturbed since the last loss event,
 possibly implying more available bandwidth after some flow
 departures. Since the Internet is highly asynchronous, some amount
 of perturbation is always possible without causing a major change in
 available bandwidth. In this phase, CUBIC is being very careful by
 very slowly increasing its window size. The convex profile ensures
 that the window increases very slowly at the beginning and gradually
 increases its growth rate. We also call this phase as the maximum
 probing phase since CUBIC is searching for a new W_max. In this
 region, cwnd MUST be incremented by (W(t+RTT) - cwnd)/cwnd for each
 received ACK.

3.5. Multiplicative decrease

 When a packet loss occurs, CUBIC reduces its window size by a factor
 of beta. Parameter beta SHOULD be set to 0.2.

 W_max = cwnd; // save window size before reduction
 cwnd = cwnd * (1-beta); // window reduction

 A side effect of setting beta to a smaller value than 0.5 is slower
 convergence. We believe that while a more adaptive setting of beta
 could result in faster convergence, it will make the analysis of the
 protocol much harder. This adaptive adjustment of beta is an item
 for the next version of CUBIC.

3.6. Fast convergence

 To improve the convergence speed of CUBIC, we add a heuristic in the
 protocol. When a new flow joins the network, existing flows in the
 network need to give up their bandwidth shares to allow the flow some
 room for growth if the existing flows have been using all the
 bandwidth of the network. To increase this release of bandwidth by
 existing flows, the following mechanism called fast convergence
 SHOULD be implemented.

 With fast convergence, when a loss event occurs, before a window
 reduction of congestion window, a flow remembers the last value of
 W_max before it updates W_max for the current loss event. Let us
 call the last value of W_max to be W_last_max.

Rhee, et al. Expires October 18, 2015 [Page 7]

Internet-Draft CUBIC April 2015

 if (W_max < W_last_max){ // check downward trend
 W_last_max = W_max; // remember the last W_max
 W_max = W_max*(2-beta)/2; // further reduce W_max
 } else { // check upward trend
 W_last_max = W_max // remember the last W_max
 }

 This allows W_max to be slightly less than the original W_max. Since
 flows spend most of time around their W_max, flows with larger
 bandwidth shares tend to spend more time around the plateau allowing
 more time for flows with smaller shares to increase their windows.

4. Discussion

 With a deterministic loss model where the number of packets between
 two successive lost events is always 1/p, CUBIC always operates with
 the concave window profile which greatly simplifies the performance
 analysis of CUBIC. The average window size of CUBIC can be obtained
 by the following function:

 (C*(4-beta)/4/beta)^0.25 * RTT^0.75 / p^0.75 (Eq. 5)

 With beta set to 0.2, the above formula is reduced to:

 (C*3.8/0.8)^0.25 * RTT^0.75 / p^0.75 (Eq. 6)

 We will determine the value of C in the following subsection using
 Eq. 6.

4.1. Fairness to standard TCP

 In environments where standard TCP is able to make reasonable use of
 the available bandwidth, CUBIC does not significantly change this
 state.

 Standard TCP performs well in the following two types of networks:

 1. networks with a small bandwidth-delay product (BDP)

 2. networks with a short RTT, but not necessarily a small BDP

 CUBIC is designed to behave very similarly to standard TCP in the
 above two types of networks. The following two tables show the
 average window size of standard TCP, HSTCP, and CUBIC. The average
 window size of standard TCP and HSTCP is from [RFC3649]. The average
 window size of CUBIC is calculated by using Eq. 6 and CUBIC TCP
 friendly mode for three different values of C.

Rhee, et al. Expires October 18, 2015 [Page 8]

Internet-Draft CUBIC April 2015

 +----------+-------+--------+-------------+-------------+-----------+
 | Loss | TCP | HSTCP | CUBIC | CUBIC | CUBIC |
 | Rate P | | | (C=0.04) | (C=0.4) | (C=4) |
 +----------+-------+--------+-------------+-------------+-----------+
10^-2	12	12	12	12	12
10^-3	38	38	38	38	66
10^-4	120	263	120	209	371
10^-5	379	1795	660	1174	2087
10^-6	1200	12279	3713	6602	11740
10^-7	3795	83981	20878	37126	66022
10^-8	12000	574356	117405	208780	371269
 +----------+-------+--------+-------------+-------------+-----------+

 Response function of standard TCP, HSTCP, and CUBIC in networks with
 RTT = 100ms. The average window size W is in MSS-sized segments.

 Table 1

 +--------+-----------+-----------+------------+-----------+---------+
 | Loss | Average | Average | CUBIC | CUBIC | CUBIC |
 | Rate P | TCP W | HSTCP W | (C=0.04) | (C=0.4) | (C=4) |
 +--------+-----------+-----------+------------+-----------+---------+
10^-2	12	12	12	12	12
10^-3	38	38	38	38	38
10^-4	120	263	120	120	120
10^-5	379	1795	379	379	379
10^-6	1200	12279	1200	1200	2087
10^-7	3795	83981	3795	6603	11740
10^-8	12000	574356	20878	37126	66022
 +--------+-----------+-----------+------------+-----------+---------+

 Response function of standard TCP, HSTCP, and CUBIC in networks with
 RTT = 10ms. The average window size W is in MSS-sized segments.

 Table 2

 Both tables show that CUBIC with any of these three C values is more
 friendly to TCP than HSTCP, especially in networks with a short RTT
 where TCP performs reasonably well. For example, in a network with
 RTT = 10ms and p=10^-6, TCP has an average window of 1200 packets.
 If the packet size is 1500 bytes, then TCP can achieve an average
 rate of 1.44 Gbps. In this case, CUBIC with C=0.04 or C=0.4 achieves
 exactly the same rate as Standard TCP, whereas HSTCP is about ten
 times more aggressive than Standard TCP.

 We can see that C determines the aggressiveness of CUBIC in competing
 with other protocols for the bandwidth. CUBIC is more friendly to
 the Standard TCP, if the value of C is lower. However, we do not

Rhee, et al. Expires October 18, 2015 [Page 9]

Internet-Draft CUBIC April 2015

 recommend to set C to a very low value like 0.04, since CUBIC with a
 low C cannot efficiently use the bandwidth in long RTT and high
 bandwidth networks. Based on these observations, we find C=0.4 gives
 a good balance between TCP-friendliness and aggressiveness of window
 growth. Therefore, C SHOULD be set to 0.4. With C set to 0.4, Eq. 6
 is reduced to:

 1.17 * RTT^0.75 / p^0.75 (Eq. 7)

 Eq. 7 is then used in the next subsection to show the scalability of
 CUBIC.

4.2. Using Spare Capacity

 CUBIC uses a more aggressive window growth function than Standard TCP
 under long RTT and high bandwidth networks.

 The following table shows that to achieve 10Gbps rate, standard TCP
 requires a packet loss rate of 2.0e-10, while CUBIC requires a packet
 loss rate of 3.4e-8.

 +------------------+-----------+---------+---------+---------+
 | Throughput(Mbps) | Average W | TCP P | HSTCP P | CUBIC P |
 +------------------+-----------+---------+---------+---------+
 | 1 | 8.3 | 2.0e-2 | 2.0e-2 | 2.0e-2 |
 | 10 | 83.3 | 2.0e-4 | 3.9e-4 | 3.3e-4 |
 | 100 | 833.3 | 2.0e-6 | 2.5e-5 | 1.6e-5 |
 | 1000 | 8333.3 | 2.0e-8 | 1.5e-6 | 7.3e-7 |
 | 10000 | 83333.3 | 2.0e-10 | 1.0e-7 | 3.4e-8 |
 +------------------+-----------+---------+---------+---------+

 Required packet loss rate for Standard TCP, HSTCP, and CUBIC to
 achieve a certain throughput. We use 1500-byte packets and an RTT of
 0.1 seconds.

 Table 3

 Our test results in [HKLRX06] indicate that CUBIC uses the spare
 bandwidth left unused by existing Standard TCP flows in the same
 bottleneck link without taking away much bandwidth from the existing
 flows.

4.3. Difficult Environments

 CUBIC is designed to remedy the poor performance of TCP in fast long-
 distance networks. It is not designed for wireless networks.

Rhee, et al. Expires October 18, 2015 [Page 10]

Internet-Draft CUBIC April 2015

4.4. Investigating a Range of Environments

 CUBIC has been extensively studied by using both NS-2 simulation and
 test-bed experiments covering a wide range of network environments.
 More information can be found in [HKLRX06].

4.5. Protection against Congestion Collapse

 In case that there is congestion collapse, CUBIC behaves likely
 standard TCP since CUBIC modifies only the window adjustment
 algorithm of TCP. Thus, it does not modify the ACK clocking and
 Timeout behaviors of Standard TCP.

4.6. Fairness within the Alternative Congestion Control Algorithm.

 CUBIC ensures convergence of competing CUBIC flows with the same RTT
 in the same bottleneck links to an equal bandwidth share. When
 competing flows have different RTTs, their bandwidth shares are
 linearly proportional to the inverse of their RTT ratios. This is
 true independent of the level of statistical multiplexing in the
 link.

4.7. Performance with Misbehaving Nodes and Outside Attackers

 This is not considered in the current CUBIC.

4.8. Responses to Sudden or Transient Events

 In case that there is a sudden congestion, a routing change, or a
 mobility event, CUBIC behaves the same as Standard TCP.

4.9. Incremental Deployment

 CUBIC requires only the change of TCP senders, and does not require
 any assistant of routers.

5. Security Considerations

 This proposal makes no changes to the underlying security of TCP.

6. IANA Considerations

 There are no IANA considerations regarding this document.

Rhee, et al. Expires October 18, 2015 [Page 11]

Internet-Draft CUBIC April 2015

7. Acknowledgements

 Alexander Zimmermann and Lars Eggert have received funding from the
 European Union’s Horizon 2020 research and innovation program
 2014-2018 under grant agreement No. 644866 (SSICLOPS). This document
 reflects only the authors’ views and the European Commission is not
 responsible for any use that may be made of the information it
 contains.

8. References

8.1. Normative References

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3649] Floyd, S., "HighSpeed TCP for Large Congestion Windows",
 RFC 3649, December 2003.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol", RFC
 4960, September 2007.

 [RFC5033] Floyd, S. and M. Allman, "Specifying New Congestion
 Control Algorithms", BCP 133, RFC 5033, August 2007.

 [RFC5348] Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP
 Friendly Rate Control (TFRC): Protocol Specification", RFC
 5348, September 2008.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC6582] Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, "The
 NewReno Modification to TCP’s Fast Recovery Algorithm",
 RFC 6582, April 2012.

8.2. Informative References

 [CEHRX07] Cai, H., Eun, D., Ha, S., Rhee, I., and L. Xu, "Stochastic
 Ordering for Internet Congestion Control and its
 Applications", In Proceedings of IEEE INFOCOM , May 2007.

 [FHP00] Floyd, S., Handley, M., and J. Padhye, "A Comparison of
 Equation-Based and AIMD Congestion Control", May 2000.

Rhee, et al. Expires October 18, 2015 [Page 12]

Internet-Draft CUBIC April 2015

 [GV02] Gorinsky, S. and H. Vin, "Extended Analysis of Binary
 Adjustment Algorithms", Technical Report TR2002-29,
 Department of Computer Sciences , The University of Texas
 at Austin , August 2002.

 [HKLRX06] Ha, S., Kim, Y., Le, L., Rhee, I., and L. Xu, "A Step
 toward Realistic Performance Evaluation of High-Speed TCP
 Variants", International Workshop on Protocols for Fast
 Long-Distance Networks , February 2006.

 [HRX08] Ha, S., Rhee, I., and L. Xu, "CUBIC: A New TCP-Friendly
 High-Speed TCP Variant", ACM SIGOPS Operating System
 Review , 2008.

 [K03] Kelly, T., "Scalable TCP: Improving Performance in
 HighSpeed Wide Area Networks", ACM SIGCOMM Computer
 Communication Review , April 2003.

 [LS08] Leith, D. and R. Shorten, "H-TCP: TCP Congestion Control
 for High Bandwidth-Delay Product Paths", Internet-draft
 draft-leith-tcp-htcp-06 , April 2008.

 [XHR04] Xu, L., Harfoush, K., and I. Rhee, "Binary Increase
 Congestion Control for Fast, Long Distance Networks", In
 Proceedings of IEEE INFOCOM , March 2004.

Authors’ Addresses

 Injong Rhee
 North Carolina State University
 Department of Computer Science
 Raleigh, NC 27695-7534
 US

 Email: rhee@ncsu.edu

 Lisong Xu
 University of Nebraska-Lincoln
 Department of Computer Science and Engineering
 Lincoln, NE 68588-01150
 US

 Email: xu@unl.edu

Rhee, et al. Expires October 18, 2015 [Page 13]

Internet-Draft CUBIC April 2015

 Sangtae Ha
 University of Colorado at Boulder
 Department of Computer Science
 Boulder, CO 80309-0430
 US

 Email: sangtae.ha@colorado.edu

 Alexander Zimmermann
 NetApp
 Sonnenallee 1
 Kirchheim 85551
 Germany

 Phone: +49 89 900594712
 Email: alexander.zimmermann@netapp.com

 Lars Eggert
 NetApp
 Sonnenallee 1
 Kirchheim 85551
 Germany

 Phone: +49 151 12055791
 Email: lars@netapp.com

 Richard Scheffenegger
 NetApp
 Am Euro Platz 2
 Vienna 1120
 Austria

 Phone: +43 1 3676811 3146
 Email: rs@netapp.com

Rhee, et al. Expires October 18, 2015 [Page 14]

